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Abstract It is proven that any Dembowski–Ostrom polynomial is planar if and only if its
evaluation map is 2-to-1, which can be used to explain some known planar Dembowski–
Ostrom polynomials. A direct connection between a planar Dembowski–Ostrom polynomial
and a permutation polynomial is established if the corresponding semifield is of odd dimen-
sion over its nucleus. In addition, all commutative semifields of order 35 are classified.
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1 Introduction

Throughout this paper, let p be an odd prime and q = pn for a positive integer n. We
denote the finite field of order q by Fq , the set of its nonzero elements by F∗

q and the ring
of polynomials in the indeterminate x over Fq by Fq [x]. A finite semifield S is a ring with
no zero-divisors, a multiplicative identity and left and right distributive laws. A subsemifield
of S is any subset of S which is also a semifield under its addition and multiplication. If a
multiplicative identity is not insisted upon, then we talk of presemifields. Let S be a finite
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414 G. Weng, X. Zeng

semifield. The three sets

Nl = {a ∈ S|(a ∗ x) ∗ y = a ∗ (x ∗ y) for all x, y ∈ S},
Nm = {a ∈ S|(x ∗ a) ∗ y = x ∗ (a ∗ y) for all x, y ∈ S},
Nr = {a ∈ S|(x ∗ y) ∗ a = x ∗ (y ∗ a) for all x, y ∈ S}

are called the left, middle and right nucleus of S, respectively. The set N = Nl
⋂

Nm
⋂

Nr

is called the nucleus of S. A semifield (or presemifield) S is commutative if a ∗ b = b ∗ a
holds for all a, b ∈ S. For a commutative semifield S, we have Nl = Nr = N , and N is
a finite field and S can be viewed as a vector space over N . Therefore, the additive group
of a semifield is an elementary abelian p-group where p is the characteristic of N . We shall
call this prime p as the characteristic of the semifield S. Then we can denote a semifield (or
presemifield) as S = (Fqm ,+, ∗), where N = Fq and m is the dimension of S over N . For
any x, y ∈ Fqm , x ∗ y can be viewed as a function valued in Fqm and bilinear over Fq as

x ∗ y = P(x, y) =
∑

0≤i, j≤m−1

ai j xqi
yq j

, ai j ∈ Fqm .

Two presemifields S = (Fqm ,+, ∗) and T = (Fqm ,+, ◦) are isotopic if there exist three
automorphisms σ1, σ2 and σ3 of (Fqm ,+) such that

σ3(x ∗ y) = σ1(x) ◦ σ2(y), x, y ∈ Fqm .

In this paper, all semifields (or presemifields) will contain a finite number of elements unless
it is specifically stated. Furthermore, we always assume that each semifield (or presemifield)
is commutative and has an odd order.

Any function from the finite field Fq to itself can be expressed as a polynomial of degree
less than q . A polynomial f ∈ Fq [x] is called a planar function if for every nonzero a ∈ Fq

the mapping fa(x) = f (a + x) − f (x) induces a permutation of Fq , that is to say, fa(x) is
a permutation polynomial (PP). A polynomial L ∈ Fq [x] is called a linearized polynomial
(it is also called a p-polynomial) if it can be represented as

L(x) =
n−1∑

i=0

ai x pi
,

where ai ∈ Fq . For any c ∈ Fq , the polynomial L(x) + c is called an affine p-polynomial if
L is a p-polynomial. Two planar functions f and g over Fq are equivalent if there exist two
linearized PPs σ1(x), σ2(x) ∈ Fq [x], an affine p-polynomial A(x), and c ∈ Fq such that

f (x) = σ1(g(σ2(x) + c)) + A(x), x ∈ Fq . (1)

A polynomial f ∈ Fq [x] is a Dembowski–Ostrom (DO) polynomial if f can be written as

f (x) =
n−1∑

i, j=0

ai j x pi +p j
.

Each planar DO function f over Fq determines a commutative presemifield by x ∗ y =
1
2 ( f (x + y) − f (x) − f (y)) and vice versa. The following theorem is well known. For
example, see [8] and [9].

