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Abstract We provide a simple and exact formula for the minimum Miller loop length in
Atei pairing based on Brezing–Weng curves, in terms of the involved parameters, under a
mild condition on the parameters. It will also be shown that almost all cryptographically
useful/meaningful parameters satisfy the mild condition. Hence the simple and exact for-
mula is valid for them. It will also turn out that the formula depends only on essentially two
parameters, providing freedom to choose the other parameters to address the design issues
other than minimizing the loop length.
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1 Introduction

Pairings play an important role in cryptography because they enable many protocols for
security services [3,4,16,20]. During last 10 years, several pairings have been proposed
such as Eta, EtaT , Ate, Atei , R-ate, optimal Ate pairings [2,9,15,17,22,23]. Among them, this
paper considers the Atei pairing. The pairings are built on elliptic curves. During last 6 years,
several methods were developed for constructing elliptic curves that are suitable (friendly)
for pairing [5,6,10–12]. Among them, this paper considers the method due to Brezing–Weng
[6] which produces a pairing-friendly elliptic curves by simply choosing a few parameter
values, such as embedding degree, etc. Hence each choice of the parameter values determines
a particular elliptic curve, and in turn, a particular Atei pairing.

One important factor to consider while choosing the parameter values is the time taken
for computing the resulting pairing. The computation essentially consists of calls to Miller’s
algorithm [18]. The time-complexity of Miller’s algorithm is captured by the number of
iterations of a loop in the algorithm, namely “Miller Loop Length”. In the context of Atei

pairing, one chooses the i value so that the Miller loop length is minimal.
Naturally we are interested in determining the minimum loop length for given parame-

ter values. One could, in principle, do this by tracing the Brezing–Weng/Atei method (See
Notation 1), in brute-force manner. However, it involves long, tedious and complicated com-
putations such as evaluating polynomial functions, polynomial divisions (remaindering),
square root operation in a ring of algebraic integers, finding minima over potentially large
sets, etc. As a result, it is virtually impossible to do any reasoning on the relation between
the minimum loop length and the parameter values, making it quite inconvenient for design-
ing cryptosystems. It would be nice to have a simple formula (in terms of the parameters).
Unfortunately, as usual, it seems that there is no simple formula that holds for all values of
the parameters. One could, as typically done, carry out an asymptotic analysis (the big-O
analysis) where one tries to obtain a simple formula by assuming that the parameter values
are “sufficiently” large and by allowing “unknown” constant factors. However, such a result
is not so useful for cryptosystem design, because it is not clear how large is sufficient and
the unknown constant factor can make significant differences in the practical performance
of cryptosystems.

The main contribution of this paper is to provide a simple and exact formula for the min-
imum loop length, under a mild condition on the parameters (see Theorem 1). It will be also
shown that almost all cryptographically useful parameters satisfy the mild condition (see
Remark 2). Hence the simple and exact formula is valid for them. It also turns out that the
formula depends only on essentially two parameters, providing freedom to choose the other
parameters to address the design issues other than minimizing the loop length (see Remark 1).

In order to obtain the formula, we had to overcome three technical challenges: (a) deter-
mining the minimum degree over i of xi modulo a cyclotomic polynomialΦn(x), (b) finding
out when a smaller degree implies a smaller value upon evaluation, and (c) finding out when
remaindering commutes with evaluation, that is, polynomial remaindering followed by eval-
uation gives the same result as evaluation followed by integer remaindering. The problem (a)
was challenging because there seemed to be no discernable relationship between the degree
of xi modulo Φn(x) and the parameters (i, n). For the problems (b) and (c), one would try
to tackle them by estimating root bounds of involved polynomials, which requires finding
(a bound on) the coefficients. Unfortunately, the coefficients of the involved polynomials are
very difficult to bound, hence the challenge.

The crucial idea for overcoming the challenges was that the problems become more man-
ageable when they are suitably recast in terms of inverse cyclotomic polynomials [19]. Once
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so recast, the problem (a) amounts to studying a certain sparsity structure (maximum gap
between consecutive exponents) of inverse cyclotomic polynomials (Lemmas 5 and 6), which
can be done by direct computation for moderate parameter values, or using the recent theoretic
results in [14] for large parameter values. The problems (b) and (c) amount to bounding the
coefficients of inverse cyclotomic polynomials (Lemmas 10 and 12), which can be also done
by direct computation on moderate parameter values, or using the recent number theoretic
results in [7,19] on large parameter values.

One naturally wonders whether similar results could be obtained for more recent and
improved pairings such as R-ate [17] and optimal Ate pairings [22]. We have not yet found
a way to derive such results, due to various technical challenges (beyond those that we
encountered while working on Atei ). We leave them as open challenges.

The paper is structured as follows. The next section (Sect. 2) gives a brief review of the
Brezing–Weng curves, Atei pairing and the Miller loop length. The readers who are familiar
with them can skip this section, except Notation 1 and Assumption 1 in Sect. 2.4. We encour-
age all the readers to read them carefully, because the notations and the assumptions there will
be extensively used throughout the subsequent sections. The following section (Sect. 3) states
the main result (Theorem 1) precisely. The subsequent section (Sect. 4) provides a proof of
the main result. We tried to make the proof as self-contained as possible. However, it might be
helpful if the reader is familiar with the basic notations of Atei pairing [23], Brezing–Weng
elliptic curves [6], and the basic properties of cyclotomic polynomials. We also suggest that
the reader gets familiar with the properties of inverse cyclotomic polynomials given in [19].
The last section (Sect. 5) summarizes the main result and discusses a few open problems.

