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Abstract Because of the recent algebraic attacks, optimal algebraic immunity is now an
absolutely necessary (but not sufficient) property for Boolean functions used in stream
ciphers. In this paper, we firstly determine the concrete coefficients in the linear expression
of the column vectors with respect to a given basis of the generator matrix of Reed–Muller
code, which is an important tool for constructing Boolean functions with optimal algebraic
immunity. Secondly, as applications of the determined coefficients, we provide simpler and
direct proofs for two known constructions. Further, we construct new Boolean functions on
odd variables with optimal algebraic immunity based on the generator matrix of Reed–Muller
code. Most notably, the new constructed functions possess the highest nonlinearity among
all the constructions based on the generator matrix of Reed–Muller code, although which is
not as good as the nonlinearity of Carlet–Feng function. Besides, the ability of the new con-
structed functions to resist fast algebraic attacks is also checked for the variable n = 11, 13
and 15.
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1 Introduction

In recent years, there has been great interest in designing symmetric key algorithms for secure
communication among devices with restrictions on memory, computing power, etc. Boolean
functions play a critical role in cryptography, particularly as a main block of symmetric
key algorithms. To resist the known attacks, many criteria have been developed for designing
Boolean functions. Cryptographic Boolean functions usually should have balancedness, large
algebraic degree, and high nonlinearity before 2003. In 2003, Courtois and Meier successfully
proposed algebraic attacks on several stream ciphers [10]. As a result, a new criterion called
algebraic immunity [22], the minimum algebraic degree of the nonzero annihilators of f
or f + 1, was imposed on cryptographic Boolean functions. It was shown in [10] that the
optimal algebraic immunity of an n-variable Boolean function is � n

2 �. The construction
of Boolean functions with optimal algebraic immunity is obviously of great importance
and therefore attracts a lot of attention [7,11–13,17]. Later, fast algebraic attack [9] was
introduced by Courtois. The fast algebraic attack on a Boolean function f is feasible if
there exists a function g of small degree such that the multiple g f has degree not too large.
Another important characteristic for designing Boolean functions is good nonlinearity which
measures the ability of the functions to resist fast correlation attacks [21].

Among the known Boolean functions with optimal algebraic immunity, the simplest one
is the so-called majority function

F(x) =
{

1, wt(x) ≥ � n
2 �

0, otherwise

which was firstly proposed by Ding et al. [15]. In 2006, Dalai et al. [14] showed that the
majority function F(x) achieves the optimal algebraic immunity. However, the nonlinearity
of majority function is 2n−1 − (n−1

� n
2 �
)
, which is almost the worst possible value according to

Lobanov’s bound [20].
In 2005, Carlet et al. pointed out an interesting connection between the Boolean functions

with optimal algebraic immunity and the Reed–Muller codes [6]. They presented a sufficient
and necessary condition for constructing Boolean functions with optimal algebraic immunity
based on the generator matrix of Reed–Muller code. Later, in 2007, Carlet [3] introduced
a general method for constructing balanced Boolean functions on odd number of variables
with optimal algebraic immunity, which can be viewed as a modification of the majority
function. From then on, following this idea, many modifications of majority function have
been proposed to improve its nonlinearity [4,8,16,19,24,25]. But, unfortunately the enhanced
values are not too much.

In this paper, we explore the linear relationship of the column vectors in the genera-
tor matrix of Reed–Muller code. Mainly, we can give a systematic method of constructing
Boolean functions with optimal algebraic immunity based on the generator matrix of Reed–
Muller code. As an application, we are able to construct new Boolean functions with optimal
algebraic immunity and highest nonlinearity among all the constructions based on the gen-
erator matrix of Reed–Muller code.

The paper is organized as follows. In Sect. 2, some preliminaries about the n-variable
Boolean functions, the kth order Reed–Muller code RM(k, n) and its generator matrix G(k, n)
are reviewed. In Sect. 3, the linear expression of the column vectors in the generator matrix
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of RM(k, n) is established. In Sect. 4, a general method for constructing Boolean functions
with optimal algebraic immunity is presented based on the determined linear expression. As
applications, some known constructions are re-explained, and a new construction of Boolean
functions with optimal algebraic immunity and high nonlinearity is presented as well. Finally,
Sect. 5 concludes the paper.

2 Preliminaries

Let F
n
2 be the n-dimensional vector space over the finite field F2 = {0, 1}. Given a vector

α = (a1, a2, . . . , an) ∈ F
n
2, we define its support supp(α) as the set {1 ≤ i ≤ n | ai = 1},

and its Hamming weight wt(α) as the cardinality of its support, i.e., wt(α) = |supp(α)|.
For any two vectors α = (a1, a2, . . . , an) and β = (b1, b2, . . . , bn) ∈ F

n
2, α is said to be

covered by β if ai ≤ bi for all 1 ≤ i ≤ n. For short, written as α 	 β. In this paper, we
define βα = ba1

1 ba2
2 · · · ban

n with 00 = 11 = 10 = 1 and 01 = 0. Obviously,

βα = 1 if and only if α 	 β. (1)

A Boolean function on n variables is a mapping from F
n
2 into F2. We denote by Bn the

set of all n-variable Boolean functions. In cryptography, the most usual representation of a
function f ∈ Bn is the algebraic normal form (ANF) as follows

f (x) =
⊕
α∈F

n
2

c(α)xα (2)

where c(α) ∈ F2.
For a function f ∈ Bn , the support of f is supp( f ) = {α ∈ F

n
2 | f (α) = 1}. By conve-

nience, define zeros( f ) = {α ∈ F
n
2 | f (α) = 0} as well. The Hamming weight of f, wt( f ), is

the cardinality of its support. We say that a Boolean function f is balanced if wt( f ) = 2n−1.
The Hamming distance between f and g ∈ Bn is dH ( f, g) = wt( f ⊕ g). The algebraic
degree of a Boolean function f in (2) is defined as

deg( f ) = max{wt(α) | c(α) = 1}.
If deg( f ) ≤ 1, then f is called an affine function.

Definition 1 ([22]) For an n-variable Boolean function f , define AN ( f ) = {g ∈ Bn | f g =
0}. A Boolean function g ∈ AN ( f ) is called an annihilator of f . The algebraic immu-
nity (AI ) of an n-variable Boolean function f , denoted by AI ( f ), is defined as AI ( f ) =
min{deg(g)|g �= 0 such that f g = 0 or ( f + 1)g = 0}.