Theorem 1.1 Let (S,+, ∗) be a finite presemifield with commutative multiplication and odd
order q. Define f : S → S by f (x) = x ∗ x. Then f is a planar DO function from (S,+)

to itself.
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Let f and g be two equivalent planar DO functions with f (x) = σ1(g(σ2(x)+c))+ A(x)

for all x ∈ Fq , where σ1(x) and σ2(x) ∈ Fq [x] are two linearized PPs, A(x) is an affine
p-polynomial, and c ∈ Fq . Since g is a DO polynomial, g(σ2(x) + c) − g(σ2(x)) is a
affine p-polynomial. Thus, without loss of generality, we can take c = 0 here, i.e., f (x) =
σ1(g(σ2(x)))+ A(x) for all x ∈ Fq . Since f (x) = f (−x) and g(x) = g(−x) for all x ∈ Fq ,
we have σ1(g(σ2(x))) + A(x) = σ1(g(σ2(−x))) + A(−x). Then, A(x) = A(−x) for all
x ∈ Fq . As f (0) = g(0) = 0, we have A(x) = 0, i.e.,

f (x) = σ1(g(σ2(x))) for all x ∈ Fq . (2)

In this case, the equality (2) is more simple than (1), and σ1(x), σ2(x) induce two automor-
phisms of (Fq ,+). Thus, the commutative presemifields S = (Fq ,+, ∗) and T = (Fq ,+, ◦)

given by x ∗ y = 1
2 ( f (x + y) − f (x) − f (y)) and x ◦ y = 1

2 (g(x + y) − g(x) − g(y)) are
isotopic since x ∗ y = σ1(σ2(x) ◦ σ2(y)).

On the other direction, for two isotopic commutative semifields S = (Fq ,+, ∗) and
T = (Fq ,+, ◦), however, the planar DO polynomials f (x) = x ∗ x and g(x) = x ◦ x are
not always equivalent, which is well discussed in [3].

Theorem 1.2 [3] Let S = (Fq ,+, ∗) and T = (Fq ,+, ◦) be two isotopic commutative
semifields of characteristic p, and f (x) = x ∗ x, g(x) = x ◦ x be two planar DO functions
derived from S and T respectively. Let Nm and N be the middle nucleus and nucleus of S
with |Nm | = pm, |N | = pt . Then one of the following statements must hold.

(1) m/t is even, and f, g are two equivalent planar functions.
(2) m/t is even, q is odd, and h(x) = (α ∗ x) ∗ x is a planar DO function equivalent to g

where α is a non-square element of the field (Nm,+, ∗).

The equivalence, described by Coulter and Henderson [3], between commutative pre-
semifields of odd order and planar DO polynomials provides an approach, by which we can
study commutative presemifields of odd order from the perspective of planar DO polynomials
over finite fields of odd characteristic. In this paper, we establish a necessary and sufficient
condition for a DO function to be planar over a finite field of odd characteristic. With this,
several constructions of known planar DO functions can be explained in a simple way. We
also obtain a property of the images of planar DO functions, which closely connects a planar
DO function to a permutation polynomial when the corresponding commutative semifield is
of odd dimension over its nucleus. Finally, we discuss the subsemifields of a commutative
semifield and the equivalence of planar DO functions. All commutative semifields of order
35 are classified.

2 A necessary and sufficient condition for planar DO polynomials

In this section, a necessary and sufficient condition for a DO polynomial to be planar is
established.

The following lemmas will be used to prove results in this paper.

Lemma 2.1 [13] Let L ∈ Fq [x] be a p-polynomial. Then the evaluation map of L is a Fp-
homomorphism from (Fq ,+) to itself, and each element x in its image has pr pre-images,
where pr is the number of roots (counted without multiplicities) of L in Fq . In particular, L
is a PP over Fq if and only if L has no roots in Fq other than 0.
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We say a function f over Fq is even if f (x) = f (−x) for all x ∈ Fq . The function f is
called 2-to-1 if (1) f (x) = 0 if and only if x = 0; and (2) every image of f except 0 has
exactly 2 pre-images.

