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Abstract The goal of a signcryption scheme is to achieve the same functionalities as
encryption and signature together, but in a more efficient way than encrypting and signing
separately. To increase security and reliability in some applications, the unsigncryption phase
can be distributed among a group of users, through a (t, n)-threshold process. In this work we
consider this task of threshold unsigncryption, which has received very few attention from the
cryptographic literature up to now (maybe surprisingly, due to its potential applications). First
we describe in detail the security requirements that a scheme for such a task should satisfy:
existential unforgeability and indistinguishability, under insider chosen message/ciphertext
attacks, in a multi-user setting. Then we show that generic constructions of signcryption
schemes (by combining encryption and signature schemes) do not offer this level of security
in the scenario of threshold unsigncryption. For this reason, we propose two new protocols
for threshold unsigncryption, which we prove to be secure, one in the random oracle model
and one in the standard model. The two proposed schemes enjoy an additional property that
can be very useful. Namely, the unsigncryption protocol can be divided in two phases: a first
one where the authenticity of the ciphertext is verified, maybe by a single party; and a second
one where the ciphertext is decrypted by a subset of t receivers, without using the identity of
the sender. As a consequence, the schemes can be used in applications requiring some level
of anonymity, such as electronic auctions.
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1 Introduction

By encrypting or signing messages, digital communications may achieve some well-known
properties: confidentiality, authentication, integrity or/and non-repudiation. When all these
properties are required at the same time, there are more efficient solutions than signing and
encrypting each message separately. Cryptographic schemes that provide the same properties
than encryption and signature together receive the name of signcryption schemes [27] (or
also authenticated encryption schemes [2]). Such schemes consist of a key generation proto-
col, a signcryption protocol run by the sender of the message (which uses his secret key and
the public key of the receiver to hide and authenticate the message) and an unsigncryption
protocol run by the receiver (which uses his secret key and the public key of the sender to
recover the message and verify its authenticity).

Since the invention of this concept in 1997, many papers discussing different security
properties and proposing new signcryption schemes have appeared. In particular, there are
some generic constructions [1] of signcryption schemes, combining signature and encryp-
tion schemes, that achieve a very high level of security: unforgeability under chosen message
attacks and plaintext indistinguishability under chosen ciphertext attacks, against an insider
adversary in a multi-user setting.

Most of the papers dealing with signcryption consider individual entities to perform the
secret tasks of signcryption and unsigncryption. In many real-life situations, centralizing a
secret task is not desirable due to both security and reliability reasons (a security / techni-
cal problem at a single entity can cause important threats / delays to the system). In these
cases, a common approach is to decentralize the secret task(s) by considering a group of n
entities, in such a way that the cooperation of at least t of them is necessary to successfully
finish the task. This approach is known as (t, n)-threshold cryptography. In the scenario of
signcryption, there are two secret tasks, so threshold cryptography could be applied to the
signcryption protocol, to the unsigncryption protocol, or to both of them.

Among these three possibilities, here we focus on the situation where the unsigncryption
task is distributed among a set of entities through a (t, n)-threshold process. Such schemes are
known as threshold unsigncryption schemes. For simplicity we consider that the signcryption
protocol is run by an individual entity (see however Sect. 9 for a discussion on fully threshold
signcryption). We want to stress that the primitive of threshold unsigncryption is not just of
theoretical interest; it has applications in real-life scenarios. For example, in a digital auction
system, bidders may send their authenticated private bids, encrypted with the public key of
a set of servers. In this way, even if some dishonest servers (less than t) collude, they will
not be able to obtain information about the bids and influence the result of the auction. At
the end of the auction, a large enough number of servers will cooperate to decrypt the bids
and determine the winner of the auction and the price to pay.

The first works that focused on threshold unsigncryption [12–14,25,26] failed to achieve
the desired security properties for this kind of schemes: existential unforgeability under
chosen message attacks, and plaintext indistinguishability under chosen-ciphertext attacks
(CCA), in a multi-user setting where the adversary can be insider and can corrupt up to t − 1
members of the target receiver entity. These security properties, along with the syntactic def-
inition of threshold unsigncryption schemes, are detailed in Sect. 3. The security weaknesses
of the above-mentioned threshold unsigncryption schemes were pointed out in [10,20]. We
showed in [10] (and we include this in Sect. 4 of this paper, for completeness) that even
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generic constructions of threshold unsigncryption schemes, obtained by combining a fully
secure standard signature scheme and a fully secure threshold decryption scheme, do not
achieve the maximum level of security. This is in contrast to what happens in the traditional
scenario of signcryption, with a single receiver entity.

For this reason, one of the main goals in this area of threshold unsigncryption is to design
new threshold unsigncryption schemes which are provably secure in the desired security
model. The first two such schemes were proposed very recently: one scheme by ourselves
in [10] which works in the traditional PKI setting, and one scheme in [20] which works in
the identity-based setting. We include the design and security analysis of a slightly modified
version of our scheme in [10], in Sect. 5 of this paper. Both our scheme and the scheme in [20]
are proved secure in an idealized world, the random oracle model, where hash functions are
assumed to behave as totally random functions. This assumption is useful but not achievable
in real systems. Therefore, proofs in the random oracle model are just heuristic arguments,
and thus security proofs in the standard model are preferable, when analyzing the security
of cryptographic protocols.

To overcome this drawback, we propose and analyze in Sect. 6 a new threshold unsign-
cryption scheme; it is the first one in the literature which achieves, in the standard model, the
required security properties. The design of this second scheme is quite modular: it employs
two signature schemes and the ideas by Canetti–Halevi–Katz to achieve CCA security from
identity-based selectively secure encryption [8].

The two schemes that we present in this paper, in Sects. 5 and 6, have an additional prop-
erty which may be of independent interest: the unsigncryption protocol of the schemes can be
split into two parts. The first part, verifying the validity and the authorship of the ciphertext,
can be done by anyone, because the required inputs are the ciphertext and the public key
of the sender. The second part, decrypting the (valid) ciphertext, can be done without using
the public key of the sender. To the best of our knowledge, these are the first fully secure
signcryption schemes in the literature that enjoy this property, considering both individual
and threshold (un)signcryption. This ‘splitting’ property seems to be very promising for
applications requiring authentication and confidentiality, but also some level of anonymity
or privacy in some of their phases. As an illustrative example, we explain in Sect. 8 the case
of an electronic auction system.

Previous publication. We stress here that an earlier version of the results in Sects. 4 and
5 was published in the Proceedings of the conference ProvSec’2010 [10]. The material in
Sects. 6, 7, 8 and 9 is completely original.

2 Preliminaries

In this section we recall some tools that will be used in the design and security analysis of
the two threshold unsigncryption schemes that we present in this paper.

2.1 Strongly unforgeable signature schemes

A signature scheme Θ = (Θ.KG,Θ.Sign,Θ.Vfy) consists of three probabilistic polynomial
time protocols. ΘKG(1λ)→ (sk, vk) is the key generation protocol, which takes as input a
security parameter λ ∈ N and outputs a secret signing key sk and a public verification key
vk. The signing protocol Θ.Sign(sk, m)→ θ takes as input the signing key and a message
m, and outputs a signature θ . Finally, the verification protocol Θ.Vfy(vk, m, θ) → 1 or 0

123



326 J. Herranz et al.

takes as input the verification key, a message and a signature, and outputs 1 if the signature
is valid, or 0 otherwise.

Regarding security, we consider an adversary FΘ who first receives a verification key
vk obtained from Θ.KG(1λ) → (sk, vk). He can make at most qS signature queries for
messages mi of his choice, obtaining as answer valid signatures Θ.Sign(sk, mi )→ θi , and
finally outputs a pair (m′, θ ′). We say that the adversary succeeds if Θ.Vfy(vk, m′, θ ′)→ 1
and (m′, θ ′) �= (mi , θi ) for all i = 1, . . . , qS .

We denote FΘ ’s success probability as AdvFΘ (λ). The signature scheme Θ is strongly
unforgeable if AdvFΘ (λ) is a negligible function of the security parameter λ ∈ N, for any
polynomial-time attacker FΘ against Θ . Here negligible means that AdvFΘ (λ) decreases
(when λ increases, asymptotically) faster than the inverse of any polynomial. If a signature
scheme is strongly unforgeable only against adversaries who can make at most qS = 1
signature query, then the scheme is a secure one-time signature scheme.

An example of strongly unforgeable signature scheme can be found in [5]. The scheme
therein is proved secure, in the standard model, under the Computational Diffie–Hellman
Assumption (defined in the next subsection). Some examples of secure one-time signature
schemes can be found in [17].

2.2 Bilinear groups and computational assumptions

Given a security parameter λ ∈ N, let G = 〈g〉 be a cyclic group of prime order p, such that
p is λ bits long.