2 Preliminaries

In this section, we briefly review the Brezing–Weng curves, the Atei pairing and the Miller
loop length. The readers who are familiar with them can skip this section, except Notation 1
and Assumption 1 in Sect. 2.4. We encourage all the readers to read them carefully, because
the notations and the assumptions there will be extensively used throughout the subsequent
sections.

2.1 Brezing–Weng curves

We recall Brezing–Weng curves [6,11]. Let Fq be a finite field where q = pn with prime
p and let E be an elliptic curve defined over Fq . Let r(�= p) be a prime factor of the order
of E(Fq). Let k be the smallest integer such that r | (qk − 1); the integer k is called the
embedding degree of E with respect to q and r (For the details, see [13]).

To use pairings in cryptosystem, the prime r should be sufficiently large and the embed-
ding degree k should not be too large [11]. There are a number of methods for constructing
such pairing-friendly elliptic curves. All these methods essentially consist of the following
two steps:

(S1) Choose suitable integers q, r, k, t and d , where q, r, k are as described above and t is
the trace and d is the CM-discriminant.

(S2) Find an equation of the elliptic curve such that #E(Fq) = q +1− t using the Complex
Multiplication(CM) method [1].

In [6,11], Brezing and Weng gave a general method for carrying out Step (S1). We summarize
it below as Algorithm 1.
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274 H. Hong et al.

Algorithm 1 (Brezing–Weng method)
Input: k, d
Output: r, t, q

(1) Choose an irreducible polynomial R(x) ∈ Z[x] and a primitive k-th root of unity ζk

such that K ∼= Q[x]/(R(x)) contains
√−d and ζk .

(2) Set t (x) ∈ Q[x] be the polynomial representing ζk + 1 ∈ K .
(3) Set y(x) ∈ Q[x] be the polynomial representing (ζk − 1)/

√−d ∈ K .
(4) Set Q(x) = (t (x)2 + dy(x)2)/4.
(5) Choose x0 ∈ Z be such that Q(x0) and R(x0) are primes.
(6) Set r = R(x0), t = t (x0), q = Q(x0).
(7) Output r, t, q .

Note that the outputs r, t, q depend not only on the inputs k, d but also on the choices
R(x), ζk, x0 made in Steps (1) and (5). We will make the choices explicit. For this, we recall
that the Brezing–Weng method can be specialized into two types depending on the choice of
R(x) in Step (1), namely

(T1) R(x) is a cyclotomic polynomial [6].
(T2) R(x) is a non-cyclotomic polynomial, such as an irreducible factor of Φk(u(x)) for

some u(x) ∈ Q[x] [5,12].

In this paper, we deal with the first type. Specifically we set R(x) to be an ak-th cyclotomic
polynomial Φak(x) for some integer a. As the result, ζk is represented by xaη mod Φak(x)
for some integer η with gcd(k, η) = 1. Hence Steps (1) and (5) can be viewed as choosing
the values of the parameters a, η, x0. Thus the outputs r, t, q can be uniquely determined
from the parameters k, d, a, η, x0.

2.2 Atei pairing

We recall the Atei pairings [15,23]. Let E be an elliptic curve over Fq and E[r ] be the set of
all points of order r in E . For every integer a and P ∈ E , let fa,P be a function in Fq(E)
with a divisor div( fa,P ) = a(P) − (a P) − (a − 1)(O) where O is the point at infinity on
E . Let πq be the Frobenius endomorphism, πq : E → E, (x, y) �→ (xq , yq) and

G1 = E[r ]
⋂

Ker(πq − [1])
G2 = E[r ]

⋂
Ker(πq − [q])

The Atei pairings for P ∈ G1, Q ∈ G2 are defined as follows:

Atei pairing : ai (Q, P) = fμi ,Q(P)
(qk−1)/r for 0 < i < k

where

μi = qi smod r [ a = b smod c ⇐⇒ c|(a − b) and −c/2 < a ≤ c/2 ]

for

i =
{

1, . . . , k − 1 k is odd

1, . . . , k
2 − 1 k is even

We use ‘smod’ instead of ‘mod’ because it is known to be more efficient (one less loop).
When k is even, we consider only i = 1, . . . , k

2 −1, becauseμk/2 = −1 (trivial Atei pairing)
and μi+ k

2
= −μi (symmetric).
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2.3 Minimum Miller loop length

To compute the Atei pairings, we use Miller’s algorithm [18], which repeats a certain loop
for computing additions of points and evaluation at P . The complexity of Miller’s algorithm
is naturally characterized by the number of iterations of the loop, the so-called loop length.
The loop length, in case of the Atei pairing, can be easily shown to be log2 |μi |. Of course,
one chooses the value of i so that the loop length is minimum. We will denote the minimum
loop length by the symbol L , which is precisely given as

L = log2

⎧
⎨

⎩

min
1≤i≤k−1

|μi | if k is odd

min
1≤i≤ k

2 −1
|μi | if k is even (1)

2.4 Summary

In this subsection, we summarize all the notations and the assumptions introduced in the
previous subsections for easy reference. We encourage all the readers to read this subsec-
tion carefully, because the notations and the assumptions listed here will be extensively used
throughout the subsequent sections. The notations are ordered/structured so as to show explic-
itly how the minimum loop length L can be determined from the Brezing–Weng parameters
k, d, a, η, x0.

