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Abstract We exhibit a new, surprisingly tight, connection between incidence structures,
linear codes, and Galois geometry. To this end, we introduce new invariants for finite simple
incidence structures D, which admit both an algebraic and a geometric description. More
precisely, we will associate one invariant for the isomorphism class of D with each prime
power g. On the one hand, we consider incidence matrices M with entries from G F(q") for
the complementary incidence structure D*, where ¢ may be any positive integer; the asso-
ciated codes C = C(M) spanned by M over G F(g"); and the corresponding trace codes
Tr(C(M)) over GF(q). The new invariant, namely the g-dimension dim,(D*) of D*, is
defined to be the smallest dimension over all trace codes which may be obtained in this man-
ner. This modifies and generalizes the g-dimension of a design as introduced in Tonchev (Des
Codes Cryptogr 17:121-128, 1999). On the other hand, we consider embeddings of D into
projective geometries [1 = PG (n, g), where an embedding means identifying the points of
‘D with a point set V in IT in such a way that every block of D is induced as the intersection of
V with a suitable subspace of IT. Our main result shows that the g-dimension of D* always
coincides with the smallest value of N for which D may be embedded into the (N — 1)-
dimensional projective geometry PG(N — 1, g). We also give a necessary and sufficient
condition when actually an embedding into the affine geometry AG(N — 1, ¢q) is possible.
Several examples and applications will be discussed: designs with classical parameters, some
Steiner designs, and some configurations.
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1 Introduction

It is the aim of this paper to exhibit a new, surprisingly tight, connection between incidence
structures, linear codes, and Galois geometry. To this end, we shall introduce new invari-
ants for finite simple incidence structures D, which admit both an algebraic and a geometric
description. More precisely, we will associate one invariant for the isomorphism class of D
with each prime power g.

We assume that the reader is familiar with basic facts and terminology from design theory
[2] and coding theory [26]. Throughout this paper, incidence matrices will have their rows
indexed by blocks, and columns indexed by points. Moreover, we will only consider finite
simple incidence structures, that is, incidence structures without repeated blocks or points.
While the notion of an incidence structure without repeated blocks is standard, we add here
the analogous requirement that there should be no two points which are incident with exactly
the same set of blocks. In addition, we also always assume that each point belongs to some
block, but not to all blocks, and dually. So our notion of simplicity asks for a bit more than
usual: it means that there should be neither isolated points nor empty blocks and that, in stan-
dard terminology, both D and its dual incidence structure are simple. As we want to study,
among other things, embeddings of incidence structures into projective or affine spaces, this
somewhat strengthened version of simplicity is an entirely natural requirement.

We begin with the algebraic description of our new invariants; this generalizes an idea
introduced in our previous paper [24] in connection with a coding theoretic characterization
of the classical geometric designs. If A is the usual (0, 1)-incidence matrix of some incidence
structure D, a generalized incidence matrix of D over E (or simply an E-incidence matrix),
where E is some finite field, is any matrix obtained by replacing the nonzero entries of A
with nonzero elements from E.

Now fix a prime power ¢, and let D be a finite simple incidence structure. As usual, the
complementary incidence structure D* of D is obtained by replacing every block of D by
its complement. We will consider incidence matrices M with entries from E = GF(q") for
D*, where t may be any positive integer, and denote by C = C (M) the code spanned by the
rows of M over E. We consider also an associated code over F = G F(q), namely the trace
code Tr(C(M)), obtained by applying the trace function coordinate-wise.

With this setup, our new invariant, the g-dimension dim, (D*) of D*, is defined as the
smallest dimension over all trace codes which can be obtained in the manner just described.
This new invariant modifies and generalizes the ¢g-dimension of a design as introduced by the
second author in [31], where only incidence matrices over G F (¢) were considered, while
extension fields played no role at all.

On the other hand, we consider embeddings of D into projective geometries [I=PG (n, q),
where an embedding means identifying the points of D with a point set V in IT in such a
way that every block of D is induced as the intersection of V with a suitable subspace of II.
Clearly, any simple design on v points admits a trivial embedding into PG (v — 1, g): just
select V as a set of v points of IT in general position.

Our main result shows that the g-dimension of D* always coincides with the small-
est value of N for which D may be embedded into the (N — 1)-dimensional projective
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geometry PG(N — 1, g). We also give a necessary and sufficient condition when actually
an embedding into the affine geometry AG(N — 1, ¢q) is possible.

We are, of course, not all that interested in arbitrary incidence structures, but only in more
specific cases such as designs and configurations. Several examples and applications will be
discussed: designs with classical parameters, some Steiner designs, and some configurations.
These examples should suffice to convince the reader that our new approach is not just a the-
oretical curiosity, but worth pursuing further.

2 Preliminaries from coding theory

We begin by recalling a few facts from coding theory. Let C be a code over some extension
field E = GF(q") of F = GF(q). The trace code Tr(C) of C is the code obtained from C
by applying the trace function T'r = Trg,r from E to F defined by

Tr()=§+§7+67 + 47

coordinate-wise to the words of C. The subfield subcode Cr of C consists of all those words
in C which have coordinates in F only. Finally, C is called Galois closed if it is invariant
under applying the Frobenius automorphism x — x4 of E over F (again coordinate-wise).
Such codes have particularly nice properties; see Bierbrauer [4, Theorem 12.17].

