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Abstract We classify up to equivalence all optimal binary self-dual [52, 26, 10] codes
having an automorphism of order 3 with 10 fixed points. We achieve this using a method for
constructing self-dual codes via an automorphism of odd prime order. We study also codes
with an automorphism of order 3 with 4 fixed points. Some of the constructed codes have
new values β = 8, 9, and 12 for the parameter in their weight enumerator.
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1 Introduction

A linear [n, k] code C is a k-dimensional subspace of the vector space F
n
q , where Fq is the

finite field of q elements and q is a prime power. The weight of a codeword v ∈ C (denoted
by wt(v)) is the number of the non-zero coordinates of v. The minimum weight d of C is
the minimum nonzero weight of any codeword in C and the code is called an [n, k, d]q

code. A matrix whose rows form a basis of C is called a generator matrix of this code.
We denote a generator matrix of the code C by gen(C). For every u = (u1, . . . , un), v =
(v1, . . . , vn) ∈ F

n
2, u · v = ∑n

i=1 uivi defines the inner product in F
n
2. The dual code of C is

C⊥ = {v ∈ F
n
2 | u · v = 0,∀ u ∈ C}. If C ⊆ C⊥ then C is termed self-orthogonal, and if

C = C⊥, C is self-dual. A binary code is even if all its codewords have even weight. Self-dual
binary codes are even. A self-dual binary code with all codewords of weight divisible by 4
is called doubly-even; a self-dual code with some codeword of weight not divisible by 4 is
called singly-even.
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152 N. Yankov

Let F4 = {0, 1, ω, ω} be the finite field with four elements, where ω = ω2 = ω + 1. The
Hermitian inner product in F

n
4 is given by u · v = ∑n

i=1 uiv
2
i and we denote by C⊥H the

dual of C under Hermitian inner product. C is Hermitian self-dual if C = C⊥H .
The weight enumerator W (y) of a code C is defined as W (y) = ∑n

i=0 Ai yi , where Ai is
the number of codewords of weight i in C .

Let Sn be the symmetric group of degree n. For a permutation σ ∈ Sn and x = (x1, . . . , xn)

∈ F
n
2 define xσ ∈ F

n
2 by (xσ)i = xiσ−1 . If C is a binary code and cσ ∈ C for all c ∈ C, σ is

called an automorphism of C . The set of all automorphisms of C forms a group called the
automorphism group of C (denoted by Aut(C)). Two binary codes are called equivalent if
one can be obtained from the other by a permutation of the coordinates.

The largest possible minimum weights of singly-even self-dual codes of lengths up to
72 are determined in [2]. It was also shown in [11] that the minimum weight d of a binary
self-dual code of length n is bounded by

d ≤
{

4� n
24� + 4, if n 	≡ 22 (mod 24);

4� n
24� + 6, if n ≡ 22 (mod 24).

(1)

We call a self-dual code meeting this upper bound extremal. A self-dual code which has the
largest minimum weight among all self-dual codes of a given length is named optimal.

For example, applying (1) to a putative binary self-dual code of length 52, we have for
its minimum distance the inequality d ≤ 12. Since an extremal binary self-dual [52, 26, 12]
code doesn’t exist any binary self-dual [52, 26, 10] code is optimal.

The weight enumerators of codes (or putative codes) of lengths up to 72 with the highest
possible minimal distance are presented in [2]. For [52, 26, 10] self-dual codes there are two
possible weight enumerators:

W52,1(y) = 1 + 250y10 + 7980y12 + 42800y14 + . . . ,

W52,2(y) = 1 + (442 − 16β)y10 + (6188 + 64β)y12 + 53040y14 + . . . ,

where 0 ≤ β ≤ 12, β 	= 11 [1]. Codes exist for W52,1 and for W52,2 when β = 1, . . . 7,
12 [6].

Remark The value β = 12 is from [15] where unfortunately is a typo in the generation
parameters. Using the same starting code indeed we obtain codes with A10 = 250 but of
type W52,1 only. Thus we have the following.

Open problem Construct a code with weight enumerator W52,2 for every value of the param-
eter that have not previously arisen, i.e. find a code with W52,2 for β = 8, 9, 10 and 12.

All binary self-dual [52, 26, 10] codes with an automorphism of order 7 are constructed
in [7]. Recently in [12] all self-dual [52, 26, 10] codes with an automorphism of order 13
are classified. In this paper, we are interested in binary self-dual [52, 26, 10] codes with an
automorphism of order 3. The case of automorphism of order 5 is open.

