
Des. Codes Cryptogr. (2014) 70:359–368
DOI 10.1007/s10623-012-9698-y

On the distinctness of modular reductions of primitive
sequences over Z/(232 − 1)

Qun-Xiong Zheng · Wen-Feng Qi · Tian Tian

Received: 18 January 2012 / Revised: 2 May 2012 / Accepted: 11 May 2012 /
Published online: 30 May 2012
© Springer Science+Business Media, LLC 2012

Abstract This paper studies the distinctness of modular reductions of primitive sequences
over Z/(232 − 1). Let f (x) be a primitive polynomial of degree n over Z/(232 − 1) and
H a positive integer with a prime factor coprime with 232 − 1. Under the assumption that
every element in Z/(232 − 1) occurs in a primitive sequence of order n over Z/(232 − 1),
it is proved that for two primitive sequences a = (a(t))t≥0 and b = (b(t))t≥0 generated by
f (x) over Z/(232 − 1), a = b if and only if a (t) ≡ b (t) mod H for all t ≥ 0. Furthermore,
the assumption is known to be valid for n between 7 and 100, 000, the range of which is
sufficient for practical applications.

Keywords Stream ciphers · Integer residue rings · Linear recurring sequences ·
Primitive sequences · Modular reductions

Mathematics Subject Classification 11B50 · 94A55 · 94A60

1 Introduction

The study of linear recurring sequences over integer residue rings started as early as 1920s.
At first mathematicians were interested in their pure arithmetic properties [19–21]. Later
on as the rise of cryptography, linear recurring sequences over Z/(pe) were thought to be
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suitable for the design of stream ciphers, where pe is a prime power. Then an enormous
amount of effort has been directed toward the study of finding useful mappings to derive
good pseudorandom sequences from linear recurring sequences over Z/(pe), which are
called compression mappings in literature, and proving that they are injective. Generally
there are two kinds of compression mappings: one is based on e-variable functions over
Z/(p) [2,9,12,14,15,17,25,26]; the other is based on mod H operation [27] , where H is
an integer with a prime factor coprime with p. Besides, the pseudorandom properties of
these compression sequences were also extensively studied, such as periodicity [5], linear
complexity [4,11,13], and distribution properties [7,8,16,22].

Recently research interests on linear recurring sequences over Z/(pe) are further extended
to linear recurring sequences over Z/(M) [3,23,24], where M is a square-free odd integer.
One of important reasons for this is that the period of a linear recurring sequence a of
order n over Z/(pe) is undesirable if e ≥ 2. Recall that the period per(a) is upbounded by
pe−1 · (pn − 1) ≈ pe+n−1 [21]. It can be seen that for fixed pe with e ≥ 2, the period per(a)

increases slowly and far less than pe·n as n increases. Therefore, to meet the requirement of
long period in practical applications (such as ≥ 264), n should be chosen large enough, which
will be high resource consumption in hardware and software implementation. For example,
to generate a sequence with period not less than 264 over Z/(28), Z/(216) and Z/(232), the
number of bit-registers required must be larger than 456, 784 and 1056, respectively. How-
ever for many square-free odd integers M , especially prime numbers M , linear recurring
sequences over Z/(M) have no such periodic weakness. For cryptographic applications, the
moduli of the form 2e − 1 have attracted much attention since the operation “mod 2e − 1”
can be efficiently implemented both in hardware and software, and this offers new possi-
bilities for advancement in the solution of applying linear recurring sequences over integer
residue rings.

In Sep. 2011, a set of two cryptographic algorithms was accepted by 3GPP SA3 as
a new inclusion in the LTE standards. It consists of a confidentiality algorithm named
128-EEA3 and an integrity algorithm named 128-EIA3, both of which are based on a core
stream cipher algorithm named ZUC [6]. The ZUC algorithm adopts primitive sequences over
the prime field Z/(231−1) as driving sequences. Cryptographic analyses [6, Section 12] have
shown that those driving sequences have a significant contribution to the ZUC algorithm’s
resistance against bit-oriented cryptographic attacks, including fast correlation attacks, lin-
ear distinguishing attacks and algebraic attacks. In [27, Theorem 4.2] it was proved that if
a = (a(t))t≥0 and b = (b(t))t≥0 are two primitive sequences over Z/(231 − 1) generated by
a primitive polynomial, then a = b if and only if a (t) ≡ b (t) mod 2 for all t ≥ 0, and we
say that the modulo 2 reductions of primitive sequences over Z/(231 − 1) are distinct. This
is an important property for their cryptographic applications (see Remark 1).