Proposition 2.1 For any Galois closed code C over E, the subfield subcode CF over F coin-
cides with the trace code Tr(C); moreover, the dimension of C over E equals the dimension
of Cr = Tr(C) over F, and both codes have the same minimum weight.

The following result is contained in the recent work of Giorgetti and Previtali [14]; a
simple proof can also be found in our paper [24].

Proposition 2.2 Let C be a code over an extension field E = GF(q") of F = GF(q). Then
C is Galois closed if and only if it is the extension code C = S ® E of some code S over F.
In this case, S actually is the subfield subcode Cr of C, and every basis of Cr over F is also
a basis of C over E.

We also need the notion of the Galois closure C of an arbitrary code C over E = G F(q"):
this is the smallest Galois closed code over E containing C. It may be obtained from C by
taking the span of all images of some set of generators of C under the Frobenius automor-
phism and its powers. The following simple result is crucial for our work; see Bierbrauer
[4, Theorem 12.16].

Proposition 2.3 Let C be an arbitrary code over E = GF (g"), and C its Galois closure.
Then the trace codes Tr(C) and Tr(C) coincide.

Finally, we formally define our new invariant as already explained in the introduction.

Definition 2.4 Let D* be the complementary incidence structure of a fixed finite simple inci-
dence structure D, and let E = G F(g") be some extension field of F = G F(g). Moreover,
let M be any E-incidence matrix for D*, and denote by C = C (M) the code over E generated
by the rows of M. Define the g-dimension dim, D* of D* as the smallest dimension of any
G F (g)-code which arises as a trace code Tr(C(M)), where E runs over all finite extension
fields of G F(g) and where M runs over all E-incidence matrices of D*.
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Recall that the g-rank of an incidence structure D, denoted by r4 (D), is defined to be the
rank of its (0, 1)-incidence matrix over G F(g). Trivially, the g-rank gives an upper bound
for the g-dimension:

Corollary 2.5 Let D* be the complementary incidence structure of a finite simple incidence
structure D. Then dimy D* < ry(D¥).

In the case of simple 2-(v, k, A)-designs, the bound given in Corollary 2.5 is non-trivial
only for those prime powers ¢ = p° for which the prime p divides the order r — A of the
complementary 2-design D*: as is well-known, in all other cases r, (D)* € {v — 1, v}.

3 Embeddings

We begin this section with a formal definition of embeddings, followed by a very general
embedding result.

Definition 3.1 Let D be a simple incidence structure, g a prime power, and [T = PG(N, q)
some projective geometry over G F(q). We say that D is embedded in T1 if its point set V
consists of points of IT and if each block X of D is induced by some subspace W of I1, that
is, X = V. N W. Note that there is a unique smallest subspace W with this property, and we
will always consider this subspace as associated with X.

An embedding will be called strong if V spans II, that is, if V contains N + 1 points
in general position. Finally, we call D (strongly) embeddable if an isomorphic copy of D is
(strongly) embedded in IT.

Proposition 3.2 Let D be a simple incidence structure, q a prime power, and E = GF(q")
an extension field of F = GF(q). Moreover, let M be some E-incidence matrix of the
complementary incidence structure D*, and let N = N (M) denote the dimension of the
trace code Tr(C(M)) associated with M. Then D is strongly embeddable into the projective
geometry PG(N — 1, q).

Proof In order to study the trace code of C = C(M), we may, in view of Proposition 2.3,
replace C with its Galois closure C. Note that, by Proposition 2.1, the subfield subcode C
and the trace code Tr(C) = Tr(C) of C coincide. We choose a basis of Cr over F, say
b1, ..., by; by Proposition 2.2, this is also a basis of C over E. Let us write by,...,by as
the rows of an (N x v)-matrix B. Then all rows of the given incidence matrix M are linear
combinations of the rows of B with coefficients from E.

Now consider the columns of B. Clearly, B cannot contain a column 0, since otherwise
the corresponding column of M would consist of entries 0 only, and so the associated point
of D* would not be contained in any blocks at all. Similarly, B cannot contain two line-
arly dependent non-zero columns; otherwise, for any linear combination of by, ..., by with
coefficients from E, either both or none of two such columns would contain an entry 0. In
particular, the points corresponding to these two columns would be on exactly the same set
of blocks of D*, contradicting the simplicity of the incidence structure.

Hence B consists of v column vectors of length N over F, no two of which are linearly
dependent, and therefore the columns of B—and hence also the points of D*—may be viewed
as a set V of v points in [ = PG(N — 1, ¢q). We will see that this identification gives the
desired embedding of D into I1. Note that the embedding is indeed strong, as B has (row and
column) rank N, so that V contains N points in general position.
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In this way, each block of D*—and therefore also each block of the complementary
incidence structure D of D*—is now identified with some subset of the point set V in IT.
Consider an arbitrary block X* of D*, and let x1, ..., X, be points of V contained in the
complementary block X = V\X* of D, so that the incidence matrix M has entries 0 in the
row corresponding to X* for all positions indexed by the points x, ..., X.