2 Construction method

We apply a method for constructing binary self-dual codes possessing an automorphism of
odd prime order from [5,13].

Let C be a binary self-dual code of length n with an automorphism σ of prime order p ≥ 3
with exactly c independent p-cycles and f = n − cp fixed points in its decomposition. We
may assume that
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New optimal [52, 26, 10] self-dual codes 153

σ = (1, 2, . . . , p)(p + 1, p + 2, . . . , 2p) · · · (p(c − 1) + 1, p(c − 1) + 2, . . . , pc), (2)

and shortly say that σ is of type p − (c, f ). Let Ω1, . . . , Ωc are the cycles of σ and
Ωc+1, . . . , Ωc+ f —the fixed points. Define

Fσ (C) = {v ∈ C | vσ = v},
Eσ (C) = {v ∈ C | wt(v|Ωi ) ≡ 0 (mod 2), i = 1, . . . , c + f },

where v|Ωi is the restriction of v on Ωi .

Theorem 1 [5] C = Fσ (C) ⊕ Eσ (C), dim(Fσ ) = c+ f
2 , dim(Eσ ) = c(p−1)

2 .

According to the above theorem the code C has a generator matrix

gen C =
(

gen Fσ

gen Eσ O

)

, (3)

where O is the c(p−1)
2 × f zero matrix.

We have that v ∈ Fσ (C) iff v ∈ C and v is constant on each cycle. Let π : Fσ (C) → F
c+ f
2

be the projection map where if v ∈ Fσ (C), (vπ)i = v j for some j ∈ Ωi , i = 1, 2, . . . , c+ f .
Denote by Eσ (C)∗ the code Eσ (C) with the last f coordinates deleted. So Eσ (C)∗ is a

self-orthogonal binary code of length pc. For v in Eσ (C)∗ we let v|Ωi = (v0, v1, . . . , vp−1)

correspond to the polynomial v0 + v1x + · · · + vp−1x p−1 from P , where P is the set of
even-weight polynomials in F2[x]/〈x p − 1〉. Thus we obtain the map ϕ : Eσ (C)∗ → Pc. P
is a cyclic code of length p with generator polynomial x − 1.

Theorem 2 [14] A binary [n, n/2] code C with an automorphism σ is self-dual if and only
if the following two conditions hold:

(i) Cπ = π(Fσ (C)) is a binary self-dual code of length c + f ,
(ii) for every two vectors u, v ∈ Cϕ = ϕ(Eσ (C)∗) we have

∑c
i=1 ui (x)vi (x−1) = 0.

Theorem 3 [4] Let C be a binary self-dual code having an automorphism σ from (2). Let
Ai , Bi , and Di are the coefficients in the weight enumerators of C, Fσ , and Eσ , respectively.
Then

Di ≡ 0 (mod p), Ai ≡ Bi (mod p). (4)

3 Optimal [52, 26, 10] self-dual codes

According to [6, Table 2] for a [52, 26, 10] binary self-dual code there are two possible types
for an automorphism of order 3: 3 − (14, 10) and 3 − (16, 4).

3.1 Codes with an automorphism of type 3 − (14, 10)

Let C be a binary self-dual code of length 52 with an automorphism σ of type 3 − (14, 10).
Using Theorem 2 and the fact that the minimum weight of C is 10 we can conclude that Cπ is
a [24, 12,≥ 4] binary self-dual code. There are exactly 30 inequivalent such codes: 4 decom-
posable e3

8, e16 ⊕ e8, f16 ⊕ e8, e2
12 and 26 indecomposable codes, labeled A24 to Z24 [10].

Coordinate positions from 43 to 52 correspond to the fixed points of C , so each choice
for these fixed points can lead to a different subcode Fσ . For any 4-weight vector in Cπ at
most 2 nonzero coordinates may be fixed points. An examination of the vectors of weight 4
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in all 30 codes eliminates 26 of them. The four remaining codes are G24, X24, Y24 and Z24

with generator matrices

G1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

100000000000101011100011
010000000000111110010010
001000000000110100101011
000100000000110001110110
000010000000110011011001
000001000000011001101101
000000100000001100110111
000000010000101101111000
000000001000010110111100
000000000100001011011110
000000000010101110001101
000000000001010111000111

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, G2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

111000000000001000000000
000111000000000100000000
000000111000000010000000
000000000111000001000000
000000000000110000111111
110000000010000001100010
101000000000010000110100
000110000010000001010100
000101000000100000100110
000000100010000011001001
000000010000100010010101
000000000100100001111000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

