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Abstract We look at low-density parity-check codes over a finite field K associated with
finite geometries T ∗

2 (K), where K is a sufficiently large k-arc in PG(2, q), with q = ph . The
code words of minimum weight are known. With exception of some choices of the char-
acteristic of K we compute the dimension of the code and show that the code is generated
completely by its code words of minimum weight.
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1 Introduction

The concept of low-density parity check (LDPC) codes was originally introduced by Gallager
[5]. In its broader sense, a binary LDPC code C is a linear block code defined by a sparse
parity check matrix H , a matrix that contains a lot more 0s than 1s.

When LDPC codes are decoded using Gallager’s decoding method, their empirical per-
formance is known to be excellent, even near the Shannon limit [16, 17]. Early known LDPC
codes have been constructed randomly [5, 16], but lately several types of explicit construc-
tions have been made. These have been based on permutation matrices [4, 26], Ramanujan
graphs [19, 22], expander graphs [25] or on q-regular bipartite graphs [13].

In 2001, Kou et al. [14] studied classes of LDPC codes defined by incidence structures
in finite geometries. Since then, many LDPC codes have been constructed based on various
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incidence structures in discrete mathematics and finite geometry [8–11, 18, 27]. In particular,
Vontobel and Tanner [27] considered the LDPC codes generated by generalized polygons,
focussing on generalized quadrangles. They demonstrated that some generalized quadrangle
LDPC codes perform well under the sum product algorithm from [16]. Later, simulation
results of Liu and Pados [15] showed that several generalized polygon LDPC codes have
powerful bit-error-rate performance when decoding is carried out via low-complexity vari-
ants of belief propagation [15]. It would be interesting to perform the same simulations for
the incidence geometries studied in this article. This is because all handled structures have
a girth of at least eight in their associated Tanner graph. The latter is because K is an arc,
hence the geometry contains no triangles.

Two structures that have received a lot of attention lately are LU (3, q) and its dual
LU (3, q)D [12, 13, 24]. In [13] the authors conjecture the dimension of the associated code
to be

q3 − 2q2 + 3q − 2

2

when q is odd. Over the field G F(2) this was proven in [24]. This result will be extended
to all fields with char K �= p and for all q , for both LU (3, q) and LU (3, q)D . In [12] the
authors classify the code words of small weight of LU (3, q)D as linear combinations of code
words of minimum weight. This result will be extended to all code words, regardless of the
weight, when char K �= p.

Another structure that recently received a lot of attention is T ∗
2 (K) with K a hyperoval.

This structure is a generalized quadrangle and codes associated to generalized quadrangles
have been studied thoroughly. For regular generalized quadrangles it has been proven in [1]
that, excluding some choices of the characteristic of K, the code is generated by its code
words of minimum weight. For this generalized quadrangle the condition is char K �= 2.
Under the same condition char K �= 2, the same result will be established for this nonregular
generalized quadrangle and its dimension will be computed. In [21], the authors manage
to classify the code words of small weight for sufficiently large q , as a linear combination
of code words of minimum weight but in some cases also second-minimum weight. For
char K �= 2 we show that all words in the code are a linear combination of the code words of
minimum weight, even the code words of second minimum weight used in the classification
of [21], regardless of weight and even for small q .

2 Preliminaries

Let PG(3, q) be the 3-dimensional projective space over G F(q). Let PG(2, q) be a plane in
it and let K be a set of points in that plane with no three points collinear; this is called an
arc. Define the geometry T ∗

2 (K) as follows: the points are the affine points, being the points
of PG(3, q)\PG(2, q). The lines are the affine lines of PG(3, q) which go through a point of
K. The incidence is inherited from PG(3, q). Note that through every point there are k lines,
one through each point of K, while every line contains q points. In total there are q3 points
and kq2 lines: q2 through each point of K.

