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Abstract In this paper we construct MDS Euclidean and Hermitian self-dual codes which
are extended cyclic duadic codes or negacyclic codes. We also construct Euclidean self-dual
codes which are extended negacyclic codes. Based on these constructions, a large number
of new MDS self-dual codes are given with parameters for which self-dual codes were not
previously known to exist.
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1 Introduction

Let q be a prime power and Fq the finite field with q elements. An [n, k] linear code C over
Fq is a k-dimensional subspace of F

n
q . A linear code over F

n
q is said to be constacyclic if

it is an ideal of the quotient ring Rn = Fq [x]/〈xn − a〉. When a = 1 the code is called
cyclic and when a = −1 the code is called negacyclic. For x ∈ C , the Hamming weight
wt (x) is the number of nonzero coordinates in x. The minimum distance d of C is defined
as d = min{wt (x) : 0 �= x ∈ C}. If the parameters of the code C satisfy n − k + 1 = d ,
then the code is said to be maximum distance separable (MDS). The minimum distance
of a code is related to its error correcting capability. In this sense MDS codes are optimal.
Furthermore, MDS codes are related to geometric objects called n-arcs and to combinatorial
called orthogonal arrays [14, Chapter 11], which have applications in algebraic geometry.
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32 K. Guenda

The Euclidean dual code C⊥ of C is defined as C⊥ =
{
x ∈ F

n
q : ∑n

i=1 xi yi = 0 ∀ y ∈ C
}

.

If q = p2 the Hermitian dual code C⊥h of C is defined as C⊥h = {
x ∈ F

n
q : ∑n

i=1 xi y p
i = 0 ∀

y ∈ C
}
. An interesting class of codes is the so-called self-dual codes. A code is called Euclid-

ean self-dual or Hermitian self-dual if it satisfies C = C⊥ or C = C⊥h , respectively. For
q ≡ 1 (mod 4) there exists a self-dual code over Fq if and only if n is even, and for q ≡ 3
(mod 4) there exists a self-dual code over Fq if and only if n ≡ 0 (mod 4) [14, Chapter
19]. In this paper, we construct MDS Euclidean and Hermitian self-dual codes which are
extended cyclic duadic codes or negacyclic codes. We also construct Euclidean self-dual
codes which are extended negacyclic codes. These constructions provide a large number of
new MDS self-dual codes with parameters for which self-dual codes were not previously
known to exist.

Our results can also be considered as a construction of MDS self-dual codes over finite
fields. This has been the subject of many recent research papers [8,12]. Many of the known
codes were obtained using a computer search, which is computationally complex. The con-
structions presented here are much simpler in comparison, which allows us to obtain MDS
self-dual codes with large parameters. In [7] Gulliver and Grassl constructed MDS self-dual
codes over Fq of length q +1 for q ≤ 49 by puncturing cyclic or constacyclic codes. We also
consider the MDS self-dual codes of length q + 1, but our construction is totally different
from the ones given in [7]. Note that Krishna and Sarwate in [13] considered constacyclic
MDS codes. However, the self-duality of these codes was not considered. Blackford [2] stud-
ied negacyclic codes over finite fields using multipliers. He gave conditions regarding the
existence of Euclidean self-dual codes. We generalize his results to the Hermitian self-dual
case, and give necessary and sufficient conditions for the existence of Hermitian self-dual
negacyclic codes. Hence, using our previous results, the decomposition of the polynomial
xn +1 and the results of Blackford we construct new MDS Euclidean and Hermitian self-dual
codes which are negacyclic. Furthermore, we give conditions on the existence of Euclidean
self-dual codes which are extended duadic negacyclic codes.

This paper is organized as follows. In Sect. 2 we construct MDS self-dual codes (Euclid-
ean and Hermitian) which are extended cyclic duadic codes. First we give cyclic MDS codes
over Fq when n divides q − 1 and n divides q2 + 1. Furthermore, by using a result from [6]
on the existence of the μ−q splitting we give new MDS Euclidean and Hermitian self-dual
codes which are extended duadic codes. In Sect. 3 we generalize the work of [2] to the
Hermitian case. We give necessary and sufficient conditions on the existence of negacyclic
Hermitian self-dual codes. We construct negacyclic MDS self-dual codes for both the Euclid-
ean and Hermitian cases. In the last Section we construct Euclidean self-dual codes which
are extended duadic negacyclic codes.

Several examples of the codes obtained from our papers are given. Some of them reach
or even exceed the best known bounds given in [3,8,12].