G3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

111100000000000000000000
000011110000000000000000
101000000000110000001001
110000000001010010000010
000010100000110000010010
000011000001010001000001
000000001111111111111111
000000000000110000111111
000000000001010111000111
000000000011111001001001
000000000101111010010010
000000000001101000000111

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, G4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

111111110000000000000000
111100001111000000000000
111100000000101110000000
111100000000010001110000
111100000000000000001111
110000000000111000101010
000011000000110101001010
000000001100110100101100
101000000000110100011001
000010100000110010101001
000000001010110010011010
100010001000110000001000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

respectively.
By investigating all alternatives for the choice of the 3-cycle coordinates we obtain, up

to equivalence, all possibilities for the generator matrix of the code Fσ . We constructed 24
inequivalent codes, namely B1, . . . , B24 listed in Table 1. The generator matrix for a code
can be obtained by permuting the corresponding matrix Gt , t = 1, . . . , 4 with τ ∈ S24 given
in the table.

According to Theorem 2 the subcode Cϕ is a hermitian self-dual [14, 7,≥ 5] code over
F4 = {0, 1, ω, ω}. There is a unique such code q14 [8] with a generator matrix

H14,1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 ω ω 0 ω ω ω ω 0 0 0 0 0 0
1 ω ω 1 1 ω 0 0 0 0 0 0 0 0
0 ω ω ω 0 0 1 0 1 1 0 0 0 0
0 0 0 1 ω 1 ω 0 1 0 1 0 0 0
0 ω ω 0 0 ω ω 0 ω 0 0 ω 0 0
0 ω 0 ω ω ω 0 0 ω 0 0 0 ω 0
0 0 ω 1 ω 0 1 0 ω 0 0 0 0 ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5)

Let τ ∈ S14 be a permutation. Denote by Cτ
i the code with generator matrix (3), deter-

mined by Cπ = Bi , i = 1, . . . , 24, and Cϕ generated by the matrix H14,1 with columns
permuted by τ . We use the following lemma.
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New optimal [52, 26, 10] self-dual codes 155

Table 1 Generators of Cπ

Code Matrix τ

B1 G1 ()

B2 G1 (6,21,7,22,12,14,23,15,9,16,19,10,20)(17,24,18)

B3 G2 ()

B4 G3 ()

B5 G3 (8,15)(9,16,11)(12,17,19)(13,20,22,14)(23, 24)

B6 G3 (4,15,7,6,5)(8,16,12,11)(9,10)(14,22)(17,18)(19,21)(23,24)

B7 G3 (4,15,8,16,18,11,7,6,5)(12,17)(14,22,23,24,21,19)

B8 G3 (4,15,11,17,9,19,14,12,7,6,5)(8,16,10,18)(20,24)(21,23)

B9 G3 (4,15,11,17,9,19,14,12,7,6,5)(8,16,10,18)(13,23,21)(20,24)

B10 G4 ()

B11 G4 (12,15,13)

B12 G4 (12,15,16,17,18,19,20,21,14,13)

B13 G4 (12,15,16,17,18,19,20,21,22,23,24,14,13)

B14 G4 (5,8,7)(9,17,19,10,18)(14,15,20,16)(21,24,22)

B15 G4 (5,8,7)(10,16,23,19,11)(12,15,24,13,22,20,18,17,21,14)

B16 G4 (5,8,7)(9,22,11,14,21,12,24,17,10,23,18,13)(19,20)

B17 G4 (5,8,7)(9,22,12,14,19,13,10,24,11,23,17)(15,16)(18,20,21)

B18 G4 (5,8,9,18,24,17,6,10,14,21,11,19,22,12,20,23,13)(7,16,15)

B19 G4 (5,13)(6,20,17)(7,19,18,11,8,14,12,10,9,16,15)(21,24,22)

B20 G4 (5,14,16,21,12,15,19,9)(6,24,17,20,8,22,11,7,23,18,10)

B21 G4 (5,9)(6,17,13,21,14,18,11)(7,16,20,10,15,12)(23,24)

B22 G4 (5,9,12,21,11,20,23,19,14,24,18,13,7,16,6,17,15)(10,22)

B23 G4 (6,15,10,12,21,8)(7,16,20,23)(9,22,17)(13,19,14)(18,24)

B24 G4 (4,15,14,12,17,22,13,23,19,18,11,7,16,24,20,10,9,8,5)

Lemma 1 [13] The following transformations preserve the decomposition and send the code
C to an equivalent one:

(a) the substitution x → xt in Cϕ , where t is an integer, 1 ≤ t ≤ p − 1;
(b) multiplication of the j th coordinate of Cϕ by xt j where t j is an integer, 0 ≤ t j ≤

p − 1, j = 1, 2, . . . , c;
(c) permutation of the first c cycles of C;
(d) permutation of the last f coordinates of C.