In this paper, an n-variable Boolean function f is said to have optimal AI if AI ( f ) = � n
2 �

(see [10]). A high algebraic immunity is necessary but not sufficient condition for resistance
against all kinds of algebraic attacks. If one can find g of low degree and h �= 0 of reasonable
degree such that f g = h, then a fast algebraic attack is feasible [1,9,18]. An n-variable
Boolean function can be considered as optimal with respect to fast algebraic attacks if there
do not exist two nonzero functions g and h such that f g = h and deg(g)+ deg(h) < n with
deg(g) < n

2 .
Walsh spectrum is an important tool for studying Boolean functions. The Walsh spectrum

of an n-variable Boolean function f is a integer-valued function over F
n
2 defined as

W f (ω) =
∑
x∈F

n
2

(−1) f (x)⊕x ·ω (3)
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where x ·ω = x1a1 ⊕x2a2 ⊕· · ·⊕xnan for x = (x1, x2, . . . , xn) andω = (a1, a2, . . . , an) ∈
F

n
2. The nonlinearity of f is the minimum Hamming distance between f and all affine

functions, which can be expressed according to Walsh spectrum as

nl f = 2n−1 − 1

2
max
ω∈F

n
2

|W f (ω)|. (4)

Throughout this paper, assume that α1, α2, . . . , α2n are all the 2n vectors in F
n
2, which

are ordered according to the Hamming weight firstly and the lexicographic order secondly,
i.e., α1 = (0, 0, 0, . . . , 0), α2 = (1, 0, 0, . . . , 0), α3 = (0, 1, 0, . . . , 0), . . . , αn+1 =
(0, 0, 0, . . . , 0, 1), αn+2 = (1, 1, 0, . . . , 0), αn+3 = (1, 0, 1, 0, . . . , 0), αn+4 = (1, 0, 0, 1,
. . . , 0), . . . , α(n

2)+n+1 = (0, . . . , 0, 1, 1), . . . , α2n = (1, 1, 1, . . . , 1). Then, it is easy to

see that wt(αi ) ≤ k if and only if 1 ≤ i ≤ ∑k
j=0

(n
j

)
. Hence, the ANF of a Boolean function

f with deg( f ) ≤ k can be expressed as

f (x) =
s⊕

i=1

c(αi )x
αi (5)

where s = ∑k
i=0

(n
i

)
and c(αi ) ∈ F2, since deg(xαi ) ≤ k if and only if wt(αi ) ≤ k.

The truth table is another representation of a Boolean function. In this paper, for conve-
nience, the truth table of a Boolean function f is of the following form

f = [ f (α1), f (α2), . . . , f (α2n )].
Reed–Muller codes are amongst the oldest and most popular codes. They were discovered

by Muller and Reed in 1954 [23,26]. The Reed–Muller code of order k, 1 ≤ k ≤ n, is by
definition the set of all n-variable Boolean functions with algebraic degrees at most k, denoted
by RM(k, n). Clearly, it is a vector space of dimension

∑k
i=0

(n
i

)
over F2, with monomials

of degrees at most k, i.e.,
{

xαi

∣∣∣1 ≤ i ≤ ∑k
j=0

(n
j

)}
, denoted by Γk , as its basis.

Define a mapping ψ : Γk → F
2n

2

ψ(xαi ) = [
α1
αi , α2

αi , . . . , α2n
αi
]

which is the truth table of xαi , for 1 ≤ i ≤ ∑k
j=0

(n
j

)
. Consider the following

∑k
i=0

(n
i

)× 2n

matrix as

G(k, n) =

⎛
⎜⎜⎜⎝
ψ(xα1)

ψ(xα2)
...

ψ(xαs )

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
α1
α1 α2

α1 · · · α2n α1

α1
α2 α2

α2 · · · α2n α2

...
...

...

α1
αs α2

αs · · · α2n αs

⎞
⎟⎟⎟⎠ (6)

where s = ∑k
i=0

(n
i

)
. Note that if k = � n

2 � − 1 then
∑k

i=0

(n
i

)
equals 2n−1 when n is odd,

and 2n−1 − (n−1
n
2

)
otherwise. By means of the matrix G(k, n), it is easy to check that any

function f ∈ Bn with deg( f ) ≤ k, given by (5), can be expressed as follows

[ f (α1), . . . , f (α2n )] = [c(α1), . . . , c(αs)]G(k, n).

That is, G(k, n) is a generator matrix of the Reed–Muller code RM(k, n).
For instance, when n = 3, the vectors in F

3
2 are α1 = (0, 0, 0), α2 = (1, 0, 0), α3 =

(0, 1, 0), α4 = (0, 0, 1), α5 = (1, 1, 0), α6 = (1, 0, 1), α7 = (0, 1, 1), α8 = (1, 1, 1). By
(1) and (6), the generator matrix of the Reed–Muller code RM(1, 3) is
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G(1, 3) =

⎛
⎜⎜⎝

1 1 1 1 1 1 1 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

⎞
⎟⎟⎠ .

Throughout this paper, given an n-variable Boolean function f and a positive integer
k ≤ n, we denote by G the generator matrix G(k, n) of the kth order Reed–Muller code
RM(k, n), and denote by R(1)f (k, n) (resp. R(0)f (k, n)) the submatrix of G consisting of all
the i th column vectors in G, 1 ≤ i ≤ 2n , such that αi ∈ supp( f ) (resp. αi ∈ zeros( f )). It is
easily seen that the matrix R(1)f (k, n) (resp. R(0)f (k, n)) has

∑k
i=0

(n
i

)
rows and wt( f ) (resp.

2n − wt( f )) columns.
Concerning a function f ∈ Bn with optimal AI, we have following sufficient and necessary

conditions.

Proposition 1 ([2,6]) Let k = � n
2 � − 1. A function f ∈ Bn with wt( f ) = ∑k

i=0

(n
i

)
(resp.

wt( f ) = 2n − ∑k
i=0

(n
i

)
) has optimal AI if and only if the

∑k
i=0

(n
i

) × ∑k
i=0

(n
i

)
matrix

R(1)f (k, n) (resp. R(0)f (k, n)) is nonsingular.

Finally, it should be noted that in this paper for simplicity we do not distinguish the vector
Y = (y1, . . . , yn) ∈ F

n
2 and the integer y = ∑n

i=1 yi 2i−1 if the context is clear, since
they are one-to-one corresponding. Then, we can similarly define x 	 y for two integers
x, y ∈ {0, 1, . . . , 2n − 1} and X ≤ Y for two vectors X, Y ∈ F

n
2.

3 The linear expression of the column vectors in G

From now on, we always assume k = � n
2 � − 1 and s = ∑k

i=0

(n
i

)
in this paper.

By (6), we know that the j th column vector in the generator matrix G can be expressed
as (α j

α1 , α j
α2 , . . . , α j

αs )T , 1 ≤ j ≤ 2n . For simplicity, we will always use the notation cα j

to denote the j th column vector in G, i.e.

cα j = (α j
α1 , α j

α2 , . . . , α j
αs )T .

Thus, the generator matrix G in (6) can be written as

G = (cα1 , cα2 , . . . , cα2n ).

In order to find a function f ∈ Bn with wt( f ) = s and optimal AI, by Proposition 1, it is
necessary to get a submatrix R(1)f (k, n) of G with rank s. In this section, we will explore the
linear expression of the column vectors in G with respect to this basis (cα1 , cα2 , . . . , cαs ),
which is very useful to check whether the new submatrix of G is of rank s.

