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Abstract Ding and Feng (IEEE Trans Inform Theory 52(9):4229–4235, 2006, IEEE Trans
Inform Theory 53(11):4245–4250, 2007) constructed series of (N , K ) codebooks which meet

or nearly meet the Welch bound
√

N−K
(N−1)K by using difference set (DS) or almost difference

set (ADS) in certain finite abelian group respectively. In this paper, we generalize the cyclo-
tomic constructions considered in (IEEE Trans Inform Theory 52(9):4229–4235, 2006, IEEE
Trans Inform Theory 53(11):4245–4250, 2007) and (IEEE Trans Inform Theory 52(5), 2052–
2061, 2006) to present more series of codebooks which nearly meet the Welch bound under
looser conditions than ones required by DS and ADS.

Keywords Codebook · Welch bound · Cyclotomic class · Cyclotomic number ·
Gauss sum · Gauss period · Difference set · Almost difference set
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1 Introduction

An (N , K ) codebook C is a set {c1, . . . , cN } of N unit norm complex vectors ci (1 ≤ i ≤ N )
in C

K . Let

Imax(C) = max
1≤i �= j≤N

|ci c
H
j |,

where cH
j denotes the Hermite transpose of vector c j . We have the following Welch lower

bound:
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210 A. Zhang, K. Feng

Lemma 1.1 (Welch [6]) For any (N , K ) codebook C with N > K , we have

Imax(C) ≥
√

N − K

(N − 1)K
. (1)

Codebooks with low value Imax(C) are used in direct spread CDMA systems, quantum
information processing, packing and coding theory (see [5] and the references therein). A
codebook C is called optimal if it meets the Welch bound (1). One of the important methods
to construct optimal codebooks comes from difference sets in finite abelian groups as indi-
cated and developed by Ding and Feng [3,4] where they also constructed several series of
codebooks which nearly meet the Welch bound by using almost difference sets.

Let G be an (additive) abelian group of order v, D be a k-element subset of G.We define
the multiset

�(D) = {d − d ′ : d, d ′ ∈ D, d �= d ′}.
D is called a (v, k, λ) difference set of G if the number of x in �(D) is exactly λ for each
non-zero element x ∈ G. More generally, D is called a (v, k, λ) almost difference set of G
if there exists a partition G\{0} = A

⋃
B such that the number of x in �(D) is exactly λ

and λ+ 1 for each x ∈ A and x ∈ B respectively.
Let Ĝ be the character group of G. For any k-element subset D = {d1, . . . , dk} of G, we

define the following (N , K ) = (v, k) codebook

C(D) = {cχ : χ ∈ Ĝ},
where

cχ = 1√
k
(χ(d1), . . . , χ(dk)).

For χ, χ ′ ∈ Ĝ, we have

cχcH
χ ′ = 1

k

∑

d∈D

χχ̄ ′(d) = 1

k

∑

d∈D

ψ(d) (ψ = χχ̄ ′ ∈ Ĝ).

Therefore

Imax(C(D))2 = 1

k2 max

⎧
⎨
⎩

∣∣∣∣∣
∑

d∈D

ψ(d)

∣∣∣∣∣
2

: 1 �= ψ ∈ Ĝ

⎫
⎬
⎭ ,

and
∣∣∣∣∣
∑

d∈D

ψ(d)

∣∣∣∣∣
2

=
∑

d,d ′∈D

ψ(d)ψ̄(d ′) =
∑

d,d ′∈D

ψ(d − d ′)

= k +
∑

d,d ′∈D
d �=d′

ψ(d − d ′). (2)

From (2) it is derived directly in [4] and [5] that if D is a difference set of G then C(D) is
an optimal codebook. On the other hand, Ding and Feng [3,4] consider the codebooks C(D)
from almost difference sets D.
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Construction of cyclotomic codebooks 211

Let Fq be the finite field with q = pm elements, q − 1 = e f, e ≥ 2, α be a primitive
element of Fq such that F

×
q =< α > . The cyclotomic classes of order e are defined by

Dλ = D(e,q)
λ = αλ < αe > (0 ≤ λ ≤ e − 1).

In this paper, we are concerned with the following cyclotomic difference sets and almost
difference sets.

Lemma 1.2 ( [3], Corollary 4)

(A) If q = 4t2 + 1 and t is an odd integer, then D(4,q)
0 is a (v, k) = (q, (q − 1)/4) DS in

Fq .

(B) If q = 8t2 + 1 = 64u2 + 9 and both t and u are odd integers, then D(8,q)
0 is a

(v, k) = (q, (q − 1)/8) DS in Fq .

(C) If q = 4t2 + 27, t is an odd integer and (3, t) = 1, then D(6,q)
0

⋃
D(6,q)

1

⋃
D(6,q)

3 is
a (v, k) = (q, (q − 1)/2) DS in Fq .

Lemma 1.3 ([1])

(I) If q = s2 + 4t2, s = 5 or − 3 and q−1
4 is odd, then D(4,q)

0 is an ADS in Fq with

(v, k, λ) = (q, q−1
4 ,

q−13
16 ).