Considering the operations over Z/(232 −1) are more suitable to be implemented in 32-bit
platforms than those over Z/(231 − 1), we think that primitive sequences over Z/(232 − 1)

may substitute primitive sequences over Z/(231 − 1) as a building block of stream ciphers if
the distinctness of modulo 2 reductions also holds for primitive sequences over Z/(232 − 1).
In [24], this problem was partially answered by applying Theorem 20 to M = 232 − 1.
Through more careful study on the properties of primitive sequences over Z/(232 − 1), in
this paper the set of primitive sequences over Z/(232 − 1) that can be proved to be distinct
modulo 2 is greatly enlarged and almost includes all primitive sequences over Z/(232 − 1).
Moreover, such distinctness for “modulo 2” is further extended to “modulo H”, where H
is a positive integer with a prime factor coprime with 232 − 1. We remark that by the same
method, similar results can be obtained for primitive sequences over Z/(24 − 1), Z/(28 − 1)

and Z/(216 − 1).
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Throughout the paper we use the following notations. For any integer N > 1, let Z/(N )

denote the integer residue ring modulo N . We always choose {0, 1, . . . , N − 1} as the com-
plete set of representatives for the elements of the ring Z/(N ). Thus a sequence over Z/(N )

is also seen as an integer sequence over {0, 1, . . . , N − 1}. For two integer sequences a =
(a(t))t≥0, b = (b(t))t≥0 and a positive integer c, the congruence “a ≡ b mod c” means
a(t) ≡ b(t) mod c for all t ≥ 0. Moreover, for any integer a and c, we denote the least
nonnegative residue of a modulo c by [a] mod c, and similarly, for an integer sequence a,
denote

[
a
]

mod c = ([a(t)] mod c)t≥0.

2 Preliminaries

Let N be a positive integer greater than 1. If a sequence a = (a(t))t≥0 over Z/(N ) satisfies
the linear recurrence relation

a(t + n) ≡ cn−1 · a(t + n − 1) + · · · + c1 · a(t + 1) + c0 · a(t) mod N

for all t ≥ 0, where n is a positive integer and c0, c1, . . . , cn−1 ∈ Z/(N ), then a is called a lin-
ear recurring sequence of order n over Z/(N ) generated by f (x) = xn −cn−1xn−1−· · ·−c0.
For convenience, the set of all linear recurring sequences generated by f (x) over Z/(N ) is
denoted by G ( f (x) , N ). Particular interests for cryptography are the maximal period linear
recurring sequences also called primitive sequences over Z/(N ), which are generated by
primitive polynomials over Z/(N ). Next we introduce the definitions of primitive polyno-
mials and primitive sequences over Z/(N ).

First, assume N is a prime power, say N = pe. Then a monic polynomial f (x) of degree
n over Z/(pe) is called a primitive polynomial of degree n if the period of f (x) over Z/(pe)

is equal to pe−1(pn −1), that is pe−1(pn −1) is the least positive integer P such that x P −1
is divisible by f (x) in Z/(pe)[x]. A sequence a over Z/(pe) is called a primitive sequence of
order n if a is generated by a primitive polynomial of degree n over Z/(pe) and

[
a
]

mod p is
not an all-zero sequence. A primitive sequence a of order n over Z/(pe) is (strictly) periodic
and the period per(a) is equal to pe−1(pn −1), see [21]. Second, assume N = pe1

1 pe2
2 · · · per

r

is the canonical factorization of N . Then a monic polynomial f (x) of degree n over Z/(N ) is
called a primitive polynomial if for every i ∈ {1, 2, . . . , r} , f (x) is a primitive polynomial
of degree n over Z/(pei

i ). A sequence a over Z/(N ) is called a primitive sequence of order
n if a is generated by a primitive polynomial of degree n over Z/(N ) and

[
a
]

mod pi
is not

an all-zero sequence for every i ∈ {1, 2, . . . , r}, that is,
[
a
]

mod p
ei
i

is a primitive sequence

of order n over Z/(pei
i ). It can be seen that the period of a primitive polynomial of degree n

over Z/(N ) and that of a primitive sequence of order n over Z/(N ) are both equal to

lcm
(

pe1−1
1

(
pn

1 − 1
)
, pe2−1

2

(
pn

2 − 1
)
, . . . , per −1

r

(
pn

r − 1
))

.