Theorem 1 For any vector u ∈ F
n
2 , such that wt(u) = k + j, 1 ≤ j ≤ n − k, we have

cu =
k⊕

i=0

a( j)
i

⎛
⎜⎜⎝

⊕
α	u

wt(α)=k−i

cα

⎞
⎟⎟⎠ (7)

where a( j)
i ∈ F2, 0 ≤ i ≤ k, which satisfies

a( j)
0 = 1 and a( j)

i = 1 ⊕
i−1⊕
l=0

a( j)
l

(
i + j

i − l

)
, 1 ≤ i ≤ k. (8)
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Proof Partition the matrix G in (6) into block matrix as G = (Gil)(k+1)×(n+1), where Gil

is a
(n

i

)× (n
l

)
matrix, 0 ≤ i ≤ k, 0 ≤ l ≤ n. By (6), we know that each entry in Gil can be

expressed asβα for someα, β ∈ F
n
2 with wt(α) = i and wt(β) = l. If i > l, straightforwardly

α �	 β, which follows from (1) that βα = 0. Then, Gil is a zero matrix for 0 ≤ l < i ≤ k.
If i = l, it is easy to see that βα = 1 if and only if α = β by (1), which implies Gii is an
identity matrix for 0 ≤ i ≤ k. Therefore, G has the following form

G =

⎛
⎜⎜⎜⎜⎝

Id0 ∗ · · · ∗ ∗ · · · · · · ∗
0 Id1

. . .
...
...

...
...
. . .

. . . ∗ ...
...

0 · · · 0 Idk ∗ · · · · · · ∗

⎞
⎟⎟⎟⎟⎠ (9)

where Idi is an identity matrix of order di = (n
i

)
for 0 ≤ i ≤ k, which indicates that the first

s column vectors cα1 , cα2 , . . . , cαs are linearly independent and then form a basis of F
s
2.

Assume that the linear expression of cu with wt(u) = k + j is

cu =
⊕

0≤wt(α)≤k

a(α)cα =
s⊕

i=1

a(αi )cαi (10)

where a(αi ) ∈ F2, 1 ≤ i ≤ s. According to (6) and (9), we know (10) can be rewritten as

⎛
⎜⎜⎜⎜⎝

Id0 ∗ · · · ∗
0 Id1

. . .
...

...
. . .

. . . ∗
0 · · · 0 Idk

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a(α1)

a(α2)
...

a(αs)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

uα1

uα2

...

uαs

⎞
⎟⎟⎟⎠ . (11)

In what follows, we make use of mathematical induction on i, 0 ≤ i ≤ k, to prove that
the coefficients a(α)’s in (10) satisfy

I. a(α) = 0 for all α �	 u;
II. a(α) = a(β) for all α, β 	 u with wt(α) = wt(β),

where wt(α) = k − i .
When i = 0, we get by (11)

Idk

⎛
⎜⎝

a(αt )
...

a(αs)

⎞
⎟⎠ =

⎛
⎜⎝

uαt

...

uαs

⎞
⎟⎠

where t = ∑k−1
l=0

(n
l

)+ 1. Note that wt(αl) = k for t ≤ l ≤ s. Hence,

a(α) = uα =
{

1, α 	 u
0, α �	 u

for wt(α) = k, which gives a( j)
0 = 1. Hence, I and II hold for i = 0.

Suppose that the assertions I and II hold for all k − i + 1 ≤ wt(α) ≤ k for some fixed
1 ≤ i ≤ k. Denote the coefficients a(α)with α 	 u and wt(α) = k−l by a( j)

l , 0 ≤ l ≤ i −1.
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Substituting a( j)
l into (11), we have

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Id0 ∗
. . .

0 Idk−i

0 · · · 0
...

...

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

a(α1)
...
...

a(αm)

⎞
⎟⎟⎟⎟⎠ = cu ⊕

i−1⊕
l=0

⎛
⎜⎜⎝

⊕
v	u

wt(v)=k−l

a( j)
l cv

⎞
⎟⎟⎠

where m = ∑k−i
l=0

(n
l

)
. For any α with wt(α) = k − i , similarly to the case of i = 0, we can

easily get

a(α) = uα ⊕
i−1⊕
l=0

⎛
⎜⎜⎝

⊕
v	u

wt(v)=k−l

a( j)
l vα

⎞
⎟⎟⎠ .

If α �	 u, immediately uα = 0 and α �	 v (i.e., vα = 0) for any v 	 u, which implies that
a(α) = 0. If α 	 u, we know that uα = 1 and the number of the vectors v ∈ F

n
2, satisfying

α 	 v 	 u and wt(v) = k − l for 0 ≤ l ≤ i − 1, is
(i+ j

i−l

)
, where wt(u) = k + j . As a result,

a(α) = 1 ⊕
i−1⊕
l=0

a( j)
l

(
i + j

i − l

)

for any α 	 u with wt(α) = k − i . This finishes the proof. �

Further, we can determine the exact value of the coefficient a( j)
i in (7) based on the

well-known combinatorial formula (Pascal’s Formula) as
(

m

p

)
+
(

m

p + 1

)
=
(

m + 1

p + 1

)
.

Theorem 2 For 1 ≤ j ≤ n − k, let u be a vector in F
n
2 with wt(u) = k + j. In the linear

expression of cu in (7), the coefficients a( j)
i of cα with α 	 u and wt(α) = k − i satisfy

a( j)
i =

(
i + j − 1

i

)
(mod 2) (12)

for 0 ≤ i ≤ k and 1 ≤ j ≤ n − k.

Proof We use mathematical induction on j and i to prove (12).
When j = 1, it is known that a(1)0 = 1 by (8). Assume that a(1)1 = · · · = a(1)i−1 = 1, then

by (8) we have

a(1)i = 1 ⊕
i−1⊕
l=0

(
i + 1

i − l

)
= 2i+1 − 1 = 1 (mod 2).

In other words, we have proved (12) holds for j = 1.

123



660 S. Su et al.

Suppose that a( j−1)
i = (i+ j−2

i

)
(mod 2) for 0 ≤ i ≤ k. As for j , we know a( j)

0 = 1 =( j−1
0

)
. Assuming that (12) holds up to i − 1, then by (8) we know

a( j)
i = 1 ⊕

i−1⊕
l=0

(l+ j−1
l

)(i+ j
i−l

)

= 1 ⊕
i−1⊕
l=0

(l+ j−1
l

)[(i+ j−1
i−l

)⊕ (i+ j−1
i−l−1

)]

= 1 ⊕
[(i+ j−1

i

)⊕
i−1⊕
l=1

(l+ j−1
l

)(i+ j−1
i−l

)]⊕
[ i−2⊕

l=0

(l+ j−1
l

)(i+ j−1
i−l−1

)⊕ (i+ j−2
i−1

)]

= 1 ⊕ (i+ j−1
i

)⊕
i−1⊕
l=1

[(l+ j−1
l

)⊕ (l+ j−2
l−1

)](i+ j−1
i−l

)⊕ (i+ j−2
i−1

)

= 1 ⊕ (i+ j−1
i

)⊕
i−1⊕
l=1

(l+ j−2
l

)(i+ j−1
i−l

)⊕ (i+ j−2
i−1

)

= 1 ⊕
i−1⊕
l=0

(l+ j−2
l

)(i+ j−1
i−l

)⊕ (i+ j−2
i−1

)
= (i+ j−2

i

)+ (i+ j−2
i−1

)
= (i+ j−1

i

)
(mod 2)

where we apply Pascal’s Formula to the second identity, the fifth identity, and the eighth
identity respectively, and in the seventh identity we use

a( j−1)
i = 1 ⊕

i−1⊕
l=0

a( j−1)
l

(
i + j − 1

i − l

)

from (8) and the assumption that (12) is valid for j − 1.
This finishes the proof. �

4 The applications

In the remainder of this paper, for simplicity we denote W ≤i = {α ∈ F
n
2 |wt(α) ≤ i}, W ≥i =

{α ∈ F
n
2 |wt(α) ≥ i}, and W i = {α ∈ F

n
2 |wt(α) = i}, for 0 ≤ i ≤ n.