Notation 1 (Minimum Miller loop length in the Atei pairing based
on Brezing–Weng curves)

Parameters:
k, d, a, η, x0 : positive integers satisfying the condition given below (Assumption 1)

Brezing–Weng curves:
Φak(x) = the ak-th cyclotomic polynomial

ζ(x) = xaη mod Φak(x) i.e. ζ(x) is a primitive k-th root of unity in Q[x]/(Φak(x))

t (x) = ζ(x)+ 1

s(x) = the representation of
√−d as an element of Q[x]/(Φak(x))

y(x) = (ζ(x)− 1)
s(x)

−d
mod Φak(x)

Q(x) = t (x)2 + dy(x)2

4
r = Φak(x0)

q = Q(x0)

Atei pairing:

μi = qi smod r [ a = b smod c ⇐⇒ c|(a − b) and −c/2 < a ≤ c/2 ]

Minimum Miller loop length:

L = log2

⎧
⎪⎨

⎪⎩

min
1≤i≤k−1

|μi | if k is odd

min
1≤i≤ k

2 −1
|μi | if k is even ��
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For the above quantities to be well-defined and meaningful, one needs to impose certain
conditions on the parameters such as the following.

Assumption 1 (Global) From now on, throughout the paper, we will assume that the param-
eters k, a, d, η, x0 satisfy the following conditions. Hence, whenever the above parameters
appear in theorems, lemmas and proofs, one must remember that the conditions are implicitly
assumed.

A1 : k ≥ 3

A2 : gcd(η, k) = 1

A3 : d is squarefree and
√−d ∈ Q(ζak) where ζak is a primitive ak-th root of unity.

A4 : r is an odd prime number.

A5 : q is a prime power.

3 Main result

In the previous section (Sect. 2), we recalled how the minimum Miller loop length L in
the Atei pairing based on Brezing–Weng curves depends on the Brezing–Weng parameters
k, d, a, η, x0. If you have not done so yet, we encourage the readers to skim through the
notations and assumptions summarized in Sect. 2.4. Notation 1 shows explicitly the steps
to follow to compute L for given k, d, a, η, x0. One immediately sees that it involves long,
tedious and complicated computations such as evaluating polynomial functions, polynomial
divisions (remaindering), square root operation in a ring of algebraic integers, finding minima
over potentially large sets, etc.

The main result of this paper to provide a simple and exact formula for L in terms of the
parameters k, d, a, η, x0, under a mild condition. In order to state the main result, we need
the following additional notations.

Notation 2 (Notations used in stating the main result)

ϕ(n) = Euler-phi function, i.e. deg(Φn)

g( f ) = The maximum of the differences of two consecutive exponents in a polynomial

f, g( f ) = 0 when f is a monomial

H( f ) = the height of a polynomial f, i.e., the maximum of the absolute values of the

coefficients

Ψn(x) = the n-th inverse cyclotomic polynomial, i.e.,
xn − 1

Φn(x)

gn =

⎧
⎪⎨

⎪⎩

g(Ψn) if n is odd

g(Ψn mod xn/2) if n is even

Now we are ready to state the main result.
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Theorem 1 (Main result ) For all (k, d, a, η, x0) satisfying the following conditions

C1 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(n)− gn ≥ n

3
if n is odd

ϕ(n)− gn ≥ n

6
if n is even and k �= 4

ϕ(n) >
n

4
if n is even and k = 4

C2 : x0 > 2 H(Ψn)+ 2

C3 : d < Φn(x0)

where n = ak, we have

L = log2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xa/2
0 − 1 if k = 3 and a is even

xa/2
0 if k > 3 is odd and a is even

xa
0 − 1 if k = 6

xa
0 else

(2)

Remark 1 Note that the minimum Miller loop length L depends only on essentially two
parameters x0 and a as long as they satisfy the conditions in Theorem 1. Hence one can
choose the values of the other parameter to address other design issues (other than minimiz-
ing the Miller loop length).

Example 1 We will illustrate the above Theorem 1 by applying it to a small example taken
from [11] where a = 4, d = 1 and k > 3 is an odd prime. Note n = 4k. Note

ϕ(n) = ϕ(22 · k) = (22 − 2)(k − 1) = 2(k − 1)

From the basic properties of inverse cyclotomic polynomials [19], we immediately have

Ψn(x) = x2k+2 + x2k − x2 − 1

Since n is even, we inspect Ψn mod x2k , namely −x2 − 1, obtaining gn = 2 − 0 = 2. Note

ϕ(n)− gn = 2(k − 1)− 2 = 4k

6
+ 8(k − 3)

6
≥ 4k

6
= n

6

Thus the condition C1 is satisfied by every odd prime k > 3. All the coefficients of Ψn are
one of 1, 0,−1 and so H(Ψn) = 1. We can satisfy C2 by simply choosing x0 > 2 ·1+2 = 4.
Recall that Φn(x0) = r is intended to be the size of a large cyclic group. Hence d = 1 � r .
Thus the condition C3 is also satisfied by every “eligible” x0 value (that makes r a large
prime). Then, from Theorem 1, the minimum loop length L is given exactly by

L = log2(x
2
0 )

Note that L does not depend on the value of k at all. It says the minimum loop length is
essentially twice the bit length of x0.
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Remark 2 We observe that almost all cryptographically useful values of a, k, x0 satisfy the
conditions in Theorem 1. Hence the exact formula (2) in Theorem 1 applies to them. We
elaborate on this observation.