Throughout this paper ordn(q) denotes the multiplicative order of q modulo n, that is
the smallest integer r such that qr ≡ 1 (mod n). Let Qn denote the set of nonzero squares
modulo n [11]. The set Qn is called the quadratic residues modulo n.

2 MDS self-dual codes from cyclic Duadic codes

In this section n is an odd integer and q a prime power such that (n, q) = 1. For an integer a
such that (a, n) = 1, the multiplier is a permutation μa on Zn = {0, . . . , n − 1} defined by:

μa : i 
−→ ia (mod n).
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New MDS self-dual codes over finite fields 33

We recall that a cyclic code C of length n over Fq is an ideal of the ring R =
Fq [x]/ (xn − 1) generated by a polynomial g(x) which divides xn − 1.C is uniquely deter-
mined by its defining set T = {0 ≤ i ≤ 1| g

(
αi

) = 0}, where α is an nth primitive root of
the unity. The set T is then a union of cyclotomic classes C( j) = { jql (mod n) | l ∈ N}.
Lemma 1 ([5,11, Proposition 4.7,Theorem 4.4.9]) Let C be an [n, k] cyclic code over Fq

with defining set T ⊂ Zn = {0, 1, . . . , n − 1}. Then the following holds:
(i) The Euclidean dual C⊥ is also cyclic and has defining set {i ∈ Zn : i /∈ −T }.

(ii) The Hermitian dual C⊥h is also cyclic and has defining set {i ∈ Zn : i /∈ −qT .

Now, let S1 and S2 be unions of cyclotomic classes modulo n, such that S1 ∩ S2 = ∅,

S1 ∪ S2 = Zn \ {0} and aSi (mod n) = Si+1 (mod 2). Then the triple μa, S1, S2 is called a
splitting modulo n. The odd-like duadic codes D1 and D2 are the cyclic codes over Fq with
defining sets S1 and S2, respectively. The even-like duadic codes C1 and C2 are the cyclic
codes over Fq with defining sets {0} ∪ S1 and {0} ∪ S2, respectively.

Smid proved in [15, Theorem 1] that a duadic code of length n over Fq exists if and only
if q ∈ Qn . The proof of the following Lemma can be found in [13].

Lemma 2 Let q be a prime power and α be a primitive nth root of unity. If n divides q − 1,
then the polynomial g j (x) = ∏n−k+ j−1

i= j

(
x − αi

)
generates an [n, k] MDS code over Fq .

2.1 Euclidean self-dual MDS codes over Fq

Let n be an odd integer which divides q − 1, hence q is a quadratic residue modulo n. Then
from [15, Theorem 1], there exists a pair of duadic codes of length n. We now construct some

of these duadic codes. Consider the cyclic code D1 with defining set T1 =
{

1, 2, . . . ,
(n−1)

2

}
.

By Lemma 2, the code D1 is an
[
n,

(n+1)
2 ,

(n+1)
2

]
MDS code over Fq , and by Lemma 1 its

dual C1 = D⊥
1 is also cyclic with defining set T1 ∪ {0}. The code C1 is self-orthogonal as

T1 ⊂ T1 ∪{0}, and it has dimension n−1
2 and minimum distance n+3

2 . Hence C1 is also MDS.
This gives that C1 is an even-like duadic code whose splitting is given by μ−1 due to the

following Lemma.

Lemma 3 ([11, Theorem 6.4.1]) Let C be any
[
n, n−1

2

]
cyclic code over Fq , with q a prime

power. Then C is self-orthogonal if and only if C is an even like duadic code whose splitting
is given by μ−1.

This gives us a pair of duadic codes D1 = C⊥
1 and D2 = C⊥

2 , and a pair of even like
duadic codes C2 = μ−1(C1). Hence we have the following result.

Lemma 4 Let n be an odd integer which divides q − 1. Then there exists a pair of MDS

codes D1 and D2 with parameters
[
n,

(n+1)
2 ,

(n+1)
2

]
, which are duadic codes with splitting

given by μ−1.

Since n is odd, we want to extend the codes Di , i = 1, 2, in such a way that the extended
code is self-dual. This is possible provided that the following Lemma is satisfied.