(II) If q = s2 + 4t2, t = ±1 and q−1
4 is odd, then D(4,q)

0

⋃
D(4,q)

1 is an ADS in Fq with

(v, k, λ) = (q, q−1
2 ,

q−5
4 ).

(III) If q ≡ 5(mod8) is a prime, q = s2 + 4t2, s ≡ ±1(mod4), then

D(i, j,l) = [{0} × (D(4,q)
i

⋃
D(4,q)

j )]
⋃

[{1} × (D(4,q)
l

⋃
D(4,q)

j )]

is an ADS in F2 × Fq with (v, k, λ) = (2q, q − 1, q−3
2 ) provided

(1) t = 1 and (i, j, l) = (0, 1, 3) or (0, 2, 1); or
(2) s = 1 and (i, j, l) = (1, 0, 3) or (0, 1, 2).

For all series D of ADS in Lemma 1.3 ( and several other series of ADS ), the values of
Imax(C(D))2 have been determined in [4] as shown in the Table 1. All codebooks C(D) in
the table nearly meeting the Welch bound in the following meaning.

A series of (Nn, Kn) codebooks Cn (n = 1, 2, . . .) are called to nearly meeting the Welch
bound if the following two conditions are satisfied when n → ∞:

Table 1
D Parameters N−K

(N−1)K Imax(C)2
(N , K ) of C

(I)
(

q, q−1
4

)
3q+1
(q−1)2

3q+1+8
√

q
(q−1)2

(II)
(

q, q−1
2

)
q+1
(q−1)2

1
(
√

q−1)2

(III)

(i, j, l) (2q, q − 1) 2(q2+q+1)
(2q−1)2(q−1)

2q+2
√

q
4(q−1)2

= (0, 1, 3)

or (0, 1, 2)

123



212 A. Zhang, K. Feng

(1) There exists a constant a, 0 < a < 1 such that Nn, Kn → ∞ and

Kn = aNn + O(
√

Nn),

such that the Welch bound
√

Nn − Kn

(Nn − 1)Kn
≈
√

1 − a

a

1√
Nn
.

(2) There exists a positive constant c such that

Imax(Cn)−
√

Nn − Kn

(Nn − 1)Kn
≤ c

Nn
.

We can check that all series of codebooks C(D) in the Table 1 nearly meeting the Welch
bound by using following lemma.

Lemma 1.4 A series (Nn, Kn) codebooks Cn (n = 1, 2, . . .) nearly meeting the Welch bound
if Nn, Kn → ∞ when n → ∞ and for all n ≥ 1 the following two conditions are satisfied

(1) there exist constants a and b, 0 < a < 1, b > 0 such that |Nn − aKn | ≤ b
√

Kn;
(2) there exists a constant d > 0 such that

K 2
n Imax(Cn)

2 ≤ a − 1

a
Kn + d

√
Kn .

Proof Let En = Imax(Cn)−
√

Nn−Kn
(Nn−1)Kn

.From now on, we omit the subscript n in Cn, En, Nn

and Kn . Then E ≥ 0 since
√

N−K
(N−1)K is the lower bound of Imax(C). We have

E

(
Imax(C)+

√
N − K

(N − 1)K

)
= Imax(C)2 − N − K

(N − 1)K

≤ 1

K 2

(
a − 1

a
K + d

√
K

)
− N − K

(N − 1)K
( by condition (2))

= (a − 1)(N − 1)K + ad(N − 1)
√

K − aK (N − K )

a(N − 1)K 2

= K (aK − N )− (a − 1)K + ad(N − 1)
√

K

a(N − 1)K 2

≤ b
√

K K − (a − 1)K + ad(N − 1)
√

K

a(N − 1)K 2 ( by condition (1))

≤ c′

N 3/2 ( f or some c′ > 0),

and

Imax(C)+
√

N − K

(N − 1)K
≥ 2

√
N − K

(N − 1)K
≥ c′′

N 1/2 ( f or some c′′ > 0).

Therefore E ≤ c/N for c = c′/c′′ > 0. This completes the proof of Lemma 1.4.
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Construction of cyclotomic codebooks 213

In this paper we present several general constructions of codebooks which nearly meet the
Welch bound by using cyclotomic classes in finite fields. All constructions can be viewed as
generalizations of the codebooks derived from the DS in Lemma 1.2, ADS in Lemma 1.3 and
one construction (Theorem 4.1) derived from a series of ADS given in Theorem 2.2 [7]. Our
main aim is to show that such series of codebooks C(D) are as good as ones constructed by
ADS under rather looser conditions than ones required by D being DS or ADS. We give these
cyclotomic constructions of codebooks in Sects. 3–4 and introduce several preliminaries on
Gauss sums, Gauss periods and cyclotomic numbers in Sect. 2.

2 Preliminaries

In this section we introduce some basic facts on Gauss sums, Gauss periods and cyclotomic
numbers we need in Sects. 3 and 4. For the detail we refer to books [2,5] and papers [1,3,4].