As X* is a linear combination of the rows of B with coefficients from E, we necessarily
have entries 0 in row X™* of M in all columns which correspond to a point in V given by
some linear combination of the columns of B associated with X1, ..., X.. In other words,
if a block X* has entries O in all positions indexed by some points X1, ..., X¢, then it has
entry 0 in all positions corresponding to a point in the intersection of V with the subspace W
of IT generated by the given points. In terms of the incidence structure D, this observation
simply means that the block X of D is closed under intersections with subspaces of I1. In
particular, if we choose {xi, ..., X.} as a maximal set of points of X in general position (so
that the corresponding columns of B are a maximal set of linearly independent columns in the
positions indexed by the points of X), we obviously obtain X = V N W. Hence each block of
D is indeed induced by some subspace of I1. Finally, we note in passing that the construction
just outlined yields for W the subspace associated with X, in the sense of Definition 3.1. O

We next prove a converse of Proposition 3.2:

Proposition 3.3 Let D be a simple incidence structure which is embedded in the projective
geometry I1 = PG(N — 1, q), and let E = GF(q") be any extension field of F = GF(q)
satisfyingt > N — 1 — d, where d is the smallest dimension of a subspace of I1 associated
with some block of D. Then there exists an E-incidence matrix M for the complementary
incidence structure D* of D such that the trace code Tr(C(M)) associated with M has
dimension at most N over F.

Proof By definition, the point set of D is a subset V of the point set of I1. We choose a
coordinate vector for each of the gV ~! + - - - 4 ¢ + 1 points of IT and write all these vectors
as the columns of a matrix B, where we put the vectors corresponding to the points of V in
the first v columns. Thus B is a generator matrix for the (monomially unique) simplex code
S of dimension N over G F (g). In what follows, we will use the recent results of Jurrius [25]
on the extension code S ® E of S over E; we denote this Galois closed code by C.

As explained in Sect. 3 of [25], the subcodes of a given dimension r of the simplex code S
correspond bijectively to the subspaces of codimension r of I1. More precisely, if U is such a
subcode, then the points of IT corresponding to the support of U (that is, the set of positions
for which at least one word in U has a non-zero entry) are just the points not contained in the
associated subspace of codimension r of IT. Jurrius [25] has used this to determine the weight
enumerator for the extension code C. It turns out that the non-zero weights occurring are just
the cardinalities of the complements of subspaces of codimension r of I, where | <r <.
Moreover, the support of any word of weight (4 — g¥~")/(qg — 1) indeed corresponds to
the points not contained in some subspace of codimension r.

In particular, all complements of subspaces of Il with codimension at most N — 1 —d
arise in this manner, since we have assumed t > N — 1 — d. Clearly, for any subcode U of
dimensionr < N — 1 —d of §, we get a corresponding subcode D = U ® E of dimension r
of C; trivially, the support of D is just the support of U. Thus the subspaces of codimension
at most N — 1 — d (and hence of dimension at least d) of IT are in a one-to-one correspon-
dence with the subspaces U of dimension » < N — 1 — d of S respectively their extensions
D = U ® E. Itis not difficult to see that D always contains words which are non-zero over
the entire support of U; a simple combinatorial proof for this fact can be found in Lemma 2.6
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of [24]. Selecting such a word for each subcode U of S with dimension at most N — 1 —d
then gives us an E-incidence matrix M for the incidence structure formed by the points of IT
and all complements of subspaces of IT with dimension at least d. By construction, all rows
of M are words in the E-extension C of the simplex code S.

We now claim that M, when restricted to its first v columns, contains an E-incidence
matrix M of D*. Thus let X be any block of D and X* = V\ X its complementary block in
D*. As D is embedded in I1, there is a unique subspace W of IT associated with X. Then
X = VNW,and hence X* = VNW*, where W* denotes the complement of the subspace W
in I1. By hypothesis, the dimension of W is at least 4, and thus M contains a row associated
with W, which is a word ¢ € C with support W*. Therefore, ¢ has a non-zero entry in every
position associated with a point in X*, and an entry 0 in every position associated with a
point in X. Thus the restriction of ¢ to the positions indexed by V is indeed an E-incidence
vector for X*. As X was an arbitrary block of D, this verifies the claim.

We have now established that the restriction C’ = C|V of C to the positions associated
with the common point set V of D and D* contains an E-incidence matrix M of D*. By Prop-
osition 2.2, C is the E-extension of its trace code Tr(C) = S, and thus C’ is the E-extension
of its trace code Tr(C’) = S|V. Since the E-code C(M) generated by M is contained in the
Galois closed code C’, its trace code Tr(C(M)) is contained in Tr(C’) = S|V. Trivially,
S|V has dimension at most N, and the assertion follows. O

Under the assumptions of Proposition 3.3, it seems plausible that the trace code Tr(C (M))
associated with M has dimension exactly N provided that D is strongly embedded in IT. While
we were unable to prove this in general, it is easy to see that it indeed holds if N is chosen
minimally in Proposition 3.3:

Theorem 3.4 Let D be a simple incidence structure and q a prime power. Then the q-dimen-
sion of D* equals the smallest integer N for which D can be embedded into the projective
geometry I1 = PG(N — 1, q).