Lemma 5 ([11, Theorem 6.4.12]) Let D1 and D2 be a pair of odd-like duadic codes of length
n over Fq . Assume that

1 + γ 2n = 0 (1)

has a solution in Fq . If μ−1 gives the splitting from D1 and D2, then D̃1 and D̃2 are self-dual
codes, where D̃i = {̃c | c ∈ Di } for 1 ≤ i ≤ 2 and c̃ = c0 . . . cnc∞ with c∞ = −γ

∑n−1
i=0 ci .
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34 K. Guenda

In general it is not always possible to find a solution to (1) in Fq . Furthermore, extending
an MDS code does not always give an MDS code. However, under some conditions this is
possible, as proved by Hill [10]. For n = q − 1, γ = 1 is a solution of (1). Moreover, if the
code is a Reed-Solomon code, then from MacWilliams and Sloane [14, Theorem 10.3.1], the
extended code is also MDS. In the landmark textbook [11] the solution of (1) is discussed
when n is an odd prime. The following Lemma generalizes their results to n = pm .

Lemma 6 Let q = r t , with r an odd prime, t an odd integer and n = pm such that n divides
q − 1. Then there is a solution to (1) in Fq , whenever one of the following cases hold.

1. r ≡ 3 (mod 4), p ≡ 3 (mod 4) and m odd;
2. r ≡ 1 (mod 4) and p ≡ 1 or 3 (mod 4);
Proof As mentioned above, if n divides q − 1, then q ∈ Qp . This gives that q ∈ Qr . Hence
if p ≡ 3 (mod 4) and r ≡ 3 (mod 4), there is a solution γ in Fq to 1 + γ 2 p = 0 [11,
Lemma 6.6.17]. If m is odd, hence γ m is a solution to (1). Now, assume r ≡ 1 (mod 4) and
p ≡ 1 or 3 (mod 4). Then 1 + γ 2 p = 0 [11, Lemma 6.6.17] has a solution in Fq . For the
previous case with m odd, γ m is a solution to (1). Now, assume that m is even. Then there
exist p and q such that there is a solution to 1 + γ 2 p = 0 in Fq [11, Lemma 6.6.17]. This
gives (γ m)2 = 1

pm . Since r ≡ 1 (mod 4),−1 is a quadratic residue in Fr ⊂ Fq [11, Lemma

6.2.4]. Then, there exists a ∈ Fq such that a2 = −1. Hence aγ m is a solution of (1) in Fq . ��
We next give Euclidean self-dual codes which are MDS.

Theorem 7 Let q = r t be a prime power (even or odd), and n an odd divisor of q − 1.
Then there exists a pair D1, D2 of MDS odd-like duadic codes of length n, with splitting
μ−1, where the even-like duadic codes are MDS self-orthogonal and T1 = {

1, . . . , n−1
2

}
.

Furthermore, the following holds:

(i) If q = 2t , with t odd and n = p an odd prime, then the extended codes D̃i are[
n + 1, n+1

2 , n+3
2

]
MDS Euclidean self-dual codes.

(ii) If q = r t , with t even and n an odd integer that divides r − 1, then the extended codes
D̃i for 1 ≤ i ≤ 2 are

[
n + 1, n+1

2 , n+3
2

]
MDS Euclidean self-dual codes.

(iii) If q = r t , with r ≡ 3 (mod 4), t odd and n = pm, with p a prime such that p ≡ 3
(mod 4) and m odd, then the extended codes D̃i are

[
n + 1, n+1

2 , n+3
2

]
MDS Euclidean

self-dual codes.
(iv) If q = r t , with t odd, p a prime such that r ≡ p ≡ 1 (mod 4) and n = pm, then the

extended codes D̃i are
[
n + 1, n+1

2 , n+3
2

]
MDS Euclidean self-dual codes.

Proof Lemma 4 gives a pair D1, D2 of MDS odd-like duadic codes of length n, with splitting
μ−1 and where the even-like duadic codes are MDS self-orthogonal with T1 = {

1, . . . , n−1
2

}
.

If q = 2t , t odd and n = p an odd prime which divides q − 1, then q ∈ Qn . From [11,
Lemma 6.6.17], there is a solution to (1) in Fq . Hence from Lemma 5, the extended codes
D̃i are self-dual. If t is even and n an odd integer which divides r − 1, from [11] p. 227 there
is a solution of (1) in Fr2 ⊂ Fq , since the coefficients are in Fr . Further, if we assume r ≡ 3
(mod 4), t odd and n = pm with m odd and such that p ≡ 3 (mod 4), by Lemma 6, there
is a solution to (1). Hence from Lemma 5 the extended codes D̃i are self-dual. Similarly if
we assume r ≡ 1 (mod 4), t odd and n = pm such that p ≡ 1 or 3 (mod 4), we have a
solution to (1) by Lemma 6. Hence from Lemma 5 the extended codes D̃i are self-dual. Now
we prove that the D̃i are MDS. Let c be a codeword of Di of weight n+1

2 . The minimum
weight of D̃i is increasing by 1 provided
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New MDS self-dual codes over finite fields 35