Let K = {r1, . . . , rk} be a k-arc and denote by P = {p1, . . . , pq3} the points and by L
the lines of T ∗

2 (K). Let H be its q3 × kq2 incidence matrix, where points are rows and lines
are columns. Let C be the linear code with H as its parity check matrix, over an arbitrary
field K.
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Some low-density parity-check codes derived from finite geometries 289

One can associate a ‘weight’ to each line in a codeword w, being its value at the position
corresponding to that line. A word w ∈ K

kq2
is in C if and only if w · HT = 0̄, hence if and

only if
n∑

i=1

ci Hji = 0

as an element of K, for every point p j . Alternatively formulated: a word is a code word of C
if and only if the sum of the weights of the lines through every point equals 0 over K.

Definition 2.1 Let ri , r j ∈ K with i < j and let π be a projective plane through ri , r j

different from the fixed PG(2, q). The ‘plane word through ri and r j ’ is the codeword with

• +1 on the positions corresponding to the lines of π through ri ,
• −1 on the positions corresponding to the lines of π through r j ,
• 0 on all other positions.

Remark 2.2 It has been proven in [21] that the plane words are exactly the code words of
minimum weight, up to a scalar factor.

Notation 2.3 Given a plane word w through pi and p j , define T (w) to be the plane π in
the definition above and by L(w) the line pi p j in Definition 2.1. Denote by C ′ the code
generated by all plane words.

Remark 2.4 There are no triangles in this geometry. If there was a triangle, these three lines
would be coplanar; hence their points on K must lie on the same line. This contradicts the
fact that K is an arc.

3 Dimension of C ′

Remark 3.1 Up to a scalar factor, there are exactly qk(k−1)
2 plane words.

Proof A plane word is determined up to a scalar factor by its corresponding plane. Through
every two points of K there are exactly q planes and other planes do not allow plane words.

This yields q

(
k
2

)
as required. �

Let K be any k-arc and let K be an arbitrary field with char K �= p.

Lemma 3.2 Assume that
∑

λiwi = −→
0 with wi plane words and λi ∈ K. Whenever L(wi ) =

L(w j ), then λi = λ j .

Proof Without loss of generality, by renumbering the indices as necessary, let L(w j ) =
L(wi ) = 〈pk−1, pk〉. Define Li := 〈pi , pk〉 and denote the weights of the q plane words
through every Li as ai,1, ai,2, . . . , ai,q . Denote by

(
� j

)
j=1,...,q the planes through 〈pk−1, pk〉

and by
(
� j,t

)
t=1,...,q the q lines trough pk in the j th plane.

When a linear combination yields the zero word, this means that every line in the geometry
has weight 0, in particular every line in � j through pk . Hence for line � j,t one has

a1,xt + a2,xt + · · · + ak−1,xt = 0

with xt a t-dependent index permutation.
For a given � j all ak−1,xt are equal, since they come from the same plane word. Hence we

simply write ak−1, j . By definition of ai,l , every ai,l has to appear exactly once. This means
that there are permutations σ j,i on {1, . . . , q} such that
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1,σ j,1(1) + a2,σ j,2(1) + · · · + ak−2,σ j,k−2(1) + ak−1, j = 0
a1,σ j,1(2) + a2,σ j,2(2) + · · · + ak−2,σ j,k−2(2) + ak−1, j = 0

...

a1,σ j,1(q) + a2,σ j,2(q) + · · · + ak−2,σ j,k−2(q) + ak−1, j = 0

Now sum the rows above. Since summing over a permutation of a set is the same as
summing over the set, this yields

q∑

t=1

k−2∑

i=1

ai,t =
q∑

t=1

k−2∑

i=1

ai,σ j,i (t) = −qak−1, j

for every j . Since q �= 0, all ak−1, j are the same, regardless of j . �

Theorem 3.3 The dimension of C ′ is (k−1)(qk−k+2)
2 .

Proof Let S = {(p1, p2)} and let d(S) be the dimension of the code generated by the plane
words {w|T (w) ∈ S}. One by one, add the pairs

(p1, p3), (p2, p3), (p1, p4), (p2, p4), (p3, p4), (p1, p5), . . . , (pk−1, pk)

to S. Every time a pair of the form (p1, p�) is added, a new point is added, hence the dimen-
sion increases by q . Every time another pair is added, say (pi , p j ) with i > 1, the dimension
increases by:

• at least q − 1 because of Lemma 3.2,
• by strictly less than q since one can easily write the zero word as a linear combination of

plane words through (p1, pi ), (p1, p j ), (pi , p j ).