For convenience, the set of primitive sequences generated by a primitive polynomial f (x)

over Z/(N ) is generally denoted by G ′( f (x), N ). It is easy to see that for a primitive sequence
a ∈ G ′( f (x), N ) and an integer c coprime with N , the sequence

[
c · a

]
mod N = (

[c · a (t)] mod N
)

t≥0

is also a primitive sequence over Z/(N ), i.e.
[
c · a

]
mod N ∈ G ′( f (x), N ).

Next we consider sequences over Z/(2e − 1) and introduce their 2-adic coordinate
sequences. For a sequence a = (a(t))t≥0 over Z/(2e − 1), if we write every element a(t) of
a in its 2-adic expansion as
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a(t) = a0(t) + a1(t) · 2 + · · · + ae−1(t) · 2e−1, t ≥ 0,

then the binary sequence ak = (ak(t))t≥0 is called the kth 2-adic coordinate sequence of a
for 0 ≤ k ≤ e − 1, and

a = a0 + a1 · 2 + · · · + ae−1 · 2e−1

is called the 2-adic expansion of a. It is clear that a0 is in fact the modulo 2 reduction of a,
i.e., a0 = [

a
]

mod 2. Moreover, if b = [2i · a] mod 2e−1 for some integer 1 ≤ i ≤ e − 1, then

b = ae−i + ae−i+1 · 2 + · · · + ae−1 · 2i−1 + a0 · 2i + · · · + ae−i−1 · 2e−1

is the 2-adic expansion of b. It can be seen that the set of e 2-adic coordinate sequences of b
is the same as the set of e 2-adic coordinate sequences of a.

Finally, we discuss a simple property of primitive sequences over Z/(232 − 1). This is
based on the following element distribution property of primitive sequences over a prime field
of odd characteristic, whose proof follows from the same argument as used in [25, Lemma
4].

Lemma 1 Let p be an odd prime number and a a primitive sequence over Z/(p) with period
T . Then a (t + T/2) ≡ −a (t) mod p for all t ≥ 0.

Let p1 = 3, p2 = 5, p3 = 17, p4 = 257 and p5 = 65537. Then we have that 232 − 1 =
p1 p2 p3 p4 p5 which is the canonical factorization of 232 − 1. Note that pi = 22i−1 + 1 for
1 ≤ i ≤ 5, and so it follows from [18, Lemma 10] that for any positive integer n, we have
that

v2
(

pn
i − 1

) =
{

2 + v2 (n) , if i = 1 and n is even,
2i−1 + v2 (n) , otherwise,

(1)

where v2 (k) denotes the greatest nonnegative integer m such that 2m divides k. It can be seen
that

v2
(

pn
i − 1

)
< v2

(
pn

5 − 1
)

for 1 ≤ i ≤ 4. (2)

Lemma 2 Let a be a primitive sequence over Z/(232 − 1) with period T . Then we have that
a (t + T/2) ≡ 216 · a (t) mod 232 − 1 for all t ≥ 0.

Proof Note that 216 ≡ 1 mod pi for 1 ≤ i ≤ 4 while 216 ≡ −1 mod p5. It suffices to show
that for all t ≥ 0

a (t + T/2) ≡ a (t) mod pi , 1 ≤ i ≤ 4 (3)

and

a (t + T/2) ≡ −a (t) mod p5. (4)

Assume a is generated by a primitive polynomial of degree n over Z/(232 − 1). Then
T = lcm

(
pn

1 − 1, pn
2 − 1, pn

3 − 1, pn
4 − 1, pn

5 − 1
)
, and so it follows from (2) that

v2 (T ) = v2
(

pn
5 − 1

)
> v2

(
pn

i − 1
)

for 1 ≤ i ≤ 4,

which implies that

pn
i − 1 | T

2
for 1 ≤ i ≤ 4, (5)
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while

T

2
≡ pn

5 − 1

2
mod pn

5 − 1. (6)

Note that per([a] mod pi ) = pn
i − 1 for 1 ≤ i ≤ 5. Hence (3) follows from (5), and (4)

follows from (6) and Lemma 1. �	

3 Main results

Given a positive integer n, the following assumption on primitive sequences of order n is
important for our main result.

