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Abstract For an arbitrary prime p we use partial spreads of F
2m
p to construct two classes of

bent functions from F
2m
p to Fp . Our constructions generalize the classes P S(−) and P S(+)

of binary bent functions which are due to Dillon.
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1 Introduction

The functions from F
n
2 to F2 that are as far as possible from the set of all linear (or affine)

functions on the same domain have been widely studied as bent functions since mid-1960s
when Rothaus introduced them [12,13]. Besides being interesting combinatorial objects, they
have important applications in cryptography (design of stream ciphers and design of S-boxes
for block ciphers). They also have applications in the design of sequences with favourable
correlation properties. By extending Rothaus’ definition in a natural way, Kumar, Scholtz
and Welch in 1985 defined bent functions from F

n
p to Fp for an arbitrary prime p, and these

“generalized” bent functions have also enjoyed a lot of interest in the literature.
In Sect. 2 we review background material on bent functions. In Sect. 3 we prove com-

binatorial characterizations of two classes of bent functions from F
2m
p to Fp (where m is a

positive integer and p is a prime) that generalize the classes P S(−) and P S(+) discovered
by Dillon for p = 2 [1,2]. The ingredient of our constructions is a partial spread, which
is a set of pairwise disjoint (except for the origin) m-dimensional subspaces of F

2m
p . These
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210 P. Lisoněk, H. Y. Lu

constructions have been noted previously in the special case when one employs the spread
obtained from the subfield Fpm of Fp2m . We remove this restriction and we prove the results
for an arbitrary partial spread.

2 Background

Throughout the article, p denotes a prime. For a positive integer s, let Fps denote the finite
field of order ps .

Let V be a vector space over Fp and for a, b ∈ V denote by 〈a, b〉 an arbitrary inner
product on V (that is, a non-degenerate symmetric bilinear form on V ). It is well known that
given any inner product 〈x, y〉 on F

n
p , the set of linear functions from F

n
p to Fp is precisely

the set of functions fa(x) = 〈a, x〉 where a runs through all vectors in F
n
p .

Let ζp = e2π
√−1/p , a primitive pth root of unity.

Definition 2.1 For f : F
n
p → Fp and a fixed inner product 〈x, y〉 on F

n
p we define the Walsh

transform of f to be the mapping W f : F
n
p → C given by

W f (a) =
∑

x∈Fn
p

ζ
f (x)−〈a,x〉

p .

Since fa(x) = 〈a, x〉 are precisely all linear functions from F
n
p to Fp , it is natural to

consider f as highly non-linear if |W f (a)| is small for all a ∈ F
n
p . From Parseval’s identity∑

a∈Fn
p
|W f (a)|2 = p2n (which holds for each function f ) we see that |W f (a)| ≥ pn/2 for

at least one a ∈ F
n
p . Thus we naturally arrive at the following definition.

Definition 2.2 [7, Definition 2] We say that f : F
n
p → Fp is a bent function if |W f (a)| =

pn/2 for all a ∈ F
n
p .

For p = 2 binary bent functions were defined by Rothaus [12,13]. Note that n must be
even in this case, as W f (a) is always an integer when p = 2. In 1985, Kumar et al. [7]
extended Rothaus’ definition to the case of an arbitrary prime p.

Let f : F
n
p → Fp be a bent function. We say that f is regular if there exists f ∗ : F

n
p → Fp

such that W f (a) = pn/2ζ
f ∗(a)

p for all a ∈ F
n
p . The function f ∗ is called the dual of f .

In the next section we will use the following result on the distribution of values of a bent
function due to Nyberg [9].

Theorem 2.3 ([9], Theorem 3.2) Let m be a positive integer and p a prime. Suppose that
f : F

2m
p → Fp is a bent function and for u ∈ Fp denote bu := | f −1(u)|. Then there exists

k ∈ Fp such that

bk = p2m−1 ± (p − 1)pm−1

b� = p2m−1 ∓ pm−1 for � ∈ Fp \ {k}.
Here the ± signs are taken correspondingly. Moreover, a regular bent function has the upper
signs.

3 The constructions

Throughout this section we assume that m is a positive integer.
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Bent functions on partial spreads 211

Definition 3.1 An m-spread of F
n
p is a set of pairwise disjoint (except for 0) m-dimensional

subspaces of F
n
p whose union equals F

n
p . A partial m-spread of F

n
p is a set of pairwise disjoint

(except for 0) m-dimensional subspaces of F
n
p .