The Diffie-Hellman (DH, for short) problem consists of computing the value gab from the
values g, ga, gb, for random elements a, b ∈ Z

∗
q . The Diffie-Hellman Assumption states that

the DH problem is hard to solve. A bit more formally, for any polynomial-time algorithm
ADH that receives as input G, g, ga, gb, for random elements a, b ∈ Z

∗
q , we can define as

AdvADH (λ) the probability that ADH outputs the value gab. The Diffie-Hellman Assumption
states that AdvADH (λ) is negligible in λ.

The Diffie-Hellman problem is easier to solve than the Discrete Logarithm problem: the
input is (G, g, y), where y ∈ G, and the goal for a solver ADL is to find the integer x ∈ Z

∗
q

such that y = gx . We can define AdvADL (λ) and the Discrete Logarithm Assumption anal-
ogously to the Diffie-Hellman case.

A group G = 〈g〉 as defined above is said to be bilinear if there exist another group GT

with the same order p and a map e : G× G→ GT satisfying the following properties:

1. e(·, ·) can be efficiently computed (in time polynomial in λ),
2. e(g, g) is a generator of GT ,
3. for any two elements a, b ∈ Zp , we have e(ga, gb) = e(g, g)ab.

The Decisional Bilinear Diffie-Hellman (DBDH, for short) problem consists of dis-
tinguishing tuples of the form (g, ga, gb, gc, e(g, g)abc) from tuples of the form (g, ga,

gb, gc, T ), for random a, b, c ∈ Z
∗
p and random T ∈ GT . For any polynomial-time solver

ADB DH of this problem, we can define its advantage as AdvADB DH (λ) =
∣
∣
∣Pr[ADB DH (g, ga, gb, gc, e(g, g)abc) = 0] − Pr[ADB DH (g, ga, gb, gc, T ) = 0]

∣
∣
∣

The Decisional Bilinear Diffie-Hellman Assumption states that AdvADB DH (λ) is negligible
in λ.
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3 Signcryption with threshold unsigncryption

In a signcryption scheme, a user A sends a message to an intended receiver B, in a confiden-
tial and authenticated way: only B can obtain the original message, and B is convinced that
the message comes from A. In a scenario where the role of B is distributed among a set of
users, the cooperation of some authorized subset of users will be necessary to perform the
unsigncryption phase. Each user in the set B will have a share of the secret information of B,
and will use it to perform his part of the unsigncryption process. In this paper we will focus
on threshold families of authorized subsets: the cooperation of at least t users in B will be
necessary to successfully run the unsigncryption protocol. Both our formal definitions and
our schemes can be extended to more general families of authorized subsets, by replacing
threshold secret sharing techniques (i.e. Shamir’s scheme [19]) with more general linear
secret sharing schemes.

3.1 Syntactic definition

A signcryption scheme with threshold unsigncryption Σ = (Σ.St,Σ.KG,Σ.Sign,Σ.Uns)

consists of four probabilistic polynomial-time algorithms:

– The randomized setup algorithm Σ.St takes a security parameter λ ∈ N and outputs
some public parameters params that will be common to all the users in the system: the
mathematical groups, generators, hash functions, etc. We write params← Σ.St(1λ) to
denote an execution of this algorithm.

– The key generation algorithm Σ.KG is different for an individual sender A than for a
collective B of receivers. A single user A will get a pair (skA, pkA) of secret and public
keys. In contrast, for a collective B = {B1, . . . , Bn} of n users, the output will be a
single public key pkB for the group, and then a threshold secret share skB, j for each
user B j , for j = 1, . . . , n, and for some threshold t such that 1 ≤ t ≤ n. The key
generation process for the collective B can be either run by a trusted third party, or by
the users in B themselves. We will write (skA, pkA) ← Σ.KG(params, A, ‘single’)
and ({skB, j }1≤ j≤n, pkB)← Σ.KG(params, B, n, t, ‘collective’) to refer to these two
key generation protocols.

– The signcryption algorithm Σ.Sign takes as input params, a message M , the pub-
lic key pkB of the intended receiver group B, and the secret key skA of the sender.
The output is a ciphertext C . We denote an execution of this algorithm as C ←
Σ.Sign(params, M, pkB , skA).

– The threshold unsigncryption algorithm Σ.Uns is an interactive protocol run by
some subset of users B ′ ⊂ B. The common inputs are params, a ciphertext C
and the public key pkA of the sender, whereas each user B j ∈ B ′ has as secret
input his secret share skB, j . The output is a message M̃ , which can eventually be
the special symbol ⊥, meaning that the ciphertext C is invalid. We write M̃ ←
Σ.Uns(params, C, pkA, B ′, {skB, j }B j∈B′) to refer to an execution of this protocol.

For correctness, condition Σ.Uns(params,Σ.Sign(params, M, pkB , skA), pkA, B ′,
{skB, j }B j∈B′) = M is required, whenever B ′ contains at least t honest users and the
values params, skA, pkA, {skB, j }1≤ j≤n, pkB have been obtained by properly executing the
protocols Σ.St and Σ.KG.

A different property that can be required is that of robustness, which informally means that
dishonest receivers in B who do not follow the threshold unsigncryption protocol correctly
can be detected and discarded, without affecting the correct completion of the protocol.
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3.2 Security model

A correct signcryption scheme must satisfy the security properties that are required for both
encryption and signatures: confidentiality and unforgeability. In the threshold setting for
unsigncryption, confidentiality must hold even if an attacker corrupts t − 1 members of a
collective of receivers. We consider a multi-user setting where an adversary is allowed to
corrupt the maximum possible number of users (all except the target one), and where he can
make both signcryption and unsigncryption queries for different users, messages and cipher-
texts. In particular, unforgeability must hold even if the adversary knows the secret keys of
all the possible collectives of receivers, and confidentiality must hold even if the adversary
knows the secret keys of all the possible senders. In other words, we require insider security.

Note that we are considering only static adversaries, who choose the corrupted users at the
beginning of the attack, in order to simplify the notation and thus allow a better understanding
of the proposed schemes. In order to resist more powerful adaptive attacks, where the users
may be corrupted at different stages of the system, our schemes should be combined with
well-known techniques, as those in [6,11,16].

3.2.1 Unforgeability

Unforgeability under chosen message attacks is the standard security notion for signature
schemes and in general for any cryptographic primitive which pretends to provide some kind
of authentication or non-repudiation. The idea is that an attacker who does not know the
secret key of a user A and who can ask A for some valid signatures (or, in our case, sign-
cryptions) for messages of his choice must not be able to produce a different valid signature
(signcryption) on behalf of A. For a security parameter λ ∈ N, this notion is formalized by
describing the following game that an attacker AUNF plays against a challenger:

1. The challenger runs params← Σ.St(1λ) and gives params to AUNF.
2. AUNF chooses a target user A�. The challenger runs (skA� , pkA� )← Σ.KG(params,

A�, ‘single’), keeps skA� private and gives pkA� to AUNF.
3. [Queries] AUNF can make adaptive queries to a signcryption oracle for sender A�:

AUNF sends a tuple (M, pkB) for some collective B of his choice, and obtains as answer
C ← Σ.Sign(params, M, pkB , skA� ).
Note that other kinds of queries (such as unsigncryption queries or signcryption queries
for senders different from A�) make no sense because AUNF can reply such queries by
himself.

4. [Forgery] Eventually, the attacker AUNF outputs a tuple (pkA� , B�, pkB� ,

{skB�, j }B j∈B� , C�).

We say that AUNF wins the game if:

– the protocol Σ.Uns(params, C�, pkA� , B�, {skB�, j }B j∈B� ) outputs a message M� �=⊥,
– the tuple (pkA� , pkB� , C�) has not been obtained by AUNF through a signcryption query.

The advantage of such an adversary AUNF in breaking the unforgeability of the signcryp-
tion scheme is defined as

AdvAUNF(λ) = Pr[AUNF wins].
A signcryption scheme Σ with threshold unsigncryption is unforgeable if, for any poly-

nomial time adversary AUNF, the value AdvAUNF(λ) is negligible with respect to the security
parameter λ.
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3.2.2 Indistinguishability

The confidentiality requirement for a signcryption scheme Σ with (t, n)-threshold unsign-
cryption (i.e. the fact that a signcryption on the message m addressed to B leaks no information
on m to an attacker who only knows t−1 secret shares of skB ) is ensured if the scheme enjoys
the property of indistinguishability under chosen ciphertext attacks (IND-CCA security, for
short). For a security parameter λ ∈ N, this property is defined by considering the following
game that an attacker AIND-CCA plays against a challenger:

1. The challenger runs params← Σ.St(1λ) and gives params to AIND-CCA.
2. AIND-CCA chooses a target set B� of n users and a subset B̃ ⊂ B� of t − 1 users, to

be corrupted. The challenger runs ({skB�, j }1≤ j≤n, pkB� )← Σ.KG(params, B�, n, t,
‘collective’) and gives to AIND-CCA the values pkB� and {skB�, j }B j∈B̃ . Without loss of

generality, we can assume B� = {B1, . . . , Bn} and B̃ = {B1, . . . , Bt−1}.
Note that we are considering only static adversaries who choose the subset B̃ of cor-
rupted users at the beginning of the attack.