Table 1 New Euclidean
self-dual MDS codes of length N
over Fq

The Theorem providing the
construction is given in brackets

N q

4 79, 97, 132, 312 (7)

6 92, 112, 312 (7) 53, 197 (11) 61, 73 (12)

8 29 (7)

10 192 (7) 132 (11) 92 (12)

14 532 (7)

16 312 (7)

18 137, 1032 (7) 197, 233, 269 (11) 109, 181 (12)

20 92, 112 (12)

22 109, 197 (11)

24 211 (7) 72, 193 (12)

26 181, 233 (11) 53, 157 (12)

28 132, 281, 337 (12)

30 592 (7) 89, 149 (11) 61, 112, 181 (12)

32 53 (7)

34 101, 132 (11) 409 (12)

36 73, 433 (12)

38 113 (11)

42 293, 461 (11)

50 72, 149 (11)

54 53, 269 (11)

74 293, 29 (7)

84 167 (7)

90 211 (7)

− γ c(1) = −γ

n−1∑
i=0

ci = c∞ �= 0. (2)

but γ �= 0, hence to satisfy (2) it suffices to verify that c(1) �= 0 since c(x) = a(x)g(x)

for some a(x) (mod xn − 1) and g(x) = ∏ n−1
2

i=1

(
x − αi

)
. Now g(1) �= 0 and a(1) �= 0,

otherwise, a(x) is a multiple of (x−1)g(x). Hence by the BCH bound the weight is ≥ 1+ n+1
2 ,

and by the Singleton bound we obtain equality. ��
Some new codes obtained using Theorem 7 are given in Table 1.

2.2 Hermitian self-dual MDS codes

Let q be a power of an odd prime r . In this section, we construct MDS self-dual codes over
Fq2 of length n + 1 with n|q2 + 1.

First, note that when n divides q2 + 1, we have ordn
(
q2

) = 2. This implies that all
the cyclotomic classes C(i) modulo n are reversible with cardinality 1 or 2, because |C(i)|
divides ordn

(
q2

)
[11, Theorem 4.1.4]. It then follows that C(i) = {i,−i} for any i . The

cyclic code generated by the polynomial
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36 K. Guenda

gs(x) =
i= n−1

2 +s+1∏

i= n−1
2 −s

(
x − αi

)
with 0 ≤ s ≤ n − 1

2
,

is an [n, n − 2s − 2, 2s + 3] MDS code. The polynomial gs(x) has 2s + 2 consecutive roots

α
n−1

2 −s, α
n−1

2 −s+1, . . . , α
n−1

2 +1, . . . , α
n−1

2 +s+1.

This gives a cyclic MDS code with odd dimension k = n − 2s − 2.
Now, consider n = pm such that n divides q2 +1 and pm ≡ 1 (mod 4). For s = n−1

4 −1,
the polynomial gs generate a cyclic MDS code D1 with parameters

[
n, n+1

2 , n+1
2

]
. Lemma 1

gives that the Hermitian dual of D1 has defining set Zn \ (−qT ). Since ordn
(
q2

)
is even

(equal to 2), then the multiplier μ−q gives a splitting [6, Proposition 13]. Hence D1 is an
odd-like duadic code and D⊥h

1 = C1 is the even like duadic code with defining set T ∪ {0}.
Therefore Ci ⊂ C⊥h

i = Di . As for the Euclidean case, the usual extension of an orthogonal
code does not always give a self-dual code. Consider the following expression in Fq2

1 + γ q+1n = 0, (3)

which always a solution in Fq2 if we assume n ∈ Fr . This is because we have nq = n, or equiv-
alently nq+1 = n2, so that 1 + γ q+1n = 0 ⇐⇒ n + γ q+1n2 = 0 ⇐⇒ n + (γ n)q+1 = 0.
Then (3) is equivalent to

n + γ q+1 = 0 (4)

Note that
{
aq+1 | a ∈ Fq2

} = Fq . Hence (4) always has a solution in Fq2 , which implies
that (3) is solvable in Fq2 . For 1 ≤ i ≤ 2, the extended codes are D̃i = {̃c | c ∈ Di }, with

c̃ = c0 . . . cnc∞, c∞ = −γ
∑n−1

i=0 ci and γ is the solution of (3). Since in this case the
splitting is given by μ−q , the codes D̃i are Hermitian self-dual [5, Proposition 4.8]. By a
similar argument to that in Theorem 7, the extended codes are also MDS, since the codes Di

are MDS. This proves the following Theorem.

