Bent functions on partial spreads

Petr Lisoněk · Hui Yi Lu

Received: 21 May 2012 / Revised: 27 March 2013 / Accepted: 27 March 2013 / Published online: 9 April 2013 © Springer Science+Business Media New York 2013

Abstract For an arbitrary prime p we use partial spreads of \mathbb{F}_p^{2m} to construct two classes of bent functions from \mathbb{F}_p^{2m} to \mathbb{F}_p . Our constructions generalize the classes $PS^{(-)}$ and $PS^{(+)}$ of binary bent functions which are due to Dillon.

Keywords Bent function · Partial spread

Mathematics Subject Classification (2010) 94C10 · 51E14

1 Introduction

The functions from \mathbb{F}_2^n to \mathbb{F}_2 that are as far as possible from the set of all linear (or affine) functions on the same domain have been widely studied as *bent functions* since mid-1960s when Rothaus introduced them [12, 13]. Besides being interesting combinatorial objects, they have important applications in cryptography (design of stream ciphers and design of S-boxes for block ciphers). They also have applications in the design of sequences with favourable correlation properties. By extending Rothaus' definition in a natural way, Kumar, Scholtz and Welch in 1985 defined bent functions from \mathbb{F}_p^n to \mathbb{F}_p for an arbitrary prime p, and these "generalized" bent functions have also enjoyed a lot of interest in the literature.

In Sect. 2 we review background material on bent functions. In Sect. 3 we prove combinatorial characterizations of two classes of bent functions from \mathbb{F}_p^{2m} to \mathbb{F}_p (where *m* is a positive integer and *p* is a prime) that generalize the classes $PS^{(-)}$ and $PS^{(+)}$ discovered by Dillon for p = 2 [1,2]. The ingredient of our constructions is a partial spread, which is a set of pairwise disjoint (except for the origin) *m*-dimensional subspaces of \mathbb{F}_p^{2m} . These

P. Lisoněk (⊠) · H. Y. Lu Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada e-mail: plisonek@sfu.ca

Communicated by C. Carlet.

constructions have been noted previously in the special case when one employs the spread obtained from the subfield \mathbb{F}_{p^m} of $\mathbb{F}_{p^{2m}}$. We remove this restriction and we prove the results for an arbitrary partial spread.

2 Background

Throughout the article, p denotes a prime. For a positive integer s, let \mathbb{F}_{p^s} denote the finite field of order p^s .

Let V be a vector space over \mathbb{F}_p and for $a, b \in V$ denote by $\langle a, b \rangle$ an arbitrary inner product on V (that is, a non-degenerate symmetric bilinear form on V). It is well known that given any inner product $\langle x, y \rangle$ on \mathbb{F}_p^n , the set of linear functions from \mathbb{F}_p^n to \mathbb{F}_p is precisely the set of functions $f_a(x) = \langle a, x \rangle$ where a runs through all vectors in \mathbb{F}_p^n .

Let $\zeta_p = e^{2\pi \sqrt{-1}/p}$, a primitive *p*th root of unity.

Definition 2.1 For $f : \mathbb{F}_p^n \to \mathbb{F}_p$ and a fixed inner product $\langle x, y \rangle$ on \mathbb{F}_p^n we define the *Walsh transform* of f to be the mapping $\mathcal{W}_f : \mathbb{F}_p^n \to \mathbb{C}$ given by

$$\mathcal{W}_f(a) = \sum_{x \in \mathbb{F}_p^n} \zeta_p^{f(x) - \langle a, x \rangle}$$

Since $f_a(x) = \langle a, x \rangle$ are precisely all linear functions from \mathbb{F}_p^n to \mathbb{F}_p , it is natural to consider f as highly non-linear if $|\mathcal{W}_f(a)|$ is small for all $a \in \mathbb{F}_p^n$. From Parseval's identity $\sum_{a \in \mathbb{F}_p^n} |\mathcal{W}_f(a)|^2 = p^{2n}$ (which holds for each function f) we see that $|\mathcal{W}_f(a)| \ge p^{n/2}$ for at least one $a \in \mathbb{F}_p^n$. Thus we naturally arrive at the following definition.