3. [Queries] AIND-CCA can make adaptive queries to a threshold unsigncryption oracle
for the target set B�: AIND-CCA sends a tuple (pkA, C) for some public key pkA of
his choice. The challenger runs M̃ ← Σ.Uns(params, C, pkA, B�, {skB�, j }B j∈B� ).
The attacker AIND-CCA must be given all the information that is broadcast during the
execution of this protocol Σ.Uns, including M̃ .
Other kinds of queries (such as unsigncryption queries for other collectives B �= B� or
signcryption queries) make no sense because AUNF can reply such queries by himself.

4. AIND-CCA chooses two messages M0, M1 of the same length, and a sender A� along
with (skA� , pkA� ).

5. [Challenge] The challenger picks a random bit d ∈ {0, 1}, runs C� ← Σ.

Sign(params, Md , pkB� , skA� ) and gives C� to AIND-CCA.
6. Step 3 is repeated, with the restriction that the tuple (pkA� , C�, B�) cannot be queried

to the threshold unsigncryption oracle.
7. Finally, AIND-CCA outputs a bit d ′ as his guess of the bit d .

The advantage of such a (static) adversary AIND-CCA in breaking the IND-CCA security
of the signcryption scheme is defined as

AdvAIND-CCA(λ) =
∣
∣
∣
∣
Pr[d ′ = d] − 1

2

∣
∣
∣
∣
.

A signcryption scheme Σ with (t, n)-threshold unsigncryption is IND-CCA secure if
AdvAIND-CCA(λ) is negligible with respect to the security parameter λ, for any polynomial
time (static) adversary AIND-CCA.

4 Generic threshold unsigncryption schemes are not fully secure

The first proposals of explicit signcryption schemes with threshold unsigncryption that
appeared in the literature did not achieve the full level of security described in the previ-
ous section. This includes two proposals [12,26] in the traditional PKI setting, and three
proposals [13,14,25] in the identity-based setting. Some details about the weaknesses of
these schemes can be found in [10,20].

It is a bit surprising that none of these first proposals considered the possibility of a
generic construction of a signcryption scheme with threshold unsigncryption, following the
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well-known approaches Sign_then_Encrypt or Encrypt_then_Sign, that have been deeply
analyzed in [1] for the case of individual signcryption. Therein, it is proved that both generic
constructions achieve full security (against insider attackers in a multi-user setting) if the
underlying signature and encryption schemes have full security. Thus, one could expect that
the same happens in the scenario with threshold unsigncryption. But unfortunately this is not
the case, as we argue below.

Let Ω = (Ω.KG,Ω.Sign,Ω.Vfy) be a signature scheme, and Π = (Π.KG,Π.Enc,Π.

ThrDec) be a public encryption scheme with threshold decryption. For the keys of the
generic signcryption schemes with threshold unsigncryption, an individual sender will run
(skA, pkA)← Ω.KG(1λ) and a collective of receivers B will run ({skB, j }1≤ j≤n, pkB)←
Π.KG(1λ).

Let us consider for example the ThresholdEncrypt_then_Sign approach. To signcrypt a
message m for the collective B, a sender A first computes c ← Π.Enc(pkB , m||pkA) and
then signs c||pkB to obtain ω← Ω.Sign(skA, c||pkB). The final ciphertext is C = (c, ω).
To unsigncrypt such a ciphertext, members of B first verify the correctness of signature ω

by running Ω.Vfy(pkA, c||pkB , ω). If the signature is not correct, the symbol ⊥ is output.
Otherwise, a subset B̃ ⊂ B of at least t members of B run Π.ThrDec({skB, j }B j∈B̃ , c) to

recover the message m||pkA. If the public key pkA corresponds with that of the sender A,
then m is the output of the protocol. If not, the output is ⊥.

The IND-CCA security of this generic construction can be broken by an insider attacker
AIND-CCA in a multi-user scenario. AIND-CCA receives a challenge ciphertext C� = (c�, ω�)

for a challenge sender A� and a challenge collective B� of receivers. After that, AIND-CCA
can generate keys (skA, pkA) for another user A �= A�, compute a valid signature ω for
c�||pkB� using skA, and send C = (c�, ω) as a threshold unsigncryption query for sender
A and collective B� of receivers. As answer to this query, since the signature ω is valid,
AIND-CCA must receive all the information that the members of B� would broadcast in the
execution of the threshold decryption of c�. Even if the final output of this query is⊥, because
the public key pkA does not match the public key pkA� which is encrypted in c�, the attacker
AIND-CCA has obtained enough information to recover the whole plaintext encrypted in c�,
and therefore succeeds in breaking the indistinguishability of the scheme. We stress that this
same attack is valid against relaxed IND-CCA (see [7]), because the decryption of C (which
is ⊥) is different from the decryption of C�.

Regarding the Sign_then_ThresholdEncrypt approach, the attack is even simpler. Once
AIND-CCA gets a challenge ciphertext C� = c� for A� and B�, where c� is an encryption
under Π of (m, ω�, pkA� ) and ω� is a signature on m||pkB� , all that AIND-CCA has to do
is to make an unsigncryption query for the tuple (C�, pkA, pkB� ), where A �= A�. Even if
the output of the protocol is again ⊥, the attacker AIND-CCA gets all the partial information
broadcast by the members of B� in the execution of the threshold decryption of c�, which
allows AIND-CCA to directly obtain the plaintext m.

5 A first new threshold unsigncryption scheme with full security

This section is dedicated to the description and analysis of our first new signcryption scheme
with (t, n)-threshold unsigncryption, achieving full security in the random oracle model. Our
approach has been to take a secure public key encryption scheme with threshold decryption
and modify it in order to accommodate also the authentication process. In particular, we have
considered the scheme TDH1 of Shoup and Gennaro [22]. The idea of that scheme, to encrypt
a message m for a collective B with public key pkB , is to first compute a hashed ElGamal
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encryption (R, c) of m. That is, assuming that we have fixed a cyclic group G = 〈g〉 of prime
order q , along with a hash function H0, the sender computes R = gr and c = m⊕H0((pkB)r ).
After that, he adds to the ciphertext another element ḡ ∈ G and the value R̄ = ḡr , and finally
a zero-knowledge proof that DiscLogg(R) = DiscLogḡ(R̄). Members of B will start the
real decryption process only if the proof of knowledge is valid.

Our signcryption scheme follows the same principle, but the sender A will compute now
a zero-knowledge proof that both DiscLogg(R) = DiscLogḡ(R̄) holds and he knows skA

such that pkA = gskA . We will prove that the resulting signcryption scheme (with thresh-
old unsigncryption) enjoys the strong notions of unforgeability and indistinguishability. We
consider for simplicity a scenario where the receivers follow the threshold unsigncryption
protocol correctly. A simple modification of our scheme, by including appropriate non-inter-
active zero-knowledge proofs of the equality of two discrete logarithms, allows to provide
robustness to the scheme against the action of malicious receivers. The protocols of the
scheme are described below.
Setup: Σ.St(1λ).
Given a security parameter λ, a cyclic group G = 〈g〉 of prime order q , such that q is λ

bits long, is chosen. A length 
, which must be polynomial in λ, is defined for the maximum
number of bits of the messages to be sent by the system. Three hash functions H0 : {0, 1}∗ →
{0, 1}
, H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → Zq are chosen. The output of the protocol is
params = (q, G, g, H0, 
, H1, H2).
Key Generation: Σ.KG(params, A, ‘single’) and Σ.KG(params, B, n, t, ‘collective’).
For an individual user A, the secret key skA is a random element in Z

∗
q , whereas the corre-

sponding public key is pkA = gskA . The public output of this protocol is pkA, and the secret
output that is privately stored by A is skA.

For a collective B = {B1, . . . , Bn} of n users, the common public key is computed as
pkB = gskB for some random value skB ∈ Z

∗
q that will remain unknown to the members of

B. Each user B j ∈ B will receive a (t, n)-threshold share skB, j of skB , computed by using
Shamir’s secret sharing scheme [19]. This means that, for every subset B ′ ⊂ B containing
exactly t users, there exist values λB′

j ∈ Z
∗
q such that skB = ∑

B j∈B′
λB′

j skB, j . The public

output of this protocol is pkB , whereas each user B j ∈ B receives a secret output skB, j .
The key generation process for a collective B can be performed by a trusted dealer, or by

the members of B themselves, by using some well-known techniques [9].
Both solutions permit that the values DB, j = gskB, j are made public, for j = 1, . . . , n.