Theorem 8 Let q = r t be a prime power, and n = pm ∈ Fr a divisor of q2+1, where pm ≡ 1
(mod 4). Then there exists Hermitian self-dual codes over Fq2 which are MDS and extended

duadic codes with the splitting given by μ−q and with parameters
[
n + 1, n+1

2 , n+3
2

]
.

Some new codes obtained using Theorem 8 are given in Table 2.

3 Negacyclic MDS self-dual codes

It was proven in [9] that if n is odd, then the negacyclic codes are equivalent to cyclic codes.
Thus we only consider negacyclic codes with even length.

For use later, we review the factorization of the polynomial xn +1 over Fq [x]. This can be
found in [1,13]. We also assume (n, q) = 1, so that xn + 1 does not have multiple roots. The
roots of xn + 1 are δ, δξ, . . . , δξn−1, where ξ is a primitive nth root of unity and δn = −1.
Hence ξ = δ2, where δ is a primitive 2nth root of unity. Thus δ lies in an extension field Fqs ,
with s equal to the multiplicative order of q modulo 2n. Let ω be a primitive element of Fqs ,

hence we can take δ = ωt and ξ = ω2t , with t = qs−1
2n . Then the following holds.

xn + 1 =
n−1∏
i=0

(
x − δξ i

)
=

n−1∏
i=0

(
x − ωt (1+2i)

)
=

n−1∏
i=0

(
x − δ(1+2i)

)
.
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New MDS self-dual codes over finite fields 37

Table 2 New Hermitian
self-dual MDS codes of length N
over Fq2

The Theorem providing the
construction is given in brackets

N q

6 37, 43, 47, 53, 63, 67, 73 ,83 (8)

12 52, 37, 72, 97 (16)

14 31, 47, 73, 83 (8)

20 41, 61, 92, 101, 181 (16)

24 52, 72, 73, 97, 112 (16)

28 29, 113, 197 (16)

36 37, 73, 109 (16)

40 41, 92, 112 (16)

42 73 (8) 43, 127 (16)

44 89, 353 (16)

48 72, 97, 193, 241, 337 (16)

52 53, 157, 313 (16)

54 83 (8)

60 61, 181 (6)

Each irreducible factor of xn + 1 corresponds to a cyclotomic class modulo 2n.δ2i+1 and
δ2 j+1 are said to be conjugate if they are roots of the same irreducible factor of xn + 1.

Denote by O2n the set of odd integers from 1 to 2n − 1. The defining set of the negacyclic
code C of length n is T = {i ∈ O2n : δi is a root of C}. It is the union of q-cyclotomic
classes modulo 2n. The dimension of the negacyclic code with defining set T is n − |T |.
Aydin et al. [1] gave a negacyclic BCH bound. That is, if T has d−1 consecutive odd integers,
then the minimum distance is at least d .

Lemma 9 ([2, Theorem 2]) If C is a negacyclic code with defining set T , then C⊥ (the
Euclidean dual of C) is a negacyclic code with defining set

T ⊥ = {i ∈ O2n : −i (mod 2n) /∈ T }

Let s ∈ {1, . . . , 2n − 1} such that (s, 2n) = 1, then a multiplier of Rn is the map

μs : Rn −→ Rn

a(x) 
−→ a(xs) (mod xn + 1), (5)

μs is an automorphism of Rn . If C is an ideal of Rn with defining set T , then μs(C) is an
ideal of Rn with defining set {i ∈ O2n | si ∈ T }.μs induces the following map

μ′
s : O2n −→ O2n

i 
−→ μ′
s(i) = si (mod 2n), (6)

The multiplier μ2n−1 = μ−1 has the effect of replacing x by x−1, since x2n = 1 in Rn .

Lemma 10 ([2, Theorem 3]) If N = 2an′ for some odd integer n′, then self-dual negacyclic
codes over Fq of length N exist if and only if

q �= −1 (mod 2a+1).
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38 K. Guenda

If a = 1, then self-dual negacyclic codes over Fq of length N exist if and only if

q ≡ 1 (mod 4).

As a Corollary of Lemma 10 the negacyclic code of length q + 1 and defining set T =
{i odd : 1 ≤ i ≤ q} is an Euclidean self-dual MDS code over Fq as proven in [2]. The
following result is more general than that given in [2].

Theorem 11 Let n = 2n′ for some odd integer n′, q an odd prime power such that q ≡ 1
(mod 4), q+1 = 2n′′, with n′|n′′ and n′′ odd. Then there exists an MDS negacyclic Euclidean
self-dual code with parameters [n, n/2, n/2 + 1] having defining set

T =
{

q + 1

2
+ i : −(n′ − 1) ≤ i even ≤ (n′ − 1)

}
.