Definition 2.2 [7, Definition 2] We say that $f : \mathbb{F}_p^n \to \mathbb{F}_p$ is a *bent function* if $|\mathcal{W}_f(a)| = p^{n/2}$ for all $a \in \mathbb{F}_p^n$.

For p = 2 binary bent functions were defined by Rothaus [12,13]. Note that *n* must be even in this case, as $W_f(a)$ is always an integer when p = 2. In 1985, Kumar et al. [7] extended Rothaus' definition to the case of an arbitrary prime *p*.

Let $f : \mathbb{F}_p^n \to \mathbb{F}_p$ be a bent function. We say that f is *regular* if there exists $f^* : \mathbb{F}_p^n \to \mathbb{F}_p$ such that $\mathcal{W}_f(a) = p^{n/2} \zeta_p^{f^*(a)}$ for all $a \in \mathbb{F}_p^n$. The function f^* is called the *dual* of f.

In the next section we will use the following result on the distribution of values of a bent function due to Nyberg [9].

Theorem 2.3 ([9], Theorem 3.2) Let *m* be a positive integer and *p* a prime. Suppose that $f : \mathbb{F}_p^{2m} \to \mathbb{F}_p$ is a bent function and for $u \in \mathbb{F}_p$ denote $b_u := |f^{-1}(u)|$. Then there exists $k \in \mathbb{F}_p$ such that

$$b_k = p^{2m-1} \pm (p-1)p^{m-1}$$

$$b_\ell = p^{2m-1} \mp p^{m-1} \quad for \ \ell \in \mathbb{F}_p \setminus \{k\}$$

Here the \pm signs are taken correspondingly. Moreover, a regular bent function has the upper signs.

3 The constructions

Throughout this section we assume that *m* is a positive integer.

Definition 3.1 An *m*-spread of \mathbb{F}_p^n is a set of pairwise disjoint (except for 0) *m*-dimensional subspaces of \mathbb{F}_p^n whose union equals \mathbb{F}_p^n . A partial *m*-spread of \mathbb{F}_p^n is a set of pairwise disjoint (except for 0) *m*-dimensional subspaces of \mathbb{F}_p^n .

Note that the prefix *m* in the term "(partial) *m*-spread" indicates the dimension of the subspaces that form the (partial) spread. It is well known that an *m*-spread of \mathbb{F}_p^n exists if and only if *m* divides *n*.

In Chap. 6 of [1], Dillon used partial *m*-spreads of \mathbb{F}_2^{2m} to construct two families of bent functions from \mathbb{F}_2^{2m} to \mathbb{F}_2 , which he named *family* $PS^{(-)}$ and *family* $PS^{(+)}$ respectively. In Sects. 3.1 and 3.2 we generalize these two families to an arbitrary prime characteristic.

Let $\mathbb{F}_p^* := \mathbb{F}_p \setminus \{0\}$ and similarly for $T \subset \mathbb{F}_p^n$ denote $T^* := T \setminus \{0\}$. For $a \in \mathbb{F}_p^{2m}$ denote $a^{\perp} := \{x \in \mathbb{F}_p^{2m} : \langle a, x \rangle = 0\}$. In order to simplify some of the calculations that will follow later, we state one part of them as a separate lemma.

Lemma 3.2 Let $a \in \mathbb{F}_p^{2m}$, $a \neq 0$, and assume that T is a subspace of \mathbb{F}_p^{2m} such that $T \not\subset a^{\perp}$. Then $\sum_{x \in T^*} \zeta_p^{-\langle a, x \rangle} = -1$.