Assumption 1 (Element Distribution Assumption) If a = (a (t))t≥0 is a primitive sequence
of order n over Z/(232−1) with period per(a), then a(t) runs through the set {0, 1, . . . , 232−
2} as t runs from 0 to per(a) − 1.

By applying [24, Theorem 11] to M = 232−1, we immediately get the following Theorem
1, which in fact gives a sufficient condition for n such that Assumption 1 is valid.

Theorem 1 [24, Theorem 11] Let n be a positive integer and 232 − 1 = p1 p2 p3 p4 p5 the
canonical factorization of 232 − 1. Then Assumption 1 is valid for n if

1 −
5∑

i=1

pi − 1

pn
i − 1

>

5∑

k=2

∑

1≤i1<···<ik≤5

∏k
j=1(pi j − 1)pn/2

i j

lcm
(

pn
i1

− 1, pn
i2

− 1, . . . , pn
ik

− 1
) . (7)

Experimental data show that for 1 ≤ n ≤ 100000, the inequality (7) always holds except
n = 1, 2, 3, 4 and 6, which implies that Assumption 1 is valid if 7 ≤ n ≤ 100000. This range
of n is sufficient for practical applications. Furthermore, in theory it was proved that there
exists an integer N (However, the value of N is not computable due to the ineffectivity of
Diophantine Approximation, see [24, Proof of Theorem 13] and [1, Remarks (5)] for more
details) such that Assumption 1 is valid for all n > N , see [24, Theorem 13].

Now we can make our main result explicit in the following statement.

Theorem 2 Let f (x) be a primitive polynomial of positive degree n over Z/(232 −1), a, b ∈
G ′( f (x), 232 − 1), and H a positive integer with a prime factor coprime with 232 − 1. If
Assumption 1 is valid for n, then

(i) a = b if and only if a ≡ b mod H ; and
(ii) per

([
a
]

mod H

) = per
(
a
)
.

With Theorem 2, it is easy to deduce some properties of 2-adic coordinate sequences of
primitive sequences over Z/(232 − 1).

Corollary 1 Let f (x) be a primitive polynomial of positive degree n over Z/(232 − 1) and
a, b ∈ G ′( f (x), 232 − 1). If Assumption 1 is valid for n, then

(i) for a given integer k ∈ {0, 1, . . . , 31} , a = b if and only if ak = bk; and
(ii) the period of every 2-adic coordinate sequence of a attains per(a).
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Proof

(i) Since the necessary condition is trivial, it suffices to show the sufficient condition. Let
us denote

a′ =
[
232−k · a

]

mod 232−1
and b′ =

[
232−k · b

]

mod 232−1
.

It is clear that a′, b′ ∈ G ′( f (x), 232 − 1). Since
[
a′]

mod 2 = ak and
[
b′]

mod 2 = bk,

it follows from Theorem 2 (i) that a′ = b′, and so

a = [
r · a′]

mod 232−1 = [
r · b′]

mod 232−1 = b,

where r is the multiplicative inverse of 232−k in Z/(232 − 1).
(ii) The result immediately follows from Theorem 2 (i i) and the fact that ak is the modulo

2 reduction of the primitive sequence [232−k · a] mod 232−1 for 0 ≤ k ≤ 31.

�	
Remark 1 If Assumption 1 is valid for n, then Corollary 1 implies that given a primitive poly-
nomial f (x) of degree n over Z/(232 − 1) and a ∈ G ′( f (x), 232 − 1), theoretically there
is an algorithm to recover a from any one of its 2-adic coordinate sequences. Thus it could
be thought that every 2-adic coordinate sequence of a contains all the information of a and
all 2-adic coordinate sequences of a are pairwise equivalent. Considering 2-adic coordinate
sequences of sequences generated by a primitive polynomial or a T -function over Z/(232), it
is easily seen that such equivalence property does not hold, and so primitive sequences over
Z/(232 − 1) exceeds them in this aspect and shall be interest for cryptographic applications.
Please refer to [10] for sequences generated by T -functions.

Next we start to prove Theorem 2, we first give a necessary lemma.

Lemma 3 Let f (x) be a primitive polynomial of positive degree n over Z/(232 − 1), a, b ∈
G ′( f (x), 232 − 1), and h a prime number coprime with 232 − 1. If Assumption 1 is valid for
n and a ≡ b mod h, then there is a prime factor p of 232 − 1 such that a ≡ b mod p.