The permutational part of the transformations from Lemma 1, preserving the hermitian code
Cϕ , forms a subgroup of the symmetric group S14, denoted by L . We have calculated that
L is a group of order 2184 with generators (1, 2, 5, 10, 4, 14, 11)(3, 7, 12, 9, 8, 13, 6) and
(1, 7, 9, 2, 4, 5, 12, 11, 6, 8, 3, 14).

Lemma 2 [14] If τ1 and τ2 are in one and the same right coset of L in S14, then Cτ1 and
Cτ2 are equivalent.

In order to classify all codes we have considered all representatives of the right transversal of
S14 with respect to L . The number of codes obtained and the type of their weight enumerators
are listed in Table 2. Note that the value β = 8 for W52,2 is new. We summarize the results
in the following.
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Table 2 [52, 26, 10] self-dual codes with an automorphism of type 3 − (14, 10)

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

# 4005 708 72259 43 8369 93528 72361 183555 150249 8066 159280 71671

β 1 1 1, 4 6 0, 3, 6 3, 6 1, 3, 7 0, 3, 6 2, 5 2 2, 5 1, 4

B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24

# 11130 25730 11324 148174 5980 27802 72361 67299 15216 93067 2068 4005
β 4, 7 3, 6 2, 5 2, 5 W54,1 2, 5 1, 4, 7 4, 7 5, 8 1, 4, 7 W54,1 1

Proposition 1 There are exactly 1308250 inequivalent binary [52, 26, 10] self-dual codes
with an automorphism of type 3 − (14, 10). Exactly 640 of these codes have weight enumer-
ator W52,2 for β = 8. There does not exist a binary self-dual [52, 26, 10] code with weight
enumerator W52,2 for β = 9, 10, and 12 possessing an automorphism of type 3 − (14, 10).

3.2 Codes with an automorphism of type 3 − (16, 4)

Let C be a binary self-dual code of length 52 with an automorphism σ of type 3 − (16, 4).
Then Cϕ is a hermitian [16, 8,≥ 5] code over F4. There are exactly 4 inequivalent such codes
2 f8, 16 + 2 f5, 116, 4 f4 [3] with generator matrices

H16,1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1000000001111111
01000000101ωωωω1
001000001101ωωωω

000100001ω101ωωω

000010001ωω101ωω

000001001ωωω101ω

000000101ωωωω101
0000000111ωωωω10

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, H16,2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1100000ω00ω00ωω0
101000ω0ω00000ωω

1001000ω0ω0ω000ω

10001000ω0ωωω000
100001ω00ω00ωω00
00ω00ω0ω0ω000ω0ω

0ω0ω0000ω0ωω00ω0
0000001ω00ω1ω00ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

H16,3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1100000ωωω00000ω

10100000ωωωω0000
100100ω00ωω0ω000
100010ωω00ω00ω00
100001ωωω00000ω0
010ω0ω1ω0000000ω

0ω10ω001ω00ω0000
00ω10ω001ω00ω000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, H16,4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1000000001111111
010000001000ωωωω

00100000111ω000ω

0001000011ω1ωω0ω

000010001ω011ω00
000001001ω0ω1ω1ω

000000101ω1ωω0ω1
000000011ωωωω011

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

respectively.
The minimum weight of the code C is 10 hence, by Theorem 2, we can conclude that

Cπ is a [20, 10,≥ 4] binary self-dual code. There are exactly 7 inequivalent such codes [9]:
d12 + d8, d12 + e8, d20, d5

4 , d3
6 + f2, d2

8 + d4, and c2
7 + d6.

In these seven codes we have to arrange 16 of the coordinate positions {1, . . . , 20} to be
the cycle positions Xc and 4 to be the fixed points X f , in such a way, that the minimum
distance of Fσ = π−1(Cπ ) is at least 10. After calculating all

(20
4

)
possible subcodes for

each of the seven codes we obtain three matrices which lead to different codes Fσ . Denote
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G5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

11110000000000000000
00001110000000001000
00000001110000000100
00000000001110000010
00000000000001110001
00000001100101100010
11000000001100100001
01011100000001100000
11000101100000001000
00001100101100000100

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, G6 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

11110000000000000000
00111100000000000000
00000011110000000000
00000000111000001000
00000000000111100000
00000000000001110100
10101010101101010010
10100110100101001101
10101000001101001100
00001110100101011000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