By Proposition 1, constructing an n-variable Boolean function f with wt( f ) = s and
optimal AI is equivalent to find out a nonsingular s × s submatrix of the generator matrix G
given in (6). For example, [cα1 , . . . , cαs ] is such a submatrix. Naturally, a general approach is
to modify it and then get another nonsingular one. More precisely, for an integer 1 ≤ l ≤ s,
choose two vector subsets U = {u1, . . . , ul} ⊆ W ≥k+1 and T = {β1, . . . , βl} ⊆ W ≤k .
Set W ≤k \ T = {γ1, . . . , γs−l}. Then, based on the basis {cβ1 , . . . , cβl , cγ1 , . . . , cγs−l }, the
submatrix [cu1 , . . . , cul , cγ1 , . . . , cγs−l ] can be expressed as

[cu1 , . . . , cul , cγ1 , . . . , cγs−l ] = [cβ1 , . . . , cβl , cγ1 , . . . , cγs−l ]
(

B 0
C I

)
(13)

where B = (bi, j ) is an l × l matrix, 0 is a zero matrix, and I is an identity matrix of order
s−l. Therefore, the key is to select the two vector subsets U and T such that B is nonsingular.

Generally speaking, it is not easy to determine the rank of B. However, if B is an upper
triangular matrix or a lower triangular matrix, it becomes much easier. Then, the crucial task is
to properly choose two vector subsets U = {u1, . . . , ul} ⊆ W ≥k+1 and T = {β1, . . . , βl} ⊆
W ≤k , satisfying the following two conditions C1 and C2.
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C1. The coefficient of cβi in the linear expression of cui is 1, i.e., bi,i = 1 for 1 ≤ i ≤ l;
C2. The coefficient of cβi in the linear expression of cu j is 0, i.e., bi, j = 0 for all 1 ≤ j <

i ≤ l, (or for all 1 ≤ i < j ≤ l).

In the sequel, we show that Theorem 2 is a powerful tool to check C1 and C2. It not
only provides simpler and direct proofs for the known constructions, but also gives a new
construction of Boolean functions with optimal AI and high nonlinearity.

4.1 Example 1: The construction given by Carlet in [3]

In [3], Carlet introduced a general way for constructing Boolean functions with optimal AI,
which can be regarded as the application of C1 and C2.

Proposition 2 ([3]) Let n be odd. For any integer 1 ≤ l ≤ (n
k

)
, choose two sets U =

{u1, . . . , ul} ⊆ W k+1 and T = {β1, . . . , βl} ⊆ W ≤k such that βi 	 ui for 1 ≤ i ≤ l and
βi �	 u j for 1 ≤ j < i ≤ l. Then, the function f ∈ Bn with supp( f ) = (

W ≤k\T
) ∪ U has

optimal AI.

Proof For 1 ≤ i ≤ l, assuming wt(βi ) = k − i ′ for some i ′ ≥ 0. Since βi 	 ui and
wt(ui ) = k + 1, it follows from Theorem 2 that

bi,i = a(1)i ′ =
(

i ′ + 1 − 1

i ′

)
= 1.

When 1 ≤ j < i ≤ l, bi, j = 0 by Theorem 1 because of βi �	 u j . This finishes the proof. �

4.2 Example 2: The construction given by Dong et al. in [16]

Later in [16], Dong et al. presented the following construction, which can be viewed as the
application of C1 and C2 as well.

Proposition 3 ([16]) Let n be odd. For any two vectors Y1, Y2 ∈ F
n
2 , define [Y1, Y2) = {Y ∈

F
n
2 |Y1 ≤ Y < Y2}. Let Y1, Y2, . . . , Ys be all the s vectors in W ≤k sorted by the order that

Yi < Yi+1 for 1 ≤ i ≤ s − 1. Choose vector Xi ∈ [Yi , Yi+1) for 1 ≤ i ≤ s − 1 and Xs

with Ys 	 Xs. Let f be the Boolean function defined by supp( f ) = ⋃s
i=1{Xi }. Then f has

optimal AI.

Proof For 1 ≤ i ≤ s − 1, it is easy to verify that

I. if wt(Yi ) < k then Yi+1 = Yi + 1, which implies Xi = Yi ;
II. if wt(Yi ) = k then Yi+1 = Yi + 2 j1 , where Yi = ∑k

l=1 2 jl with 0 ≤ j1 < · · · < jk ≤
n − 1. Then, Xi = Yi , or Yi < Xi < Yi+1 with wt(Xi ) > k, which both satisfy Yi 	 Xi .

Clearly, by the terminologies of U and T above, we have that U = {Xi |wt(Yi ) =
k,wt(Xi ) > k} and T = {Yi |wt(Yi ) = k,wt(Xi ) > k}. From Case II, we see that
Xi < Yi+1 ≤ Y j when i < j , which implies Y j �	 Xi and then bi, j = 0 by Theorem
1. When i = j , since Yi 	 Xi indicated in Case II, applying Theorem 2 to β = Yi and
u = Xi with wt(Yi ) = k and wt(Xi ) = k + i ′ for some i ′ ≥ 1, we then get

bi,i = a(i
′)

0 =
(

0 + i ′ − 1

0

)
= 1.

This completes the proof. �
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4.3 A new construction of Boolean functions on odd variables with optimal AI and high
nonlinearity

In this subsection, we give a new construction of Boolean function f with supp( f ) =(
W ≥k+1\U

) ∪ T , where T and U are two properly chosen subsets of W ≤k and W ≥k+1

respectively. We will prove that the new constructed Boolean function f has optimal AI and
higher nonlinearity compared with the function defined in [8].

In this subsection, we always assume that m = � n
4 � with n ≥ 11 being odd. That is,

n = 4m + 1 with m ≥ 3 or n = 4m + 3 with m ≥ 2. Further, we always denote t = �m+1
3 �

and p = �log2 t� in this subsection.

Set F
p
2 =

{
e(p)1 , e(p)2 , . . . , e(p)2p

}
, where the vectors are listed according to the Hamming

weight firstly and the lexicographic order secondly. Denote T0 =
3⋃

j=0
W k− j and U0 =

3⋃
j=0

W k+4− j . With these notations, we define 2m +2 subsets Ti and Ui of F
n
2, 1 ≤ i ≤ m +1,

as follows:

(1) 1 ≤ i ≤ t ,

Ti = {β = (y1, 0, y2, 0, y3, e(p)i , 0) ∈ F
4i−4
2 × F

4
2 × F

4t−4i
2 × F2 × F

n−4t−p−2
2 × F

p
2

× F2|β ∈ T0}
Ui = {u = (y1, 1, y2, 0, y3, e(p)i , 0) ∈ F

4i−4
2 × F

4
2 × F

4t−4i
2 × F2 × F

n−4t−p−2
2 × F

p
2

× F2|u ∈ U0}
(2) t + 1 ≤ i ≤ min{2t,m},

Ti = {β = (0, e(p)i−t , y1, 0, y2, 1) ∈ F2 × F
p
2 × F

4i−5−p
2 × F

4
2 × F

n−4i−1
2 × F2|β ∈ T0}

Ui = {u = (0, e(p)i−t , y1, 1, y2, 1) ∈ F2 × F
p
2 × F

4i−5−p
2 × F

4
2 × F

n−4i−1
2 × F2|u ∈ U0}

(3) min{2t,m} + 1 ≤ i ≤ m,

Ti = {β = (1, e(p)i−2t , y1, 1, y2, 0, y3) ∈ F2 × F
p
2 × F

4t−1−p
2 × F2 × F

4i−5−4t
2 × F

4
2 ×

F
n−4i
2 |β ∈ T0}

Ui = {u = (1, e(p)i−2t , y1, 1, y2, 1, y3) ∈ F2 × F
p
2 × F

4t−1−p
2 × F2 × F

4i−5−4t
2 × F

4
2 ×

F
n−4i
2 |u ∈ U0}

(4) i = m + 1,

Tm+1 = {β = (1, e(p)λ , y1, 1, y2, 0) ∈ F2 × F
p
2 × F

4t−1−p
2 × F2 × F

4m−4t−1
2 ×

F
n−4m
2 |β ∈ T ′}

Um+1 = {u = (1, e(p)λ , y1, 1, y2, 1) ∈ F2 × F
p
2 × F

4t−1−p
2 × F2 × F

4m−4t−1
2 ×

F
n−4m
2 |u ∈ U ′}

where λ = m + 1 − min{2t,m}, and T ′ = W k, U ′ = W k+1 if n = 4m + 1, or T ′ =
W k ∪ W k−2, U ′ = W k+3 ∪ W k+1 if n = 4m + 3.

Note that |Ti | = |Ui | for 1 ≤ i ≤ m + 1, and Ti ∩ Tj = Ui ∩ U j = ∅ for any i �= j by

the first, the (4t + 1)th and the last entries of the vectors in Ti and Ui and by the e(p)i ’s.
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Table 1 Specific elements in Ti and Ui for n = 21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

T1 0 0 0 0 0 0 0

U1 1 1 1 1 0 0 0

T2 0 0 0 0 0 1 0

U2 1 1 1 1 0 1 0

T3 0 0 0 0 0 0 1

U3 0 0 1 1 1 1 1

T4 0 1 0 0 0 0 1

U4 0 1 1 1 1 1 1

T5 1 0 1 0 0 0 0

U5 1 0 1 1 1 1 1

T6 1 1 1 0

U6 1 1 1 1

Table 2 Specific elements in Ti and Ui for n = 23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T1 0 0 0 0 0 0 0

U1 1 1 1 1 0 0 0

T2 0 0 0 0 0 1 0

U2 1 1 1 1 0 1 0

T3 0 0 0 0 0 0 1

U3 0 0 1 1 1 1 1

T4 0 1 0 0 0 0 1

U4 0 1 1 1 1 1 1

T5 1 0 1 0 0 0 0

U5 1 0 1 1 1 1 1

T6 1 1 1 0 0 0

U6 1 1 1 1 1 1

Example 1 For n = 21 and 23, some specific elements in Ti and Ui are illustrated in Tables
1 and 2.

Based on the subsets Ti and Ui , 1 ≤ i ≤ m + 1, set

T =
m+1⋃
i=1

Ti and U =
m+1⋃
i=1

Ui . (14)

Now, we are able to give a new construction of Boolean functions as follows, which have
optimal AI and high nonlinearity.

With T and U being subsets of F
n
2 given by (14), define f ∈ Bn as

f (x) =
{

F(x)+ 1, x ∈ T ∪ U
F(x), otherwise

(15)

where F(x) is the majority function on n variables.
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In what follows, the algebraic immunity and nonlinearity of f in (15) are investigated
respectively. Further, the ability of f to resist fast algebraic attacks is also checked for
n = 11, 13 and 15.

For convenience, we respectively arrange all vectors in Ti and Ui , 1 ≤ i ≤ m + 1,
according to the Hamming weight firstly and the lexicographic order secondly. Suppose

Ti = {β(i)1 , β
(i)
2 , . . . , β

(i)
|Ti |}, Ui = {u(i)1 , u(i)2 , . . . , u(i)|Ti |} (16)

for 1 ≤ i ≤ m + 1. By the definition of Ti and Ui , obviously β(i)j 	 u(i)j , for 1 ≤ j ≤ |Ti |
and 1 ≤ i ≤ m + 1. More precisely, if wt(β(i)j ) = k − j ′ with 0 ≤ j ′ ≤ 3, then wt(u(i)j ) =
k + 4 − j ′, for 1 ≤ j ≤ |Ti | and 1 ≤ i ≤ m. Hence, from Theorem 2, we know that the
corresponding coefficient b j, j in (13) is

b j, j = a(4− j ′)
j ′ =

(
3

j ′

)
= 1 (mod 2).

When n = 4m + 1, it follows from the definition of Tm+1 and Um+1 that wt(β(m+1)
j ) = k

and wt(u(m+1)
j ) = k + 1, 1 ≤ j ≤ |Tm+1|. By Theorem 2, we have b j, j = a(1)0 = 1. When

n = 4m + 3, similarly, wt(β(m+1)
j ) = k (resp. k − 2) and wt(u(m+1)

j ) = k + 3 (resp. k + 1),

1 ≤ j ≤ |Tm+1|. Then from Theorem 2 we know that b j, j = a(3)0 = 1 or b j, j = a(1)2 = 1.
That is, the vectors in Ti and Ui , 1 ≤ i ≤ m + 1, satisfy Condition C1.

Next we check that the vectors in Ti and Ui , 1 ≤ i ≤ m +1, satisfy Condition C2. Define

Λi = {4i − 3, 4i − 2, 4i − 1, 4i}, 1 ≤ i ≤ m, and Λm+1 = {4m + 1, . . . , n}. (17)

Note that the set Λi , 1 ≤ i ≤ m + 1, contains the positions where β(i)j ∈ Ti and u(i)j ∈
Ui , 1 ≤ j ≤ |Ti |, differ. We observe the following properties (e.g. Example 1) from the
definition of the subsets Ti and Ui that

– β
(i)
j2

�	 β
(i)
j1
, 1 ≤ j1 < j2 ≤ |Ti | and 1 ≤ i ≤ m + 1, follows from the order of the

Hamming weight firstly and the lexicographic order secondly, which implies β(i)j2
�	 u(i)j1

since all the entries in β(i)j and u(i)j , 1 ≤ j ≤ |Ti |, are the same except for the ones at the
fixed positions in Λi ;

– Similarly e(p)i2
�	 e(p)i1

, 1 ≤ i1 < i2 ≤ p, which indicates β(i2)
j2

�	 u(i1)
j1

for 1 ≤ j1 ≤
|Ti1 |, 1 ≤ j2 ≤ |Ti2 |, and 1 ≤ i1 < i2 ≤ t or t + 1 ≤ i1 < i2 ≤ min{2t,m} or
min{2t,m} + 1 ≤ i1 < i2 ≤ m + 1;

– β
(i2)
j2

�	 u(i1)
j1
, 1 ≤ j1 ≤ |Ti1 |, 1 ≤ j2 ≤ |Ti2 |,

– for 1 ≤ i1 ≤ t < i2 ≤ min{2t,m} by the last entries of β(i2)
j2

and u(i1)
j1

;

– for 1 ≤ i1 ≤ t and min{2t,m} + 1 ≤ i2 ≤ m + 1 by the (4t + 1)th entries of β(i2)
j2

and u(i1)
j1

;

– for t + 1 ≤ i1 ≤ min{2t,m} < i2 ≤ m + 1 by the first entries of β(i2)
j2

and u(i1)
j1

.