2.1 Gauss sums

Let q = ps where s ≥ 1 and p be a prime, T : Fq → Fp be the trace mapping. For a
multiplicative character χ of Fq (we assume χ(0) = 0), the Gauss sum over Fq is defined by

G(χ) =
∑

x∈F
×
q

χ(x)ζ T (x)
p

(
ζp = e

2π
√−1
p

)
.

In this paper we need the following basic properties and particular values of Gauss sums.

Theorem 2.1 (1) For χ = 1 (the trivial character ), G(χ) = −1. For χ �= 1,

|G(χ)| = √
q, G(χ) = χ(−1)G(χ̄),

where χ̄ = χ−1 is the conjugate of χ .
(2) Let q = ps and p ≥ 3, χ be the quadratic character of Fq . Then

G(χ) =
{
(−1)s−1√q, i f p ≡ 1(mod4)
(−1)s−1i s√q, i f p ≡ 3(mod4).

(3) Let p ≡ 1(mod4), q = pm = A2 + B2 where A and B be integers, (p, A) =
1 and A ≡ 1(mod2). For a character χ of Fq with order 4,

{
G(χ)2,G(χ̄)2

} ={√
q(A + i B),

√
q(A − i B)

}
.

2.2 Gauss periods

Let α be a primitive element of Fq such that F
×
q =< α > . Let q = ps, q − 1 = e f (e ≥ 2)

and T : Fq → Fp be the trace mapping. For the cyclotomic classes of order e in Fq

Dλ = D(e,q)
λ = αλ < αe > (0 ≤ λ ≤ e − 1), (3)

we define the Gauss periods of order e on Fq by

ηλ =
∑

x∈Dλ

ζ T (x)
p (0 ≤ λ ≤ e − 1).
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214 A. Zhang, K. Feng

Let χ be the character of Fq with order e defined by χ(α) = ζe. Then

ηλ = 1

e

∑

x∈F
×
q

ζ T (x)
p

e−1∑

i=0

χ i (xα−λ) = 1

e

e−1∑

i=0

ζ̄ iλ
e G

(
χ i
)
. (4)

Therefore ηλ can be computed if we know the values of Gauss sums G(χ i ) (0 ≤ i ≤ e − 1).

2.3 Cyclotomic numbers

For the cyclotomic classes Dλ defined by (3), the cyclotomic numbers of order e on Fq are
defined by

(i, j) = (i, j)(q)e = 
{x ∈ Di : x + 1 ∈ D j } (0 ≤ i, j ≤ e − 1).

In Sects. 3 and 4, we need the following values of cyclotomic numbers listed in [5].

Lemma 2.2 (1) Let p ≡ 5(mod8), q = p2m+1 = a2 +4b2, a ≡ 1(mod4) and (a, p) = 1.
Then (i, j) = (i, j)(q)4 (0 ≤ i, j ≤ 3) are given explicitly by Table 2 and the relations

16A = q − 7 + 2a, 16B = q + 1 + 2a − 8b, 16C = q + 1 − 6a,
16D = q + 1 + 2a + 8b, 16E = q − 3 − 2a.

(2) Let p ≡ 7(mod12), q = p2m+1, q = a2 + 27b2 where a, b ∈ Z and (a, p) = 1. Then
(i, j) = (i, j)(q)6 (0 ≤ i, j ≤ 5) are given explicitly by Table 3 and the relations

36A = q − 11 − 8a, 36B = 36C = q + 1 − 2a + 12b,
36D = q + 1 + 16a, 36E = 36F = q + 1 − 2a − 12b,
36G = q − 5 + 4a + 6b, 36H = q − 5 + 4a − 6b, 36I = 36J = q + 1 − 2a.

(3) Let p ≡ 9(mod16), q = p2m+1 = x2 + 4y2 = a2 + 2b2, x ≡ a ≡ 1(mod4) and
4|y. Then the (i, j) = (i, j)(q)8 (0 ≤ i, j ≤ 7) are given explicitly by Table 4 and the
relations

64A = q − 15 − 2x, 64B = 64F = q + 1 + 2x − 4a + 16y,
64E = q + 1 − 18x, 64D = 64H = q + 1 + 2x − 4a − 16y,
64C = q + 1 + 6x + 8a − 16y, 64I = 64J = q − 7 + 2x + 4a,
64G = q + 1 + 6x + 8a + 16y, 64L = 64O = q + 1 + 2x − 4a,
64K = q + 1 − 6x + 4a + 16b, 64N = q − 7 − 2x − 8a,
64M = q + 1 − 6x + 4a − 16b.

Remark The Table 3 listed in [2] is under the condition that 2 is a cubic in F
×
q . But by

Theorem 7.1.1 in [2], P.213, it can be seen that this condition is equivalent to q = a2 + 27b2

for a, b ∈ Z and (a, p) = 1.

Table 2
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Construction of cyclotomic codebooks 215

Table 3

Table 4

3 First construction

In this section, we present first construction of codebooks C(D)which nearly meet the Welch
bound. We take Fq as underlying additive group G and subset D as a cyclotomic class or a
union of cyclotomic classes of order e = 4, 6 and 8 in Fq .