• In cryptography, typically a ∈ [1, 100] and k ∈ [3, 100]. Direct computation shows

a ∈ [1, 100] and k ∈ [3, 100] �⇒ C1

In fact, it also holds for much larger values of n = ak. For instance, it holds for every n
which has up to 3 distinct odd prime factors, except when k = 4 and the radical of n is
2 · 3 · 5 · 7, 2 · 3 · 5 · 11 or 2 · 3 · 5 · 13 [14].

• Direct computation shows that H(Ψn) ≤ 9 for n ≤ 104. Thus

n ≤ 104 and x0 > 20 �⇒ C2

Direct computation also shows that H(Ψn) ≤ 1 for n ≤ 104 and ϕ(n) ≤ 100. Thus

n ≤ 104 and ϕ(n) ≤ 100 and x0 > 4 �⇒ C2

Typically n is chosen so that ϕ(n) ≤ 100 for efficiency reason and x0 is chosen to be
much larger than 4, satisfying the condition C2.
If needed, one can estimate H(Ψn) for very large values of n. See [7,19] where an upper
bound for H(Ψn) is expressed in terms of the prime factors of n.

• The subgroup size r = Φn(x0) should be at least 2256 for security reasons. On the other
hand, the CM discriminant d is at most 1013 ≈ 244 for efficiency reasons [21]. Thus we
see that d � r , satisfying the condition C3.

4 Proof

In this section, we prove the main theorem given in the previous section. The proof is a bit
long and technical. Thus we divide it into many lemmas. For the sake of easy navigation
among the lemmas, we provide a dependency diagram among them in Fig. 1 in Appendix.
We begin by listing all the additional notations that will be used throughout the proofs without
explicit references.

Notation 3 (Notations used in the proof)

lc( f ) = the leading coefficient of a univariate polynomial f

Ik =
{ {1, . . . , k − 1} if k is odd

{1, . . . , k
2 − 1} if k is even

ψ(n) = degΨn(x)

B( f ) = max
x∈C: f (x)=0

|x |
Λi (x) = xai mod Φak(x)

dn(i) = deg(xi mod Φn(x))

tn = the number of exponents (terms) occurring in Ψn(x).

en, j = the j-th smallest exponent occurring in Ψn(x).

gn, j = en, j+1 − en, j
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The following lemma summarizes a few basic facts about Q(x) defined in Notation 1 (that
holds under Assumption 1). It shows that, in order to solve our main problem, we first need
to understand the remainder of a monomial modulo a cyclotomic polynomial.

Lemma 1

(i) Q(x)i mod Φak(x) = xaηi mod Φak(x) for i ∈ Ik

(ii) { ∣∣(Q(x)i mod Φak(x)
)
(x0)

∣∣ : i ∈ Ik } = { ∣∣(xai mod Φak(x)
)
(x0)

∣∣ : i ∈ Ik }

Proof (i) From the definition of Q(x) in Notation 1, we have, modulo Φak(x),

Q(x) ≡ (ζ(x)+ 1)2 + d(ζ(x)− 1)2s(x)2 1
d2

4
≡ (ζ(x)+ 1)2 − (ζ(x)− 1)2

4
≡ ζ(x) ≡ xaη

Hence Q(x)i mod Φak(x) = xaηi mod Φak(x).

(ii) Note, for i ∈ Ik ,

Q(x)i mod Φak(x) = xaηi mod Φak(x) =
{

xaσ(i) mod Φak(x) when k is odd
−xaσ(i) mod Φak(x) when k is even

where

σ : Ik −→ Ik

i �−→ ηi mod k when k is odd

i �−→ ηi mod
k

2
when k is even

From the fact that σ is one-to-one and onto, we have the desired result. ��
The following lemma recasts the question on the remainder of a monomial modulo a cyclo-
tomic polynomial to that on the inverse cyclotomic polynomial. This simple recasting will
play a crucial role in overcoming many technical challenges.

Lemma 2 Let Ψn = ∑tn
j=1 cn, j xen, j . We have, for all i ,

(xi mod Φn) · Ψn =
tn∑

j=1

cn, j x (i+en, j ) mod n

In particular, the set of non-zero coefficients of (xi mod Φn) · Ψn are the same as those of
Ψn.