Moreover, D* can actually be embedded into the affine geometry AG(N — 1, q) if and
only if D* admits an E-incidence matrix M with dim Tr(C(M)) = N for which the trace
code Tr(C(M)) contains a word with full support V.

Proof By Proposition 3.2, D can be embedded into PG (n — 1, g) whenever D* admits an
E-incidence matrix M with dim 7'r(C(M)) = n; in particular, this holds for n = dim, D*.
Now let N be chosen as in the statement of the theorem, and let M be constructed as in
the proof of Proposition 3.3, so that dim 7r(C(M)) < N. If we had strict inequality, say
dim Tr(C(M)) = N’ < N, we would—once more appealing to Proposition 3.2—also obtain
an embedding of D into PG(N' — 1, q), contradicting the choice of N. This proves the first
assertion.

It remains to consider the existence of affine embeddings or, equivalently, of embeddings
into [T = PG(N — 1, ¢g) where V is disjoint to some hyperplane H of IT. Assume first that
the criterion stated in the assertion is satisfied, so that we have an E-incidence matrix M for
D* with dim Tr(C(M)) = N, such that C(M) contains a word with full support V. Then
we may, using the setup of the proof of Proposition 3.2, choose such a word as the first basis
vector by, so that the columns of the matrix B constructed in the proof of Proposition 3.2
correspond to points of IT which lie in the complement A of the hyperplane H with equation
x1 = 0. In this way, we see that D is indeed embedded in the affine geometry IT\ H.

Conversely, assume the existence of an embedding of D into IT = PG(N — 1, ¢g) for
which V is disjoint to some hyperplane H of I1. Recall that the first order g-ary Reed—Muller
code of dimension N and length ¢ ~! can be defined as the monomially unique code R over
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F = G F(q) whose generator matrix consists of coordinate vectors for the points contained
in the complement A of the hyperplane H. More explicitly, up to monomial equivalence over
F, we may use for H the hyperplane with the equation x; = 0 and normalize the first coordi-
nates of the points in A to 1 (so that a generator matrix G for R consists of the all-one row as
first row, while the other positions in the columns of G contain all possible vectors in F N-Dy,
We can now easily adapt the arguments given in the proof of Proposition 3.3 to this situation,
since Jurrius [25] also proved results for extension codes of the first order Reed—Muller codes
which are completely analogous to her results for simplex codes discussed before.

Again, the subcodes of a given dimension r of the Reed—Muller code R correspond bijec-
tively to the subspaces of codimension r in IT. More precisely, if U is such a subcode, then
the points of IT corresponding to the support of U are just the points not contained in the
associated subspace W of codimension r of I1. Note, however, that the situation is a bit more
involved than in the projective case, as one needs to distinguish two possibilities: either W is
contained in H, in which case the support of U is all of A; or W intersects H in a subspace
of codimension » + 1 of I1, in which case the support of U is a subspace of codimension r
of the affine space ¥ = AG(N — 1, ¢) induced on A.

Jurrius [25] has used this to determine the weight enumerator for the extension code
C = R® E of Rover E = GF(q"). It turns out that the non-zero weights occurring
are ¢~ and the cardinalities of the complements of subspaces of codimension r of X,
where 1 < r < t. Moreover, the support of any word of weight ¢V ~! — ¢g¥~!=" indeed
corresponds to the points not contained in some subspace of codimension r of X. Again, it
is not difficult to see that one always obtains words in U ® E which are non-zero over the
entire support of U, where U is the r-dimensional subspace of R associated with any given
subspace of codimension r of X; a simple combinatorial proof for this fact can be found in
Lemma 3.3 of [24].

In particular, all complements of subspaces of codimension N — 1 — d of X arise in the
manner just described, since we have assumed r > N — 1 — d. Selecting a word with full
support in each of the associated subspaces U ® C of C then gives us an E-incidence matrix
M for the incidence structure formed by the points of ¥ and all complements of subspaces
of ¥ with dimension at least d. By construction, all rows of M are words in the E-extension
C of the first order Reed—Muller code R.

We may now copy the arguments given in the proof of Proposition 3.3 to see that M, when
restricted to its first v columns, again contains an E-incidence matrix M of D*, so that that
the restriction C’ = C|V of C to the positions associated with the common point set V of D
and D* contains an E-incidence matrix M of D*.

By Proposition 2.2, C is the E-extension of its trace code Tr(C) = R, and thus C’ is the
E-extension of its trace code Tr(C’) = R|V. Since the E-code C (M) generated by M is con-
tained in the Galois closed code C’, its trace code Tr(C(M)) is contained in Tr(C") = R|V.
As in the first part of the proof, we can even conclude 7r(C(M)) = R|V, since N was chosen
to be minimal. But R contains the all-1 vector, and therefore 7r(C(M)) indeed contains a
word with full support V. O

An interesting application of the second part of Theorem 3.4 is as follows:

Corollary 3.5 Assume that D is resolvable with parallel classes of size 2 (that is, the com-
plement of every block is again a block), so that D* = D. Then D can be embedded into
AG(N — 1, q), where N = dimy D.