We recall some preliminaries of difference sets here.
Let G be a finite multiplicative group of order v, and e be the identity of G. A k-element

subset D of G is called a (v, k, λ) difference set if the list of “differences” xy−1, x, y ∈ D,
represents each non-identity element in G exactly λ times. A (v, k, λ, μ) partial difference
set is a k-element subset D of G for which the list of “differences” xy−1, x, y ∈ D, repre-
sents each non-identity element in D exactly λ times and each non-identity element in G\D
exactly μ times, and a skew Hadamard difference set (SHDS) is a (v, k, λ) difference set
D such that G is the disjoint union of D, D(−1), and {e}, where D(−1) = {x−1|x ∈ D}.
A partial difference set D in G is of Paley type if its parameter is (v, v−1

2 , v−5
4 , v−1

4 ). We
say two subsets D and E of G are equivalent if there exist an automorphism σ of G and an
element g ∈ G such that D = gσ(E) := {gσ(x) | x ∈ E}. We shall consider these objects
in more detail in Sect. 3.

Lemma 2.2 [17] Let f be an even planar function from Fq to itself with f (0) = 0. Then f
is 2-to-1, furthermore, I m( f ) \ {0} is a skew Hadamard difference set if q ≡ 3 (mod 4), or
a Paley type partial difference set if q ≡ 1 (mod 4).

This lemma also appears in [12]. Note that for a DO polynomial f (x) = ∑n−1
i, j=0 ai j x pi +p j

from Fq to itself, one has f (0) = 0 and f (x) = f (−x) for any x ∈ Fq . It follows from
Lemma 2.2 that if a DO function over Fq is planar, then it is 2-to-1. In fact, the converse is
also true, which is shown in the following theorem.

Theorem 2.3 Let f be a DO polynomial from Fq to itself. Then f is planar if and only if f
is 2-to-1.1

Proof By Lemma 2.2, it is sufficient to prove that a 2-to-1 DO polynomial is planar.
If the DO polynomial f is 2-to-1, then f (x) = f (y) if and only if x = ±y. Notice that

fa(x) = f (x +a)− f (x) is an affine p-polynomial for each a ∈ F∗
q . From Lemma 2.1, every

image of fy has the same number of pre-images. For any a ∈ F∗
q , we have fa(− 1

2 a) = 0.

Further, if fa(x) = 0, then f (x + a) = f (x), which implies x + a = ±x , i.e., x = − 1
2 a.

Hence, 0 has exactly one pre-image, and so does every image of fa . This shows that fa is a
PP and then f is planar. �	
From the proof, Theorem 2.3 is also true for infinite commutative semifields of odd charac-
teristic.

For an arbitrary polynomial over Fq , it is difficult to check algebraically whether it is
2-to-1 (or a PP). But for some special polynomials, one can easily answer this question.
For a monomial xd , it is 2-to-1 if and only if (q − 1, d) = 2, and it is a PP if and only if
(q − 1, d) = 1. Dickson polynomials of the first kind are another special case. The Dick-
son polynomial Dd(x, a) of the first kind of degree d in the indeterminate x and with the
parameter a ∈ Fq is given as

Dd(x, a) =

d/2�∑

i=0

d

d − i

(
d − i

i

)

(−a)i xd−2i ,

1 We have been informed that R.S Coulter and R.W Matthews have a different proof of Theorem 2.3.
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where 
d/2� denotes the largest integer less than or equal to d/2. It is well known that for
a �= 0, Dd(x, a) permutes the field Fq if and only if (q2 −1, d) = 1. We refer readers to [14]
for more details on Dickson polynomials. Then a natural question arises as below. When is
Dd(xs, a) − Dd(0, a) a DO polynomial? In [6], it is well discussed, and we list the result as
the following.

Theorem 2.4 [6] Let Dd(x, a) be the Dickson polynomial of the first kind of degree d,
where (p, d) = 1 and d > 1. Let the integer s satisfy (p, s) = 1 and s > 1. Then
Dd(xs, a) − Dd(0, a) is a DO polynomial if and only if

(1) a = 0, and sd = 1 + p j for some integer j;

(2) a �= 0, d = 2, s = 1+p j

2 ;
(3) a �= 0, d = 3, s = 2 and p = 5;
(4) a �= 0, d = 4, s = 1 and p = 3;
(5) a �= 0, d = 5, s = 2 and p = 3.