Proof We only need to note, for all i ,

(xi mod Φn) · Ψn = (xi · Ψn) mod (Φn · Ψn)

= (xi · Ψn) mod (xn − 1)

=
⎛

⎝xi
tn∑

j=1

cn, j xen, j

⎞

⎠ mod (xn − 1)

=
⎛

⎝
tn∑

j=1

cn, j x i+en, j

⎞

⎠ mod (xn − 1)
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=
tn∑

j=1

cn, j x (i+en, j ) mod n

��
In the introduction (Sect. 1), we mentioned three technical challenges. Lemma 3 through
Lemma 6 deal with the first one: (a) determining the minimum degree over i of xi modulo a
cyclotomic polynomialΦn(x). The lemmas crucially exploit the previous lemma (Lemma 2)
where the question is recast in terms of inverse cyclotomic polynomials. Once so recast,
the problem (a) amounts to studying a certain sparsity structure (maximum gap between
consecutive exponents) of inverse cyclotomic polynomials (Lemmas 5 and 6).

Lemma 3 For 0 ≤ i < n, we have

dn(i) = i − ψ(n)+ max
en, j<n−i

en, j

Proof Let

hi = (xi mod Φn) · Ψn

Then we have

deg(hi ) = dn(i)+ ψ(n)

Thus we can determine dn(i) from deg(hi ). So we try to determine deg(hi ).
From Lemma 2, we have

hi =
tn∑

j=1

cn, j x (i+en, j ) mod n

Since i < n, we have

i + en, j < 2n

Thus

hi =
∑

i+en, j<n

cn, j x i+en, j +
∑

n≤i+en, j<2n

cn, j x i+en, j −n (3)

The first sum is a non-zero polynomial, since it contains the term cn,1xi due to the fact that
en,1 = 0. Note that every exponent in the first sum is at least i . Note also that every exponent
in the second sum is at most i − 1, since en, j < n. Hence

deg(hi ) = deg

⎛

⎝
∑

i+en, j<n

cn, j x i+en, j

⎞

⎠ = max
i+en, j<n

i + en, j = i + max
en, j<n−i

en, j

Thus

dn(i) = deg(hi )− ψ(n) = i − ψ(n)+ max
i+en, j<n

en, j

��
Lemma 4 For 1 ≤ j < tn , we have

min
n−en, j+1≤i<n−en, j

dn(i) = ϕ(n)− gn, j
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Proof From Lemma 3, we have

min
n−en, j+1≤i<n−en, j

dn(i) = min
n−en, j+1≤i<n−en, j

(
i − ψ(n)+ max

en,�<n−i
en,�

)

= min
n−en, j+1≤i<n−en, j

(
i − ψ(n)+ en, j

)

= n − en, j+1 + en, j − ψ(n)

= ϕ(n)− en, j+1 + en, j

= ϕ(n)− gn, j

��

Lemma 5 Let n be an odd number. Then we have

min
ϕ(n)≤i<n

dn(i) = ϕ(n)− gn

Proof Note

∃i
[
ϕ(n) ≤ i < n and n − en, j+1 ≤ i < n − en, j

]

⇐⇒ ϕ(n) < n − en, j

⇐⇒ n − en,tn < n − en, j

⇐⇒ en,tn > en, j

⇐⇒ 1 ≤ j < tn

From Lemma 4, we have

min
ϕ(n)≤i<n

dn(i) = min
1≤ j<tn

min
n−en, j+1≤i<n−en, j

dn(i)

= min
1≤ j<tn

(
ϕ(n)− gn, j

)

= ϕ(n)− max
1≤ j<tn

gn, j

= ϕ(n)− gn

��

Lemma 6 Let n be an even number such that ϕ(n) < n/2. Then we have

min
ϕ(n)≤i<n/2

dn(i) = ϕ(n)− gn

Proof Since n is an even number, we have n = 2α ·s whereα ≥ 1 and 2 � s. Sinceϕ(n) < n/2,
we have s ≥ 3. From the basic properties of inverse cyclotomic polynomials [19], we have

Ψn(x) = Ψs(−x2α−1
) − xn/2Ψs(−x2α−1

)

and there will be no accumulation/cancellation of terms across the first part and the second
part.
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Note

∃i
[
ϕ(n) ≤ i < n/2 and n − en, j+1 ≤ i < n − en, j

]

⇐⇒ max{ϕ(n), n − en, j+1} < min{n/2, n − en, j }
⇐⇒ max{n − en,tn , n − en, j+1} < min{n − en,ts+1, n − en, j }
⇐⇒ n − min{en,tn , en, j+1} < n − max{en,ts+1, en, j }
⇐⇒ min{en,tn , en, j+1} > max{en,ts+1, en, j }
⇐⇒ ts + 1 ≤ j < tn

From Lemma 4, we have

min
ϕ(n)≤i<n/2

dn(i) = min
ts+1≤ j<tn

min
n−en, j+1≤i<n−en, j

dn(i)

= min
ts+1≤ j<tn

ϕ(n)− gn, j

= ϕ(n)− max
ts+1≤ j<tn

gn, j

= ϕ(n)− max
tn
2 +1≤ j<tn

gn, j

= ϕ(n)− gn by the symmetry of Ψn

��
Lemma 7 through Lemma 9 determine when Λi = xai mod Φak(x) for i ∈ Ik has the
minimum degree. They can be viewed as applications of Lemma 5 and Lemma 6.

Lemma 7 Let a be odd and k be odd such that ϕ(ak)− gak > a. Then

• Λ1 = xa

• ∀i ∈ Ik i �= 1 �⇒ deg(Λi ) > deg(Λ1)

Proof Since ϕ(ak) > a, we have

Λ1 = xa mod Φak(x) = xa

Let i ∈ Ik = {1, . . . , k − 1}. Assume that i �= 1. We consider the two cases:

Case 1: 2 ≤ i < ϕ(ak)
a .