Proof If $T \not\subset a^{\perp}$, then $\sum_{x \in T} \zeta_p^{-\langle a, x \rangle} = 0$ and the result follows immediately. \Box

3.1 *p*-ary Family $PS^{(-)}$

Theorem 3.3 Let p be a prime number and let m be an integer such that $p^m > 3$. Suppose that S is a partial m-spread of \mathbb{F}_p^{2m} and $f : \mathbb{F}_p^{2m} \to \mathbb{F}_p$ is such that for each $T \in S$, f is constant on T^* . Moreover suppose that

$$f^{-1}(0) = \mathbb{F}_p^{2m} \setminus \bigcup_{T \in \mathcal{S}} T^*.$$

Then f is bent if and only if for each $x \in \mathbb{F}_p^*$, $f^{-1}(x) \cup \{0\}$ is the union of exactly p^{m-1} elements of S. If f is bent, then it is a regular bent function.

Proof We first prove the " \Leftarrow " part of Theorem 3.3. Let us assume that S is a partial *m*-spread of \mathbb{F}_p^{2m} . We also assume that $f : \mathbb{F}_p^{2m} \to \mathbb{F}_p$ is such that for each $j \in \mathbb{F}_p^*$, if we denote by D_j the preimage of j under f, then

$$D_j := f^{-1}(j) = \bigcup_{i=1}^{p^{m-1}} S_{ji}^*, \tag{1}$$

where S_{ji} is an element of S for each i and j, and $S_{ji} \neq S_{kl}$ for $(j, i) \neq (k, l)$. Let us also define $D_0 := f^{-1}(0)$ but note that no structure is assumed or needed on D_0 . Under these assumptions we will show that f is regular bent.

An easy calculation shows $\mathcal{W}_f(0) = \sum_{j \in \mathbb{F}_p^*} p^{m-1}(p^m - 1)\zeta_p^j + p^{2m} - (p-1)p^{m-1}(p^m - 1) = -p^{m-1}(p^m - 1) + p^{2m} - (p-1)p^{m-1}(p^m - 1) = p^m.$

From now on let us assume that $a \in \mathbb{F}_p^{2m}$ and $a \neq 0$. Then a^{\perp} is a (2m - 1)-dimensional subspace of \mathbb{F}_p^{2m} and hence, from the partial spread condition combined with a dimension argument it follows that a^{\perp} contains at most one subspace S_{ji} as introduced in Eq. 1. In the computation of $\mathcal{W}_f(a)$ we will distinguish two cases according to whether a^{\perp} does or does not contain one of the subspaces S_{ji} .

First let us assume that none of the subspaces S_{ji} introduced in Eq. 1 is contained in a^{\perp} . Then using Lemma 3.2 and noting that $\sum_{x \in D_0} \zeta_p^{-\langle b, x \rangle} = -\sum_{j \in \mathbb{F}_p^*} \sum_{x \in D_j} \zeta_p^{-\langle b, x \rangle}$ we compute

$$\mathcal{W}_{f}(a) = \sum_{x \in \mathbb{F}_{p}^{2m}} \zeta_{p}^{f(x) - \langle a, x \rangle} = \sum_{j \in \mathbb{F}_{p}^{*}} \sum_{x \in S_{ji}^{*}, 1 \le i \le p^{m-1}} \zeta_{p}^{j - \langle a, x \rangle} + \sum_{x \in D_{0}} \zeta_{p}^{-\langle a, x \rangle}$$
$$= \sum_{j \in \mathbb{F}_{p}^{*}} \zeta_{p}^{j} p^{m-1} (-1) - (p-1)(-p^{m-1})$$
$$= (-1)(-p^{m-1}) + (p-1)p^{m-1} = p^{m}.$$