Thus, the following theorem holds.

Theorem 3 For n ≥ 11, the function f ∈ Bn constructed in (15) has optimal AI.

Now, we study the nonlinearity of the Boolean function f constructed in (15). First of all,
we need some useful lemmas.
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Lemma 1 For 1 ≤ i ≤ 2p, denote wt(e(p)i ) by si . Then,

|Ti | = |Ui | =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(2k−4−p
k−si

)+ (2k−4−p
k−2−si

)
, 1 ≤ i ≤ t,( 2k−4−p

k−1−si−t

)+ ( 2k−4−p
k−3−si−t

)
, t + 1 ≤ i ≤ min{2t,m},( 2k−4−p

k−2−si−2t

)+ ( 2k−4−p
k−4−si−2t

)
, min{2t,m} + 1 ≤ i ≤ m,(2k−4−p

k−2−sλ

)+ (2k−4−p
k−4−sλ

)
, i = m + 1, n = 4m + 3,(2k−2−p

k−2−sλ

)
, i = m + 1, n = 4m + 1,

(18)

where λ = m + 1 − min{2t,m}.
Proof By the definition of Ti and Ui , it is easy to see that

|Ti | = |Ui | =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3∑
j=0

(2k−5−p
k− j−si

)
, 1 ≤ i ≤ t,

3∑
j=0

( 2k−5−p
k− j−1−si−t

)
, t + 1 ≤ i ≤ min{2t,m},

3∑
j=0

( 2k−5−p
k− j−2−si−2t

)
, min{2t,m} + 1 ≤ i ≤ m,

(2k−4−p
k−2−sλ

)+ (2k−4−p
k−4−sλ

)
, i = m + 1, n = 4m + 3,(2k−2−p

k−2−sλ

)
, i = m + 1, n = 4m + 1.

Immediately, (18) follows from Pascal’s Formula. �

Lemma 2 The cardinality of Ti , 1 ≤ i ≤ m + 1, in (18) satisfies

min
1≤i≤m+1

|Ti | = |T1| =
(

2k − 4 − p

k

)
+
(

2k − 4 − p

k − 2

)
. (19)

Proof Clearly, for 1 ≤ i ≤ 2p , we have 0 ≤ si = wt(e(p)i ) ≤ p with s1 = 0 since

e(p)1 = (0, 0, . . . , 0). Subsisting it into (18), we can easily get

min
1≤i≤m

|Ti | = |T1| =
(

2k − 4 − p

k

)
+
(

2k − 4 − p

k − 2

)

by means of the facts that
(a

b

)
<
(a

c

)
if |b − a/2| > |c − a/2|.

As for |Tm+1|, if n = 4m + 3, then |Tm+1| ≥ (2k−4−p
k

) + (2k−4−p
k−2

)
; if n = 4m + 1,

then |Tm+1| = ( 2k−2−p
k−2−sm+1−min{2t,m}

) ≥ (2k−2−p
k−2−p

)
. Further, applying Pascal’s Formula, we

have
(2k−2−p

k−2−p

) = (2k−2−p
k

) = (2k−3−p
k

) + (2k−3−p
k−1

) = (2k−4−p
k

) + (2k−4−p
k−1

) + (2k−4−p
k−1

) +(2k−4−p
k−2

)
>
(2k−4−p

k

)+ (2k−4−p
k−2

)
, which gives the desired (19). �

Lemma 3 ([14,27]) Let F(x) be the n-variable majority function with n odd. Then the Walsh
spectrum of F(x) satisfies

1. WF (ω) = 2
(2k

k

)
if wt(ω) = 1;

2. WF (ω) = 2(−1)k
(2k

k

)
if wt(ω) = n;

3. |WF (ω)| ≤ 2
[(2k−2

k−1

)− (2k−2
k

)]
if 2 ≤ wt(ω) ≤ 2k and n ≥ 7.

Now, we are ready to compute the nonlinearity of the function f given in (15).
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Theorem 4 For n ≥ 11 being odd, the nonlinearity of f ∈ Bn constructed in (15) is

nl f = 22k −
(

2k

k

)
+ 2

[(
2k − 4 − p

k

)
+
(

2k − 4 − p

k − 2

)]

where p = �log2�m+1
3 ��, m = � n

4 � and k = n−1
2 .

Proof Firstly, it is clear that W f (0) = 0 since f is balanced.
Next, if ω = (ω1, ω2, . . . , ωn) �= 0, by (3), we have

W f (ω) =
∑

x �∈T ∪U

(−1) f (x)⊕ω·x +
∑
x∈T

(−1)1⊕ω·x +
∑
x∈U

(−1)ω·x

= WF (ω)− 2

[∑
x∈T

(−1)ω·x −
∑
x∈U

(−1)ω·x
]

= WF (ω)− 2
m+1∑
i=1

[∑
x∈Ti

(−1)ω·x −
∑
x∈Ui

(−1)ω·x
]

(20)

Note that the corresponding vectors β(i)j ∈ Ti and u(i)j ∈ Ui in (16) are almost the same
except for the entries at the positions in Λi defined in (17). Hence,

∑
x∈Ti

(−1)ω·x −
∑
x∈Ui

(−1)ω·x = [
1 − (−1)

∑
l∈Λi

ωl
]∑

x∈Ti

(−1)ω·x

which will be discussed in the following three cases.

Case 1. If wt(ω) = 1, assuming supp(ω) = { j} for some 1 ≤ j ≤ n, then
∑

x∈Ti
(−1)ω·x −∑

x∈Ui
(−1)ω·x = 0 if i �= � j

4 � due to ωl = 0 for all l ∈ Λi . Otherwise, if i = � j
4 �,

then ∑
x∈Ti

(−1)ω·x −
∑
x∈Ui

(−1)ω·x = 2|Ti |

because of ω · x = 0 for all x ∈ Ti . Thus, applying (19) and Lemma 3 to (20), it
results in

|W f (ω)| ≤ ∣∣WF (ω)− 4 min
1≤i≤m+1

|Ti |
∣∣

= 2

(
2k

k

)
− 4

[(
2k − 4 − p

k

)
+
(

2k − 4 − p

k − 2

)]

since 2
(2k

k

) = 4
(2k−1

k

)
> 4|Ti | holds for all 1 ≤ i ≤ m + 1.