We obviously have

deg(Λi ) = deg
(

xai mod Φak(x)
)

= deg(xai ) = ai > a = deg(Λ1)

Case 2: ϕ(ak)
a ≤ i ≤ k − 1.

From Lemma 5, we have

deg(Λi ) ≥ ϕ(ak)− gak > a = deg(Λ1)

Thus

∀i ∈ Ik i �= 1 �⇒ deg(Λi ) > deg(Λ1)

��
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Lemma 8 Let a be even and k be odd such that ϕ(ak)− gak >
a
2 . Then

• Λ k+1
2

= −x
a
2

• ∀i ∈ Ik i �= k+1
2 �⇒ deg(Λi ) > deg(Λ k+1

2
)

Proof Since ϕ(ak) > a
2 , we have

Λ k+1
2

= xa k+1
2 mod Φak(x) = x

ak
2 x

a
2 mod Φak(x) = −x

a
2 mod Φak(x) = −x

a
2

Let i ∈ Ik = {1, . . . , k − 1}. Assume that i �= k+1
2 . Since a is even, we have ϕ(ak) < ak/2

and in turn ϕ(ak)
a < k

2 . Thus we consider the following three cases.

Case 1: 1 ≤ i < ϕ(ak)
a .

We obviously have

deg(Λi ) = deg
(

xai mod Φak(x)
)

= deg(xai ) = ai >
a

2
= deg(Λ k+1

2
)

Case 2: ϕ(ak)
a ≤ i < k

2 .
From Lemma 6, we have

deg(Λi ) ≥ ϕ(ak)− gak >
a

2
= deg(Λ k+1

2
)

Case 3: k+3
2 ≤ i ≤ k − 1.

From Lemma 6, we have

deg(Λi ) = deg(xai mod Φak(x))

= deg(x
ak
2 xai− ak

2 mod Φak(x))

= deg(−xai− ak
2 mod Φak(x))

≥ min{3a

2
, ϕ(ak)− gak}

>
a

2
= deg(Λ k+1

2
)

Thus

∀i ∈ Ik i �= k + 1

2
�⇒ deg(Λi ) > deg(Λ k+1

2
)

��
Lemma 9 Let k be even such that ϕ(ak)− gak > a. Then

• Λ1 = xa

• ∀i ∈ Ik i �= 1 �⇒ deg(Λi ) > deg(Λ1)

Proof Since ϕ(ak) > a, we have

Λ1 = xa mod Φak(x) = xa

Let i ∈ Ik = {1, . . . , k
2 − 1}. Assume that i �= 1. We consider the two cases:
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Case 1: 2 ≤ i < ϕ(ak)
a .

We obviously have

deg(Λi ) = deg
(

xai mod Φak(x)
)

= deg(xai ) = ai > a = deg(Λ1)

Case 2: ϕ(ak)
a ≤ i ≤ k

2 − 1.
From Lemma 6, we have

deg(Λi ) ≥ ϕ(ak)− gak > a = deg(Λ1)

Thus

∀i ∈ Ik i �= 1 �⇒ deg(Λi ) > deg(Λ1)

��
In the introduction (Sect. 1), we mentioned three technical challenges. Lemma 10 deals with
the second one: (b) finding out when a smaller degree implies a smaller value upon evaluation.
The crucial idea is again to recast the problem in terms of inverse cyclotomic polynomials.
Once so recast, the problem (b) amounts to bounding the coefficients of inverse cyclotomic
polynomials.

Lemma 10 For all (k, a, x0) satisfying the following condition:

C2 : x0 > 2 H(Ψak)+ 2

we have

deg(Λ j ) > deg(Λi ) �⇒ |Λ j (x0)| > |Λi (x0)|
Proof Let

S± = σ jΛ j ±Λi

where σ j = sign(lc(Λ j )). Let

W± = S± · Ψak

Note that lc(S±) ≥ 1 and lc(Ψak) = 1. Thus we have

lc(W±) ≥ 1

Note

W± = σ jΛ j · Ψak ±Λi · Ψak

From Lemma 2, we have

H(W±) ≤ H(Λ j · Ψak)+ H(Λi · Ψak) = 2H(Ψak)

By applying Cauchy’s root bound formula [8], we have

B(W±) ≤ H(W±)
|lc(W±)| + 1 ≤ 2H(Ψak)

1
+ 1 = 2H(Ψak)+ 1

Since B(S±) ≤ B(W±), we have

B(S±) ≤ 2H(Ψak)+ 1
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Assume that x0 > 2H(Ψak)+ 1. Since lc(S±) > 0, we have S±(x0) > 0, that is,

σ jΛ j (x0) > Λi (x0) > −σ jΛ j (x0)

Hence

|Λ j (x0)| > |Λi (x0)|
��

In the introduction (Sect. 1), we mentioned three technical challenges. Lemma 11 and
Lemma 12 deal with the last one: (c) finding out when remaindering commutes with eval-
uation, that is, polynomial remaindering followed by evaluation gives the same result as
evaluation followed by integer remaindering. The crucial idea is once again to recast the
problem in terms of inverse cyclotomic polynomials. Once so recast, the problem (c) amounts
to bounding the coefficients of inverse cyclotomic polynomials.