Note that the prefix m in the term “(partial) m-spread” indicates the dimension of the
subspaces that form the (partial) spread. It is well known that an m-spread of F

n
p exists if and

only if m divides n.
In Chap. 6 of [1], Dillon used partial m-spreads of F

2m
2 to construct two families of bent

functions from F
2m
2 to F2, which he named family P S(−) and family P S(+) respectively. In

Sects. 3.1 and 3.2 we generalize these two families to an arbitrary prime characteristic.
Let F

∗
p := Fp \ {0} and similarly for T ⊂ F

n
p denote T ∗ := T \ {0}. For a ∈ F

2m
p denote

a⊥ := {x ∈ F
2m
p : 〈a, x〉 = 0}. In order to simplify some of the calculations that will follow

later, we state one part of them as a separate lemma.

Lemma 3.2 Let a ∈ F
2m
p , a �= 0, and assume that T is a subspace of F

2m
p such that T �⊂ a⊥.

Then
∑

x∈T ∗ ζ
−〈a,x〉
p = −1.

Proof If T �⊂ a⊥, then
∑

x∈T ζ
−〈a,x〉
p = 0 and the result follows immediately. 
�

3.1 p-ary Family P S(−)

Theorem 3.3 Let p be a prime number and let m be an integer such that pm > 3. Suppose
that S is a partial m-spread of F

2m
p and f : F

2m
p → Fp is such that for each T ∈ S, f is

constant on T ∗. Moreover suppose that

f −1(0) = F
2m
p \

⋃

T ∈S
T ∗.

Then f is bent if and only if for each x ∈ F
∗
p, f −1(x) ∪ {0} is the union of exactly pm−1

elements of S. If f is bent, then it is a regular bent function.

Proof We first prove the “⇐” part of Theorem 3.3. Let us assume that S is a partial m-spread
of F

2m
p . We also assume that f : F

2m
p → Fp is such that for each j ∈ F

∗
p , if we denote by

D j the preimage of j under f , then

D j := f −1( j) =
pm−1⋃

i=1

S∗
j i , (1)

where S ji is an element of S for each i and j , and S ji �= Skl for ( j, i) �= (k, l). Let us also
define D0 := f −1(0) but note that no structure is assumed or needed on D0. Under these
assumptions we will show that f is regular bent.

An easy calculation shows W f (0) = ∑
j∈F∗

p
pm−1(pm −1)ζ

j
p + p2m −(p−1)pm−1(pm −

1) = −pm−1(pm − 1) + p2m − (p − 1)pm−1(pm − 1) = pm .
From now on let us assume that a ∈ F

2m
p and a �= 0. Then a⊥ is a (2m − 1)-dimensional

subspace of F
2m
p and hence, from the partial spread condition combined with a dimension

argument it follows that a⊥ contains at most one subspace S ji as introduced in Eq. 1. In the
computation of W f (a) we will distinguish two cases according to whether a⊥ does or does
not contain one of the subspaces S ji .
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212 P. Lisoněk, H. Y. Lu

First let us assume that none of the subspaces S ji introduced in Eq. 1 is contained in

a⊥. Then using Lemma 3.2 and noting that
∑

x∈D0
ζ

−〈b,x〉
p = −∑

j∈F∗
p

∑
x∈D j

ζ
−〈b,x〉
p we

compute

W f (a) =
∑

x∈F2m
p

ζ
f (x)−〈a,x〉

p =
∑

j∈F∗
p

∑

x∈S∗
j i ,1≤i≤pm−1

ζ
j−〈a,x〉
p +

∑

x∈D0

ζ−〈a,x〉
p

=
∑

j∈F∗
p

ζ
j
p pm−1(−1) − (p − 1)(−pm−1)

= (−1)(−pm−1) + (p − 1)pm−1 = pm .

Next let us assume that a⊥ contains the subspace Skl . We compute

W f (a) =
∑

x∈F2m
p

ζ
f (x)−〈a,x〉

p =
∑

j∈F∗
p

∑

x∈S∗
j i ,1≤i≤pm−1

ζ
j−〈a,x〉
p +

∑

x∈D0

ζ−〈a,x〉
p

=
∑

j∈F∗
p

ζ
j
p pm−1(−1) − ζ k

p(−1) + ζ k
p(pm − 1) − [(p − 1)(−pm−1) + pm]

= (−1)(−pm−1) + pmζ k
p − pm−1 = pmζ k

p .

