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Abstract The first infinite family of hyperovals of the Hermitian generalized quadrangle
arising from H(4, q2), q even, is constructed. Alternative geometric descriptions of the known
hyperovals of H(5, 4) are given.
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1 Introduction

A connected incidence system is an extended polar space if its point residues are finite
thick, non degenerate polar spaces. Extensions of polar spaces play an important role as
incidence geometries admitting interesting groups, such as sporadic simple, or some classes
of (extensions of) classical groups.

A hyperoval or a local subspace of a polar space P is a non-empty set of points of P
which intersects every singular line of P in either 0 or 2 points.

Hyperovals of polar spaces arise in the context of locally polar spaces. Indeed, from a
result of Buekenhout and Hubaut [3, Proposition 3] if A is a polar space of polar rank ≥ 3
and order n, and H is a hyperoval of A then H equipped with the graph induced by A
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310 A. Cossidente, G. Marino

on H , is the adjacency graph of a locally polar space of polar rank r −1 and order n such that
the residual space HP at any point P ∈ H is isomorphic to ConeP (A). This result makes
interesting the classification of all local subspaces of polar spaces. As observed in [3, Remark
2, p. 404] when r = 2 we can still say that a hyperoval of a generalized quadrangle S is a
graph of degree equal to |ConeP (S)| which has the property to be triangle free.

In this article we will focus on hyperovals of the polar spaces arising from the Hermitian
varieties H(n, q2), n = 4, 5 with automorphism groups P�U(n + 1, q2). For general infor-
mation on hyperovals of polar spaces we will refer to [8]. For more results on hyperovals on
Hermitian generalized quadrangles see also [5].

Firstly, we construct an infinite family of hyperovals of the generalized quadrangle
H(4, q2), q even, based on the existence of the cyclic spread of the Hermitian curve
H(2, q2) [1].

The hyperovals of H(5, 4) were classified by Pasechnick in [10, Proposition 3.1] with the
aid of a computer. He showed that there are, up to isomorphisms, two classes of hyperovals
of H(5, 4): a class of hyperovals consisting of 126 points and a class of hyperovals consisting
of 162 points. From [10, Theorem 1.1], if � is an extension of H(5, 4), then � is the extended
polar space for Fi22. It is also related to near subhexagons of H(5, 4)-dual polar spaces [8].

In a recent article [8] De Bruyn, among other interesting results, gave a computer-free
proof for the uniqueness, up to isomorphisms, of the hyperoval of size 126 of H(5, 4). Also,
in the article [7] the authors gave another geometric description of the 126-hyperoval of
H(5, 4) by means of the smallest Split Cayley hexagon H(2) [11].

In the last section of the article, we give an alternative description of both known hypero-
vals of H(5, 4) based on the action of the stabilizer in PSU6(4) of a self-polar simplex of
PG(5, 4).

2 Hyperovals of H(4, q2)

We construct the first infinite family of hyperovals of H(4, q2), q even.

Proposition 2.1 There exists an infinite family of hyperovals of H(4, q2), q even, of size
q5 − q4 + q3 + q2 + 2.

Proof Let H(4, q2) be a Hermitian variety of PG(4, q2), q even. Let π be a secant plane to
H(4, q2) and let � = π⊥, where ⊥ is the polarity induced by H(4, q2) in PG(4, q2). The stabi-
lizer of π in PGU(5, q2) is the quotient G = X/Z(X) of the group X = GU2(q2)×GU3(q2)

by its center Z(X) = Cq+1. The group G has four orbits on singular points of H(4, q2):
apart from the orbits of size q3 + 1 and q + 1, it has an orbit, say O1, of size (q3 − q)(q4 −
q3 +q2) consisting of points whose conjugate meets π at a secant line to the Hermitian curve
U = H(4, q2) ∩ π and an orbit O2 of size (q2 − 1)(q + 1)(q3 + 1) consisting of points
whose conjugate meets π at a line that is tangent to U . There are (q + 1)(q3 + 1) generators
meeting U and �. If two of them have non trivial intersection then they meet either in a point
of U or in a point of �. The points of O2 are those on such generators (q2 − 1 each).

Let 1 × S be a Singer cyclic group of G of order q2 −q + 1. From [1, Theorem 3.1], since
q is even, there exists a unique cyclic spread F = {�1, . . . , �q2−q+1} of the Hermitian curve
U invariant under 1 × S. Recall that a spread of the Hermitian curve H(2, q2) is a family of
q2 − q + 1 secant lines of H(2, q2) no two of them intersecting in a singular point. Notice
that F is also a dual arc: no three lines of F are in a pencil.

