
Des. Codes Cryptogr. (2012) 63:357–363
DOI 10.1007/s10623-011-9560-7

Two classes of optimal two-dimensional OOCs

Yuemei Huang · Yanxun Chang

Received: 2 March 2011 / Revised: 11 August 2011 / Accepted: 13 August 2011 /
Published online: 28 August 2011
© Springer Science+Business Media, LLC 2011

Abstract Let �(u × v, k, λa, λc) denote the largest possible size among all 2-D (u ×
v, k, λa, λc)-OOCs. In this paper, the exact value of �(u × v, k, λa, k − 1) for λa = k − 1
and k is determined. The case λa = k − 1 is a generalization of a result in Yang (Inform
Process Lett 40:85–87, 1991) which deals with one dimensional OOCs namely, u = 1.
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1 Introduction

An optical orthogonal code is a family of (0, 1)-matrices with good auto- and cross-corre-
lation properties. Its study has been motivated by applications in an optical code-division
multiple access (OCDMA) system. For more information, the interested reader may refer to
[18,21,22,25,26].

Let u, v, k, λa and λc be positive integers. A two-dimensional (u × v, k, λa, λc) optical
orthogonal code (briefly, 2-D (u ×v, k, λa, λc)-OOC), C, is a family of u ×v (0, 1)-matrices
(called codewords) of Hamming weight k satisfying the following two correlation properties:

(1) The auto-correlation property:
∑u−1

i=0
∑v−1

j=0 ai j ai, j+τ ≤ λa for any matrix A =
(ai j )u×v ∈ C and any integer τ �≡ 0(mod v);

(2) The cross-correlation property:
∑u−1

i=0
∑v−1

j=0 ai j bi, j+τ ≤ λc for any matrices A =
(ai j )u×v ∈ C, B = (bi j )u×v ∈ C with A �= B, and any integer τ ,

where the integer j +τ is reduced modulo v. The number of codewords of C is called the size
of C. Let �(u ×v, k, λa, λc) denote the largest possible size among all 2-D (u ×v, k, λa, λc)-
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OOCs. A 2-D (u×v, k, λa, λc)-OOC with �(u×v, k, λa, λc) codewords is said to be optimal.
A 2-D (1 × v, k, λa, λc)-OOC is usually called one-dimensional (v, k, λa, λc)-OOC (or
1-D (v, k, λa, λc)-OOC). When λa = λc = λ, the notations of 2-D (u × v, k, λ)-OOC and
�(u × v, k, λ) are employed the abbreviated notation. From the definition of optimal OOC,
it is straightforward that an optimal 2-D OOC exists for all parameter values: it is simply an
OOC of the largest possible size. Determining �(u × v, k, λa, λc) for the parameters u, v,
k, λa and λc is apparently a difficult task.

Throughout the present paper let �(u × v, k) be the set of all k-subsets of Iu × Zv , where
Iu = {0, 1, . . . , u − 1} and Zv is the residue group of integers modulo v. The notion of 2-D
OOCs can be more conveniently reformulated as follows. By identifying codewords in C
with k-subsets of Iu × Zv representing the indices of the nonzero positions in a matrix, C can
be viewed as a family F ⊆ �(u × v, k) satisfying the following two properties:

(1′) The auto-correlation property: |X ⋂
(X + τ)| ≤ λa for any X ∈ F and every τ ∈

Zv\{0};
(2′) The cross-correlation property: |X ⋂

(Y + τ)| ≤ λc for any X, Y ∈ F with X �= Y and
every τ ∈ Zv ,

where X + i = {(x, y + i) : (x, y) ∈ X} and all the additive operations are performed in Zv .
The research on optimal 1-D OOC has concentrated on the case when λa = λc in many

papers, see, for example, [1–3,6,11,8–10,12–17,19,20,35]); a little work has been done on
the case when λa �= λc, the reader refers to [5,23,31]. For the research on optimal 2-D
OOC, the reader may refer to [4,7,24,27,29,32,34] and the references therein. It should be
mentioned that because of the practical point of view in the definition of OOC λa must be
less than k. Therefore λa = k is an extreme case.