These values would be necessary to provide robustness to the threshold unsigncryption pro-
cess.

We assume that both pkA and pkB include descriptions of the identities of A and members
of B.
Signcryption: Σ.Sign(params, m, pkB , skA).

1. Choose at random r ∈ Z
∗
q and compute R = gr .

2. Compute k = H0(R, pkB , (pkB)r ) and c = m ⊕ k.
3. Choose at random α1, α2 ∈ Z

∗
q and compute Y1 = gα1 and Y2 = gα2 .

4. Compute ḡ = H1(c, R, Y1, Y2, pkA, pkB) ∈ G, and then R̄ = ḡr and Ȳ1 = ḡα1 .
5. Compute h = H2(c, R, ḡ, R̄, Y1, Y2, Ȳ1, pkA, pkB).
6. Compute s1 = α1 − h · r mod q .
7. Compute s2 = α2 − h · skA mod q .
8. Return the signcryption C = (c, R, R̄, h, s1, s2).
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Threshold Unsigncryption: Σ.Uns(params, C, pkA, B ′, {skB, j }B j∈B′).
Let B ′ ⊂ B be a subset of users in B that want to cooperate to unsigncrypt a signcryption
C = (c, R, R̄, h, s1, s2). They proceed as follows.

1. Each B j ∈ B ′ computes ḡ = H1(c, R, gs1 · Rh, gs2 · (pkA)h, pkA, pkB).
2. Each B j ∈ B ′ checks if the following equality holds:

h = H2(c, R, ḡ, R̄, gs1 · Rh, gs2 · (pkA)h, ḡs1 · R̄h, pkA, pkB)

3. If the equality does not hold, B j broadcasts ( j,⊥).
4. Otherwise, B j ∈ B ′ broadcasts the value Tj = RskB, j .

If robustness was required, then B j should also provide a non-interactive zero-knowl-
edge proof that DiscLogg(DB, j ) = DiscLogR(Tj ).

5. If there are not t valid shares, then stop and output ⊥. From t valid values Tj , different

from ( j,⊥), recover the value RskB by interpolation in the exponent: RskB = ∏

B j∈B′
T

λB′
j

j ,

where λB′
j ∈ Zq are the Lagrange interpolation coefficients.

6. Compute k = H0(R, pkB , RskB ).
7. Return the value m = c ⊕ k.

5.1 Security analysis

5.1.1 Unforgeability

We are going to prove that our scheme enjoys unforgeability as long as the Discrete Logarithm
problem is hard to solve. The proof is in the random oracle model for the hash function H2.

Theorem 1 Let λ be an integer. For any polynomial-time attacker AUNF against the unforge-
ability of the new signcryption scheme, in the random oracle model, there exists a solver ADL

of the Discrete Logarithm problem such that

AdvADL (λ) ≥ O (

AdvAUNF(λ)2) .

Proof Assuming the existence of an adversary AUNF that has advantage AdvAUNF(λ) in
breaking the unforgeability of our scheme, and assuming that the hash function H2 behaves
as a random oracle, we are going to construct an algorithm ADL that solves the Discrete
Logarithm problem in G.

Let (G, y) be the instance of the Discrete Logarithm problem in G = 〈g〉 that ADL

receives. The goal of ADL is to find the integer x ∈ Zq such that y = gx . The algorithm
ADL initializes the attacker AUNF by giving params = (q, G, g, H0, 
, H1, H2) to him.
Here the hash functions H0 : {0, 1}∗ → {0, 1}
 and H1 : {0, 1}∗ → G are arbitrarily chosen
by ADL . However, H2 is modeled as a random oracle and so ADL will maintain a table TAB2

to answer the hash queries from AUNF.

Key generation. AUNF chooses a target sender A� and requests the execution of the key
generation protocol for this user. ADL defines the public key of A� as pkA� = y and sends it
to AUNF. Note that the corresponding secret key skA� , which is unknown to ADL , is precisely
the solution to the given instance of the Discrete Logarithm problem.

Hash queries. Since H2 is assumed to behave as a random function, AUNF can make que-
ries (c, R, ḡ, R̄, Y1, Y2, Ȳ1, pkA, pkB) to the random oracle model for H2. ADL maintains a
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table TAB2 to reply to these queries. TAB2 contains two columns, one for the inputs and one
for the corresponding outputs h of H2. To reply the query (c, R, ḡ, R̄, Y1, Y2, Ȳ1, pkA, pkB),
the algorithm ADL checks if this input is already in TAB2. If so, the matching output h is
answered. If not, a random value h ∈ Zq is chosen and answered to AUNF, and the entry
H2(c, R, ḡ, R̄, Y1, Y2, Ȳ1, pkA, pkB) = h is added to TAB2.

Signcryption queries. AUNF can make signcryption queries for the sender A�, for pairs
(m, pkB) of his choice, where m is a message and B is a collective of receivers with public
key pkB . To reply to such queries, ADL chooses at random a value r ∈ Z

∗
q and computes

R = gr , k = H0(R, pkB , (pkB)r ) and c = m ⊕ k. Then, ADL must simulate a valid proof
of knowledge to complete the rest of the ciphertext. To do this, ADL acts as follows:

1. Choose at random h, s1, s2 ∈ Zq and compute the values Y1 = gs1 · Rh and Y2 =
gs2 · (pkA� )h .

2. Compute ḡ = H1(c, R, Y1, Y2, pkA� , pkB), and then the values R̄ = ḡr and Ȳ1 =
ḡs1 · R̄h .

3. If the input (c, R, ḡ, R̄, Y1, Y2, Ȳ1, pkA� , pkB) is already in TAB2 (which happens with
negligible probability), go back to Step 1.

4. Otherwise, ‘falsely’ add the relation h = H2(c, R, ḡ, R̄, Y1, Y2, Ȳ1, pkA� , pkB) to
TAB2.

The final signcryption that ADL sends to AUNF is C = (c, R, R̄, h, s1, s2).

Forgery. At some point, AUNF outputs a successful forgery; that is, a public key pkB� and
a signcryption C� = (c�, R�, R̄�, h�, s�

1, s�
2) such that:

– the protocol Σ.Uns(params, C�, pkA� , B�, {skB�, j }B j∈B� ) outputs m� �=⊥,
– (pkA� , m�, pkB� , C�) has not been obtained by AUNF during a signcryption query.

Since the forgery is valid, we must have h� = H2(c�, R�, ḡ�, R̄�, Y �
1 , Y �

2 , Ȳ �
1 , pkA� , pkB� ),

where Y �
1 = gs�

1 · (R�)h�
, Y �

2 = gs�
2 · (pkA� )h�

and Ȳ �
1 = (ḡ�)s�

1 · (R̄�)h�
.

Furthermore, since the forgery is different from the ciphertexts obtained during the sign-
cryption queries, we can be sure that the input query� = (c�, R�, ḡ�, R̄�, Y �

1 , Y �
2 , Ȳ �

1 ,

pkA� , pkB� ) for H2 has not been ‘falsely’ added by ADL to TAB2.

Replying the attack. Now the idea is to use the reply techniques introduced by Pointcheval
and Stern in [18]. Without going into the details, ADL will repeat the execution of the attacker
AUNF, with the same randomness but changing the values output by the random oracle H2

from the query query� on.
With non-negligible probability (quadratic on the probability AdvAUNF(λ) of the first

successful forgery), the whole process run by ADL would lead to two different successful
forgeries C� and C ′�, for the same values of c�, R�, ḡ�, R̄�, Y �

1 , Y �
2 , Ȳ �

1 , pkA� , pkB� (the input
values for H2), but with different H2 outputs h� �= h′�, and therefore (possibly different)
values s�

1, s�
2, s′�1 , s′�2 .

We thus have

gs�
2 · (pkA� )h� = Y �

2 = gs′�2 · (pkA� )h′� ,

which leads to the relation y = pkA� =
(

gs�
2−s′�2

)1/(h′�−h�)

.

Summing up, ADL can output the value x = s�
2−s′�2

h′�−h� mod q as the solution to the given
instance of the Discrete Logarithm problem. ��

123



334 J. Herranz et al.

5.1.2 Indistinguishability

We reduce the IND-CCA security of the scheme to the hardness of solving the DH prob-
lem. The proof is in the random oracle model for the three hash functions H0, H1, H2. The
conclusion is that, under the Diffie Hellman Assumption for our group G = 〈g〉, the new
signcryption scheme has IND-CCA security.