Thus, Theorem 2.3 gives an alternative explanation of the following planar DO polynomials.

(1) The polynomial f (x) = x2 is a planar DO polynomial over any finite field, where the
corresponding semifield is a field.

(2) Let f (x) = x pl+1 be defined over Fq . Then f is a planar polynomial if and only if
n/(n, l) is odd, where (n, l) denotes the greatest common divisor of the integers n and
l. In such cases, the resulting semifield is isotopic to the commutative twisted field
generated by the field automorphism x pl

defined by Albert [1].
(3) For a ∈ F∗

3l , D5(x2, a) is planar over F3l if and only if l is odd or both l = 2 and
a = ±1, see [5] and [7], and their corresponding semifields are not isotopic to the
above ones [3].

3 Images of planar DO polynomials

In this section, we characterize a property of the images of planar DO polynomials, and
derive a relation between a planar DO polynomial and a permutation polynomial.

For a commutative ring R with identity 1, the group ring R[G] = {∑g∈G agg | ag ∈ R}
with the multiplication rule “·” as

⎛

⎝
∑

g∈G

agg

⎞

⎠ ·
(

∑

h∈G

bh g

)

=
∑

g∈G

∑

h∈G

(ahbh−1g)g

is a free R-module of rank v. Obviously, e is the identity of R[G]. We use the same symbol
D to denote the element

∑
g∈D g in R[G] for a subset D of G.

Usually, R is taken as the ring Z of integers, the field Q of rational numbers, or the complex
field C. In particular, in Z[G], D is a (v, k, λ) difference set if and only if

DD(−1) = (k − λ)e + λG,

and D is a (v, k, λ, μ) partial difference set if and only if

DD(−1) = se + μG + (λ − μ)D,

where s = k(k − λ) − μ(v − k).
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When G is abelian, we can also use the notion of a character. A character of G is a group
homomorphism χ : G → C∗, where C∗ is the multiplicative group of C. The set Ĝ of all
characters of G is a group and is isomorphic to G. For the sake of completeness, we list two
well known fundamental results on characters as below.

Lemma 3.1 (Orthogonality relations) Let G be a finite abelian group of order v and with
identity e. Then

∑

χ∈Ĝ

χ(g) =
{

0, if g �= e,
v, if g = e

and
∑

g∈G

χ(g) =
{

0, if χ �= χ0,

v, if χ = χ0,

where χ0 is the trivial character of G, that is, χ0(g) = 1 for all g ∈ G.

Lemma 3.2 (Inversion formula) Let G be a finite abelian group of order v. Let A =∑
g∈G agg ∈ C[G], and χ(A) := ∑

g∈G agχ(g). Then the coefficients of A are determined
as

ag = 1

v

∑

χ∈Ĝ

χ(A)χ(g−1).

Hence, if A, B ∈ C[G] satisfy χ(A) = χ(B) for each character χ of G, then A = B.

In this section, we only focus on the case G = (Fqm ,+). The trace function Trmn
n (·) from

Fqm to Fq is defined by

Trmn
n (x) =

m−1∑

i=0

xqi
, x ∈ Fqm .

The trace function obeys the transitivity law, i.e., Trmn
1 (x) = Trn

1(Trmn
n (x)) for all x ∈ Fqm .

Moreover, each character χβ for β ∈ Fqm could be written as

χβ(α) = ξTrmn
1 (αβ), α ∈ Fqm ,

where ξ is a p-th primitive root of unity in C.

Lemma 3.3 Let S = (Fqm ,+, ∗) be a commutative semifield with the nucleus Fq , and

f (x) = x ∗ x =
m−1∑

i, j=0

ai j xqi +q j

be the corresponding planar DO polynomial. If we view Fqm as a vector space over Fq , then
for all α ∈ F∗

qm , Trmn
n (α f (x)) can be viewed as a nondegenerate quadratic form over Fq .