Case 2. If wt(ω) = n, i.e., ω = (1, 1, . . . , 1), then
∑

x∈Ti
(−1)ω·x −∑x∈Ui

(−1)ω·x = 0 for
1 ≤ i ≤ m, since

∑
l∈Λi

ωl = 4. While,

∑
x∈Tm+1

(−1)ω·x −
∑

x∈Um+1

(−1)ω·x = 2(−1)k |Tm+1|

because of
∑

l∈Λm+1
ωl = 1 and Tm+1 ⊆ W k if n = 4m + 1, or

∑
l∈Λm+1

ωl = 3

and Tm+1 ⊆ W k ∪ W k−2 if n = 4m + 3. Associated with Lemma 3 and (19), it
leads to
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Table 3 The value of Δ for n = 4m + 1

m 3 4 5 6

Δ 476 3498 23452 2387684

m 7 8 9 10

Δ 31077768 391434010 4721199420 54682807740

m 11 12 13

Δ 645670754040 34504882753380 498844567560528

Table 4 The value of Δ for n = 4m + 3

m 2 3 4 5
Δ 44 2784 26884 236912
m 6 7 8 9
Δ 10661584 139902928 1815787440 22877032800
m 10 11 12 13
Δ 281752245720 3413238837840 143645921427528 2087086960013776

|W f (ω)| =
∣∣∣∣2(−1)k

(
2k

k

)
− 4(−1)k |Tm+1|

∣∣∣∣
≤ 2

(
2k

k

)
− 4

[(
2k − 4 − p

k

)
+
(

2k − 4 − p

k − 2

)]

Case 3. If 2 ≤ wt(ω) ≤ 2k, then by Lemma 3 we have

|W f (ω)| ≤ 2

(
2k − 2

k − 1

)
− 2

(
2k − 2

k

)
+ 4

m+1∑
i=1

|Ti |

= 1

2k − 1

(
2k

k

)
+ 4|T |

Denote

Δ = 2

(
2k

k

)
− 4 min

1≤i≤m+1
|Ti | − 1

2k − 1

(
2k

k

)
− 4|T |.

Next we will prove that Δ > 0 for n ≥ 11.
If m ≤ 13, we know that

Δ = 2

(
2k

k

)
− 4|T1| − 1

2k − 1

(
2k

k

)
− 4|T |

= 4k − 3

2k − 1

(
2k

k

)
− 8|T1| − 4

m+1∑
i=2

|Ti |

> 0

by a direct calculation listed in the following Tables 3 and 4.
If m ≥ 14, we investigate it in two subcases according to p is even or odd.
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When p is even, by (18) we have

|Ti | ≤ 2

(
2k − 4 − p

k − 2 − p
2

)
, 1 ≤ i ≤ m

and

|Tm+1| ≤
(

2k − 2 − p

k − 1 − p
2

)
≤ 4

(
2k − 4 − p

k − 2 − p
2

)
.

Then,

Δ = 4k − 3

2k − 1

(
2k

k

)
− 4|T1| − 4

m∑
i=1

|Ti | − 4|Tm+1|

≥ 4k − 3

2k − 1

(
2k

k

)
− 8(m + 3)

(
2k − 4 − p

k − 2 − p
2

)

≥ 4k − 3

2k − 1

(
2k

k

)
− 8(m + 3)k

23+log2
m+1

3 (2k − 3 − p)

(
2k

k

)

≥
[8m − 3

4m − 1
− 3(m + 3)(2m + 1)

(m + 1)(3m + 8)

](2k

k

)

= m2 + 16m − 15

(4m − 1)(m + 1)(3m + 8)

(
2k

k

)

> 0

where in the second inequality we use(2r
r

)
(2k

k

) = (2r)!(k!)2
(2k)!(r !)2 = k2(k − 1)2 · · · (r + 1)2

(2k)(2k − 1)(2k − 2) · · · (2r + 1)
< (

1

2
)2k−2r−1 k

2r + 1
(21)

for r = k − 2 − p
2 , and p ≥ log2

m+1
3 ; in the third inequality we use

4k − 3

2k − 1
≥ 8m − 3

4m − 1

and
k

2k − 3 − p
≤ 2m + 1

4m − 3 − p
≤ 2m + 1

3m + 8

since m − p ≥ 11 for m ≥ 14, and k = �n/2� − 1 is 2m if n = 4m + 1 or 2m + 1
if n = 4m + 3.
When p is odd, by (18) we then get

|Ti | ≤
(

2k − 4 − p

k − 2 − p+1
2

)
+
(

2k − 4 − p

k − 2 − p−1
2

)
=
(

2k − 3 − p

k − 2 − p−1
2

)

for 1 ≤ i ≤ m, and

|Tm+1| ≤
(

2k − 2 − p

k − 1 − p−1
2

)
< 2

(
2k − 3 − p

k − 2 − p−1
2

)
.

Similarly, we can derive that

Δ = 2

(
2k

k

)
− 4 min

1≤i≤m+1
|Ti | − 1

2k − 1

(
2k

k

)
− 4|T | > 0.
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Therefore, for all ω ∈ F
n
2, we always have

|W f (ω)| ≤ 2

(
2k

k

)
− 4

[(
2k − 4 − p

k

)
+
(

2k − 4 − p

k − 2

)]
.

Note that this bound is tight, since the bound can be attained in case 1 with equality
min1≤i≤m+1 |Ti | = |T1|.

We complete the proof for n ≥ 11 by applying (4) to the above inequality. �

Recall that in our construction p is defined as p = �log2�m+1
3 ��. If p = log2

m+1
3 ,

then each vector e(p)i , 1 ≤ i ≤ 2p , is used three times for constructing T1, T2, . . . , Tm+1.
However, if n = 4m + 1 with 3 · 2p − 1 ≥ m + 1, i.e., m = 3, 4, 6, 7, 8, 9, 10, 12, 13, . . .,
then some subsets of e(p)2 , . . . , e(p)2p , e(p)1 , . . . , e(p)2p , e(p)1 , . . . , e(p)2p are enough to construct
T1, T2, . . . , Tm+1; if n = 4m + 3 with 3 · 2p − 2 ≥ m + 1, i.e., m = 3, 6, 7, 8, 9, 12, 13, . . .,
then some subsets of e(p)2 , . . . , e(p)2p , e(p)1 , . . . , e(p)2p , e(p)1 , . . . , e(p)2p−1 are enough to construct
T1, T2, . . . , Tm+1. In this way, by the same method as we did in Lemmas 1 and 2, we have

min
1≤i≤m+1

|Ti | = |T1| =
(

2k − 4 − p

k − 1

)
+
(

2k − 4 − p

k − 3

)
.

Then, by the same method as we did in Theorem 4, the nonlinearity of f ∈ Bn constructed
in (15) can be improved as

nl ′f = 22k −
(

2k

k

)
+ 2

[(
2k − 4 − p

k − 1

)
+
(

2k − 4 − p

k − 3

)]
.