Theorem 2 Let λ be an integer. For any polynomial-time attacker AIND-CCA against the
IND-CCA security of the new signcryption scheme, in the random oracle model, there exists
a solver ADH of the Diffie-Hellman problem such that

AdvADH (λ) ≥ AdvAIND-CCA(λ)/2.

Proof Assuming the existence of an adversary AIND-CCA that has advantage AdvAIND-CCA(λ)

in breaking the IND-CCA security of our scheme, and assuming that hash functions
H0, H1, H2 behave as random oracles, we are going to construct an algorithm ADH that
solves the Diffie-Hellman problem.

ADH receives as input G, ga, gb, where G = 〈g〉 is a cyclic group of prime order q . The
goal of ADH is to compute gab. ADH initializes the attacker AIND-CCA by giving params =
(q, G, g, H0, 
, H1, H2) to him. Here the hash functions H0, H1 and H2 will be modeled as
random oracles; therefore, ADH will maintain three tables TAB0, TAB1 and TAB2 to answer
the hash queries from AIND-CCA.

Let B� = {B1, . . . , Bn} be the target collective, and B̃ = {B1, . . . , Bt−1} ⊂ B� be the
subset of corrupted members of B�. The algorithm ADH defines the public key of B� as
pkB� = gb. This means that skB� is implicitly defined as b. For the corrupted members of
B�, the shares {skB�, j }B j∈B̃ are chosen randomly and independently in Zq . Using interpo-

lation in the exponent, all the values DB�, j = gskB�, j can be computed, for all the members
B j ∈ B�, corrupted or not.

Hash queries. ADH creates and maintains three tables TAB0, TAB1 and TAB2 to reply
the hash queries from AIND-CCA. All the hash queries are processed by ADH in the same
way: given the input for a hash query, the algorithm ADH checks if there already exists
an entry in the corresponding table for that input. If this is the case, the existing output
is answered. If this is not the case, a new output is chosen at random and answered to
AIND-CCA, and the new relation between input and output is added to the corresponding
table.

For the particular case of H1 queries, the corresponding outputs ḡ are chosen as random
powers of gb. That is, ADH chooses at random a fresh value β ∈ Z

∗
q and computes the new

output of H1 as ḡ = (gb)β . The value β is stored as an additional value of the new entry in
table TAB1.

Whenever ADH receives a H0 query whose two first elements are ga and gb, the third
element of the query is added to a different output table TAB�, which will be the final output
of ADH .

Unsigncryption queries. For an unsigncryption query (pkA, C) sent for the target collective
B�, where C = (c, R, R̄, h, s1, s2), the first thing to do is to check the validity of the zero-
knowledge proof (h, s1, s2); that is, to check if h = H2(c, R, ḡ, R̄, gs1 ·Rh, gs2 ·(pkA)h, ḡs1 ·
R̄h, pkA, pkB� ), where ḡ = H1(c, R, gs1 · Rh, gs2 · (pkA)h, pkA, pkB� ) = (gb)β , for some
value β known by ADH . If this equation does not hold, then the answer to the query is ⊥.
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Otherwise, ADH has to give to AIND-CCA the values RskB�, j , for all B j ∈ B�. For the cor-
rupted members B j , j = 1, . . . , t−1, such values can be easily computed by ADH , because
it knows skB�, j . Note now that the value RskB� can be computed by ADH as R̄1/β . In effect,
since the zero-knowledge proof is valid, this means that DiscLogg(R) = DiscLogḡ(R̄),

where ḡ = gbβ , and so Rbβ = R̄. Now, knowing RskB� and RskB�, j for j = 1, . . . , t − 1, the
algorithm ADH can compute the rest of values RskB�, j , for j = t, t + 1, . . . , n, by interpo-
lation in the exponent. Once this is done, the rest of the unsigncryption process can be easily
completed by ADH , who obtains a message m and sends all this information to AIND-CCA.

Challenge. At some point, AIND-CCA outputs two messages m0, m1 of the same length,
along with a key pair (skA� , pkA� ) for a sender A�. To produce the challenge ciphertext
C�, the algorithm ADH defines R� = ga and then chooses at random the values c� ∈
{0, 1}
, h�, s�

1, s�
2 ∈ Zq andβ� ∈ Z

∗
q . After that,ADH defines ḡ� = gβ�

, R̄� = (ga)β
�
, Y �

1 =
gs�

1 · (R�)h�
, Y �

2 = gs�
2 · (pkA� )h�

and Ȳ �
1 = ḡs�

1 · (R̄�)h�
.

If either the input (c�, R�, Y �
1 , Y �

2 , pkA� , pkB� ) already exists in TAB1, or the input
(c�, R�, ḡ�, R̄�, Y �

1 , Y �
2 , Ȳ �

1 , pkA� , pkB� ) already exists in TAB2, the algorithm ADH goes
back to choose at random other values for c�, h�, etc. Finally, the relation ḡ� =
H1(c�, R�, Y �

1 , Y �
2 , pkA� , pkB� ) is added to TAB1 and the relation h� = H2(c�, R�, ḡ�, R̄�,

Y �
1 , Y �

2 , Ȳ �
1 , pkA� , pkB� ) is added to TAB2. The challenge ciphertext that ADH sends to

AIND-CCA is C� = (c�, R�, R̄�, h�, s�
1, s�

2).

More unsigncryption queries. AIND-CCA can make more hash and unsigncryption queries,
which are answered exactly in the same way as described before the challenge phase. The
only delicate point is that ADH could not answer to a valid unsigncryption query C =
(c, R, R̄, h, s1, s2) for which the value of ḡ = H1(c, R, gs1 · Rh, gs2 · (pkA)h, pkA, pkB� ) =
ḡ�, because this value does not have the necessary form (gb)β . But this happens only if the
two inputs of H1, in both the challenge ciphertext and in this queried ciphertext, are the same.
Since both zero-knowledge proofs are valid, we would also have that the value of R̄ is equal
in both cases, and therefore the values of h, s1, s2, pkA would also be equal. The conclusion
is that the unsigncryption query C would be exactly the challenge ciphertext, and this query
is prohibited to AIND-CCA.

Final analysis. Finally, AIND-CCA outputs a guess bit b′. We are assuming that AIND-CCA
succeeds with probability significantly greater than 1/2 (random guess). Since H0 is assumed
to behave as a random function, this can happen only if AIND-CCA has asked to the random
oracle H0 the input corresponding to the challenge C�. This input is (ga, gb, gab). Therefore,
with non-negligible probability AdvAIND-CCA(λ)/2, the value gab is in the table TAB� con-
structed by ADH , and therefore the output of ADH contains the correct answer for the given
instance of the DH problem. As the authors of [22] indicate, we could use the Diffie-Hellman
self-corrector described in [21] to transform this algorithm ADH into an algorithm that only
outputs the single and correct solution to the DH problem. ��

6 A threshold unsigncryption scheme with full security in the standard model

The security of the scheme in the previous section has been proved in the random oracle
model, which is an heuristic model, not a realistic one. Therefore, schemes enjoying secu-
rity in the standard model are much preferable. We design and analyze in this section the
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first signcryption scheme with (t, n)-threshold unsigncryption enjoying full security in the
standard model.

The rationale for the design of this second scheme is the following one. Boneh, Boyen and
Halevi showed in [4] how to design threshold decryption schemes with CCA security in the
standard model, by adapting the strategy proposed by Canetti, Halevi and Katz in [8]. That
is, to encrypt a message M , a key-pair (s̃k, ṽk) for some strongly secure one-time signature
scheme is generated, then ṽk is used to derive an identity id, and message M is encrypted
for identity id, by using a selectively-secure identity-based encryption scheme such as that in
[3]. The resulting ciphertext C̃ is signed with s̃k, leading to a signature θ̃ . Both ṽk and θ̃ are
added to C̃ . The set of receivers share the master secret key of the identity-based encryption
scheme. To decrypt, they first verify that the signature θ̃ on C̃ is correct under key ṽk; if this
is the case, they can cooperate to derive the secret key for identity id and then decrypt C̃ to
recover the plaintext M .

To implement the primitive of signcryption with threshold unsigncryption, our idea is that
the sender A signs the message C̃ ||pkA||pkB ||ṽk with a strongly secure signature scheme,
obtaining θ , and then the (one-time) signature θ̃ is computed on C̃ ||pkA||pkB ||θ . The final
signcryption is C = (C̃, ṽk, θ, θ̃ ). With this technique, the receivers will be convinced of the
authorship of sender A because even insider attacks can be prevented.