Next let us assume that a^{\perp} contains the subspace S_{kl} . We compute

$$\mathcal{W}_{f}(a) = \sum_{x \in \mathbb{F}_{p}^{2m}} \zeta_{p}^{f(x) - \langle a, x \rangle} = \sum_{j \in \mathbb{F}_{p}^{*}} \sum_{x \in S_{ji}^{*}, 1 \le i \le p^{m-1}} \zeta_{p}^{j - \langle a, x \rangle} + \sum_{x \in D_{0}} \zeta_{p}^{-\langle a, x \rangle}$$
$$= \sum_{j \in \mathbb{F}_{p}^{*}} \zeta_{p}^{j} p^{m-1}(-1) - \zeta_{p}^{k}(-1) + \zeta_{p}^{k}(p^{m} - 1) - [(p-1)(-p^{m-1}) + p^{m}]$$
$$= (-1)(-p^{m-1}) + p^{m} \zeta_{p}^{k} - p^{m-1} = p^{m} \zeta_{p}^{k}.$$

This finishes the proof of the " \Leftarrow " part of Theorem 3.3. Note that for each *a* we have $\mathcal{W}_f(a) = p^m \zeta_p^{f^*(a)}$ for some $f^*(a) \in \mathbb{F}_p$, thus *f* is regular bent.

Now we prove the " \Rightarrow " part of Theorem 3.3. Let us assume that S is a partial *m*-spread of \mathbb{F}_p^{2m} and $p^m > 3$. We also assume that $f : \mathbb{F}_p^{2m} \to \mathbb{F}_p$ is a bent function such that for each $T \in S$, f is constant on T^* , and

$$f^{-1}(0) = \mathbb{F}_p^{2m} \setminus \bigcup_{T \in \mathcal{S}} T^*$$

For each $j \in \mathbb{F}_p^*$ let N_j be such that

$$f^{-1}(j) = \bigcup_{i=1}^{N_j} S_{ji}^*,$$

where all S_{ji} are pairwise distinct elements of S. We have to show that $N_j = p^{m-1}$ for all $j \in \mathbb{F}_p^*$.

We have

$$p^{2m-1} + (p-1)p^{m-1} = (p^{m-1}+1)(p^m-1) + 1$$
(2)

$$p^{2m-1} - (p-1)p^{m-1} = (p^{m-1} - 1)(p^m - 1) + 2p^{m-1} - 1.$$
 (3)

As in Theorem 2.3 for $u \in \mathbb{F}_p$ denote $b_u := |f^{-1}(u)|$, then for $j \in \mathbb{F}_p^*$ we have

$$b_j = N_j (p^m - 1).$$
 (4)

For p = 2 Theorem 3.3 was proved by Dillon [1, Chap. 6], hence we can assume without loss of generality that p > 2. Then Eqs. 2–4 imply that we must have k = 0 in Theorem 2.3.

Thus all numbers N_j are equal to each other for all $j \in \mathbb{F}_p^*$. Let $N_j = N$ for $j \in \mathbb{F}_p^*$. By Theorem 2.3 we have $N = \frac{p^{2m-1} \mp p^{m-1}}{p^m - 1}$. We have

$$\frac{p^{2m-1} - p^{m-1}}{p^m - 1} = p^{m-1}$$
(5)

$$\frac{p^{2m-1} + p^{m-1}}{p^m - 1} = p^{m-1} + \frac{2p^{m-1}}{p^m - 1}.$$
(6)

From the assumption $p^m > 3$ it follows that the number on the right-hand side of Eq. 6 is never an integer; thus we always have $N = p^{m-1}$ by Eq. 5. This finishes the proof of the " \Rightarrow " part of Theorem 3.3.

Let us remark that the assumption $p^m > 3$ is necessary. For $p^m = 3$ consider the function $f : \mathbb{F}_{3^2} \to \mathbb{F}_3$ given by $f(x) = x^4$ and the 1-spread $S = \{\{0, x, -x\} : x \in \mathbb{F}_{3^2}\}$ of \mathbb{F}_{3^2} . Then f is a bent function that is constant on T^* for all $T \in S$. However, using the notation introduced above, $N_1 = N_2 = 2 \neq 3^{1-1}$. Similarly for $p^m = 2$ consider the function $f : \mathbb{F}_{2^2} \to \mathbb{F}_2$ given by $f(x) = x^3$.