Proof By the expression of f (x), it is sufficient to prove that Trmn
n (α f (x)) is nondegen-

erate. Otherwise, there exists some α ∈ F∗
qm such that Trmn

n (α f (x)) is degenerate. As a
consequence, there is an element β ∈ F∗

qm such that Trmn
n (α f (x)) = Trmn

n (α f (x + β)) for
all x ∈ Fqm . Then Trmn

n (α fβ(x)) = 0 for all x ∈ Fqm . This shows that fβ(x) cannot be
bijective, contradicting with the fact that f (x) is planar and this finishes the proof. �	

The following lemmas come from [13].
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Lemma 3.4 [13] Let f be a nondegenerate quadratic form over Fq in an odd number m of in-
determinates. Then for b ∈ Fq , the number of solutions of the equation f (x1, x2, . . . , xm) = b
in Fm

q is

qm−1 + q
m−1

2 η
(
(−1)

m−1
2 bδ

)
,

where δ = det( f ) and η is the quadratic character of Fq with

η(a) =
⎧
⎨

⎩

0, a = 0,

1, if a is a square in F∗
q ,

−1, if a is a non-square in F∗
q .

Lemma 3.5 [13] Let f be a nondegenerate quadratic form over Fq in an even number m of in-
determinates. Then for b ∈ Fq , the number of solutions of the equation f (x1, x2, . . . , xm) = b
in Fm

q is

qm−1 + v(b)q
m−2

2 η
(
(−1)

m
2 δ

)
,

where δ = det( f ), η is the quadratic character of Fq and

v(b) =
{

q − 1, b = 0,

−1, otherwise.

Given the above, we have the following result.

Proposition 3.6 Let S = (Fqm ,+, ∗) be a commutative semifield with the nucleus Fq , and

f (x) = x ∗ x =
m−1∑

i, j=0

ai j xqi +q j

be the corresponding planar DO polynomial. Denote D = Im( f ) \ {0}, E = Fqm \ Im( f ),
and aD = {ad | d ∈ D} for a ∈ F∗

q . Then one of the following statements must hold.

(1) when m is even, or m is odd and a is a square, aD = D;
(2) when m is odd and a is a non-square, aD = E.

Proof For β ∈ Fqm , each character χβ of (Fqm ,+) can be written as

χβ(α) = ξTrmn
1 (αβ), α ∈ Fqm .

By Theorem 2.3 together with f being a planar DO polynomial, we have

1 + 2χβ(D) =
∑

x∈Fqm

ξTrmn
1 (β f (x)),

by which 1 + 2χβ(aD) = ∑
x∈Fqm ξTrn

1(aTrmn
n (β f (x))).

When m is even, for any fixed a ∈ F∗
q , by Lemmas 3.3 and 3.5 the numbers of the solutions

of the two equations Trmn
n (β f (x)) = b and Trmn

n (β f (x)) = ab are equal for all b ∈ Fq .
Thus χβ(aD) = χβ(D) for any a ∈ F∗

q . By Lemma 3.2, we have aD = D.
When m is odd, for a given a ∈ F∗

q , by Lemmas 3.3 and 3.4 the numbers of the solutions
of the two equations Trmn

n (β f (x)) = b and Trmn
n (β f (x)) = ab are equal for all b ∈ Fq if
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and only if a is a square. Notice that
∑

x∈Fq
ξTrn

1(cx) = χc(Fq) = 0 for c ∈ F∗
q by Lemma

3.1. Consequently, we have

1 + 2χβ(D) =
∑

x∈Fqm

ξTrmn
1 (β f (x)) =

∑

b∈Fq

q
m−1

2 η
(
(−1)

m−1
2 bδβ

)
ξTrn

1(b),

where δβ = det
(
Trmn

n (β f (x))
)
. Similarly, we have

1 + 2χβ(aD) =
∑

b∈Fq

q
m−1

2 η
(
(−1)

m−1
2 abδβ

)
ξTrn

1(b).

This implies

χβ(aD) =
{

χβ(D), if a is a square,
χβ(E), otherwise.