Although we could have described a more generic construction by using in a black-box way
the primitives of (one-time) signature schemes and identity-based encryption with threshold
key generation, it turns out that the only realization of the later primitive in the standard model
is the specific scheme in [4], using bilinear pairings. For this reason, and for the sake of clarity
in the presentation, we have decided to describe the new signcryption scheme directly instan-
tiated with the pairing-based scheme in [4]. The protocols of the scheme are detailed below.
Setup: Σ.St(1λ).
Given λ ∈ N, a cyclic bilinear group G = 〈g〉 of prime order p, such that p is λ bits long, is
chosen. This means that there exists a bilinear map e : G × G → GT for some group GT .
Let H : {0, 1}∗ → Z

∗
p be a collision-resistant hash function. Two more generators h, g2 ∈ G

are randomly selected.
Let Θ = (Θ.KG,Θ.Sign,Θ.Vfy) be a strongly unforgeable signature scheme, and let

Θ̃ = (Θ̃.KG, Θ̃.Sign, Θ̃.Vfy) be a strongly secure one-time signature scheme. Note that
we could take Θ̃ = Θ .

The output of the protocol is params = (p, G, g, GT , e, H, h, g2,Θ, Θ̃).
Key Generation: Σ.KG(params, A, ‘single’) and Σ.KG(params, B, n, t, ‘collective’).
For an individual user A, the key generation protocol of the signature scheme Θ is executed,
and the resulting signing and verification keys are defined as the secret and public keys for
user A. That is, (skA, pkA)← Θ.KG(1λ).

For a collective B = {B1, . . . , Bn} of n users, the common public key is computed as
pkB = gαB for some random value αB ∈ Z

∗
p that will remain unknown to the members of

B. This value αB is distributed in shares {αB, j }B j∈B through Shamir’s (t, n)-threshold secret
sharing scheme [19]. In particular, for every subset B ′ ⊂ B containing at least t users, there
exist values λB′

j ∈ Z
∗
q such that αB = ∑

B j∈B′
λB′

j αB, j . The public output of this protocol is

pkB , whereas each user B j ∈ B privately receives and stores his share skB, j = g
αB, j
2 of the

secret key skB = gαB
2 . Again, the key generation process for a collective B can be performed

by a trusted dealer, or by the members of B themselves, by using the techniques in [9].
Both solutions allow the publication of the values DB, j = gαB, j , for j = 1, . . . , n. These

values would be necessary if robustness of the threshold unsigncryption process was required.
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Signcryption: Σ.Sign(params, M, pkB , skA), where M ∈ GT .

1. Run (s̃k, ṽk)← Θ̃.KG(1λ) to obtain an ephemeral pair of signing and verification keys
for the one-time signature scheme Θ̃ .

2. Derive id = H(ṽk), which is an element in Z
∗
p .

3. Choose at random s ∈ Z
∗
p .

4. Compute C1 = gs, C2 = M · e(pkB , g2)
s and C3 =

(

pkid
B · h

)s
.

5. Use skA to compute a signature θ on the message C1||C2||C3||pkA||pkB ||ṽk for the
scheme Θ . That is, θ ← Θ.Sign(skA, C1||C2||C3||pkA||pkB ||ṽk).

6. Use the ephemeral secret key s̃k to compute a signature θ̃ on the message C1||C2||C3||
pkA||pkB ||θ for the scheme Θ̃ . That is, θ̃ ← Θ̃.Sign(s̃k, C1||C2||C3||pkA||pkB ||θ).

7. Return the signcryption C = (C1, C2, C3, ṽk, θ, θ̃ ).

Threshold Unsigncryption: Σ.Uns(params, C, pkA, B ′, {skB, j }B j∈B′).
Let B ′ ⊂ B be a subset of users in B that want to cooperate to unsigncrypt a signcryption
C = (C1, C2, C3, ṽk, θ, θ̃ ) sent by user A. They proceed as follows.

1. Each B j ∈ B ′ runs Θ̃.Vfy(ṽk, C1||C2||C3||pkA||pkB ||θ , θ̃). If the output is 0, he
broadcasts ( j,⊥).

2. Each B j ∈ B ′ runs Θ.Vfy(pkA, C1||C2||C3||pkA||pkB ||ṽk , θ). If the output is 0, he
broadcasts ( j,⊥).

3. Each B j ∈ B ′ derives id = H(ṽk) and checks if e(C3, g) = e(pkid
B · h, C1). If this

equality does not hold, B j broadcasts ( j,⊥).
4. Each B j ∈ B ′ chooses r j ∈ Zp at random and broadcasts the tuple ( j, ω0, j , ω1, j ),

where

ω0, j = skB, j · (pkid
B · h)r j and ω1, j = gr j

If robustness was required, the correctness of this tuple could be publicly verified by
checking if e(ω0, j , g) = e(DB, j , g2) · e(pkid

B · h, ω1, j ).
5. If there are not t valid shares, then stop and output ⊥. From t valid tuples
{( j, ω0, j , ω1, j )}B j∈B′ , one can consider the Lagrange interpolation coefficients λB′

j ∈
Zq such that skB = ∏

B j∈B′
sk

λB′
j

B, j .

6. Compute ω0 = ∏

B j∈B′
ω

λB′
j

0, j and ω1 = ∏

B j∈B′
ω

λB′
j

1, j .

[Note that ω0 = skB · (pkid
B · h)r̃ and ω1 = gr̃ , being r̃ = ∑

B j∈B′
λB′

j r j .]

7. Return the message M = C2 · e(C3,ω1)
e(C1,ω0)

.

It is important to point out that the threshold unsigncryption protocol is non-interactive, in
the sense that each receiver B j can do his secret part of the unsigncryption task independently
of the other receivers.

6.1 Security analysis

6.1.1 Unforgeability

We are going to prove that the scheme enjoys unforgeability as long as the signature schemes
Θ and Θ̃ are strongly unforgeable.
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Theorem 3 Let λ be an integer. For any polynomial-time attacker AUNF against the un-
forgeability of the new signcryption scheme, making Q signcryption queries, there exists an
attacker FΘ against Θ or an attacker FΘ̃ against Θ̃ , such that AdvFΘ (λ)+Q ·AdvF

Θ̃
(λ) ≥

AdvAUNF(λ).

Proof Assuming the existence of an adversary AUNF against the unforgeability of the scheme,
we are going to construct a forger FΘ against the signature scheme Θ .

FΘ receives as input a verification key vk obtained from an execution (sk, vk) ←
Θ.KG(1λ), and has access to a signing oracle Θ.Sign(sk, ·) for messages of its choice.
The algorithm FΘ runs the setup protocol params← Σ.St(1λ) and initializes the attacker
AUNF by giving params to it.

Key generation. AUNF chooses a target sender A� and requests the execution of the key
generation protocol for this user. FΘ defines the public key of A� as pkA� = vk and sends it
to AUNF.

Signcryption queries. AUNF can make signcryption queries for the sender A�, for pairs
(Mi , pkBi

) of its choice, where Mi is a message and Bi is a collective of receivers with
public key pkBi

. To reply such queries, FΘ runs steps 1-4 of the signcryption proto-

col Σ.Sign(params, Mi , pkBi
, skA� ), obtaining consistent values s̃ki , ṽki , C1,i , C2,i , C3,i .

After that,FΘ queries its signing oracle with message mi = C1,i ||C2,i ||C3,i ||pkA� ||pkBi
||ṽki ,

and obtains as answer a valid signature θi for the signature scheme Θ and public key pkA� .
Then, FΘ can run step 6 of the signcryption protocol: θ̃i ← Θ̃.Sign(s̃ki , C1,i ||C2,i ||C3,i ||

pkA� ||pkBi
||θi ). The final signcryption that FΘ sends to AUNF is Ci = (C1,i , C2,i , C3,i , ṽki ,

θi , θ̃i ).

Forgery. At some point, and with probability ε = AdvAUNF(λ), the attacker AUNF out-
puts a successful forgery; that is, a public key pkB� and a signcryption C� = (C�

1, C�
2,

C�
3, ṽk

�
, θ�, θ̃ �) such that:

– the protocol Σ.Uns(params, C�, pkA� , B�, {skB�, j }B j∈B� ) outputs M� �=⊥,
– (pkA� , pkB� , C�) has not been obtained by AUNF during a signcryption query.

Let us define m� = C�
1 ||C�

2 ||C�
3 ||pkA� ||pkB� ||ṽk

�
. We can distinguish two cases.