This finishes the proof of the “⇐” part of Theorem 3.3. Note that for each a we have

W f (a) = pmζ
f ∗(a)

p for some f ∗(a) ∈ Fp , thus f is regular bent.
Now we prove the “⇒” part of Theorem 3.3. Let us assume that S is a partial m-spread

of F
2m
p and pm > 3. We also assume that f : F

2m
p → Fp is a bent function such that for each

T ∈ S, f is constant on T ∗, and

f −1(0) = F
2m
p \

⋃

T ∈S
T ∗.

For each j ∈ F
∗
p let N j be such that

f −1( j) =
N j⋃

i=1

S∗
j i ,

where all S ji are pairwise distinct elements of S. We have to show that N j = pm−1 for all
j ∈ F

∗
p .

We have

p2m−1 + (p − 1)pm−1 = (pm−1 + 1)(pm − 1) + 1 (2)

p2m−1 − (p − 1)pm−1 = (pm−1 − 1)(pm − 1) + 2pm−1 − 1. (3)

As in Theorem 2.3 for u ∈ Fp denote bu := | f −1(u)|, then for j ∈ F
∗
p we have

b j = N j (pm − 1). (4)

For p = 2 Theorem 3.3 was proved by Dillon [1, Chap. 6], hence we can assume without
loss of generality that p > 2. Then Eqs. 2–4 imply that we must have k = 0 in Theorem 2.3.

Thus all numbers N j are equal to each other for all j ∈ F
∗
p . Let N j = N for j ∈ F

∗
p . By

Theorem 2.3 we have N = p2m−1∓pm−1

pm−1 . We have

p2m−1 − pm−1

pm − 1
= pm−1 (5)
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p2m−1 + pm−1

pm − 1
= pm−1 + 2pm−1

pm − 1
. (6)

From the assumption pm > 3 it follows that the number on the right-hand side of Eq. 6 is
never an integer; thus we always have N = pm−1 by Eq. 5. This finishes the proof of the
“⇒” part of Theorem 3.3. 
�

Let us remark that the assumption pm > 3 is necessary. For pm = 3 consider the function
f : F32 → F3 given by f (x) = x4 and the 1-spread S = {{0, x,−x} : x ∈ F32} of F32 .
Then f is a bent function that is constant on T ∗ for all T ∈ S. However, using the notation
introduced above, N1 = N2 = 2 �= 31−1. Similarly for pm = 2 consider the function
f : F22 → F2 given by f (x) = x3.

For p = 2 the class of binary bent functions satisfying the conditions of Theorem 3.3 was
named P S(−) class by Dillon [1, Chap. 6]. Thus we introduce the following generalization
of this naming convention.

Definition 3.4 The class of bent functions satisfying the conditions of Theorem 3.3 will be
called p-ary P S(−) class.

Corollary 3.5 If f is a bent function that belongs to the p-ary P S(−) class, then the dual of
f also belongs to the p-ary P S(−) class.

Proof Assume that f belongs to the p-ary P S(−) class and recall that f ∗ denotes the dual
of f . By the proof of Theorem 3.3 for k ∈ F

∗
p we have f ∗(a) = k exactly when Ski ⊂ a⊥

for some i and a �= 0, equivalently a ∈ (S⊥
ki )

∗, where S⊥
ki denotes the dual subspace of Ski .

Thus we see that f ∗ has the same structure as f after replacing all subspaces S ji with their
duals. Thus f ∗ belongs to the p-ary P S(−) class. 
�
3.2 p-ary Family P S(+)

It follows from the definitions at once that f : F
n
p → Fp is a (regular) bent function if and

only if g(x) := f (x) + c is a (regular) bent function for each c ∈ Fp . Thus, when studying
a bent function f : F

n
p → Fp we can assume without loss of generality that f (0) ∈ U for

any choice of ∅ �= U ⊆ Fp .

Theorem 3.6 Let p be a prime number and let m be an integer. Suppose that S is a partial
m-spread of F

2m
p and f : F

2m
p → Fp is such that for each T ∈ S, f is constant on T ∗.