To the best of our knowledge, among all the Boolean functions constructed from the
generator matrix of Reed–Muller code, the ones proposed in [8] have the highest nonlinearity.
When n is odd, the functions in [8] have nonlinearity

nlg = 2n−1 −
(

2k

k

)
+ 2

⌊
m−1∑
i=0

(
3m − 2

m + i − 1

)
m − i

m

⌋

for n = 4m + 1,m ≥ 4, and

nlg = 2n−1 −
(

2k

k

)
+ 2

⌊
m+1∑
i=0

(
3m − 1

m + i

)
m + 2 − i

m + 2

⌋

for n = 4m + 3,m ≥ 5.
Let us consider the enhanced nonlinearity of our functions and the ones in [8] over that

of the majority function. For simplicity, denote

Δ1 =

⎧⎪⎪⎨
⎪⎪⎩

2

⌊
m−1∑
i=0

( 3m−2
m+i−1

)m−i
m

⌋
, n = 4m + 1,m ≥ 4

2

⌊
m+1∑
i=0

(3m−1
m+i

)m+2−i
m+2

⌋
, n = 4m + 3,m ≥ 5

Δ2 = 2

[(
2k − 4 − p

k

)
+
(

2k − 4 − p

k − 2

)]

Δ3 = 2

[(
2k − 4 − p

k − 1

)
+
(

2k − 4 − p

k − 3

)]
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Table 5 Comparison of the enhanced nonlinearity for n = 4m + 1

m Δ1 Δ2 Δ3 �Δ2
Δ1

� �Δ3
Δ1

�

4 912 1254 1584 1 1

5 7436 18876 18876 2 2

6 60502 124644 160888 2 2

7 490960 1932832 2405704 3 4

8 3974192 29938870 36253520 7 9

9 32102020 463831800 549754740 14 17

10 258852810 7191874140 8379147480 27 32

11 2084241600 111635950080 111635950080 53 53

where we assumeΔ3 be equal toΔ2 for n = 4m + 1 with 3 · 2p − 1 ≥ m + 1 or n = 4m + 3
with 3 · 2p − 2 ≥ m + 1

By a direct calculation, we know that

Δ1 =
m∑

i=0

(
3m − 2

m + i − 1

)
< (m + 1)

(
3m − 2

� 3m
2 � − 1

)
≤ 3 · 2p

(
3m − 2

� 3m
2 � − 1

)

for n = 4m + 1, and

Δ1 < 2(m + 1)

(
3m − 1

� 3m−1
2 �

)
≤ 6 · 2p

(
3m − 1

� 3m−1
2 �

)

for n = 4m + 3. On the other hand,

Δ2 > 2

(
2k − 4 − p

k − 2

)
= 2

(
2k − 4 − p

k − 2 − p

)
> 2

(
2k − 4 − 2p

k − 2 − p

)
.

If n = 4m + 1, then

Δ2

Δ1
>

2
(4m−4−2p

2m−2−p

)
3 · 2p

( 3m−2
� 3m

2 �−1

) > 2

3 · 2p
2m−3−2p 3m − 1

2m − 2 − p
> 2m−3−3p

where the second inequality holds by the same method as we did in (21). If n = 4m + 3,
similarly

Δ2

Δ1
>

2
(4m−2−2p

2m−1−p

)
6 · 2p

( 3m−1
� 3m−1

2 �
) > 2

6 · 2p
2m−2−2p 3m

2m − 1 − p
> 2m−3−3p.

When m ≤ 11, some concrete values of the enhanced nonlinearities Δ1, Δ2, and Δ3 are
given in Tables 5 and 6.

In 2008, Carlet and Feng [5] proposed an infinite class of balanced functions(Carlet–Feng
functions) with optimal algebraic immunity, the nonlinearity of which satisfies

nlg ≥ 2n−1 + 2
n
2 +1

π
ln
( π

4(2n − 1)

)
− 1.
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Table 6 Comparison of the enhanced nonlinearity for n = 4m + 3

m Δ1 Δ2 Δ3 �Δ2
Δ1

� �Δ3
Δ1

�

5 19878 73372 73372 3 3

6 158056 490960 621452 3 3

7 1257546 7607296 9330824 6 7

8 10007736 117832680 141076710 11 14

9 79648832 1826192640 2145031980 22 26

10 633918466 28330798320 28330798320 44 44

11 5045431420 440029574400 440029574400 87 87

Table 7 Comparison of the nonlinearity for 11 ≤ n ≤ 21 with n odd

n 11 13 15 17 19 21

Nonlinearity of majority function 772 3172 12952 52666 213524 863820

Nonlinearity of functions in this paper 824 3256 13276 53920 218386 882696

2n−1 + 2
n
2 +1

π ln
(

π
4(2n−1)

)
− 1 796 3561 15156 62763 255960 1034932

2n−1 −
(

ln 2
3 (n − 1)+ 5

6 + 1
3
√

3
+ 1

6
√

2

)
2

n
2 − 1 866 3740 15590 63782 258303 1040226

2n−1 −
(

n ln 2
π + 0.74

)
2

n
2 − 1 879 3768 15649 63909 258571 1040793

The upper bound �2n−1 − 2
n−1

2 � 992 4032 16256 65280 261632 1047552

In 2011, Zeng et al. [29] improved the lower bound of the nonlinearity of Carlet–Feng function
to be

nlg > 2n−1 −
( ln 2

3
(n − 1)+ 5

6
+ 1

3
√

3
+ 1

6
√

2

)
2

n
2 − 1.

In 2012, Tang et al. [28] presented a much better lower bound of the nonlinearity of Carlet–
Feng function as

nlg > 2n−1 −
(n ln 2

π
+ 0.74

)
2

n
2 − 1.

For 11 ≤ n ≤ 21 with n odd, the comparison of nonlinearity of our function with
nonlinearity of the majority function, the above three lower bounds on nonlinearity of the

Carlet–Feng function, and the upper bound �2n−1 − 2
n−1

2 � is given in Table 7.
It should be noted that the actual value of the nonlinearity of Carlet–Feng function is

significantly larger than the lower bounds above. Then, the nonlinearity of our function
is not as good as that of Carlet–Feng function. Nevertheless, the most useful properties
of Boolean function based on the generator matrix of Reed–Muller code are the efficient
computation and easy implementation. In order to construct Boolean function with optimal
algebraic immunity and higher nonlinearity in this way, according to the computation of
Walsh spectrum, we should construct two larger sets T ⊆ W ≤k and U ⊆ W ≥k+1 such that
the nonsingular matrix B in (13) is a more generalized one instead of an upper triangular
matrix or a lower triangular matrix.

At last, we analyze the resistance to fast algebraic attacks of the function f ∈ Bn con-
structed in (15) for n = 11, 13, 15. It is known that an n-variable Boolean function f can be
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considered as optimal with respect to fast algebraic attacks if there do not exist two nonzero
functions g and h such that f g = h and deg(g)+deg(h) < n with deg(g) < n

2 . Nevertheless,
the resistance to fast algebraic attacks turns out to be hard to estimate, and we must rely on
computer simulations feasible only for relatively small value of n. Denote

Ω f = min{deg(g)+ deg(h)|0 �= g, h ∈ Bn, f g = h}

We have checked the resistance of our functions to the fast algebraic attacks for n = 11, 13
and 15. The results are that if n = 11 then Ω f = 8; if n = 13 then Ω f = 10; if n = 15
thenΩ f = 12. We conjecture thatΩ f = n − 3. If this conjecture is true, we can say that the
behavior of our functions against fast algebraic attacks is not too bad although these functions
are not optimal with respect to fast algebraic attacks.

5 Conclusion

In this paper, an important property about the kth order Reed–Muller code RM(k, n) is
proved by studying the linear relationship of the column vectors in its generator matrix G.
This property can be used to provide simple and efficient proofs for AI properties of the
Boolean functions in some known constructions. The study also leads to a new class of
Boolean functions with optimal AI and high nonlinearity. Although it is still a small subset
of all such functions with optimal AI, in terms of practical applications our constructions
provide a large source of such functions. In addition, there are still some problems needing to
be studied further such as how to improve the nonlinearity and how to give a rigorous proof
of our conjecture on the behavior against fast algebraic immunity.
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