Let q = pm, q − 1 = e f (e ≥ 2), F
×
q =< α > and Dλ = D(e,q)

λ = αλ < αe > (0 ≤
λ ≤ e − 1) be the cyclotomic classes of order e in Fq . For 1 ≤ l ≤ e − 1, let

D =
l⋃

s=1

Dλs (0 ≤ λ1 < · · · < λl ≤ e − 1)

= {x1, . . . , xK } (K = l f = l(q − 1)/e)

be a union of l distinct cyclotomic classes. Consider the following (N , K ) = (q, l(q − 1)/e)
codebook

C(D) =
{

cb = 1√
K
(ϕb(x1), . . . , ϕb(xK )) : b ∈ Fq

}
, (5)

where {ϕb : b ∈ Fq} is the group of additive characters of Fq and ϕb is defined by ϕb(x) =
ζ

T (bx)
p (x ∈ Fq).

Theorem 3.1 For fixed e, l (1 ≤ l ≤ e − 1), and q → ∞ the series of codebooks C(D)
defined by (5) nearly meet the Welch bound if

e−1∑

i=0

η j+i

l∑

s,t=1

((λs − i, λt − i)) = O(
√

q) (0 ≤ j ≤ e − 1), (6)

where η j = ∑
x∈D j

ζ
T (x)
p (0 ≤ j ≤ e − 1) are the Gauss periods, and

((i, j)) = (i, j)(q)e − q − 1

e2 (0 ≤ i, j ≤ e − 1).
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216 A. Zhang, K. Feng

Proof Since K = l f and N = q = 1 + e f = e
l K + 1, from Lemma 1.4 we know that the

codebook C(D) nearly meets the Welch bound if, by taking a = e/ l,

K 2
∣∣∣cb1 cH

b2

∣∣∣
2 ≤ a − 1

a
K + O

(√
K
)

= e − l

e
K + O

(√
K
)

(7)

for all distinct b1 and b2 in Fq . But

K
(

cb1 cH
b2

)
=
∑

x∈D

ϕb1(x)ϕ̄b2(x) =
∑

x∈D

ϕb(x),

where b = b1 − b2 �= 0. Therefore

K 2
∣∣∣cb1 cH

b2

∣∣∣
2 =

∑

x,y∈D

ϕb(x)ϕ̄b(y) =
∑

x,y∈D

ϕb(x − y)

= K +
∑

x,y∈D
x �=y

ϕb(x − y).

Thus the condition (7) is equivalent to

∑

x,y∈D
x �=y

ϕb(x − y) = − l

e
K + O

(√
K
) (

f or all b ∈ F
×
q

)
. (8)

By the definition of D we have

∑

x,y∈D
x �=y

ϕb(x − y) =
∑

z∈F
×
q

ϕb(z)
∑

y∈D
y+z∈D

1 =
e−1∑

i=0

∑

z∈Ci

ζ T (bz)
p

l∑

s,t=1

∑

y∈Cλs
y+z∈Cλt

1

=
e−1∑

i=0

∑

z∈Ci

ζ T (bz)
p

l∑

s,t=1

(λs − i, λt − i)(q)e

=
e−1∑

i=0

∑

z∈Ci

ζ T (bz)
p

l∑

s,t=1

(
q − 1

e2 + ((λs − i, λt − i))

)

= (q − 1)l2

e2

∑

z∈F
×
q

ζ T (bz)
p +

e−1∑

i=0

ηi+ j

l∑

s,t=1

((λs − i, λt − i)),

where j is determined by b ∈ D j . Since

(q − 1)l2

e2

∑

z∈F
×
q

ζ T (bz)
p = − (q − 1)l2

e2 = − l

e
K ,

the condition (8) is equivalent to (6). This completes the proof of Theorem 3.1.

Now we show some applications of Theorem 3.1 in case e = 4, 6 and 8.

Corollary 3.2 Let p ≡ 5(mod8), q = p2m+1 = a2 + 4b2, a ≡ 1(mod4), a, b > 0, and
(a, p) = 1. Let Dλ = D(4,q)

λ (0 ≤ λ ≤ 3) be the cyclotomic classes of order 4 in Fq .
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Construction of cyclotomic codebooks 217

(1) For D = Dλ (0 ≤ λ ≤ 3), the series of (N , K ) = (q, (q − 1)/4) codebooks C(D)
defined by (5) nearly meet the Welch bound

√
N−K
(N−1)K =

√
3q+1
q−1 if a is bound. More

exactly, we have

Imax(C(D))−
√

3q + 1

q − 1
≤ a + 1√

3(q − 1)
.

(2) For D = Dλ
⋃

Dλ+1 (0 ≤ λ ≤ 3), the series of (N , K ) = (q, (q − 1)/2) codebooks

C(D) nearly meet the Welch bound
√

N−K
(N−1)K =

√
q+1

q−1 , if b is bounded. More exactly,

we have

Imax(C(D))−
√

q + 1

q − 1
≤ b

q − 1
.