Moreover suppose that

f −1(0) =
(
F

2m
p

)∗ \
⋃

T ∈S

T ∗

and f (0) = t where t ∈ F
∗
p. Then f is bent if and only if for each x ∈ F

∗
p \ {t}, f −1(x)∪{0}

is the union of exactly pm−1 elements of S and f −1(t) is the union of exactly pm−1 + 1
elements of S. If f is bent, then it is a regular bent function.

Proof The proof of Theorem 3.6 is analogous to the proof of Theorem 3.3. We first prove
the “⇐” part of Theorem 3.6. Let us assume that S is a partial m-spread of F

2m
p . We also

assume that f : F
2m
p → Fp and t ∈ F

∗
p are such that for each j ∈ F

∗
p \ {t}

D j := f −1( j) =
pm−1⋃

i=1

S∗
j i (7)
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214 P. Lisoněk, H. Y. Lu

and

Dt := f −1(t) =
pm−1+1⋃

i=1

Sti , (8)

where S ji is an element of S for each i and j , and S ji �= Skl for ( j, i) �= (k, l). Let
D0 := f −1(0) and note that |D0| = p2m−(1+((p−1)pm−1+1)(pm−1)) = p2m−1−pm−1.
Under these assumptions we will show that f is regular bent.

We compute W f (0) = ∑
x∈F2m

p
ζ

f (x)
p = ∑

j∈F∗
p\{t} pm−1(pm −1)ζ

j
p +((pm−1+1)(pm −

1)+1)ζ t
p + (p2m−1 − pm−1)ζ 0

p = pm−1(pm −1)(−1)+ pmζ t
p + (p2m−1 − pm−1) = pmζ t

p .
From now on suppose that a �= 0. First assume that none of the subspaces S ji introduced

in Eqs. 7, 8 is contained in a⊥. Then using Lemma 3.2 and noting that
∑

x∈D0
ζ

−〈a,x〉
p =

−∑
j∈F∗

p

∑
x∈D j

ζ
−〈a,x〉
p we compute

W f (a) =
∑

j∈F∗
p

∑

x∈S∗
j i ,1≤i≤pm−1

ζ
j−〈a,x〉
p +

∑

x∈St,pm−1+1

ζ t−〈a,x〉
p +

∑

x∈D0

ζ−〈a,x〉
p

=
∑

j∈F∗
p

ζ
j
p pm−1(−1) + 0 − (p − 1)pm−1(−1) = pm .

Next let us assume that a⊥ contains the subspace Skl . Without loss of generality we can
assume (k, l) �= (t, pm−1 + 1). (If (k, l) = (t, pm−1 + 1), then swap St,pm−1+1 and St,pm−1

without changing f .) We compute

W f (a) =
∑

j∈F∗
p

∑

x∈S∗
j i ,1≤i≤pm−1

ζ
j−〈a,x〉
p +

∑

x∈St,pm−1+1

ζ t−〈a,x〉
p +

∑

x∈D0

ζ−〈a,x〉
p

=
∑

j∈F∗
p

ζ
j
p pm−1(−1) − ζ k

p(−1) + ζ k
p(pm − 1) + 0 − ((p − 1)pm−1(−1) + pm)

= (−1)(−pm−1) + pmζ k
p − pm−1 = pmζ k

p .

This finishes the proof of the “⇐” part of Theorem 3.6. Note that for each a we found that

W f (a) = pmζ
f ∗(a)

p for some f ∗(a) ∈ Fp , thus f is regular bent.
To prove the “⇒” part of Theorem 3.6, for j ∈ F

∗
p let N j be such that for j �= t

f −1( j) =
N j⋃

i=1

S∗
j i

and

f −1(t) =
Nt⋃

i=1

Sti ,

where all S ji are pairwise distinct elements of S, an m-spread of F
2m
p . We have to show that

N j = pm−1 for all j ∈ F
∗
p \ {t} and Nt = pm−1 + 1.

Again as in Theorem 2.3 for u ∈ Fp denote bu := | f −1(u)|, then for j ∈ F
∗
p \ {t} we have

b j = N j (pm − 1) (9)
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Bent functions on partial spreads 215

and further

bt = Nt (pm − 1) + 1. (10)

Since for p = 2 Theorem 3.6 was proved by Dillon [1, Chap. 6], we can again assume
without loss of generality that p > 2. Let k be as in Theorem 2.3. By considering Eqs. 2, 3,
9 and 10 we see that only the following cases (i) and (ii) may possibly occur.