Consider now the subgroup H = (PGU2(q2) × S)/Cq+1 of G. The orbit O1 splits into
H-orbits one of which has size (q2 −q + 1)(q3 −q), say O ′ consisting of points of H(4, q2)
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Hermitian polar spaces 311

whose polar space intersects π in a line r of F . Indeed, the unital r⊥ ∩H(4, q2) contains the
chord �∩H(4, q2) and hence there are q3 −q points on H(4, q2) whose conjugate is a given
line of F . In other words, O ′ is the union of q2 −q +1 unitals {U1, . . . , Uq2−q+1} sharing the
chord �∩H(4, q2). Moreover, no three points of O ′ lie on the same generator, otherwise there
should exist three concurrent lines of F . We show that the union H = U ∪(�∩H(4, q2))∪ O ′
is a hyperoval of H(4, q2). If P is a point of � then a generator on P meets U and skips O ′.
Assume that P is a point of U and let �P the unique line of F on P . A generator on P meets
the unital of (�P )⊥ ∩ H(4, q2) in a point Q and hence either Q ∈ � or Q ∈ O ′. Let P ∈ O ′,
let Ui be the unital of O ′ on P and let �P = P⊥ ∩ π ∈ F . It follows that P⊥ meets all the
other unitals of O ′ at a chord distinct from �. A counting argument shows that q + 1 of the
q3 +1 generators on P meet �P and the remaining q3 −q are partitioned into q2 −q subsets
each of size q + 1 forming a pencil. Since F is a dual arc, generators in a subset meet one
and only one unital U j , j �= i . The proof is now complete. 	


Remark 2.2 Notice that the above construction also applies to the case of the Hermitian
surface giving rise to a 2-ovoid. On the other hand it is clear that it cannot work on
H(n, q2), n ≥ 5.

3 Hyperovals of H(5, 4)

Let H(5, 4) be the Hermitian variety of PG(5, 4) with equation X3
1 + X3

2 + X3
3 + X3

4 + X3
5 +

X3
6 = 0, where Xi , i = 1, . . . , 6 are projective homogeneous coordinates in PG(5, 4). Let

� be the 6-simplex of PG(5, 4) with vertices Ei = (0, . . . , 1, . . . , 0). Then � is a self-polar
simplex with respect to H(5, 4). Let �r = {(x1, . . . , x6) : xi ∈ GF(4) and xi �= 0 for
exactly r values of i}. So, in particular �1 is the set of vertices of �. Let G = PSL6(4).
Then G�, the stabilizer of � in G, is a group of order 6!34, with structure 34 · S6 and
|�r | = (6

r

)
3r−1. It turns out that each �r , 1 ≤ r ≤ 5 is an orbit for G�. It follows that

|�1| = 6, |�2| = 45, |�3| = 180, |�4| = 405, |�5| = 486. The set �6 of size 243 is
the union of three G�-orbits, denoted by �6(1),�6(a),�6(a2), where a ∈ GF(4) such
that a2 + a + 1 = 0, and defined as follows. For a point (x1, x2, x3, x4, x5, x6) ∈ �6, put
x = x1x2x3x4x5x6. We have:

�6(1) = {(x1, x2, x3, x4, x5, x6) ∈ �6 : x = 1},
�6(a) = {(x1, x2, x3, x4, x5, x6) ∈ �6 : x = a},

�6(a
2) = {(x1, x2, x3, x4, x5, x6) ∈ �6 : x = a2}.

Since G� consists of the monomial matrices in G and is generated by elations with centres
in �2, the sets �6(1),�6(a) and �6(a2), are actually G�-orbits and they have all size 81.

The orbits of G� on H(5, 4) are the orbits �r , for r even.

Proposition 3.1 The union �2 ∪ �6(1) is a 126-hyperoval of H(5, 4).

Proof Points of �2 are singular points on edges of � which is a self-polar simplex. Let
P = (1, 1, 0, 0, 0, 0) ∈ �2. Then P⊥ is the hyperplane X1 = X2. Since G� is two-transitive
on �, we have that on P there are 18 lines of H(5, 4) meeting �2 in at least 2 points and
each such line skips �6(1). However, it is easy to see, by direct computations, that the above
18 lines are exactly 2-secant to �2. The stabilizer of P in G� is a group K of order 1296
generated by the matrices [4].

123



312 A. Cossidente, G. Marino

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 a
0 0 a2 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎦

.

and
⎡

⎢⎢⎢⎢⎢⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 a2 0 0 0
0 0 0 a 0 0
0 0 0 0 a 0
0 0 0 0 0 a2

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

The group K permutes such 18 lines and has an orbit of size 27 on the remaining lines on
P that are 1-secant to �2 and 1-secant to �6(1). The 27 points are the images of the point
with coordinates (1, 1, 1, 1, 1, 1) under K.

On the other hand, if P = (1, 1, 1, 1, 1, 1) ∈ �6(1), then P⊥ is the hyperplane X1 +
X2 + X3 + X4 + X5 + X6 = 0. The stabilizer M of P in G� is the symmetric group S6

which is generated by the monomial matrices
⎡

⎢⎢⎢⎢⎢⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 1 0 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

The 45 lines of H(5, 4) on P in P⊥ are partitioned under M into two orbits: an orbit of
size 15 containing the point (1, 1, 0, 0, 0, 0) and its images under M (it consists of sextuples

123



Hermitian polar spaces 313

such that four entries are equal to zero and two entries are equal to one), and an orbit of size
30 containing the point (1, a, a2, 1, a, a2) ∈ �6(1) and its images under M that are exactly
2-secants to �6(1) (direct computations). Since G� is transitive on �2 and on �6(1), we
have proved that �2 ∪ �6(1) is a 126-hyperoval of H(5, 4). 	