Proof (1) For D = Dλ, the left-hand side of (6) becomes

3∑

i=0

ηi+ j ((λ− i, λ− i)) =
3∑

i=0

ηi+ j ((i − λ, 0)) (0 ≤ j ≤ 3)

=
3∑

i=0

ηk+i ((i, 0)) (0 ≤ k ≤ 3, k = j + λ),

since (i, j) = (−i, j − i) so that ((i, j)) = ((−i, j − i)). By Lemma 2.2 (1) we have

((0, 0)) = ((2, 0)) = −3 + a

8
, ((1, 0)) = ((3, 0)) = −1 − a

8
. (9)

Thus

3∑

i=0

ηk+i ((i, 0)) = 1

8

[
(ηk + ηk+2)(−3 + a)+ (ηk+1 + ηk+3)(−1 − a)

]
. (10)

By (4) we know that ηk = O(
√

q) (0 ≤ k ≤ 3) so that
∑3

i=0 ηk+i ((i, 0)) = O(
√

q),
thus the codebook C(D) nearly meets the Welch bound if a is bounded. More exactly,
it is known that

η0 + η2 =
∑

x∈D(2,q)
0

ζ T (x)
p = 1

2
(−1 + √

q),

η1 + η3 =
∑

x∈D(2,q)
1

ζ T (x)
p = 1

2
(−1 − √

q).

By (10) we get
∑3

i=0 ηk+i ((i, 0)) = 1
8

(
2 ± (a − 1)

√
q
)
. Therefore

Imax(C(D)) ≤ 1

K

(
3K

4
+ 1

8
(2 + (a + 1)

√
q)

) 1
2

= 1

q − 1

√
3q + 2(a + 1)

√
q + 1.
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218 A. Zhang, K. Feng

Therefore

Imax(C(D))−
√

N − K

(N − 1)K
≤ 1

q − 1

(√
3q + 2(a + 1)

√
q + 1 −√

3q + 1

)

≤ a + 1√
3(q − 1)

.

(2) For D = Dλ
⋃

Dλ+1, the left-hand side of (6) becomes

3∑

i=0

ηk+i [((−i,−i))+ ((−i, 1 − i))+ ((1 − i,−i))+ ((1 − i, 1 − i))]

=
3∑

i=0

ηk+i [((i, 0))+ ((i, 1))+ ((i − 1, 3))+ ((i − 1, 0))] (0 ≤ k ≤ 3). (11)

By Lemma 2.2 (1), we have (9) and

((0, 1)) = ((1, 3)) = (1 + a − 4b)/8,

((0, 3)) = ((3, 1)) = (1 + a + 4b)/8,

((1, 1)) = ((2, 1)) = ((2, 3)) = ((3, 3)) = (−1 − a)/8.

It can be computed that the right-hand side of (11) is

1

2
(ηk + ηk+2)(−1 − b)+ 1

2
(ηk+1 + ηk+3)(−1 + b)

= 1

4

(−1 ± √
q
)
(−1 − b)+ 1

4

(−1 ∓ √
q
)
(−1 + b)

= 1

2

(
1 ± b

√
q
)
.

Therefore

Imax(C(D)) = 1

K

(
K

2
+ 1

2

(
1 + b

√
q
))1/2

= 1

q − 1

√
q + 1 + 2b

√
q,

and

Imax(C(D))−
√

N − K

(N − 1)K
= 1

q − 1

(√
q + 1 + 2b

√
q −√

q + 1

)
≤ b

q − 1
,

which means that the codebook C(D) nearly meets the Welch bound if b is bounded.
This completes the proof of Corollary 3.2.

Corollary 3.3 (1) Let p ≡ 7(mod12), q = p2m+1, q = a2 + 27b2, a, b > 0 and
(a, p) = 1. Then for

D = D(6,q)
k

⋃
D(6,q)

k+1

⋃
D(6,q)

k+3 (0 ≤ k ≤ 5),

the series of (N , K ) =
(

q, q−1
2

)
codebooks C(D) nearly meet the Welch bound pro-

vided b is bounded.
(2) Let p ≡ 9(mod16), q = p2m+1 = x2 +4y2 = a2 +2b2, 4q = a2 +3b2 x, a > 0, 4|y

and (p, x) = (a, x) = 1. Then for D = D(8,q)
λ , the series of (N , K ) =

(
q, q−1

8

)
code-

books C(D) nearly meet the Welch bound provided both x and a are both bounded.
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Proof (1) In this case the left-hand side of (6) becomes
∑5

i=0 η j+i Mi (0 ≤ j ≤ 5),where

Mi =
∑

λ,μ∈{0,1,3}
((λ− i, μ− i)) (0 ≤ i ≤ 5).