Remark 3.6 All results presented in this section actually hold under somewhat weaker con-
ditions: while it is essential that the incidence structure under consideration contains no
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repeated points, everything can be adapted easily to deal with repeated blocks. However,
in the resulting “embeddings”, repeated blocks would, of course, be induced by the same
associated subspace. This would be contrary to the standard notions of embedding used
in geometry, where all objects always are embedded via injections. We therefore prefer to
restrict our statements to simple incidence structures as defined in the introduction.

In the next sections, we will provide several examples and applications of Theorem 3.4,
namely for designs with classical parameters, for some Steiner designs, and for some con-
figurations. These examples should suffice to show the potential which our general theory of
g-dimension and embeddings offers.

4 Designs with classical parameters

We begin our series of examples by discussing designs with classical parameters, since
our study [24] of the characterization problem for the classical designs among all simple
2-designs with the same parameters contains, in a very special case, the fundamental ideas
of dimension and embeddings presented here in full generality.

Recall that the classical or geometric designs are the designs PG4(n, ¢) and AG4(n, q)
formed by the points and d-spaces in some projective or affine geometry PG(n, g) or
AG(n, q), respectively, over a finite field GF(q), where 1 < d < n — 1. The parame-
ters of PG4(n, g) are as follows:

L kY Az[n_l] (1)
qg—1 q—1 d—lq

where [ ; ] denotes the Gaussian coefficient given by
q

|:mi| @ =@ =g -
i, (@ =D "'=D-(g-1D
n+1
d+1
AG,(n, g) has parameters

This design has b = [ ] blocks, and each point is in r = [Z] blocks. Similarly,
q

q
n d n—1
v=4q" k=q% A=|,_ 2)
q

in this case, there are b = q”’d [Zi| blocks, and each point is in r = [Z] blocks.

q
It is known [7,23] that the number of designs with classical parameters grows exponen-

tially with linear growth of n if one fixes either the dimension d or the codimensionn —d. Itis
therefore natural to try to characterize the classical geometric designs among the myriads of
designs with the same parameters. There are two main approaches to this problem: one may
use either combinatorial properties (e.g., line size), or one may try to give a coding theoretic
characterization. We refer the reader to [21] for a recent survey on designs with classical
parameters, with particular emphasis on the characterization problem.

While there are rather satisfactory results for the combinatorial approach, the coding theo-
retic approach has—until recently—met with remarkably little success. The seminal work in
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this direction is due to Hamada [ 17] who gave a general—albeit very involved and hard to han-
dle—formula for the p-ranks of the incidence matrices of the geometric designs PG4 (n, q)
and AG4(n, q), where g is a power of the prime p and where 1 < d < n — 1. He also
conjectured that the geometric designs always have minimum p-rank among all designs with
the same parameters; later, in the joint paper with Hamada and Ohmori [18], he proposed an
even stronger conjecture, namely that the classical designs can be characterized among all
designs with the same parameters as those of minimum p-rank.

While this strong version of Hamada’s conjecture has been established in a few cases
[12,18,29], a first counterexample was already contained in a paper by Goethals and Delsar-
te [15] well before the conjecture was made! A handful of further sporadic counterexamples
were discovered later [19,30], and only recently infinite families of counterexamples were
constructed [6,22]. In contrast, the original (weak) version of the conjecture is still wide
open: not even a single counterexample is known, and the only cases established are those
for which actually the strong version of the conjecture holds. The reader may find more
details on the status of Hamada’s conjecture in [21,24,33].

As the preceding discussion shows, Hamada’s original approach cannot possibly charac-
terize the classical designs in general. In 1999, the first result which successfully dealt with
a family of classical designs for arbitrary values of g via coding theory appeared. It is due to
Tonchev [31] who used codes spanned by matrices with entries from G F(q) to prove a char-
acterization of the complementary designs of PG,_(n, q) and AG,_1(n, q). Tonchev’s
approach was recently extended in our joint paper [24] to study a possible Hamada type
characterization for all classical designs. Using the terminology introduced in the present
paper, we may summarize the main results of [24] in the following two theorems:

Theorem 4.1 Let D* be the complementary design of a design D with the parameters of
PGy(n, q) or AGy(n, q), where 1 < d < n — 1. Then dimy; D* > n + 1, and equality
holds provided that D is classical.

We note in passing that Proposition 3.3 provides an alternative proof for the fact that the
classical affine designs AG;(n, ¢g) have dimension n + 1. In contrast to the argument used
in [24], this proof does not rely on the results of Jurrius [25] concerning extension codes of
the first order Reed—Muller codes.