For p = 2 the class of binary bent functions satisfying the conditions of Theorem 3.3 was named $PS^{(-)}$ class by Dillon [1, Chap. 6]. Thus we introduce the following generalization of this naming convention.

Definition 3.4 The class of bent functions satisfying the conditions of Theorem 3.3 will be called *p*-ary $PS^{(-)}$ class.

Corollary 3.5 If f is a bent function that belongs to the p-ary $PS^{(-)}$ class, then the dual of f also belongs to the p-ary $PS^{(-)}$ class.

Proof Assume that f belongs to the p-ary $PS^{(-)}$ class and recall that f^* denotes the dual of f. By the proof of Theorem 3.3 for $k \in \mathbb{F}_p^*$ we have $f^*(a) = k$ exactly when $S_{ki} \subset a^{\perp}$ for some i and $a \neq 0$, equivalently $a \in (S_{ki}^{\perp})^*$, where S_{ki}^{\perp} denotes the dual subspace of S_{ki} . Thus we see that f^* has the same structure as f after replacing all subspaces S_{ji} with their duals. Thus f^* belongs to the p-ary $PS^{(-)}$ class.

3.2 *p*-ary Family $PS^{(+)}$

It follows from the definitions at once that $f : \mathbb{F}_p^n \to \mathbb{F}_p$ is a (regular) bent function if and only if g(x) := f(x) + c is a (regular) bent function for each $c \in \mathbb{F}_p$. Thus, when studying a bent function $f : \mathbb{F}_p^n \to \mathbb{F}_p$ we can assume without loss of generality that $f(0) \in U$ for any choice of $\emptyset \neq U \subseteq \mathbb{F}_p$.

Theorem 3.6 Let p be a prime number and let m be an integer. Suppose that S is a partial m-spread of \mathbb{F}_p^{2m} and $f : \mathbb{F}_p^{2m} \to \mathbb{F}_p$ is such that for each $T \in S$, f is constant on T^* . Moreover suppose that

$$f^{-1}(0) = \left(\mathbb{F}_p^{2m}\right)^* \setminus \bigcup_{T \in S} T^*$$

and f(0) = t where $t \in \mathbb{F}_p^*$. Then f is bent if and only if for each $x \in \mathbb{F}_p^* \setminus \{t\}$, $f^{-1}(x) \cup \{0\}$ is the union of exactly p^{m-1} elements of S and $f^{-1}(t)$ is the union of exactly $p^{m-1} + 1$ elements of S. If f is bent, then it is a regular bent function.

Proof The proof of Theorem 3.6 is analogous to the proof of Theorem 3.3. We first prove the " \Leftarrow " part of Theorem 3.6. Let us assume that S is a partial *m*-spread of \mathbb{F}_p^{2m} . We also assume that $f : \mathbb{F}_p^{2m} \to \mathbb{F}_p$ and $t \in \mathbb{F}_p^*$ are such that for each $j \in \mathbb{F}_p^* \setminus \{t\}$

$$D_j := f^{-1}(j) = \bigcup_{i=1}^{p^{m-1}} S_{ji}^*$$
(7)

and

$$D_t := f^{-1}(t) = \bigcup_{i=1}^{p^{m-1}+1} S_{ti},$$
(8)

where S_{ji} is an element of S for each i and j, and $S_{ji} \neq S_{kl}$ for $(j,i) \neq (k,l)$. Let $D_0 := f^{-1}(0)$ and note that $|D_0| = p^{2m} - (1 + ((p-1)p^{m-1}+1)(p^m-1))) = p^{2m-1} - p^{m-1}$. Under these assumptions we will show that f is regular bent.