Lemma 11 For all (k, a, x0) satisfying the following condition:

C2 : x0 > 2H(Ψak(x))+ 2

we have

Φak(x0)

2
> |Γi (x0)|

where

Γi (x) = Q(x)i mod Φak(x)

Proof Let

S± = Φak

2
± Γi

W± = S± · Ψak

Note that lc(S±) = 1/2 and lc(Ψak) = 1. Thus we have

lc(W±) = 1/2

Note

W± = Φak

2
· Ψak ± Γi · Ψak = xak − 1

2
± Γi · Ψak

Thus

H(W±) ≤ 1/2 + H(Γi · Ψak)

From Lemmas 1 and 2, we have

H(Γi · Ψak) = H(Ψak)

Thus

H(W±) ≤ 1/2 + H(Ψak)

By applying Cauchy’s root bound formula [8], we have

B(W±) ≤ H(W±)
|lc(W±)| + 1 ≤ 1/2 + H(Ψak)

1/2
+ 1 = 2H(Ψak)+ 2
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Since B(S±) ≤ B(W±), we have

B(S±) ≤ 2H(Ψak)+ 2

Assume that x0 > 2H(Ψak)+ 2. Since lc(S±) > 0, we have S±(x0) > 0, that is,

Φak(x0)

2
> Γi (x0) > −Φak(x0)

2

Hence

Φak(x0)

2
> |Γi (x0)|

��
Lemma 12 For all (k, d, a, η, x0) satisfying the following conditions:

C2 : x0 > 2 H(Ψak(x))+ 2

C3 : d < Φak(x0)

we have

Q(x0)
i smod Φak(x0) =

(
Q(x)i mod Φak(x)

)
(x0)

Proof Let Γi (x) = Q(x)i mod Φak(x). Then we have for some P(x) ∈ Q[x]
Q(x)i = P(x)Φak(x)+ Γi (x)

Thus we have

Q(x0)
i = P(x0)Φak(x0)+ Γi (x0)

We claim that Q(x0), P(x0),Φak(x0) andΓi (x0) are all integers. First, Q(x0) is an integer
due to A5 in Assumption 1. Second, Φak(x0) is an integer because Φak(x) ∈ Z[x]. Third,
Γi (x0) is an integer due to Lemma 1. It remains to show that P(x0) is an integer. We will
do so by contradiction. Assume P(x0) is not an integer. Since Φak(x) ∈ Z[x] and monic,
obviously ζ(x), t (x), s(x) ∈ Z[x] and thus

Q(x)i = Q̃(x)i/(4d)i

for some Q̃(x) ∈ Z[x]. Since Φak(x) is monic, we have

P(x) = P̃(x)/(4d)i

for some P̃(x) ∈ Z[x]. Hence

P(x0) = p̃/(4d)i

for some p̃ ∈ Z. Note that P(x0)Φak(x0) is an integer. Thus the denominator of P(x0) should
be a factor of Φak(x0). Note that the denominator of P(x0) is a factor of (4d)i . Hence (4d)i

and Φak(x0) should have a common factor. According to Assumption 1, r = Φak(x0) is an
odd prime. This means that Φak(x0) | d , contradicting C3. So we have shown that P(x0)

is an integer.
Since Q(x0), P(x0),Φak(x0) and Γi (x0) are all integers, we have

Q(x0)
i smod Φak(x0) = Γi (x0) smod Φak(x0)
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From Lemma 11 and C2, we have

Φak(x0)

2
> |Γi (x0)|

Hence

Γi (x0) smod Φak(x0) = Γi (x0)

Therefore

Q(x0)
i smod Φak(x0) = Γi (x0)

Finally we have

Q(x0)
i smod Φak(x0) =

(
Q(x)i mod Φak(x)

)
(x0)

��
Lemma 13 uses the previous lemma (Lemma 12) to express the minimum Miller loop length
L in terms of Λi (x0).

Lemma 13 For all (k, d, a, η, x0) satisfying the following conditions:

C2 : x0 > 2 H(Ψak(x))+ 2

C3 : d < Φn(x0)

we have

L = log2 min
i∈Ik

|Λi (x0)|

Proof Note

L = log2 min
i∈Ik

∣∣∣Q(x0)
i smod Φak(x0)

∣∣∣ from Notation 1

= log2 min
i∈Ik

∣∣∣
(

Q(x)i mod Φak(x)
)
(x0)

∣∣∣ from C2, C3 and Lemma 12

= log2 min
i∈Ik

∣∣∣
(

xai mod Φak(x)
)
(x0)

∣∣∣ from Lemma 1

= log2 min
i∈Ik

|Λi (x0)| from Notation 3

��
Now, we are ready to prove Theorem 1 (Main Result). We will begin with Lemma 13. For
the minimum degree of Λi , we will use Lemma 7 through Lemma 9 and, for the minimum
value, we will use Lemma 10.