Of course, our aim is to replace “provided that” in Theorem 4.1 with “if and only if”.
Indeed, we achieved this in [24] for all projective instances, and for more than half of the
affine cases:

Theorem 4.2 Let D* be the complementary design of a design D with the parameters of
either PGg4(n, q), where 1 <d <n —1, orof AGg(n, q), whered =1 or (n —2)/2 <
d < n—1, and assume dim, D* =n 4+ 1. Then D is classical.

A crucial step in dealing with the affine instances of Theorem 4.2 was a special case of
Proposition 3.2, namely embedding any such design into the projective geometry PG (n, g).
Of course, it would be very desirable to finish the proof of the characterization for the remain-
ing cases, which amounts to solving the following research problem:

Problem 4.3 Let D be adesign with the parameters of AG4(n, q), where2 <d < (n—2)/2,
and assume that D is embedded in PG (n, q). Prove that D has to be classical.

We note that the results of the present paper go beyond those of [24] in one respect: in
[24], it was shown that the solution of Problem 4.3 implies the desired characterization of the
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classical designs in terms of their g-dimension, whereas the present paper also establishes
the converse, so that the two conjectures made in [24] are actually equivalent.

Finally, it would also be interesting to determine the dimension of some other class of
designs with classical parameters, for instance, for the infinite families of counterexamples
to the strong version of Hamada’s conjecture constructed in [6,22]. This problem is dealt
with—and reduced to a certain general conjecture concerning embeddings of “distorted”
designs—in [13]; moreover, these authors show that there always exists a design D with the
parameters of PG4(n, q), where 1 < d < n — 1, such that dim, D* =n+ 2.

5 Some Steiner systems

In this section, we look at some Steiner systems associated with codes of low dimension. We
begin with two of the most famous sporadic Steiner systems, namely the small Witt designs.
As in [2], we use the Belgian notation S(¢, k, v) for Steiner systems; alternatively, these
objects are often referred to as t-(v, k, 1)-designs.

Example 5.1 Consider the ternary Golay code C, that is, the unique [11,6,5]-code over
G F(3). As is well known, the set of 66 distinct supports of the 132 words of C with (min-
imum) weight 5 form a Steiner system S(4, 5, 11), which is likewise uniquely determined
by its parameters. Let us take this Steiner system as our simple incidence structure D. Note
that C also contains 132 words of weight 6, which constitute the supports of the blocks of
the complementary structure D*.

Moreover, all words of weight 6 have parity check sum 0, that is, their coordinates always
sum to 0. This is easily seen by comparing the weight distributions of C and of its parity
check extension C’, the extended ternary Golay code. Therefore D* is supported by the
[11, 5, 5]-subcode Cy of C which consists of all words with parity check sum 0. This shows
dim3 D* < 5; on the other hand, also dim3 D* > 5, as we need 132 > 34 codewords.

By Theorem 3.4, D can be embedded into PG (4, 3), and this is the smallest possible
embedding into a projective space over G F(3). Such an embedding is already contained
in the paper of Tallini [28]; its point set is actually the (unique) smallest complete cap in
PG (4, 3). See also Hirschfeld [20] for an explicit construction, which takes some effort, and
further references. Our theory yields this embedding result in an almost trivial way.

Finally, we note that Cy cannot contain a word of weight 11, as the zero word and the 110
words of weight 9 of C belong to Co, which already gives all 243 words. Using Theorem 3.4
again, we conclude that D cannot be embedded into AG (4, 3).

Example 5.2 Consider the extended ternary Golay code C’, that is, the unique [12, 6, 6]-code
over G F'(3); this is the parity check extension of the code C considered in Example 5.1. As is
well known, the set of 132 distinct supports of the 264 words of C’ with (minimum) weight 6
form a Steiner system S(5, 6, 12), which is again uniquely determined by its parameters. Let
us now take this Steiner system as our simple incidence structure D. Note that D is resolvable,
so that D = D*. Hence Corollary 3.5 applies, and we will obtain an affine embedding of D.

As D is supported by C’, we have dim3 D < 6; on the other hand, also dim3 D > 6, as
we need 264 > 35 codewords. By Theorem 3.4, D can be embedded into AG (5, 3), and this
is the smallest possible embedding into a projective space over G F(3). Again, an embed-
ding into PG (5, 3) is already known: Coxeter [9] gave an explicit construction, which is
considerably more involved. As in Example 5.1, our theory yields his result in a very simple
way.
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As our third example, we consider the classical Mobius planes:

Example 5.3 Recall that a Mobius plane (or inversive plane in the terminology of [11])
of order ¢ is a one-point extension of an affine plane of order ¢, that is, a Steiner system
S(3, g+ 1, g%+ 1). The classical (or Miquelian) examples of Mdbius planes admit several
distinct constructions. For our purposes, it is best to define them in the following geometric
way: as points, one may take the points of a non-degenerate elliptic quadric Q in PG (3, g),
and as blocks the intersections of Q with all secant planes of Q. As this already describes
an embedding of our Steiner system, we conclude that the complementary structure D* of a
classical Mobius plane D of order g always has g-dimension 4.