For any g ∈ Zv and B ∈ �(u × v, k), define B + g = {(x, y + g) : (x, y) ∈ B}. Then
Zv acts on �(u × v, k). The orbit generated by B is defined by the set of all distinct B + g
where g takes over Zv . If an orbit has v elements, then the orbit is said to be full, otherwise
short. The subgroup {g ∈ Zv : B + g = B} is called the stabilizer of B in Zv . We know that
�(u × v, k) can be partitioned into some orbits.

In the present paper we consider two classes of optimal 2-D (u × v, k, λa, k − 1)-OOCs,
where λa = k−1, k. In this situation, let F ⊆ �(u×v, k) be a 2-D (u×v, k, λa, k−1)-OOC.
By (2′) of the definition, X and Y belong to distinct orbits of �(u × v, k) if X, Y ∈ F with
X �= Y . Combined with the property (1′) of the definition, we have the following lemma.

Lemma 1.1 �(u × v, k, k − 1) is the number of all full orbits in �(u × v, k);
�(u × v, k, k, k − 1) is the number of all orbits in �(u × v, k).

In the rest of this paper, we will determine the number of all full orbits (or all orbits, respec-
tively) in �(u × v, k). We then give two classes of optimal 2-D (u × v, k, λa, k − 1)-OOCs
where λa = k − 1, k.

2 Exact value of �(u × v, k, k − 1)

To determine the exact value of �(u × v, k, k − 1), by Lemma 1.1 we only need to find the
number of all full orbits in �(u × v, k). Before proceeding, we recall that the well-known
Möbius function is defined as follows.
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μ(n) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if n = 1,

(−1)r , if n is the product of r distinct
prime numbers,

0, if n has a square factor.

The following result on Möbius function is well-known, for example, see [30, Theorem
10.3].

Lemma 2.1
∑

d|n
μ(d) =

{
1 n = 1,

0 n �= 1,

where d | n means that d runs over all positive factors of n.

Lemma 2.2 Let B ∈ �(u ×v, k). Then the order d of the stabilizer of B in Zv is a divisor of
(k, v). Furthermore, B can be written as B = ∪d−1

i=0 (B0 + vi
d ) for some B0 ∈ �(u × v

d , k
d ),

where B0 + vi/d = {(x, y + vi/d) : (x, y) ∈ B0}.
Proof Let B = {(x1, y1), (x2, y2), . . . , (xk, yk)}, where xi ∈ Iu and yi ∈ Zv for 1 ≤ i ≤ k.
The stabilizer of B is G B = {δ ∈ Zv : B + δ = B}. Since G B is a subgroup of order d in
Zv , we have d|v and G B = 〈v/d〉. Noting that B + v/d = B, we then conclude that

k∑

i=1

yi =
k∑

i=1

(yi + v

d
),

which implies that kv
d ≡ 0 (mod v), i.e. k ≡ 0 (mod d). Hence, d is a divisor of (k, v).

Define

B0 = {(x, y) : (x, y) ∈ B, 0 ≤ y ≤ v/d − 1}.
It is easy to see that (B0 +vi/d)∩ (B0 +v j/d) = ∅ for i �= j and 0 ≤ i, j ≤ d −1. Note that
if (x, y) ∈ B then (x, y + vi/d) ∈ B for any 0 ≤ i ≤ d − 1. Then

⋃d−1
i=0 (B0 + vi/d) ⊆ B.

From the definition of B0, clearly B ⊆ ⋃d−1
i=0 (B0 + vi/d). Hence B = ⋃d−1

i=0 (B0 + vi/d)

and then |B0| = k/d . We know that B0 ∈ �(u × v
d , k

d ). 
�
Lemma 2.3 Let gd(u × v, k) denote the number of k-subsets B ∈ �(u × v, k) such that the
order of the stabilizer of B is d. Then

|�(u × v, k)| =
∑

d|(k,v)

gd(u × v, k) =
(

uv

k

)

.