First, with probability ε1 we can have (m�, θ�) �= (mi , θi ), for all messages mi that FΘ

has queried to its signing oracle. Then FΘ has obtained a valid and new signature (m�, θ�)

for the scheme Θ and public key pkA� . Therefore, ε1 ≤ AdvFΘ (λ).
Otherwise, with probability ε2 = ε − ε1, we can have (m�, θ�) = (mi , θi ) for some of

the Q messages mi that FΘ has queried to its signing oracle. In this case, since the forgery
by AUNF is valid, the only possibility is θ̃ � �= θ̃i . In this case, it is easy to construct a forger
FΘ̃ against the strong one-time unforgeability of Θ̃: this forger receives as input a target

verification key ṽk
′
, then guesses the correct signcryption query i , uses its only access to a

signing oracle to obtain the corresponding signature θ̃i for this query, and uses other ephem-
eral key pairs (s̃k, ṽk) to reply the rest of signcryption queries. If the guess of i is correct
(which happens with probability 1/Q), then this second kind of forgery by AUNF leads to a
valid forgery by FΘ̃ against scheme Θ̃ . Therefore, we have AdvF

Θ̃
(λ) ≥ ε2/Q.

Summing up, we have AdvAUNF(λ) = ε = ε1 + ε2 ≤ AdvFΘ (λ) + Q · AdvF
Θ̃
(λ), as

desired. ��
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6.1.2 Indistinguishability

We reduce the IND-CCA security of the scheme to the hardness of solving the DBDH prob-
lem in groups G, GT and to the security of the underlying signature scheme Θ̃ , which we
assume to be one-time strongly secure. The proof is in the standard model.

Theorem 4 Let λ be an integer. For any polynomial-time attacker AIND-CCA against the
IND-CCA security of the new signcryption scheme, there exists a solver ADB DH of
the Decisional Bilinear Diffie-Hellman problem or an attacker FΘ̃ against Θ̃ such that
AdvADB DH (λ) + AdvF

Θ̃
(λ) ≥ AdvAIND-CCA(λ).

Proof Assuming the existence of an adversary AIND-CCA that has advantage AdvAIND-CCA(λ)

in breaking the IND-CCA security of our scheme, we construct an algorithm ADB DH that
solves the Decisional Bilinear Diffie-Hellman problem in groups G, GT .

ADB DH receives as input ga, gb, gc, R, where R is either e(g, g)abc or a random element
in GT . The goal of ADB DH is to distinguish between these two cases.

ADB DH runs the key generation protocol for the signature scheme Θ̃ , obtaining
(s̃k

�
, ṽk

�
) ← Θ̃.KG(1λ). Then ADB DH chooses at random a suitable hash function

H : {0, 1}∗ → Z
∗
p and a suitable signature scheme Θ . The value id� = H(ṽk

�
) is

computed. ADB DH defines g2 = ga , chooses at random γ ∈ Z
∗
p and defines h =

(gb)−id� · gγ . Then ADB DH initializes the attacker AIND-CCA by giving params =
(p, G, g, GT , e, H, h, g2,Θ, Θ̃) to it.

Key generation. Let B� = {B1, . . . , Bn} be the target collective and B̃ = {B1, . . . , Bt−1} ⊂
B� be the subset of corrupted members of B�, chosen by AIND-CCA. The algorithm ADB DH

defines the public key of B� as pkB� = gb. This means that the secret value αB� is implicitly
defined as b. For the corrupted members of B�, the shares {skB�, j }B j∈B̃ are computed by first

choosing random and independent values αB�, j ∈ Zp and then computing skB�, j = g
αB�, j
2 .

Let f ∈ Zp[X ] be the implicit polynomial, with degree t − 1, that satisfies f (0) = b = αB�

and f ( j) = αB�, j for j = 1, . . . , t − 1.
Using interpolation in the exponent and the values pkB� = gαB� = gb and {αB�, j }B j∈B̃ ,

all the values DB�, j = gαB�, j could be obtained (if robustness was required) for all the
members B j ∈ B�.

Unsigncryption queries. Let (pkA, C) be an unsigncryption query sent for the target collec-

tive B�, where C = (C1, C2, C3, ṽk, θ, θ̃ ). If ṽk = ṽk
�

and 1 ← Θ̃.Vfy(ṽk, C1||C2||C3||
pkA||pkB ||θ , θ̃), then ADB DH aborts and outputs a random bit. Otherwise, ADB DH runs
steps 1–3 (which are public verifications) of the unsigncryption protocol.

If (pkA, C) is a valid signcryption and ADB DH has not aborted, we have ṽk �= ṽk
�

and
id = H(ṽk). Since the hash function is assumed to be collision-resistant, we have id �= id� as
well. Now ADB DH is required to simulate the values that would be broadcast in an execution
of the rest of the protocol. This means simulating consistent tuples ( j, ω0, j , ω1, j ) for any
B j ∈ B�, where

ω0, j = skB�, j · (pkid
B� · h)r j and ω1, j = gr j

for some (randomly uniform) value r j ∈ Zp . For the corrupted members B j , j = 1, . . . , t−1,
such values can be easily computed by ADB DH , because it knows skB�, j .
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For any non-corrupted member Bi , i = t, . . . , n, let λ0, λ1, . . . , λt−1 ∈ Zp be the
Lagrange interpolation coefficients corresponding to the set {0, 1, . . . , t − 1} and interpola-
tion point i . These coefficients can be publicly computed because they are independent of
the (unknown) polynomial f . We have f (i) = λ0 f (0)+∑t−1

j=1 λ j f ( j). Now ADB DH can
choose a random r̃i ∈ Zp and define

ω0,i = g
−γ λ0
id−id�

2 · (pkid
B� · h)r̃i ·

t−1
∏

j=1

sk
λ j
B�, j and ω1,i = g

−λ0
id−id�

2 · gr̃i

It is not difficult to see that these two values (ω0,i , ω1,i ) have the form

ω0,i = g f (i)
2 · (pkid

B� · h)ri = skB�,i · (pkid
B� · h)ri and ω1,i = gri ,

being ri = r̃i − aλ0
id−id� an implicit but randomly uniform value in Zp .

Summing up, ADB DH can simulate valid tuples ( j, ω0, j , ω1, j ) for any B j ∈ B�. Once
this is done, the rest of the unsigncryption process can be easily completed by ADB DH , who
obtains a message M and sends all this information to AIND-CCA.

Challenge. At some point, AIND-CCA outputs two messages M0, M1 of the same length,
along with a key pair (skA� , pkA� ) for a sender A�. To produce the challenge ciphertext C�,
the algorithm ADB DH chooses at random a bit d ∈ {0, 1}, and proceeds as follows.

1. Define C�
1 = gc, C�

2 = Md · R and C�
3 = (gc)γ = . . . = (pkid�

B� · h)c.
Note that (C�

1, C�
2, C�

3) is a consistent encryption of Mb for identity id� when R =
e(g, g)abc. On the other hand, when R ∈ GT is random, the distribution of (C�

1, C�
2, C�

3)

is independent of the bit d .
2. Run θ� ← Θ.Sign(skA� , C�

1 ||C�
2 ||C�

3 ||pkA� ||pkB� ||ṽk
�
).

3. Run θ̃ � ← Θ̃.Sign(s̃k
�
, C�

1 ||C�
2 ||C�

3 ||pkA� ||pkB� ||θ�).

4. Send to AIND-CCA the challenge signcryption C� = (C�
1, C�

2, C�
3, ṽk

�
, θ�, θ̃ �).

More unsigncryption queries. AIND-CCA can make more unsigncryption queries (pkA, C) �=
(pkA� , C�) for the target collective B�, where C = (C1, C2, C3, ṽk, θ, θ̃ ), as long as the chal-

lenge signcryption is not queried. If ṽk �= ṽk
�
, then these queries are handled in the same

way as explained above.
Otherwise, if ṽk = ṽk

�
and 1← Θ̃.Vfy(ṽk, C1||C2||C3||pkA||pkB ||θ , θ̃), then ADB DH

aborts and outputs a random bit.

Final analysis. Finally, AIND-CCA outputs a guess bit d ′. If d ′ = d , then ADB DH outputs 0
as its answer to the given instance of the DBDH problem. If d ′ �= d , then ADB DH outputs 1.

Let us denote as δ the probability that AIND-CCA makes an unsigncryption query for a
valid signcryption C = (C1, C2, C3, ṽk, θ, θ̃ ) such that ṽk = ṽk

�
. In other words, δ is the

probability that ADB DH aborts before AIND-CCA outputs its guess bit d ′. Using a similar
argument as in the unforgeability proof, it is easy to see that, in this case, one can construct a
forger FΘ̃ against the one-time signature scheme Θ̃: the input of FΘ̃ is ṽk

�
, the only access

to the signing oracle is used to compute the challenge signcryption, and any valid unsign-
cryption query coming from AIND-CCA which involves ṽk

�
leads to a valid strong forgery of

the signature scheme Θ̃ . Therefore, we have δ ≤ AdvF
Θ̃
(λ).
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Table 1 Efficiency of our two threshold unsigncryption schemes

Scheme cost of Signcryption |C | cost of Unsigncryption (per receiver) Security model

Section 5 6 Exp 6λ 8 Exp ROM

Section 6 12 Exp + 1 Pa 12λ 11 Exp + 6 Pa Standard

Let us now compute the probabilities that the output of the constructed solver ADB DH

of the DBDH problem is 0 in the two possible cases. When R = e(g, g)abc, then the chal-
lenge signcryption is consistent, and we have Pr[ADB DH (g, ga, gb, gc, e(g, g)abc) = 0] =
δ · 1

2 + (1− δ) · (AdvAIND-CCA(λ)+ 1
2 ).