Proof Suppose a 
≡ b mod p for any prime factor p of 232 − 1. It is clear that c =[
a − b

]
mod 232−1 is a primitive sequence generated by f (x) over Z/(232 − 1), i.e., c ∈

G ′( f (x), 232 − 1). It follows from Assumption 1 that there is an integer t∗ ≥ 0 such that
c (t∗) = 1, i.e., a(t∗) − b(t∗) ≡ 1 mod 232 − 1. Then either

a(t∗) = b(t∗) + 1 and 0 ≤ b
(
t∗

)
< 232 − 2 (8)

or

a(t∗) = 0 and b(t∗) = 232 − 2. (9)

Obviously, if h ≥ 3, then both (8) and (9) imply that a (t∗) 
≡ b (t∗) mod h , a contradiction
to a ≡ b mod h. If h = 2, then a ≡ b mod 2 implies that only (9) holds. Denote by T
the period of f (x) over Z/(232 − 1). Then we have per

(
a
) = per

(
b
) = T . By applying

Lemma 2 to (9) we get

a
(
t∗ + T/2

) = 0 and b
(
t∗ + T/2

) = 232 − 216 − 1,
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which yield

a
(
t∗ + T/2

) ≡ 0 
≡ 1 ≡ b
(
t∗ + T/2

)
mod 2,

a contradiction to a ≡ b mod 2. Therefore, there at least exists a prime factor p of 232 − 1
such that a ≡ b mod p. �	
Proof (Proof of Theorem 2) (i) Since the necessary condition is trivial, in the following, we
only prove the sufficient condition.

Suppose a ≡ b mod H and h is a prime factor of H coprime with 232 − 1. Then we also
have a ≡ b mod h. If we denote by R the greatest factor of 232 − 1 satisfying a ≡ b mod R,
then by Lemma 3 we know R > 1. In the following it suffices to show that R = 232 − 1.

We continue the proof by contradiction. Suppose R < 232 − 1.
First, let us denote Q = (

232 − 1
)
/R. Then we have Q > 1 and a 
≡ b mod q for any

prime factor q of Q. Since 232 − 1 is a square-free odd integer, it is clear that R and Q are
also square-free odd integers and gcd(R, Q) = 1. By the Chinese Remainder Theorem, there
exist unique sequences u1 over Z/(R) and u2 over Z/(Q) such that

a ≡ Q · u1 + R · u2 mod 232 − 1, (10)

and moreover, it can be seen that u1 ∈ G ′( f (x), R) and u2 ∈ G ′( f (x), Q). Analogously,
we have that

b ≡ Q · v1 + R · v2 mod 232 − 1, (11)

where v1 ∈ G ′( f (x), R) and v2 ∈ G ′( f (x), Q). Since a ≡ b mod R, it follows that u1 = v1,
and so

a − b ≡ R · (
u2 − v2

)
mod 232 − 1.

Furthermore, for any prime factor q of Q, since a 
≡ b mod q , we have that u2 
≡ v2 mod q ,
and so

[
u2 − v2

]
mod Q ∈ G ′( f (x), Q). Hence if we set

u = [
Q · u1 + R · (

u2 − v2

)]
mod 232−1 ,

then it can be seen that u ∈ G ′( f (x), 232 − 1), and so by Assumption 1 we know that
(u1 (t) , [u2 (t) − v2 (t)] mod Q) runs through the set Z/ (R) × Z/ (Q) as t runs from 0 to
T − 1, where T is the period of f (x) over Z/(232 − 1).

With the above preparations, we shall discuss the two cases 1 < R < 216 and 216 ≤ R <

232 − 1, respectively.
Case 1: 1 < R < 216. We choose a nonnegative integer t∗ such that u1 (t∗) = 0 and

u2
(
t∗

) − v2
(
t∗

) ≡ 1 mod Q. (12)

Then by (10) and (11) we get

a
(
t∗

) = R · u2
(
t∗

)
and b

(
t∗

) = R · v2
(
t∗

)
. (13)

Since a (t∗) ≡ b (t∗) mod h and gcd (h, R) = 1, it follows that

u2
(
t∗

) ≡ v2
(
t∗

)
mod h. (14)

Combining (12) and (14) we can deduce that
{

u2 (t∗) = 0,

v2 (t∗) = Q − 1,
(15)
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and this together with (14) implies that

Q ≡ 1 mod h. (16)

Taking (15) into (13) yields

a
(
t∗

) = 0 and b
(
t∗

) = 232 − 1 − R.