By ((i, j)) = (i, j)(q)6 − q−1
36 and (i, j)(q)6 (0 ≤ i, j ≤ 6) are listed in Lemma 2.2 (2),

we get

M0 = ((0, 0))+ ((0, 1))+ ((0, 3))+ ((1, 0))

+((1, 1))+ ((1, 3))+ ((3, 0))+ ((3, 1))+ ((3, 3))

= A + B + D + G + H + E + A + G + A − q − 1

4
= −6 + b

6
.

Similarly we can get M3 = M0,M1 = M4 = − 1
2 ,M2 = M5 = − b

6 . Thus

5∑

i=0

η j+i Mi = 1

6

[
(η j + η j+3)(−6 + b)+ (η j+1 + η j+4)(−3)

+(η j+2 + η j+5)(−b)
]
,

so that
∑5

i=0 η j+i Mi = O(
√

q) and C(D) nearly meets the Welch bound if b is
bounded.

(2) In this case the left-hand side of (6) becomes
∑7

i=0 ηk+i ((i, 0)) (0 ≤ k ≤ 7). By the

table of values (i, 0)(q)8 = q−1
64 + ((i, 0)) given in Lemma 2.2 (3), we get

((0, 0)) = ((4, 0)) = 1

32
(−7 − x),

((2, 0)) = ((6, 0)) = 1

32
(−3 − x − 4a),

((1, 0)) = ((3, 0)) = ((5, 0)) = ((7, 0)) = 1

32
(−3 + x + 2a).

Therefore
∑7

i=0 ηk+i ((i, 0)) = O(
√

q) (0 ≤ k ≤ 7) and the codebook C(D) nearly
meets the Welch bound if both x and a are bounded. This completes the proof of
Corollary 3.3.

Remark (1) The upper bound of Imax(C(D)) −
√

N−K
(N−1)K can be estimated by using (4)

and the values of Gauss sums G(χ) for characters χ of order 3 and 4. The results are
too complicate to be written.

(2) The constructions in Corollary 3.2 and 3.3 can be viewed as generalizations of the
constructions from difference sets given in Lemma 1.2 (A), (B) and (C) and almost
difference sets given in Lemma 1.3 (I) and (II).

4 Second construction

In this section we consider the underlying group to be Z4 ×Fq or F2 ×Fq . Firstly, we assume

that q = pm and p ≥ 3. Let Dλ = D(2,q)
λ (λ = 0, 1) and consider the following subset of

the additive group Z4 × Fq ,
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D = [{0} × D0]
⋃

[{1, 2, 3} × D1] (12)

= {x1, x2, . . . , xK } K = |D| = 2(q − 1).

We construct the following (N , K ) = (4q, 2(q − 1)) codebook

C(D) =
{

cχ = 1√
K
(χ(x1), χ(x2), . . . , χ(xK )) : χ ∈ (Z4 × Fq)

∧
}
, (13)

where (Z4 × Fq)
∧ is the character group of additive group Z4 × Fq . Each character χ

can be uniquely expressed by χα = λaλb where α = (a, b), a ∈ Z4, b ∈ Fq and for
x = (x1, x2) ∈ Z4 × Fq ,

χα(x) = λa(x1)λb(x2) = ζ
ax1
4 ζ T (bx2)

p

and the T : Fq → Fp be the trace mapping.

Theorem 4.1 For the (N , K ) = (4q, 2(q − 1)) codebook defined by (12) and (13), we have

Imax(C(D))−
√

N − K

(N − 1)K
≤
{

1
q−1 , i f q ≡ 1(mod4)

15
8(q−1)

√
4q−1

, i f q ≡ 3(mod4).

Particularly, the series of C(D) nearly meet the Welch bound.

Proof For distinct elements c and c′ in the codebook C(D),

K (c′cH ) =
∑

x∈D

χα(x)
(
for some χα, 1 �= χα = λaλb ∈ Ẑ4 × F̂q

)

=
∑

y∈D0

λb(y)+ (λa(1)+ λa(2)+ λa(3))
∑

y∈D1

λb(y)

(a ∈ Z4, b ∈ Fq , (a, b) �= (0, 0)).

If b = 0 and a �= 0, then K
(
c′cH

) = q−1
2 − q−1

2 = 0.
If b �= 0, and a = 0, then

K (c′cH ) =
∑

y∈D0

λb(y)+ 3
∑

y∈D1

λb(y) = −1 + 2
∑

y∈D1

λb(y)

= −1 +
∑

y∈F
×
q

λb(y)(1 − η(y))
(
η is the quadratic character of F

×
q

)

= −2 − ηbG(η) = −2 ± G(η).

If b �= 0 and a �= 0, then

K (c′cH ) =
∑

y∈D0

λb(y)−
∑

y∈D1

λb(y) = ηbG(η) = ±G(η).