The proof follows from Lemma 3.2. �	

For the case n = 1, i.e., q = p is a prime, Proposition 3.6 has already been proven by
discussing the number of multipliers of difference sets. Readers may refer to [2,10,11,15],
and [16] for more details on skew Hadamard difference sets or partial difference sets.

When m is odd in Proposition 3.6, the planar function f is closely related to a permutation
polynomial.

Theorem 3.7 Let S = (Fqm ,+, ∗) be a commutative semifield of the nucleus Fq , and

f (x) = x ∗ x =
m−1∑

i, j=0

ai j xqi +q j

be the corresponding planar DO polynomial of S. If m is odd, then the polynomial

g(x) =
m−1∑

i, j=0

ai j di j (x)x
qi +q j

2 (3)

where

di j (x) =
{

1 if i and j have the same parity,

x
qm −1

2 , otherwise,

is a permutation polynomial over Fqm .

Proof It can be verified that f (x) = g(x2). By Theorem 2.3, f (x) is a 2-to-1 planar DO
function. Notice that x2 is also a 2-to-1 planar function. Consequently, g must be bijective
from Im(x2) to Im( f ). For a non-square element a of Fq , by Proposition 3.6, we have

a (Im( f ) \ {0}) = Fqm \ Im( f ), and a(Im(x2) \ {0}) = Fqm \ Im(x2). (4)

By (3), it can be verified that g(ax) = ag(x) for all a ∈ Fq and x ∈ Fqm . This together with
(4) shows that g is a PP over Fqm .

The proof is finished. �	
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4 Commutative semifields of order 35

Recall that subsemifields of a semifield S are those subsets of S which are also semifields
under its addition and multiplication. First, we give a result on the subsemifields of a com-
mutative semifield of order p5.

Lemma 4.1 Let (S,+, ∗) be a commutative semifield with |S| = q = pn, where p is a
prime and n is odd. If T is a subset of S, and (T ,+, ∗) is also a presemifield with |T | = pk,
then k is odd.

Proof From Proposition 3.6, the “square set” {x ∗ x | x ∈ S} does not contain any nontrivial
subgroup of (S,+), neither does {x ∗ x | x ∈ T }. This shows that k is odd. �	
Lemma 4.2 Let (S,+, ∗) be a presemifield with |S| = q = pn, where p is a prime and n
is odd. If T is a proper subset of S, and (T ,+, ∗) is also a presemifield with |T | = pk, then
2k ≤ n.

Proof We view S as a linear space over Fp , and ε1, ε2, · · · , εn is a basis of S. Without loss
of generality, we assume that T is the linear span of ε1, ε2, · · · , εk .

As T is also a presemifield, a ∗ b is not in T for any a �= 0 ∈ T and b /∈ T .
If n−k < k, then the k vectors ε1 ∗εk+1 +T , ε2 ∗εk+1 +T , · · · , εk ∗εk+1 +T are linearly

dependent in the linear space S \T of dimension n −k over Fp . That implies that there exists
a nonzero k-tuple (c1, c2, · · · , ck) ∈ Fk

p such that
∑k

i=1(ciεi ∗εk+1) = (
∑k

i=1 ciεi )∗εk+1 ∈
T .

It is a contradiction. �	
By Lemmas 4.1 and 4.2, we immediately have

Theorem 4.3 Let S = (Fq ,+, ∗) be a commutative semifield with order q = p5. Then any
subsemifield (T ,+, ∗) of S has order either p or p5.

Secondly, we list all commutative semifields of order 35 by computer. As the semifield is
a linear space over its nucleus, we always assume that the semifield S of order p5 is viewed
as a vector space over Fp , and each element is written as a tuple (x1, x2, . . . , x5) ∈ F5

p .
For i ∈ {1, 2, 3, 4, 5}, let εi denote the vector with 1 in the i-th component and 0 in other
components.

By Theorem 2.3, in order to obtain all commutative semifields S of order p5, we only
need to determine all those symmetric matrices A = (ai j )5×5 with ai j = εi ∗ ε j ∈ S,
for which the associated quadratic function f (X) = X AX T is 2-to-1 over S, where X =
(x1, x2, . . . , x5) ∈ S. Without loss of generality, we assume that ε1 is the identity of semifield,
i.e., a1 j = a j1 = ε j .