G7 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

11110000000000000000
00111000000000001000
00000111100000000000
00000001110000000100
00000000001111000000
00000000000011100010
10101101011010110000
10100101001010001111
10101000011010000110
00001101001010101100

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Reducing the weight enumerators W52,1 and W52,2 modulo 3 we have

W52,1(y) ≡ 1 + 1.y10 + 0.y12 + 2y14 + . . . , (6)

W52,2(y) ≡ 1 + (1 + 2β)y10 + (2 + β)y12 + 0.y14 + . . . . (7)

The matrix G5 generates the code d5
4 , and π−1(G5) generates a code Fσ with weight enu-

merator

1 + 4y10 + 5y12 + 24y14 + . . . ≡ 1 + y10 + 2y12 + 0.y14 + . . . (mod 3). (8)

According the Theorem 3 this code can lead to [52, 26, 10] codes with W52,2 for β ≡
0 (mod 3). We have constructed codes with β = 0, 3, 6, 9, and 12. The values β = 9 and
β = 121 are new.

Both matrices G6 and G7 generate codes equivalent to d3
6 + f2 but π−1(G6) and π−1(G7)

are generator matrices of codes Fσ with different weight enumerators:

1+4y10+9y12+32y14+ . . . ≡ 1 + 1.y10 + 0.y12 + 2.y14 + . . . (mod 3) (9)

1+6y10+9y12+24y14+ . . . ≡ 1 + 0.y10 + 0.y12 + 0.y14 + . . . (mod 3), (10)

respectively. The weight function (9) leads to self-dual codes with W52,1 and (10) to codes
with W52,2 for β ≡ 1 (mod 3). Using Theorem 3 and (7) we have the following.

Proposition 2 There does not exist a [52, 26, 10] self-dual code with weight enumerator
W52,2 for β ≡ 2 (mod 3) having an automorphism of type 3 − (16, 4).

Remark We were unable to construct a [52, 26, 10] self-dual code with weight enumerator
W52,2 for the last unobtained value β = 10 and its existence is still an open question. We
give some examples for codes with new value of β in Table 3.

1 The code with β = 12 is equivalent to a code first constructed and communicated to the author by Stefka
Bouyuklieva.
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Table 3 Some new [52, 26, 10] self-dual codes

Code Cπ Cϕ τ β

C14,1 B21 H14,1 (2,3,9,10,12,14,8,11,13,6,7) 8

C14,2 B21 H14,1 (6,12,9,13,14,8) 8

C14,3 B21 H14,1 (3,8,6)(7,14,12)(9,13) 8

C14,4 B21 H14,1 (3,8,6,7,14,12)(9,13) 8

C14,5 B21 H14,1 (3,8,6,7,14,9,13,12) 8

C14,6 B21 H14,1 (3,12)(6,14,13,8) 8

C14,7 B21 H14,1 (3,12)(6,14,8)(9,13) 8

C14,8 B21 H14,1 (3,12)(6,9)(7,14,8) 8

C14,9 B21 H14,1 (2,3,14,8)(6,11,13,7,10,12,9) 8

C14,10 B21 H14,1 (3,13,9,8,14,12)(4,6) 8

C16,1 G5 H16,4 (1,4,10,8,7,3,14,9,12,11,15,16,5)(2,13) 9

C16,2 G5 H16,4 (2,8,11,13,4,7,15,6)(3,14,5)(9,12) 9

C16,3 G5 H16,4 (2,14,15,10,4,8,3,5,7,16,9,11,12,13,6) 9

C16,4 G5 H16,4 (1,12,3,6)(2,14,9,5,8)(4,7) 9

C16,5 G5 H16,4 (1,6,8,2,14,12,4,15,13)(3,5,7,10,16) 9

C16,6 G5 H16,4 (1,4,13,5,6,2,9,12,8,3,7,10,14)(11,16) 9

C16,7 G5 H16,4 (1,9,16,7,8,6,13,3,5)(4,12)(11,15) 9

C16,8 G5 H16,4 (1,3,4,2,13,7,14,10,8,12,11,15,16) 9

C16,9 G5 H16,4 (1,2,7,14,11,5,6,8,12,4)(3,10,13,9,16) 9

C16,10 G5 H16,4 (1,2,7,14,11,5,6,8,12,4)(3,10,13,9,16) 9

C16,11 G5 H16,3 (1,11,13,2,10,14,16,4,3,7)(6,8,12,15,9) 12
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