Since G(η) = ±√
q for q ≡ 1(mod4) and G(η) = ±√

qζ4 for q ≡ 3(mod4). We get
that for q ≡ 1(mod4),

Imax(C(D))−
√

N − K

(N − 1)K
≤

√
q + 2

2(q − 1)
−
√

q + 1

(4q − 1)(q − 1)
≤ 1

q − 1
.
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For q ≡ 3(mod4)

|c′cH | ≤ 1

K
|2 ± √

qζ4| =
√

q + 4

2(q − 1)
,

and

Imax(C(D))−
√

N − K

(N − 1)K
≤

√
q + 4

2(q − 1)
−
√

q + 1

(4q − 1)(q − 1)

= 15q

2(q − 1)
√

4q − 1(
√

4q2 + 15q − 4 −√
4q2 − 4)

≤ 15

8(q − 1)
√

4q − 1
.

Remark For the case q ≡ 3(mod4), the set D′ defined by (12) plus three elements
(0, 0), (1, 0), (3, 0) is an almost difference set of Z4 × Fq in Theorem 2.2 [7]. We can also
show that C(D′) nearly meets the Welch bound. Moreover, for case q ≡ 3(mod4) the dif-
ference between Imax(C(D)) and the Welch bound is O(N 3/2) which is better than required
value O( 1

N ).

There are other series of ADS on underlying group in Fq × Fq ′ in [7]. We will deal with
the related codebooks in successive paper.

Next, let p ≡ 1(mod4), q = pm = A2 + B2, A, B ≥ 1, 2|B and (A, p) = 1. Let
Dλ = D(4,q)

λ (0 ≤ λ ≤ 3) be the cyclotomic classes of order 4 in Fq . We consider the
following subset of the additive group G = F2 × Fq ,

D =
[
{0} ×

(
Di

⋃
D j

)]⋃[
{1} ×

(
Dk

⋃
D j

)]

= {x1, x2, . . . , xK } K = |D| = q − 1. (14)

Then we construct the following (N , K ) = (2q, q − 1) codebook

C(D) =
{

1√
K
(χ(x1), . . . , χ(xK )) : χ ∈ (F2 × Fq)

∧
}
, (15)

where (F2 × Fq)
∧ is the character group of additive group F2 × Fq . Each character χ can be

uniquely expressed by χ = χ1λb where χ1 ∈ (F2,+)∧, such that χ1(0) = 1 and χ1(1) =
±1, and λb (b ∈ Fq) is the additive character of Fq defined by λb(x) = ζ

T (bx)
p (x ∈ Fq).

Theorem 4.2 Under the assumptions above, the (N , K ) = (2q, q − 1) codebook C(D) is
defined by (14) and (15). Then

Imax(C(D))−
√

N − K

(N − 1)K

≤

⎧
⎪⎪⎨
⎪⎪⎩

1
q−1

(
1 + A+4

2
√

2

)
, i f {i, k} = { j + 1, j + 3}

1
q−1

(
1 + B+4

4
√

2

)
, i f q ≡ 5(mod8), {i, k} = { j + 2, j + 1} or { j + 2, j + 3}.

Therefore the series of codebooks C(D) nearly meet the Welch bound if one of following
two conditions satisfied

(1) {i, k} = { j + 1, j + 3} and A is bounded;
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(2) q ≡ 5(mod8), {i, k} = { j + 2, j + 1} or { j + 2, j + 3}, and B is bounded.

Proof For distinct vectors c and c′ in C(D),

K (c′cH ) =
∑

x∈D

χ(x) =
∑

y∈Di
⋃

D j

λb(y)+ χ1(1)
∑

y∈Dk
⋃

D j

λb(y),

where χ = χ1λb is a non-trivial character of F2 × Fq .

If b = 0, then χ1(1) = −1 and

K (c′cH ) =
∑

y∈Di
⋃

D j

1 −
∑

y∈Dk
⋃

D j

1 = q − 1

2
− q − 1

2
= 0. (16)

If b �= 0, for b ∈ Dλ we have

K (c′cH ) =
∑

y∈Di
⋃

D j

ζ
T (by)
p + χ1(1)

∑

y∈Dk
⋃

D j

ζ
T (by)
p

= (ηλ+i + ηλ+ j )+ χ1(1)(ηλ+k + ηλ+ j ), (17)

where by (4) and ζ4 = √−1,

ηl =
∑

y∈Dl

ζ
T (y)
p = 1

4

(
−1 + ζ̄4

l
G(χ)+ (−1)l G(η)+ ζ l

4G(χ̄)
)

0 ≤ l ≤ 3 and χ is the multiplicative character of F
×
q determined by χ(α) = ζ4 for a

primitive element α of Fq and η = χ2 be the quadratic character of F
×
q . Thus (17) becomes

K (c′cH ) = 1

4
(A0 + A1G(χ)+ A2G(η)+ A3G(χ)), (18)

where

A0 = −2 − 2χ1(1),

Am = ζ̄4
λm
(
ζ̄4

im + ζ̄4
jm + χ1(1)

(
ζ̄4

km + ζ̄4
jm
))

(m = 1, 2, 3).

(1) Firstly we assume that i = j + 1 and k = j + 3. Then

A0 =
{−4, i f χ1(1) = 1

0, i f χ1(1) = −1.