Then by Lemma 2 we have that

a
(
t∗ + T/2

) = 0 and b
(
t∗ + T/2

) = 232 − 1 − 216 · R,

and so a ≡ b mod h implies that

0 ≡ 232 − 1 − 216 · R mod h,

that is,

Q ≡ 216 mod h. (17)

Then by (16) and (17) we have that 216 ≡ 1 mod h, which shows that h is a prime factor of
216 − 1, a contradiction to the assumption that gcd

(
h, 232 − 1

) = 1.
Case 2: 216 ≤ R < 232 − 1. In this case, it can be seen that 216 + 1 is a prime factor of R.
Therefore we assume

R = (
216 + 1

) · d ,

where d is a factor of 216 − 1 with 1 ≤ d < 216 − 1. We choose a nonnegative integer t∗
such that u1 (t∗) = d and

u2
(
t∗

) − v2
(
t∗

) ≡ 1 mod Q. (18)

Since Q = (216 − 1)/d and

216 − 1 + R · k ≤ 216 − 1 + R · (Q − 1) < 232 − 1, k ∈ {u2
(
t∗

)
, v2

(
t∗

)},
by (10) and (11) we get

a
(
t∗

) = 216 − 1 + R · u2
(
t∗

)
and b

(
t∗

) = 216 − 1 + R · v2
(
t∗

)
. (19)

Then a ≡ b mod h implies that

216 − 1 + R · u2
(
t∗

) ≡ 216 − 1 + R · v2
(
t∗

)
mod h,

that is,

u2
(
t∗

) ≡ v2
(
t∗

)
mod h, (20)

Combining (18) and (20) we can deduce that
{

u2 (t∗) = 0,
v2 (t∗) = Q − 1,

(21)

and this together with (21) implies that

Q ≡ 1 mod h.

Taking (21) into (19) yields

a
(
t∗

) = 216 − 1 and b
(
t∗

) = 232 + 216 − 2 − R.
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Note that

216 R ≡ 216(216 + 1)d ≡ (216 + 1)d ≡ R mod 232 − 1,

and so by Lemma 2 we get

a
(
t∗ + T/2

) = 232 − 216 and b
(
t∗ + T/2

) = 232 − 216 − R.

Then a ≡ b mod h gives R ≡ 0 mod h, a contradiction to gcd
(
h, 232 − 1

) = 1.
Therefore, we have that R = 232 − 1.
(i i) It is clear that

per
([

a
]

mod H

) ≤ per
(
a
)

. (22)

For any integer k ≥ 0, let us denote by Lka the k-shift of a, i.e., Lka = (a (t + k))t≥0.
Obviously, we have that Lka ∈ G ′( f (x), 232 − 1) for all k ≥ 0. Since

Lka 
= a for 0 < k < per
(
a
)

,

it follows from (i) that

Lka 
≡ a mod H for 0 < k < per
(
a
)

,

which implies that

per
([

a
]

mod H

) ≥ per
(
a
)

. (23)

Thus (22) and (23) imply that per
([

a
]

mod H

) = per
(
a
)
. �	

4 Conclusions

Let f (x) be a primitive polynomial of positive degree n over Z/(232 − 1) and H a positive
integer with a prime factor coprime with 232−1. This paper studies the distinctness of modulo
H reductions of primitive sequences generated by f (x) over Z/(232 − 1). In particular, the
results for H = 2 implies that 32 2-adic coordinate sequences of a primitive sequence a over
Z/(232 −1) have similar cryptographic properties, namely every 2-adic coordinate sequence
has the same period as a and uniquely determines a. Primitive sequences over Z/(232 − 1)

is usually compared with primitive sequences over Z/(231 − 1). The distinctness of modulo
reductions of primitive sequences over Z/(231 − 1) has been completely solved for several
years. With the work of this paper, now the focus of the comparison only rests on that 232 −1
is a composite number while 231 −1 is a prime number. In specific, since 232 −1 has the fac-
torization 232 −1 = 3×5×17×257×65537, a primitive sequence a over Z/(232 −1) can be
seen as a composition of five sequences over Z/(3), Z/(5), Z/(17), Z/(257) and Z/(65537),
respectively. So far no convincing evidence shows that this makes stream ciphers based on
primitive sequences over Z/(232 − 1) more vulnerable, and this will be one of the subjects
of future work.
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