We compute $\mathcal{W}_{f}(0) = \sum_{x \in \mathbb{F}_{p}^{2m}} \zeta_{p}^{f(x)} = \sum_{j \in \mathbb{F}_{p}^{k} \setminus \{l\}} p^{m-1}(p^{m}-1)\zeta_{p}^{j} + ((p^{m-1}+1)(p^{m}-1)+1)\zeta_{p}^{t} + (p^{2m-1}-p^{m-1})\zeta_{p}^{0} = p^{m-1}(p^{m}-1)(-1) + p^{m}\zeta_{p}^{t} + (p^{2m-1}-p^{m-1}) = p^{m}\zeta_{p}^{t}.$ From now on suppose that $a \neq 0$. First assume that none of the subspaces S_{ji} introduced

in Eqs. 7, 8 is contained in a^{\perp} . Then using Lemma 3.2 and noting that $\sum_{x \in D_0} \zeta_p^{-\langle a, x \rangle} = -\sum_{j \in \mathbb{F}_p^*} \sum_{x \in D_j} \zeta_p^{-\langle a, x \rangle}$ we compute

$$\mathcal{W}_{f}(a) = \sum_{j \in \mathbb{F}_{p}^{*}} \sum_{x \in S_{ji}^{*}, 1 \leq i \leq p^{m-1}} \zeta_{p}^{j-\langle a, x \rangle} + \sum_{x \in S_{t,p^{m-1}+1}} \zeta_{p}^{t-\langle a, x \rangle} + \sum_{x \in D_{0}} \zeta_{p}^{-\langle a, x \rangle}$$
$$= \sum_{j \in \mathbb{F}_{p}^{*}} \zeta_{p}^{j} p^{m-1}(-1) + 0 - (p-1)p^{m-1}(-1) = p^{m}.$$

Next let us assume that a^{\perp} contains the subspace S_{kl} . Without loss of generality we can assume $(k, l) \neq (t, p^{m-1} + 1)$. (If $(k, l) = (t, p^{m-1} + 1)$, then swap $S_{t, p^{m-1}+1}$ and $S_{t, p^{m-1}}$ without changing f.) We compute

$$\begin{split} \mathcal{W}_{f}(a) &= \sum_{j \in \mathbb{F}_{p}^{*}} \sum_{x \in S_{j_{i}}^{*}, 1 \leq i \leq p^{m-1}} \zeta_{p}^{j - \langle a, x \rangle} + \sum_{x \in S_{t, p^{m-1}+1}} \zeta_{p}^{t - \langle a, x \rangle} + \sum_{x \in D_{0}} \zeta_{p}^{-\langle a, x \rangle} \\ &= \sum_{j \in \mathbb{F}_{p}^{*}} \zeta_{p}^{j} p^{m-1}(-1) - \zeta_{p}^{k}(-1) + \zeta_{p}^{k}(p^{m}-1) + 0 - ((p-1)p^{m-1}(-1) + p^{m}) \\ &= (-1)(-p^{m-1}) + p^{m} \zeta_{p}^{k} - p^{m-1} = p^{m} \zeta_{p}^{k}. \end{split}$$

This finishes the proof of the " \Leftarrow " part of Theorem 3.6. Note that for each *a* we found that $\mathcal{W}_f(a) = p^m \zeta_p^{f^*(a)}$ for some $f^*(a) \in \mathbb{F}_p$, thus *f* is regular bent.

To prove the " \Rightarrow " part of Theorem 3.6, for $j \in \mathbb{F}_p^*$ let N_j be such that for $j \neq t$

$$f^{-1}(j) = \bigcup_{i=1}^{N_j} S_{ji}^*$$

and

$$f^{-1}(t) = \bigcup_{i=1}^{N_t} S_{ti},$$

where all S_{ji} are pairwise distinct elements of S, an *m*-spread of \mathbb{F}_p^{2m} . We have to show that $N_j = p^{m-1}$ for all $j \in \mathbb{F}_p^* \setminus \{t\}$ and $N_t = p^{m-1} + 1$.