Proof From the definition of �(u × v, k), we have |�(u × v, k)| = (uv
k

)
. Let �d denote

the set of k-subsets B ∈ �(u × v, k) such that the order of stabilizer of B is d . Then
gd(u ×v, k) = |�d |. By Lemma 2.2 it follows that d|(k, v). By the definition of �d , we have
�(u × v, k)= ∪d|(k,v) �d . Therefore, |�(u × v, k)|= ∑

d | (k,v)

|�d |= ∑

d | (k,v)

gd(u × v, k)= (uv
k

)
.


�
Lemma 2.4 Let gd(u × v, k) denote the number of k-subsets B ∈ �(u × v, k) such that the
order of the stabilizer of B is d. Then the number of all k-subsets in �(u × v, k) with trivial
stabilizer is

g1(u × v, k) =
∑

d|(k,v)

μ(d)

( uv
d
k
d

)

.
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Proof Let α = (k, v). For given d | α, we consider the set �̄(u × v
d , k

d ) of all (k/d)-subsets
of Iu × Zv/d . Denote by ḡx (u × v

d , k
d ) the number of (k/d)-subsets B ∈ �̄(u × v

d , k
d ) such

that the order of stabilizer of B is x , where x |α
d . Applying Lemma 2.3 gives the following

formula,
∣
∣
∣
∣�̄

(

u × v

d
,

k

d

)∣
∣
∣
∣ =

∑

x | α
d

ḡx

(

u × v

d
,

k

d

)

=
( uv

d
k
d

)

. (2.1)

Consider the 1-1 mapping σ from �̄(u × v
d , k

d ) onto �(u × v, k) given by

σ(B0) =
d−1⋃

i=0

(

B0 + vi

d

)

for any B0 ∈ �̄(u × v
d , k

d ). By Lemma 2.2, it is not difficult to show that the stabilizer of B0

in �̄(u × v
d , k

d ) is x if and only if the stabilizer of σ(B0) in �(u × v, k) is dx . We then have
ḡx (u × v

d , k
d ) = gdx (u × v, k). Hence, by formula (2.1), we have

∑

x | α
d

ḡx (u × v

d
,

k

d
) =

∑

x | α
d

gdx (u × v, k)

=
∑

d|x |α
gx (u × v, k) =

( uv
d
k
d

)

.

Therefore, using Lemma 2.1, we then have

∑

d|α
μ(d)

( uv
d
k
d

)

=
∑

d|α

∑

d|x |α
gx (u × v, k)μ(d) =

∑

x |α

∑

d|x
gx (u × v, k)μ(d)

=
∑

x |α
gx (u × v, k)

∑

d|x
μ(d) = g1(u × v, k).


�
Theorem 2.5 Let u, v and k be positive integers. Then

�(u × v, k, k − 1) = 1

v

∑

d|(k,v)

μ(d)

( uv
d
k
d

)

.

Proof From the definition of 2-D OOC, �(u × v, k, k − 1) is actually the number of all
full orbits of the group action (Zv,�(u × v, k)). Since each full orbit contains exactly v

k-subsets of �(u × v, k) with trivial stabilizer, by Lemma 2.4, we obtain

�(u × v, k, k − 1) = 1

v
g1(u × v, k)

= 1

v

∑

d|(k,v)

μ(d)

( uv
d
k
d

)

.


�
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Taking u = 1 in Theorem 2.5, we have the following corollary, which was first proved by
Yang [33].

Corollary 2.6 Let v and k be positive integers. Then

�(v, k, k − 1) = 1

v

∑

d|(k,v)

μ(d)

( v
d
k
d

)

.