As S has only subsemifields of order p and p5, for each x ∈ S, x �= kε1, k ∈ Fp , we have
that ε1, x and x ∗ x are linearly independent over Fp . Furthermore, there exists x ∈ S, such
that ε1, x, x ∗ x and (x ∗ x) ∗ (x ∗ x) are linearly independent over Fp . If (x ∗ x) ∗ (x ∗ x)

is a linear combination of ε1, x and x ∗ x , then x ∗ (x ∗ x) cannot be a linear combination of
ε1, x and x ∗ x , or there exists a subsemifield of order p3 in S, which is generated by ε1, x
and x ∗ x . Then y = ε1 + x ∈ S has the property that ε1, y, y ∗ y and (y ∗ y) ∗ (y ∗ y) are
linearly independent.

Thus, without loss of generality, we can assume a22 = ε2∗ε2 = ε3, and a33 = ε3∗ε3 = ε4.
As ε1, ε2, ε3 and ε4 could not generate a subsemifield of order p4, we also assume one of
a23, a24, a34 and a44 to be ε5. Therefore, there are less than 4p35 possibilities of the matrix A.
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Table 1 Planar DO functions over F35

Polynomial Commutative semifield type Skew Hadamard difference set

x2 Field Paley difference set

x4 Albert’s twisted field Paley difference set

x10 Albert’s twisted field Paley difference set

x90 + x2 See [4] Paley difference set

x10 + x6 − x2 Coulter–Matthews field DY (1)

x10 − x6 − x2 Ding-Yuan variation DY (−1)

x162 + x108 − x84 + x2 See [4] Inequivalent to the above ones

For each matrix, we only need to calculate X AX T for p5−1
2 of X ’s in S. We can check them

one by one by computer when p = 3. On a personal computer (CPU: Intel Core Duo T7300,
2.0 GHz), it takes about ten hours to perform an exhaustive search in the case of order 35.
We found 18,096 examples in total.

All these semifields can be classified from the view of planar DO functions. Let f and
g be two equivalent planar DO functions, with f (x) = σ1(g(σ2(x))) for all x ∈ Fq , where
σ1, σ2 are two automorphisms of (Fq ,+). Then σ1 is an automorphism of the difference sets
Im( f ) \ {0} and Im(g) \ {0}, since Im( f ) = σ1(Im(g)). Thus

Proposition 4.4 Let f and g be two planar DO functions over Fq . If difference sets Im( f ) \
{0} and Im(g)\{0} are not equivalent, then f and g are two inequivalent planar DO functions.

By Theorem 2.3, planar DO functions are 2-to-1. For two given planar DO functions f
and g over Fq , we can easily judge whether there exists an automorphism σ of (Fq ,+) such
that f (x) = g(σ (x)) for all x ∈ Fq . Therefore, listing all automorphisms of two equivalent
SHDS (or Paley type partial difference sets, abbreviated as PPDS) is an efficient way to
determine whether two planar DO functions are equivalent or not. There are few results on
equivalent SHDS or PPDS. Before 2005, there was a conjecture that all SHDS are equivalent
to Paley difference sets, which are the SHDS derived from the planar DO function f (x) = x2.
In [7], Ding and Yuan gave a SHDS inequivalent to a Paley difference set, which is the SHDS
derived from planar DO functions f (x) = D5(x2,±1), and some other inequivalent SHDS
are given in [17,18]. At present, there is no known proof that these SHDS are inequivalent
in the general case. When q is small, we can perform an exhaustive search of all automor-
phisms of (Fq ,+) by computer. For two equivalent SHDS D, E in (Fq ,+), we can list all
automorphisms σ such that D = σ(E) by computer. When q = p5, there are less than p25

automorphisms σ of (Fq ,+). It takes several seconds for q = 35 on a personal computer
(CPU: Intel Core Duo T7300, 2.0GHz).

In Table 1, we list all planar DO functions over F35 , which are also given in [4].
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