Again as in Theorem 2.3 for $u \in \mathbb{F}_p$ denote $b_u := |f^{-1}(u)|$, then for $j \in \mathbb{F}_p^* \setminus \{t\}$ we have

$$b_j = N_j (p^m - 1) \tag{9}$$

Deringer

and further

$$b_t = N_t(p^m - 1) + 1. (10)$$

Since for p = 2 Theorem 3.6 was proved by Dillon [1, Chap. 6], we can again assume without loss of generality that p > 2. Let k be as in Theorem 2.3. By considering Eqs. 2, 3, 9 and 10 we see that only the following cases (i) and (ii) may possibly occur.

(i) We have k = t and the upper signs are chosen in Theorem 2.3. Then $N_t = p^{m-1} + 1$ by Eq 2 and for $j \in \mathbb{F}_p^* \setminus \{t\}$

$$N_j = \frac{p^{2m-1} - p^{m-1}}{p^m - 1} = p^{m-1}.$$

(ii) We have k = t, m = 1 and the lower signs are chosen in Theorem 2.3. But then $b_t = 1$, hence D_t does not contain an *m*-dimensional subspace of \mathbb{F}_p^{2m} , which means that this case never occurs.

Definition 3.7 The class of bent functions satisfying the conditions of Theorem 3.6 will be called *p*-ary $PS^{(+)}$ class.

The reason for this naming convention is the fact that for p = 2 the class of binary bent functions satisfying the conditions of Theorem 3.6 was named $PS^{(+)}$ class by Dillon [1, Chap. 6].

Corollary 3.8 If f is a bent function that belongs to the p-ary $PS^{(+)}$ class, then the dual of f also belongs to the p-ary $PS^{(+)}$ class.

Proof The proof is analogous to the proof of Corollary 3.5. Assume that f belongs to the p-ary $PS^{(+)}$ class. Using the proof of Theorem 3.6 we deduce that f^* has the same structure as f after replacing all subspaces S_{ji} with their duals. Thus f^* belongs to the p-ary $PS^{(+)}$ class.

3.3 Spreads from subfields

Let Tr denote the trace function from $\mathbb{F}_{p^{2m}}$ to \mathbb{F}_p . Since $\mathbb{F}_{p^{2m}}$ is a 2*m*-dimensional vector space over \mathbb{F}_p , by taking the inner product $\langle x, y \rangle = \text{Tr}(xy)$ on $\mathbb{F}_{p^{2m}}$ we can consider bent functions from $\mathbb{F}_{p^{2m}}$ to \mathbb{F}_p and all definitions and statements given above apply.

Let α be a primitive element of $\mathbb{F}_{p^{2m}}$. Then $\{\alpha^i \mathbb{F}_{p^m} : 0 \le i \le p^m\}$ is an *m*-spread of $\mathbb{F}_{p^{2m}}$, which we will call the *subfield spread*. For partial spreads that are subsets of a subfield spread, the constructions that we gave in Theorems 3.3 and 3.6 above produce the same bent functions (up to a shift by a constant), and for reference we now state this special case explicitly:

Theorem 3.9 ([10] Theorem 2.5) Let p be a prime and m a positive integer with $p^m > 3$. Let α be a primitive element of $\mathbb{F}_{p^{2m}}$. Suppose that $f : \mathbb{F}_{p^{2m}} \to \mathbb{F}_p$ is such that f(0) = 0and for each $0 \le i \le p^m$ and for each $v \in \mathbb{F}_{p^m}^*$ we have $f(\alpha^i v) = f(\alpha^i)$. Then f is bent if and only if for each $u \in \mathbb{F}_p^*$ there are exactly p^{m-1} elements $i \in \{0, \ldots, p^m\}$ such that $f(\alpha^i) = u$. If f is bent, then it is a regular bent function.

215

Theorem 3.9 has been discovered previously by several authors. The earliest reference, giving the statement in a slightly weaker form, appears to be Theorem 2.5 in [10]. The statement also occurs as a special case of Theorem 4.1 in [5].

Theorems 3.3 and 3.6 proved in this paper are more general than Theorem 3.9 due to the following two reasons: It is well known that there do exist *m*-spreads of \mathbb{F}_p^{2m} that are not equivalent under $GL(2m, \mathbb{F}_p)$ to the subfield *m*-spread, see for example [4, Chap. 17]. Moreover, there do exist partial *m*-spreads of \mathbb{F}_p^{2m} that are not extendible to an *m*-spread, see for example [11] and the references therein.