In a similar way we can prove the following corollary.

Corollary 3.2 The unions �2 ∪ �6(a) and �2 ∪ �6(a2) are 126–hyperovals of H(5, 4).

Proof The orbits �6(1),�6(a),�6(a2) are projectively equivalent. Indeed, the matrix
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 a 0 0 0
1 0 0 0 0 0
0 a 0 0 0 0
0 0 0 0 0 a2

0 0 0 a 0 0
0 0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

is an element of PGU6(4)\PSU6(4) stabilizing � and permuting the three

orbits �6(ai ), i = 0, 1, 2. 	

Corollary 3.3 The full stabilizer in PSU6(4) of the 126-hyperoval of H(5, 4) is isomorphic
to PSU4(9) · 2 acting transitively on it.

Proof It follows from [9, Lemma 7] that there exists an elation α ∈ PSU6(4) such that
〈α, G�〉 has two orbits on points of H(5, 4), i.e. �2 ∪�6(1) of length 126 and �4 ∪�6(a)∪
�6(a2) of length 567. It turns out that 〈α, G�〉 is the group PSU4(9) · 2 which is maximal in
PSU6(4). 	

Proposition 3.4 The union �6(ai ) ∪ �6(a j ), i, j ∈ {0, 1, 2} is a 162-hyperoval of H(5, 4).

Proof This is [10, Lemma 5.1]. A direct proof goes as follows. First of all we notice that �6

consists of points (X1, X2, X3, X4, X5, X6) such that X3
1 = X3

2 = X3
3 = X3

4 = X3
5 = X3

6
and hence is the base locus of the 4-dimensional linear system

λ1(X3
2 − X3

1) + λ2(X3
3 − X3

1) + · · · + λ5(X3
6 − X3

1) = 0.

Let P = (1, 1, 1, 1, 1, 1) ∈ �6(1). On P there are 45 lines of H(5, 4) lying on the 15 planes
with equations Xi = X j , Xk = Xl , Xm = Xn and each such plane contains 2 lines that are
secant to �6(1) and 3 lines that are tangent to �6(1) and also to �6(a) and to �6(a2). It is
easy to see that the two lines that are secant to �6(1) skip �6(a) and �6(a2). Since G� acts
transitively on �6(ai ) it follows that �6(ai ) ∪ �6(a j ), i, j ∈ {0, 1, 2} is a 162-hyperoval of
H(5, 4). 	

Proposition 3.5 The stabilizer of the hyperoval O ′ = �6(ai )∪�6(a j ) in PSU6(4) is 34 : S6.

Proof The group 34 : S6 has two orbits on O ′, namely �6(ai ) and �6(a j ). In order to
get transitivity on O ′ we need to pass to P	U6(4). In this case there exists an involution
switching �6(ai ) and ∪�6(a j ). 	

Remark 3.6 Unfortunately, the above constructions do not generalize to higher values of q .

Another way of constructing hyperovals of H(4, q2) is given in the following well-known
result [10, Lemma 2.5].

Proposition 3.7 Let 
 be a subspace of H(5, q2) and let H be a hyperoval of H(5, q2).
Then 
 ∩ H is a hyperoval of 
.
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In [7, Proposition 4.3] we proved that the 126-hyperoval is a 6-tight set of H(5, 4). From
[2, Lemma 7] a non-degenerate hyperplane section of H(5, 4) is a 5-ovoid. Then, it follows
from [2, Corollary 5] that the 126-hyperoval induces a 30-hyperoval of H(4, 4). Although
we can provide the size of the 4-dimensional hyperoval in this case, in general we cannot
say anything about its automorphism group apart when the non-degenerate hyperplane is
generated by five of the six points of �. In that case the group certainly contains S5, and it
is interesting to note that the 30-hyperoval is related to the geometry of the complete span
of H(4, 4) admitting PSL(2, 11) studied in [6]. As showed in [6] there exist two complete
11-spans of H(4, 4), L1 and L2, both stabilized by the linear group PSL(2, 11) each of them
covering the same pointset of H(4, 4) and for this reason we called them companion spans.
The group PSL(2, 11) has the group K = A5 as a subgroup: it has two orbits X5 and X6 on
L1 of sizes 5 and 6, respectively and fixes one line, say r of L2 transversal to all the lines of
X5. The group K acts transitively on r and so the stabilizer KQ of a point Q ∈ r in K has
order 12. There are 8 generators of H(4, 4) on Q distinct from r and KQ has on them two
orbits of size 3 and two orbits of size 1. It follows that apart from r, X5 and X6, K certainly
has another line orbit Y5 of size 5, and two line orbits of size 15, Y15 and Y ′

15. A counting
argument shows that all the orbits described above cover the point set of H(4, 4) and that
our 30-hyperoval consists of points on one of the line orbits of size 15, say Y15 in such a way
that each line of Y15 contains exactly two points of it.
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