Proof Consider a negacyclic code C with such a length n over Fq . Assume δ2i ′+1 is a root

of C , hence
(
δ2i ′+1

)q+1 = δ2i ′(q+1)δq+1 = δ2 jnδq+1 = δq+1. Then for an odd i ∈ O2n ,

the conjugate of δi is δiq = δq+1−i . Hence we have C(i) = {i, q + 1 − i}. It is clear that for
i ∈ O2n we have |C(i)| ≤ 2 and i = q + 1 − i (mod 2n) ⇐⇒ i = q+1

2 + kn. Hence for i

even such that 1 ≤ i ≤ (n′ − 1), we have
∣∣∣C

(
q+1

2 + i
)∣∣∣ =

∣∣∣
{

q+1
2 + i, q+1

2 − i
}∣∣∣ = 2 and

for i = 0,

∣∣∣C
(

q+1
2

)∣∣∣ = 1. Now, consider a negacyclic code with the following defining set

T = n′−1∪
i=0

C

(
q + 1

2
+ i

)
=

{
q + 1

2
+ i : −(n′ − 1) ≤ i even ≤ (n′ − 1)

}
.

Assume there exist two different integers i and j such that 0 ≤ i ≤ n′ −1, 0 ≤ j ≤ n′ −1

and C
(

q+1
2 + i

)
= C

(
q+1

2 + j
)

. Hence q+1
2 + i = q+1

2 + j + 2kn ⇐⇒ i − j = 2kn,

that is i − j is a multiple of 2n. But we have i − j ≤ n, which is impossible. Furthermore,
from Lemma 10 we have C(i) �= C(−i) (mod 2n). If we assume the existence of two dif-
ferent integers i ′ and j ′ in T such that C(i ′) = C(− j ′), then there exists i and j such that
i ′ = q+1

2 + i and j ′ = q+1
2 + j . But, C(i ′) = C(− j ′) ⇐⇒ q+1

2 + i = 2kn − q+1
2 − j ⇐⇒

−(q +1+2k′n) = i + j = n
(
− q+1

n + 2k
)

, this gives that n divides i + j , which is impos-

sible since −(n′ − 1) ≤ i, j ≤ (n′ − 1). This implies that −T ∩ T = ∅ and the redundancy
of the code is equal to n′, hence the code is self-dual. The code is MDS, since there are n′
successive roots and hence by the BCH bound the minimum distance is at least n′ + 1, then
by the Singleton bound we have equality. ��

Some new codes obtained using Theorem 11 are given in Table 1.

Theorem 12 Let n = 2an′ for some odd integer n′, q an odd prime power such that q ≡ 1
(mod 2a+1n′′), n′|n′′ and n′′ odd. Then there exists an MDS negacyclic Euclidean self-dual
code with parameters [n, n/2, n/2 + 1] having defining set

T = {i odd : 1 ≤ i ≤ n − 1}.
Proof In this case we have ξ ∈ Fq , and hence ξq = ξ . We will show that the conjugate
of δ2i+1 = δξ i is exactly itself. This means that each cyclotomic class contains only one
element, namely

(
δξ i

)q = δqξ i = δδq−1ξ = δ
(
δ2n) q−1

2n ξ i = δξ i .
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New MDS self-dual codes over finite fields 39

Now we consider the negacyclic code with defining set T = {i odd : 1 ≤ i ≤ n − 1}. By
Lemma 10 we have C(i) �= C(−i). Furthermore, for different i and j in T we cannot have
C(i) = C(− j). Otherwise we will have 2nk − i = j , since in each class there is only one
element. Hence i + j = 2nk, which is impossible, because i ≤ n − 1 and j ≤ n − 1. This
implies −T ∩ T = ∅ and |T | = n

2 . Then from Lemma 9 we obtain T ⊥ = T and so the code
is self-dual. By the BCH bound the minimum distance is n

2 + 1. ��
Some new codes obtained from Theorem 12 are given in Table 1.

Lemma 13 Let C be a negacyclic code of length n over Fq2 with defining set T . Then the
Hermitian dual is a negacyclic code with defining set

T ⊥h = O2n \ (−iq).