Bent functions constructed from Theorem 3.9 belong to both classes $PS^{(-)}$ and $PS^{(+)}$ introduced in Definitions 3.4 and 3.7 above, up to a shift by a constant as discussed at the beginning of Sect. 3.2.

A function $f : \mathbb{F}_{p^{2m}} \to \mathbb{F}_p$ given by a sum of traces of monomials $\beta_j x^{j(p^m-1)}$ where $j \in \{0, \ldots, p^m\}$ and $\beta_j \in \mathbb{F}_{p^{2m}}$ is said to have *Dillon type exponents*. In general the traces may be taken either from $\mathbb{F}_{p^{2m}}$ or from some subfields thereof, as certain values of j will guarantee that $x^{j(p^m-1)}$ belongs to a proper subfield of $\mathbb{F}_{p^{2m}}$ and then the choices for β_j and the trace function are made accordingly. The function may involve traces from different fields [6,8]. For any f that has Dillon type exponents, using the notation of Theorem 3.9 we always have f(0) = 0 and $f(\alpha^i v) = f(\alpha^i)$ because $v^{j(p^m-1)} = 1$ if $v \in \mathbb{F}_{p^m}^*$. Hence by Theorem 3.9, f is (regular) bent if and only if for each $u \in \mathbb{F}_p^*$ there are exactly p^{m-1} elements $i \in \{0, \ldots, p^m\}$ such that $f(\alpha^i) = u$. This condition can be rewritten in terms of exponential sums when f is restricted to certain particular forms. The resulting classes of bent functions with Dillon type exponents have been studied in several papers recently. The interested reader is referred to [3, Section II], [6,8].

Acknowledgments Research partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

- 1. Dillon J.F.: Elementary Hadamard difference sets. PhD thesis, University of Maryland (1974).
- Dillon J.F.: Elementary Hadamard difference sets. In: Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic University, Boca Raton, 1975), pp. 237–249. Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg (1975).
- Helleseth T., Kholosha A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inform. Theory 52(5), 2018–2032 (2006).
- 4. Hirschfeld J.W.P.: Finite projective spaces of three dimensions. The Clarendon Press, Oxford University Press, New York (1985).
- 5. Hou X.: q-ary bent functions constructed from chain rings. Finite Fields Appl. 4(1), 55–61 (1998).
- Jia W., Zeng X., Helleseth T., Li C.: A class of binomial bent functions over the finite fields of odd characteristic. IEEE Trans. Inform. Theory 58(9), 6054–6063 (2012).
- Kumar P.V., Scholtz R.A., Welch L.R.: Generalized bent functions and their properties. J. Comb. Theory Ser. A 40(1), 90–107 (1985).
- Li N., Helleseth T., Tang X., Kholosha A.: Several new classes of bent functions from Dillon exponents. IEEE Trans. Inform. Theory 59(3), 1818–1831 (2013).
- Nyberg K.: Constructions of bent functions and difference sets. Advances in cryptology, EUROCRYPT '90 (Aarhus, 1990), Lecture Notes in Computer Science, vol. 473, pp. 151–160. Springer, Berlin (1991).
- Nyberg K.: Perfect nonlinear S-boxes. Advances in cryptology, EUROCRYPT '91 (Brighton, 1991), Lecture Notes in Computer Science, vol. 547, pp. 378–386. Springer, Berlin (1991).
- 11. Rajola S., Scafati Tallini M.: Maximal partial spreads in PG(3, q). J. Geom. 85(1-2), 138-148 (2006).
- 12. Rothaus O.: On bent functions. IDA CRD Working Paper No. 169 (1966).
- 13. Rothaus O.S.: On "bent" functions. J. Comb. Theory Ser. A 20(3), 300-305 (1976).