Proof of Theorem 1(Main Result) From C2, C3 and Lemma 13, we have

L = log2 min
i∈Ik

|Λi (x0)|

We consider several cases.
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Case 1: a is odd, k > 3 is odd. From C1 we have

ϕ(ak)− gak ≥ ak

3
>

ak

k
= a

From Lemma 7, we have

• Λ1 = xa

• ∀i ∈ Ik i �= 1 �⇒ deg(Λi ) > deg(Λ1)

From Lemma 10, we have

L = log2 (x
a
0 )

Case 2: a is even, k > 3 is odd. From C1 we have

ϕ(ak)− gak ≥ ak

6
>

ak

2k
= a

2

From Lemma 8, we have

• Λ k+1
2

= −x
a
2

• ∀i ∈ Ik i �= k+1
2 �⇒ deg(Λi ) > deg(Λ k+1

2
)

From Lemma 10, we have

L = log2 (x
a/2
0 )

Case 3: a is odd, k > 6 is even. From C1 we have

ϕ(ak)− gak ≥ ak

6
>

ak

k
= a

From Lemma 9, we have

• Λ1 = xa

• ∀i ∈ Ik i �= 1 �⇒ deg(Λi ) > deg(Λ1)

From Lemma 10, we have

L = log2 (x
a
0 )

Case 4: a is even, k > 6 is even. Using the same reasoning as in Case 3, we have

L = log2 (x
a
0 )

Case 5: a is odd, k = 3. From C1 we have

ϕ(a · 3)− ga·3 ≥ a · 3

3
= a

Since ga·3 ≥ 1, we have ϕ(a · 3) > a. Note

Φa·3(x) | Φ3(x
a·3/3) = x2a + xa + 1

Thus

• Λ1(x) = xa·1 mod Φa·3(x) = xa
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• Λ2(x) = xa·2 mod Φa·3(x) = (−xa − 1) mod Φa·3(x) = −xa − 1

Hence we have

L = log2 (x
a
0 )

Case 6: a is even, k = 3. From C1 we have

ϕ(a · 3)− ga·3 ≥ a · 3

6
= a

2

Since ga·3 ≥ 1, we have ϕ(a · 3) > a
2 . Since a is even, we have

Φa·3(x) | Φ2·3(xa·3/(2·3)) = xa − xa/2 + 1

Thus

• Λ1(x) = xa·1 mod Φa·3(x) = (xa/2 − 1) mod Φa·3(x) = xa/2 − 1
• Λ2(x) = xa·2 mod Φa·3(x) = (xa/2 − 1)2 mod Φa·3(x) = −xa/2

Hence we have

L = log2 (x
a/2
0 − 1)

Case 7: a is odd, k = 4. From C1 we have

ϕ(ak) >
ak

4
= a

Thus

• Λ1 = xa

Hence we have

L = log2 (x
a
0 )

Case 8: a is even, k = 4. Using the same reasoning as in Case 7, we have

L = log2 (x
a
0 )

Case 9: a is odd, k = 6. From C1 we have

ϕ(a · 6)− ga·6 ≥ a · 6

6
= a

Since ga·6 ≥ 1, we have ϕ(a · 6) > a. Note

Φa·6(x) | Φ6(x
a·6/6) = x2a − xa + 1

Thus

• Λ1(x) = xa·1 mod Φa·6(x) = xa

• Λ2(x) = xa·2 mod Φa·6(x) = (xa − 1) mod Φa·6(x) = xa − 1

Hence we have

L = log2 (x
a
0 − 1)
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Case 10: a is even, k = 6. Using the same reasoning as in Case 9, we have

L = log2 (x
a
0 − 1)

Summarizing the cases above, we have

L = log2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xa
0 if a is odd and k > 3 is odd.

xa/2
0 if a is even and k > 3 is odd.

xa
0 if a is odd and k > 6 is even.

xa
0 if a is even and k > 6 is even.

xa
0 if a is odd and k = 3.

xa/2
0 − 1 if a is even and k = 3.

xa
0 if a is odd and k = 4.

xa
0 if a is even and k = 4.

xa
0 − 1 if a is odd and k = 6.

xa
0 − 1 if a is even and k = 6.

Combining related cases, we have

L = log2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xa/2
0 − 1 if k = 3 and a is even

xa/2
0 if k > 3 is odd and a is even

xa
0 − 1 if k = 6

xa
0 else

Finally Theorem 1 (Main Result) has been proved. ��

5 Conclusion

In this paper, we provided a simple and exact formula for the minimum Miller loop length
in Atei pairing based on Brezing–Weng curves (using cyclotomic polynomials), in terms of
the involved parameters, under a mild condition on the parameters. We have also shown that
almost all cryptographically useful/meaningful parameters satisfy the mild condition.

One naturally wonders whether similar results could be obtained for more recent and
improved pairings such as R-ate [17] and optimal Ate pairings [22]. We have not yet found
a way to derive similar results, mainly because the expressions for the pairings are much
more complex than that of the Atei pairing. One also wonders whether the results given here
could be adapted to the Brezing–Weng curves where the polynomial R(x) is chosen to be
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a non-cyclotomic polynomial as in (T2) of Sect. 2.1. Again we have not yet found a way
to adapt the results, mainly because it is not clear what new object could play, in that case,
the crucial role that the inverse-cyclotomic polynomials play in this paper. We leave both
problems as open challenges.
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Appendix

See Fig. 1.

Fig. 1 Dependency among Lemmas
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