Proof Let C = {(
aq

0 , . . . , aq
n−1

) : (a0, . . . , an−1) ∈ C
}
. By an argument analogous to that

in [5, Proposition 3.1], one can show that C = μq(C). Furthermore, since μq is an auto-
morphism on Rn , the code C is negacyclic with defining set TC = qT = {iq : i ∈ T }. By

noticing that C⊥h = C
⊥

, we get that

T ⊥
C

= {i ∈ O2n : −i (mod 2n) /∈ qT }.
The automorphism μq induces a permutation acting on the elements of O2n . Thus we

have

− i (mod 2n) /∈ qT ⇐⇒ −qi (mod 2n) /∈ q2T . (7)

But over Fq2 , all the cyclotomic classes are stable by multiplication by q2, hence (7) is
equivalent to −qi (mod 2n) /∈ T . Then

T ⊥h = {i ∈ O2n : −iq (mod 2n) /∈ T } = O2n \ (−q)T .

��
Proposition 14 If N = 2an′ for some odd integer n′, then there exists a Hermitian self-dual
code over Fq2 of length N if and only if

q �= −1 (mod 2a+1). (8)

Proof From Lemma 13, the code C is Hermitian self-dual if and only if we have T =
O2n \ (−iqT ). Hence C is Hermitian self-dual if its defining set T satisfies the following

2N − iq /∈ T ⇐⇒ i ∈ T . (9)

Then, if there exists an odd i ∈ O2N such that Cq2(i) = Cq2(−qi) (mod 2N ), the
code C is not self-dual. If such an i exists, then there is an integer m such that −iq ≡
q2mi (mod 2N ). Hence, 2a+1n′k = (

q2m−1 + 1
)

qi , which gives 2a+1n′| (q2m−1 + 1
)

qi .
Since n′ is odd we can choose i such that n′ ≡ i (mod 2N ). We need only check that
2a+1| (q2m−1 + 1

)
q . Since q is odd, it follows that 2a+1|q2m−1 + 1. Furthermore, we have

q2m−1 + 1 = (q + 1)(q2m−2 − q2m−3 + · · · − 1, since the last factor is odd, and q + 1 and
q2m−1 + 1 have the same power of 2 in their factorization. Thus it is sufficient to check only
that q ≡ −1 (mod 2a+1). ��

For a = 1, (8) becomes q ≡ 1 (mod 4), hence we have the following Corollary.
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Corollary 15 If N = 2n′, for some odd integer n′, then Hermitian self-dual negacyclic
codes over Fq2 of length n exist if and only if

q ≡ 1 (mod 4).

Theorem 16 Let n = 2an′, a > 1 and q ≡ 1 (mod 2an′′), such that n′|n′′ and n′′ is odd.
Then there exists an MDS negacyclic code of length n which is Hermitian self-dual with
defining set

T = {i odd : 1 ≤ i ≤ n − 1}.
Proof If q ≡ 1 (mod 2an′′), then q �= −1 (mod 2a+1). Otherwise q = −1 + k2a+1 and
q = 1+2an′′k′, and by summing the two quantities of q and dividing both sides by 2, we have
q = 2a−1(n′′k′ + 2k). Since a > 1, this implies that q is even, which is impossible. Hence
by Proposition 14 we have Cq2(−qi) �= {i}, since we have proven that q �= −1 + k2a+1.
For these parameters we have ξ ∈ Fq2 . Then by an argument similar to that in Theorem 12,
we have that Cq2(i) = {i}. Hence the code is Hermitian self-dual. By the BCH bound the
minimum distance is n/2 + 1. ��

Some new codes over Fq2 obtained using Theorem 16 are given in Table 2.

4 New self-dual codes from Negacyclic codes

A generalization of the splitting of n to obtain negacyclic codes was introduced in [2]. A q
splitting modulo n is a multiplier μs of Rn that induces a partition of O2n such that

1. O2n = S1 ∪ S2 ∪ X
2. S1, S2 and X are unions of q cyclotomic classes.
3. μ′

s(Si ) = Si+1 (mod 2) and μ′
s(X) = X .

A q splitting is of Type I if X = ∅. A q splitting is of Type II if X = { n
2 , 3n

2

}
.

Definition 17 A negacyclic code C of length n over Fq is duadic if there exists a split-
ting such that the defining set is one of Si or Si ∪ X for i = 1 or 2. If the splitting is of
Type II, then there exist polynomials Ai (x) such that xn + 1 = A1(x)A2(x)(x2 + 1) and
μs(Ai (x)) = Ai+1 (mod 2)(x).

Remark 18 An Euclidean (respectively Hermitian) self-dual negacyclic code is duadic with
multiplier μ−1 (respectively μ−q ) if it is obtained from a Type I splitting.

Next, we consider negacyclic codes of length n = 2pt with p an odd prime.