3 Exact value of �(u × v, k, k, k − 1)

To determine the exact value of �(u ×v, k, k, k −1), by Lemma 1.1 we only need to find the
number of all orbits in �(u × v, k). Recall that Zv acts on �(u × v, k). By the well-known
Cauchy-Frobenius-Burnside Lemma (refer to [28, Lemma 1.25]), we have that the number
of all orbits in �(u × v, k) is

1

v

∑

g∈Zv

| f i x(g)|,

where f i x(g) = {B : B + g = B, B ∈ �(u × v, k)}. We state the result as follows.

Lemma 3.1 Let u, v and k be positive integers. Then

�(u × v, k, k, k − 1) = 1

v

∑

g∈Zv

| f i x(g)|.

Theorem 3.2 Let u, v and k be positive integers. Then

�(u × v, k, k, k − 1) = 1

v

∑

d|(k,v)

ϕ(d)

( uv
d
k
d

)

.

Proof By Lemma 3.1, we only need to compute the size of f i x(g) for every g ∈ Zv .
For any B ∈ f i x(g), then B +g = B. It is clear that the spanning group 〈g〉 is a subgroup

of the stabilizer G B of B in Zv . From Lemma 2.2 we have |〈g〉| is a divisor of |G B |, and hence
|〈g〉| is a divisor of (k, v). By Lemma 2.2, B can be written as B = ∪|G B |−1

i=0 (B0 + vi
|G B | ) for

some B0 ∈ �(u × v
|G B | ,

k
|G B | ), where B0 + vi/|G B | = {(x, y + vi/|G B |) : (x, y) ∈ B0}.

Let A = ∪x−1
i=0 (B0 + vi

|G B | ) where x = |G B |/|〈g〉|. Then A ∈ �(u × v
|〈g〉| ,

k
|〈g〉| ). It is read-

ily checked that B = ∪|〈g〉|−1
i=0 (A + vi

|〈g〉| ). Conversely, if B = ∪|〈g〉|−1
i=0 (A + vi

|〈g〉| ) for some

A ∈ �(u × v
|〈g〉| ,

k
|〈g〉| ), by noting that |〈g〉| = v/(g, v), we then have B + g = B, that is B ∈

f i x(g). That means that B ∈ f i x(g) if and only if B can be written as B = ∪|〈g〉|−1
i=0 (A+ vi

|〈g〉| )

for some A ∈ �(u × v
|〈g〉| ,

k
|〈g〉| ). Hence, we have | f i x(g)| = |�(u × v

|〈g〉| ,
k

|〈g〉| )| = ( uv
|〈g〉|

k
|〈g〉|

)

if |〈g〉| is a divisor of (k, v); or f i x(g) = 0 otherwise. That is

| f i x(g)| =
⎧
⎨

⎩

( uv
|〈g〉|

k
|〈g〉|

)
, |〈g〉| | (k, v),

0, otherwise.
(3.2)
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Note that there are ϕ(d) elements g in Zv such that the order of the spanning group 〈g〉 is d ,
that is, ϕ(d) = ∑

g∈Zv
|〈g〉|=d

1. Applying Lemma 3.1 and (3.2), we then have the following

�(u × v, k, k, k − 1) = 1

v

∑

|〈g〉||(k,v)
g∈Zv

( uv
|〈g〉|

k
|〈g〉|

)

= 1

v

∑

d|(k,v)

∑

g∈Zv
|〈g〉|=d

( uv
d
k
d

)

= 1

v

∑

d|(k,v)

( uv
d
k
d

) ∑

g∈Zv
|〈g〉|=d

1

= 1

v

∑

d|(k,v)

ϕ(d)

( uv
d
k
d

)

.

This completes the proof. 
�

4 Concluding remarks

In the present paper, we have determined the exact value of �(u × v, k, λa, k − 1) for
λa = k −1 and k. That means that the size of an optimal 2-D (u ×v, k, λa, k −1)-OOC with
λa = k −1 and k is characterized. General speaking, the determination of �(u ×v, k, λa, λc)

is still much open for λa < k − 1 or λc < k − 1. It is worthy for further investigation.
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