By Theorem 3.4, there is an associated code C over G F(g) which supports the comple-
mentary 3-design D*. (There is no need to use extension fields of G F (g) here, as the blocks
of D are induced by subspaces of codimension 1.) The code C is a 2-weight code of type
TF3 in the notation of [5]. The point set Q of D* is an ovoid in PG (3, q), i.e., a set of
g? + 1 points, no three collinear, that meets every plane in either one or ¢ + 1 points. Thus,
Q is a projective set with two intersection numbers in Delsarte’s sense [10], which defines
a linear code C over G F(q) of length ¢ + 1 and dimension 4 having two nonzero weights
wy = g% — g, wy = g2, and weight distribution (3):

Ao=1. Ap_, =@ +Dglg—1. Ap=(G>+1Dg— . @)

A 4 x (g% + 1) generator matrix G is obtained by taking as columns a set of g2 + 1 vectors
representing the projective coordinates of the points of Q. Since every three columns of G
are linearly independent, the dual code C* has minimum distance 4. The code C has only
one nonzero weight w; = g2 — ¢ smaller than n — 3 = ¢2 — 2, hence, it follows by the
Assmus—Mattson theorem that the codewords of C of weight g> — ¢ support a 3-design
D*. Calculating the number of blocks of D* from (3) and taking into account that each
block is supported by (¢ — 1) vectors being scalar multiples of each other, one sees that the
complementary design of D* is indeed an S(3, ¢ + 1, ¢> + 1).

In general, any set P of points in PG(N — 1, ¢) which intersects every hyperplane in
either x or y points (0 < x < y), yields a linear 2-weight code C over G F (g) via Delsarte’s
construction [10]. The code C is of length n = | P|, dimension N, and has nonzero weights
w) =n —y, wy =n — x. Well-known examples of such sets in PG (2, g) are hyperovals,
maximal arcs, and unitals.

Example 5.4 A hyperoval in PG(2, 2') is a set P of 2! + 2 points, such that every line is
either disjoint from P or meets P in exactly two points. A hyperoval defines a 2-weight code
C over GF(2") of length n = 2! + 2, dimension k = 3, weights wy = 2/, wy =n = 2! +2.
Note that w; = 2/ = n — k + 1, hence C is an MDS code. The codewords of weight 2
support the complete design on 2" + 2 points having as blocks all subsets of P of size 2.
Thus, for every ¢ > 1, the dimension of the trivial 2-(2/ 42, 2!, 2/=1 (2! — 1)) design over
G F(2") is 3, in accordance with a result by Tonchev [32] concerning the connection between
the g-dimension of complete designs and MDS codes.

Example 5.5 Amaximal2*-arcin PG(2, 2'),where 1 < s < t—1,isasetof25(2'=2"5+1)
points that meets every line in either none or 2° points. A maximal arc with s = 1 is
a hyperoval. A maximal 2%-arc defines a 2-weight code C over GF(2') of length n =
252" —2!7% +1), dimension 3, and nonzero weights 2/ (2* — 1) and 2* (2 — 2/~ 4 1), which
is a code of type TF2 in the terminology of [5]. The points of a maximal 2*-arc P and the inter-
sections of P with non-disjoint lines considered as blocks form a 2-(2° (2! —2!=5+1), 2%, 1)
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design. The complementary design is supported by the minimum weight vectors of the related
2-weight code.

Example 5.6 A unital in PG (2, ¢?) is a set of ¢> + 1 points that meets every line in either
one or ¢ + 1 points. Any unital in PG(2, ¢2) defines a 2-weight code C over G F(g?) of
length n = ¢3 + 1, dimension 3, and nonzero weights ¢> — ¢ and ¢>. The ¢ + 1 points of a
unital together with the line intersections of size g + 1 form a 2-(@®+1,g+1, 1) design D.
The blocks of the complementary design D* are supported by the minimum weight vectors
of C.

6 Some configurations

Finally, we look briefly at some well-known (symmetric) configurations. For our purposes,
a configuration vy is a simple 1-design on v points, with k points per block and k blocks per
point, and no two points on more than one block; hence one usually speaks of /ines instead
of blocks in this situation. We will not consider non-symmetric configurations here. We refer
the reader to the book of Griinbaum [16] for a systematic treatment of configurations.

We begin with three famous examples which arise in the axiomatic foundation of projective
geometry; see, for instance, [3] for background. The first two of these share the remarkable
property that the g-dimension of their complementary incidence structures basically does not
depend on the choice of ¢, with only ¢ = 2 being an accidental exception.

Example 6.1 The well-known Desargues configuration, a configuration 103, is used to char-
acterize the (not necessarily finite) projective planes which can be coordinatized via a skew-
field (and, more generally, to derive the standard algebraic representation for projective spaces
if one starts with a synthetic definition via the famous Veblen-Young axioms). Hence this
configuration D is embedded in PG(2, g), so that dim;, D* = 3, for every prime power
g > 3. For g = 2, we have a sort of accident: D cannot possibly live in PG (2, 2), as it just
has too many points. Here one easily checks dim, D* = 4: it is well-known that the Desar-
gues configuration can always be viewed as a configuration of points and lines in projective
3-space.