Lemma 19 ([2, Theorem 8]) If p and q are distinct odd primes, q ≡ 3 (mod 4) and r =
ord2pt (q), then the following holds.

1. There exists a q splitting of n = 2pt of Type II.
2. μ−1 gives a splitting of n of Type II if and only if r �= 2 (mod 4).

Lemma 20 Let t be the order of q modulo p, and z be the largest integer such that pz |(qt −1).
Hence if z = 1, we have ordpr q = pr−1t .

Proof Let u = qt ≡ 1 mod p. If we assume that z = 1, then u �= 1 mod p2. It is a well
known fact from elementary number theory [4, p. 87] that u mod pr is an element of order
pr−1 in the group

(
Zpr

)∗ if and only if u �= 1 mod p2. Hence ordpr q = pr−1t. ��
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Remark 21 We have r = ord2pt (q) = lcm(ord2(q), ordpt (q)) = ordpt (q), since q is odd.
Hence if z = 1, by Lemma 20 we have ordpt (q) = pt−1 ordp(q), so if ordp(q) is odd or
ordp(q) ≡ 0 (mod 4), then r �= 2 (mod 4). Hence from Lemma 19 the multiplier μ−1

gives a splitting of n of Type II.

Lemma 22 Let p and q be distinct odd primes. Then we have the following.

1. If p ≡ 1 (mod 4) and
(

q
p

)
= −1, then ordp(q) ≡ 0 (mod 4).

2. If
(

q
p

)
= 1 and p ≡ 3 (mod 4), then ordp(q) is odd.

Proof Assume that q is not a quadratic residue modulo p. Then from [11, Lemma 6.2.2]
ordp(q) is not a divisor of p−1

2 , so from Fermat’s Little Theorem ordp(q) = p − 1. Hence
ordp(q) ≡ 0 (mod 4) since p ≡ 1 (mod 4).

If q ∈ Qp , then from [11, Lemma 6.2.2] ordp(q) is a divisor of p−1
2 . Since p ≡ 3

(mod 4) we have that p−1
2 is odd. This implies that ordp(q) is also odd. ��

Assume, that the following equation

2 + γ 2n = 0 (10)

has a solution in Fq . If a = (a0, . . . , an−1) ∈ F
n
q , define

ã = (a0, . . . , an−1, a∞, a∗) ∈ F
n+2
q ,

where

a∞ = γ

n−1
2∑

i=0

(−1)i a2i , a∗ = γ

n−1
2∑

i=0

(−1)i a2i+1.

The set C̃ = {̃a = (a0, . . . , an−1, a∞, a∗) ∈ F
n+2
q : (a0, . . . , an−1) ∈ C} is a linear code

of Fq .

Lemma 23 ([2, Theorem 12]) Let q be a prime, γ a solution of (10) in Fq , and suppose that
D1 and D2 are odd-like negacyclic duadic codes of length n = 2pt , with multiplier μ−1 of
Type II. Then for i = 1, 2, the codes D̃i are Euclidean self-dual.

Lemma 24 Let q and p be distinct odd primes such that q ≡ p ≡ 3 (mod 4), n = 2pt ,
with t odd. Hence (10) has a solution in Fq .

Proof There is a solution for 2 + 2pγ 2 = 0 in Fq if and only if there is a solution of
1 + pγ 2 = 0 in Fq . If we assume p ≡ 3 (mod 4), the last equation has a solution γ ∈ Fq

from [11, Lemma 6.6.17]. If t is odd γ t is a solution of (10). ��
Theorem 25 Let p and q be two odd primes such that q ∈ Qp, q ≡ p ≡ 3 (mod 4) and
z = 1. Then there exist negacyclic duadic codes Di for 1 ≤ i ≤ 2 of length n = 2pt , t odd,
with splitting of Type II given by μ−1, and such that D̃i are self-dual for i = 1, 2.

Proof If we have such p and q , from Lemma 22 ord2pt (q) is odd. Hence from Remark 21
μ−1 gives a splitting of n of Type II. Furthermore, from Lemma 24 (10) has a solution in Fq .
Hence from Lemma 23, the codes Di can be extended to Euclidean self-dual codes D̃i , for
i = 1 and 2. ��

Gulliver and Harada [8] proved the existence of MDS self-dual codes of length 18 over
Fp , when 17 ≤ p ≤ 97. However, for 101 ≤ p ≤ 300 they gave quasi-twisted self-dual
[18, 9, 9]p codes obtained from unimodular lattices [8, Table 3]. In Table 1, MDS self-dual
codes of length 18 are given for p = 109, 137, 181, 197, 233, and 269.
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