When R = T is a random element in GT , the challenge signcryption is independent of
the bit d , so the probability that d ′ = d is 1/2, and we have Pr[ADB DH (g, ga, gb, gc, T ) =
0] = δ · 1

2 + (1− δ) · 1
2 .

Now we have AdvADB DH (λ) =
∣
∣
∣Pr[ADB DH (g, ga, gb, gc, e(g, g)abc) = 0] − Pr[ADB DH (g, ga, gb, gc, T ) = 0]

∣
∣
∣ =

= (1− δ)AdvAIND-CCA(λ) = AdvAIND-CCA(λ)− δ · AdvAIND-CCA(λ).

Putting all together, we have, as desired:

AdvAIND-CCA(λ) = AdvADB DH (λ)+ δ · AdvAIND-CCA(λ) ≤

≤ AdvADB DH (λ)+ δ = AdvADB DH (λ)+ AdvF
Θ̃
(λ).

��

7 Efficiency of the schemes

The two schemes proposed in this paper are the first PKI-based threshold unsigncryption
schemes which achieve a high enough level of security. In particular, generic constructions
obtained by composing a fully secure signature scheme and a fully secure threshold decryp-
tion scheme do not achieve this level of security, as we have shown in Sect. 4.

Therefore, our first goal was to show that the maximum level of security for threshold
unsigncryption schemes can indeed be achieved. This is what we have done with our two
proposals. Regarding efficiency, there are not previous schemes with the same level of secu-
rity to compare with, so it is not possible to say if the two new schemes are efficient or not.
Anyway, we include Table 1 that summarizes the computational and communication costs
of our schemes (without considering robustness). The costs of these two schemes should be
considered as a benchmark for any future proposal of threshold unsigncryption scheme.

To measure the efficiency of our second scheme, in Sect. 6, we have taken as the signature
scheme Θ the scheme in [5], and as the one-time signature scheme Θ̃ the scheme in Appendix
B of [17]. In the table, λ denotes the security parameter of the scheme; this means that an
element in the group G can be represented by λ bits. In the case of our first scheme, we have
considered that the length of the plaintexts is 
 = λ, for simplicity.

We denote the size in bits of a ciphertext C as |C |. For the computational costs, we just
consider exponentiations (denoted as Exp) and bilinear pairing computations (denoted as Pa,
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only for the second scheme). The rest of operations (xor, modular addition and multiplica-
tion, hash computations) are not considered because they are very cheap; they do not affect
the real efficiency of the schemes. Roughly speaking, we can say that the scheme in Sect.
6, whose security is proved in the standard model, is twice less efficient than the scheme in
Sect. 5, whose security is proved in the random oracle model (ROM).

8 Splitting the unsigncryption protocol

If we go back to the description of the Threshold Unsigncryption protocol of the two new
schemes, in Sects. 5 and 6, we can easily distinguish two parts in those protocols. Steps
1–3 correspond to the (public) verification procedure; these authentication steps can be run
by any (individual) party, not necessarily inside the set B of intended receivers. In other
words, no secret information is needed as input to run these three steps; the only inputs are
the ciphertext and the public key of the sender. Then, Steps 4–7 correspond to the (secret)
decryption procedure, which in this case requires the participation of at least t members of
the set B of intended receivers. The important point here is that the identity or public key pkA

of the sender is not used at all for the execution of Steps 4–7. In some sense, the public key
pkA of the sender could be removed from the process once the ciphertext has been accepted
as valid, in Step 3. After that, the identity of the sender would be unknown during the rest of
the unsigncryption process.

In this way, the unsigncryption part of our two new schemes could be split into two parts.
The first one could be run by an entity T /∈ B, who would discard invalid ciphertexts and
remove (or store privately) the identities of the senders. In the second part, only valid (and
anonymized) ciphertexts would reach the set B of receivers, who would jointly decrypt the
ciphertext to recover the original plaintexts, maybe without knowing at any moment who are
the senders of the messages.

As far as we know, these are the first signcryption schemes (with either individual or
threshold unsigncryption) enjoying this property, which may be of interest in some applica-
tions requiring some level of anonymity or privacy, such as electronic auctions.

In an electronic auction system, participants send their confidential and authenticated bids
for a product. At the end of the process, some (distributed) entity B detects the highest bid and
identifies the author of that bid, who wins the right to buy the product for that price. Identities
of the authors of the rest of bids should remain hidden. To increase the confidentiality of the
process, entity B can consist of a set of n entities, working in a (t, n)-threshold fashion.

Let us assume that such an auction system is implemented by using a signcryption scheme
where the unsigncryption protocol can be split into two phases, in such a way that the decryp-
tion part is anonymized. An external authority (or machine) T , different from B, can be in
charge of the first part of the unsigncryption process: T receives the ciphertexts from the par-
ticipants in the auction, verifies that the participants are in the list of admitted participants,
and runs the verification part of the unsigncryption. Invalid ciphertexts are discarded, and
valid ciphertexts are anonymized and forwarded to the auction decryption entity B. Entity T
must privately store a table (pkA, C), relating the public keys of the participants with their
ciphertexts. Optionally, the anonymized ciphertexts that are forwarded to B (or a hashed
version of them) can be published so that all the participants in the auction can verify that
their bids have been taken into account.

The decryption process is then run by entity B, in an individual or threshold fashion,
and the highest bid among the resulting (anonymous) bids is selected. The winning bid and
its corresponding ciphertext C are announce by B, and then T can search in its table and
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recover the identity of the author of the winning bid. Assuming the honesty of entity T , the
anonymity of the participants that do not win the auction is clearly preserved, even in front of
the decryption authority B. Since the role of T can be easily implemented by a secure piece
of hardware, trusting entity T is not a very strong assumption.

9 Fully threshold signcryption

In this work we have considered, for simplicity, the scenario where the entity B that runs the
unsigncryption process consists of a set of n individuals and works with a (t, n)-threshold
mode of operation, but the entity that runs the signcryption process (the sender A) is an
individual entity.

However, it is quite easy to see that our definitions and results (both the negative and the
positive ones) extend to the scenario where the sender entity A also consists of a set of ñ
individuals and works with a (t̃, ñ)-threshold process. Such a scenario can also make perfect
sense in some real applications, for example in critical electronic auctions where an important
public contract is put out to tender. A signed confidential bid on behalf of a company should
require the participation of a minimum number of individuals in the board of the company.

The first threshold unsigncryption scheme that we propose, in Sect. 5, can be extended to
this fully threshold scenario by using well-known threshold techniques for the computation
of zero-knowledge proofs in the Discrete Logarithm framework (see [23] for the particular
case of threshold Schnorr signatures, for instance). Regarding our second threshold unsign-
cryption scheme, in Sect. 6, the idea would be to replace the individual signature schemes
Θ and Θ̃ with threshold signature schemes. Examples of threshold signature schemes which
are secure in the standard model can be found, for example, in [15,24].

We point out that the two resulting fully threshold signcryption schemes would still enjoy
the property discussed in the previous section: the unsigncryption protocol can be split into
two parts.

10 Conclusion

We have considered in this paper the strong security properties that one could (or should)
require for a signcryption scheme with threshold unsigncryption: existential unforgeability
under insider chosen message attacks and indistinguishability under insider chosen cipher-
text attacks, in a multi-user setting. Most of the (few) threshold unsigncryption schemes
proposed in the literature, either in the traditional PKI or in the identity-based scenario, do
not achieve this level of security. This includes generic constructions obtained by composing
a fully secure signature scheme and a fully secure threshold decryption scheme.

We have constructed in this paper two threshold unsigncryption schemes which achieve
those strong security properties. We prove the security of the first one in the random oracle
model, whereas we are able to prove the security of the second proposed scheme in the
standard model. The two schemes enjoy a “splitting” property which can be very useful for
applications requiring some level of privacy for the sender of the digital information. As
future work, one could investigate if other (more efficient) threshold unsigncryption schemes
can be designed, with full security in the standard model, maybe without using bilinear maps.
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