(i) We have k = t and the upper signs are chosen in Theorem 2.3. Then Nt = pm−1 + 1 by
Eq 2 and for j ∈ F

∗
p \ {t}

N j = p2m−1 − pm−1

pm − 1
= pm−1.

(ii) We have k = t , m = 1 and the lower signs are chosen in Theorem 2.3. But then bt = 1,
hence Dt does not contain an m-dimensional subspace of F

2m
p , which means that this

case never occurs.


�
Definition 3.7 The class of bent functions satisfying the conditions of Theorem 3.6 will be
called p-ary P S(+) class.

The reason for this naming convention is the fact that for p = 2 the class of binary bent
functions satisfying the conditions of Theorem 3.6 was named P S(+) class by Dillon [1,
Chap. 6].

Corollary 3.8 If f is a bent function that belongs to the p-ary P S(+) class, then the dual of
f also belongs to the p-ary P S(+) class.

Proof The proof is analogous to the proof of Corollary 3.5. Assume that f belongs to the
p-ary P S(+) class. Using the proof of Theorem 3.6 we deduce that f ∗ has the same structure
as f after replacing all subspaces S ji with their duals. Thus f ∗ belongs to the p-ary P S(+)

class. 
�
3.3 Spreads from subfields

Let Tr denote the trace function from Fp2m to Fp . Since Fp2m is a 2m-dimensional vector
space over Fp , by taking the inner product 〈x, y〉 = Tr(xy) on Fp2m we can consider bent
functions from Fp2m to Fp and all definitions and statements given above apply.

Let α be a primitive element of Fp2m . Then {αi
Fpm : 0 ≤ i ≤ pm} is an m-spread of

Fp2m , which we will call the subfield spread. For partial spreads that are subsets of a subfield
spread, the constructions that we gave in Theorems 3.3 and 3.6 above produce the same
bent functions (up to a shift by a constant), and for reference we now state this special case
explicitly:

Theorem 3.9 ([10] Theorem 2.5) Let p be a prime and m a positive integer with pm > 3.
Let α be a primitive element of Fp2m . Suppose that f : Fp2m → Fp is such that f (0) = 0
and for each 0 ≤ i ≤ pm and for each v ∈ F

∗
pm we have f (αiv) = f (αi ). Then f is bent

if and only if for each u ∈ F
∗
p there are exactly pm−1 elements i ∈ {0, . . . , pm} such that

f (αi ) = u. If f is bent, then it is a regular bent function.
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216 P. Lisoněk, H. Y. Lu

Theorem 3.9 has been discovered previously by several authors. The earliest reference,
giving the statement in a slightly weaker form, appears to be Theorem 2.5 in [10]. The
statement also occurs as a special case of Theorem 4.1 in [5].

Theorems 3.3 and 3.6 proved in this paper are more general than Theorem 3.9 due to
the following two reasons: It is well known that there do exist m-spreads of F

2m
p that are

not equivalent under GL(2m, Fp) to the subfield m-spread, see for example [4, Chap. 17].
Moreover, there do exist partial m-spreads of F

2m
p that are not extendible to an m-spread, see

for example [11] and the references therein.
Bent functions constructed from Theorem 3.9 belong to both classes P S(−) and P S(+)

introduced in Definitions 3.4 and 3.7 above, up to a shift by a constant as discussed at the
beginning of Sect. 3.2.

A function f : Fp2m → Fp given by a sum of traces of monomials β j x j (pm−1) where
j ∈ {0, . . . , pm} and β j ∈ Fp2m is said to have Dillon type exponents. In general the traces
may be taken either from Fp2m or from some subfields thereof, as certain values of j will

guarantee that x j (pm−1) belongs to a proper subfield of Fp2m and then the choices for β j

and the trace function are made accordingly. The function may involve traces from different
fields [6,8]. For any f that has Dillon type exponents, using the notation of Theorem 3.9
we always have f (0) = 0 and f (αiv) = f (αi ) because v j (pm−1) = 1 if v ∈ F

∗
pm . Hence

by Theorem 3.9, f is (regular) bent if and only if for each u ∈ F
∗
p there are exactly pm−1

elements i ∈ {0, . . . , pm} such that f (αi ) = u. This condition can be rewritten in terms of
exponential sums when f is restricted to certain particular forms. The resulting classes of
bent functions with Dillon type exponents have been studied in several papers recently. The
interested reader is referred to [3, Section II], [6,8].
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