Am = ζ̄4
(λ+ j)m

(
ζ̄4

m + 1 + χ1(1)
(
ζm

4 + 1
))

=

⎧
⎪⎪⎨
⎪⎪⎩

ζ̄4
(λ+ j)m

(
2 + ζ̄4

m + ζm
4

)
, i f χ1(1) = 1

ζ̄4
(λ+ j)m

(
ζ̄4

m − ζm
4

)
, i f χ1(1) = −1.

Therefore (18) becomes

K (c′cH ) =

⎧
⎪⎪⎨
⎪⎪⎩

−1 + 1
2

(
ζ̄4
λ+ j

G(χ)+ ζ
λ+ j
4 G(χ̄)

)
, i f χ1(1) = 1

1
2

(
ζ̄4
λ+ j+1

G(χ)+ ζ
λ+ j+1
4 G(χ̄)

)
, i f χ1(1) = −1.

(19)
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If q ≡ 5(mod8), then G(χ) = χ(−1)G(χ̄) = −G(χ̄), ζ̄4
l
G(χ)+ ζ l

4G(χ̄) = αζ4 for
some real number α. Therefore, for χ1(1) = 1,

K 2|c′cH |2 = 1 − 1

4

(
ζ̄4
λ+ j

G(χ)− ζ
λ+ j
4 G(χ)

)2

= 1 + 1

4

(
2G(χ)G(χ)+ (−1)λ+ j+1G(χ)2 + (−1)λ+ j+1G(χ)

2
)
.

Since G(χ)2 = √
q(A + Bζ4), G(χ)G(χ) = q we get

K 2
∣∣∣c′cH

∣∣∣
2 = 1 + 1

2

(
q ± A

√
q
)
. (20)

Similarly, for χ1(1) = −1, we have

K 2
∣∣∣c′cH

∣∣∣
2 = 1

2

(
q ± A

√
q
)
. (21)

By (16), (20) and (21) we get, for q ≡ 5(mod8)

Imax(C(D)) = 1

K

√
q + A

√
q

2
+ 1 = 1

q − 1

√
q + A

√
q

2
+ 1,

and

Imax(C(D))−
√

N − K

(N − 1)K
≤ 1

q − 1

⎛
⎝1 +

√
q + A

√
q

2
−
√

q2 − 1

2q − 1

⎞
⎠

≤ 1

q − 1

(
1 + A

2
√

2

)
≤ 1

q − 1

(
1 + A + 4

2
√

2

)
.

(22)

If q ≡ 1(mod8), then G(χ̄) = G(χ) and the right-hand side of (19) are real numbers.
Thus

K 2
∣∣∣c′cH

∣∣∣
2 ≤ 1 + 1

2

(
q + A

√
q
)+ 2

√
q,

so that

Imax(C(D))−
√

N − K

(N − 1)K
≤ 1

q − 1

(
1 + A + 4

2
√

2

)
. (23)

Put (22) and (23) together we get the result in case i = j + 1 and k = j + 3.
(2) Now we assume that i = j + 2 and k = j + 3. We still have (18) and

A0 =
{−4, i f χ1(1) = 1

0, i f χ1(1) = −1.

Am = ζ̄4
(λ+ j)m

((−1)m + 1 + χ1(1)(ζ
m
4 + 1))

=
{
ζ̄4
(λ+ j)m

(2 + (−1)m + ζm
4 ), i f χ1(1) = 1

ζ̄4
(λ+ j)m

((−1)m − ζm
4 ), i f χ1(1) = −1.
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Therefore (18) becomes

K (c′cH ) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−1 + 1
4

[
ζ̄4
λ+ j

(1 + ζ4)G(χ)+ 2(−1)λ+ j G(χ2)

+ζ λ+ j
4 (1 + ζ̄4)G(χ̄)

]
, i f χ1(1) = 1

1
4

[
ζ̄4
λ+ j

(−1 − ζ4)G(χ)+ 2(−1)λ+ j G(χ2)

+ζ λ+ j
4 (−1 − ζ̄4)G(χ̄)

]
, i f χ1(1) = −1.

If q ≡ 5(mod8), then G(χ) = −G(χ̄), G(χ2) = √
q so that

K 2
∣∣∣c′cH

∣∣∣
2 ≤ 1

16

(
ζ̄4
λ+ j

(1 + ζ4)G(χ)− ζ
λ+ j
4 (1 + ζ̄4)G(χ)

)2 +
(

1 +
√

q

2

)2

= q

4
+ √

q + 1 + 1

16

(
4q + 4B

√
q
) = q

2
+ B + 4

4
√

q + 1,

and

Imax(C(D))−
√

N − K

(N − 1)K
≤ 1

q − 1

⎛
⎝
√

q

2
+ B + 4

4
√

q + 1 −
√

q2 − 1

2q − 1

⎞
⎠

≤ 1

q − 1

(
1 + B + 4

4
√

2

)
.

For the remain cases, the computations and estimations are similar as above, and to be
omitted. This completes the proof of Theorem 4.2.

Remark The construction in Theorem 4.2 can be viewed as a generalization of construction
from almost difference sets given in Lemma 1.3 (III).
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