Example 6.2 The well-known Pappus configuration, a configuration 93, is used to charac-
terize those projective geometries PG (n, K) defined over a skewfield K for which K has
commutative multiplication (and is therefore a field). Again, the Pappus configuration D is
always embedded in PG (2, ¢), so that dim, D* = 3 for every prime power ¢ > 3. As in the
case of the Desargues configuration, D cannot live in PG (2, 2), as it has too many points.

Again one obtains dimy D* = 4, which is less obvious, and therefore we sketch a possible
embedding of the Pappus configuration in IT = PG (3, 2). Let a, b, ¢, d be four points in
general position, which we also view as four pairwise independent vectors in G F (2)*. Now
we select three skew lines of IT as the three “carrier” lines for the 9 points of D, say

{a, b, a+b}, {c,d,c+d}and{a+d, b+¢c,a+b+c+d}.

The remaining six lines of D are transversals for the carrier lines, and three (pairwise skew)
of these are indeed realized as lines of I, namely

{a,d,a+d}, {b,c,b+c}and{a+b,c+d, a+b+c+d}
This is not surprising: in geometric terminology, we have simply used three lines of a regulus

together with three lines of its opposite regulus. It is well-known and trivial to see that the
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remaining three lines of D cannot be realized as lines of IT; however, they are induced by the
three planes of IT spanned by the following 3-sets on the chosen point set V:

{a,c,a+b+c+d}, {a+b,d b+c}and{b, c+d, a+d},

as the reader may easily check. According to Proposition 3.3, D* is supported by a 4-dimen-
sional code C over G F'(4), since we used subspaces of codimensions 1 and 2 to induce the
linesof Don V.

Example 6.3 The smallest really interesting configuration is the Fano configuration D, often
simply denoted as 73—that is, in other notation, the projective plane PG (2, 2) of order 2;
it is used to characterize those projective geometries PG(n, K) defined over a field K for
which K has characteristic 2. In particular, PG (2, ¢g) contains D as a subplane of order 2 if
and only if g is even, and we conclude dim, D* = 3 if and only if ¢ is a power of 2.

Our final example is similar to Example 6.3, but probably even more interesting:

Example 6.4 Let D = AG(2, 3) be the unique affine plane of order 3, and let D,, be the
configuration 83 which arises from D by omitting a point p together with all lines through
p; this configuration is sometimes called the biaffine plane of order 3. Then any embedding
of D), into a projective plane PG (2, g) can be extended to an embedding of D, and such
an embedding is possible if and only if ¢ is a power of 3 or a prime power congruent to 1
modulo 3; see [1]. Thus dim; D* = dim,; D), = 3 if and only if ¢ = 3% org =1 (mod 3).

We remark that Example 6.4 is quite exceptional: by a result of Rigby [27], the affine
plane AG (2, ¢') with ¢’ > 4 can be embedded into PG (2, q) if and only if g is a power of
q’. Therefore, dim; AG(2, ¢')* > 4, whenever ¢ is not a power of ¢’.

For all the configurations discussed in this section, we are not aware of any result that
would give the precise value of dim, D* for any other case than those presented here. It
would certainly be interesting to know such results. In particular, we would like to pose the
following research problems.

Problem 6.5 Let D be the Fano configuration or the (bi-)affine plane of order 3, and assume
g #£2o0rq #3%and g # 1 (mod 3), respectively. Decide if (and when) dim, D* =4 is
possible. Determine dimy, AG (2, q')* for at least one pair q, q', where q and q’ are powers
of distinct primes > 3.

7 Conclusion

We have introduced new invariants for finite simple incidence structures D, which admit
both an algebraic and a geometric description: the smallest value of N for which D may be
embedded into the (N — 1)-dimensional projective geometry PG(N — 1, g) always coin-
cides with the minimum possible dimension of a class of codes over G F (¢q) associated with
the complementary incidence structure D*, namely the trace codes of all codes over some
extension field of G F(q) which support D*. Thus the theory developed here gives a new,
surprisingly tight, connection between simple incidence structures, linear codes, and Galois
geometries.

We have also provided several examples to illustrate the new theory, namely for designs
with classical parameters, for some Steiner designs, and for some configurations. We are
currently investigating further classes of designs, but already the examples considered here
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indicate that our approach can shed new light on many well-studied classes of incidence
structures and should have a considerable potential for significant applications to a wealth
of known problems.

While we are convinced of the theoretical importance of our new invariants, we are far less
optimistic with regard to their practical applicability. Perhaps the most attractive property of
the original Hamada conjecture lies in the fact that it would have provided an elegant and
computationally simple characterization of the classical geometric designs in terms of the
p-rank of their incidence matrices: the complexity of computing the rank of a matrix is a
cubic polynomial in the number of rows (or columns), while the complexity of finding iso-
morphisms between block designs is as hard as the notoriously difficult graph isomorphism
problem; see [8, Remark VIIL.6.6]. In contrast, our new invariants would, in general, seem
rather difficult to determine; indeed, we are not aware of any subexponential time algorithms
for computing them.
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