Therefore, the dimension is exactly

q +
k∑

i=3

q +
k∑

i=3

(i − 2)(q − 1) = (k − 1)(qk − k + 2)

2

as claimed. �

4 Dimension of C

We start with some preliminaries from algebraic graph theory. Then we compute the dimen-
sion of C and find out that it is the same as the dimension of C ′. Hence, since C ′ ≤ C , C
is generated completely by its code words of minimum weight, here the plane words. First
this is done for K a hyperoval, in this case T ∗

2 (K) is a (q − 1, q + 1)-generalized quadrangle
[20]. Then is done for the case that K is a conic (q odd). Finally we show that these two cases
are sufficient to prove C = C ′ for any sufficiently large arc. We also compare with earlier
known results.

4.1 Preliminaries

Lemma 4.1 Let A be an adjacency matrix of a graph. Then (Ak)i j is the number of paths
of length k from vertex i to vertex j .

Proof This is lemma 2.5 in [2]. �

123



Some low-density parity-check codes derived from finite geometries 291

Lemma 4.2 Let A be the adjacency matrix of a connected d-regular graph. Then d is an
eigenvalue of A with real multiplicity 1 and corresponding eigenvector (1, 1, . . . , 1)T.

Proof This is Proposition 3.1 in [2]. �

Now, look at the matrix H HT and note that

(H HT)i j =
⎧
⎨

⎩

k if i = j
1 if pi and p j are collinear
0 otherwise

,

hence the point adjacency matrix of the graph of T ∗
2 (K) is A := H HT − k I . We will study

the eigenvalues of A.
A codeword of C fulfils cHT = 0, hence HcT = 0 and hence HT HcT = 0. This means

that cT is a right eigenvector of HT H with eigenvalue zero. Hence the dimension of the code
cannot be larger than the dimension of the eigenspace corresponding to the eigenvalue 0.
This is at most the algebraic multiplicity of the eigenvalue 0 over K.

Now, from linear algebra it is known that the dimension of the null space of a matrix A
is at most the number of zero eigenvalues of HT H . It is also known that, except for maybe
zero, HT H and H HT have the same set of eigenvalues.

4.2 The case K is a hyperoval (q = 2h)

Here k = q + 2, hence dim C ′ = q(q+1)2

2 . We will now compute dim C .
It may be interesting to note that T ∗

2 (K) is a (q −1, q +1)-generalized quadrangle [20]. It
is known from [1] that the code associated to a regular generalized quadrangle is generated by
its code words of smallest weight under certain restrictions on the characteristic. For T ∗

2 (K)

this condition is 2q2 �= 0, which would follow from our original assumptions. However,
this generalized quadrangle T ∗

2 (K) is not regular. The following indirectly shows that the
regularity is not a necessary condition for the theorem of [1].

Lemma 4.3 The matrices H HT and HT H only has eigenvalues 0, 2q and q(q + 2).

Proof Let us first look at the eigenvalues of A := H HT−(q+2)I . Since there are only 3 pro-
jectively non-equivalent pairs of points in T ∗

2 (K) (equal, collinear, non-collinear) the number
of paths between two points only depends on whether they are equal, collinear or non-collin-
ear. Hence Lemma 4.1 implies that each of the matrices I, A, A2, A3 has at most 3 different
entries. The entries only depend on whether the two points are equal, collinear or non-collin-
ear. Hence, the matrices I, A, A2, A3 must be linearly dependent: c3 A3+c2 A2+c1 A+c0 I =
0 for some c0, . . . , c3. Therefore A has a minimal polynomial of degree at most 3 and hence
it has at most 3 different eigenvalues.

As

ρ(H) = q2(q + 2) − dim C ≤ q2(q + 2) − dim C ′ < q3,

H HT is singular and hence has an eigenvalue 0. Therefore A has an eigenvalue −q −2. Also,
by Lemma 4.2, (q − 1)(q + 2) is an eigenvalue of A. Now consider Lemma 4.1 with two
identical points. These correspond to the diagonal entries of An ; these are 1,0,(q + 2)(q − 1)

and (q + 2)(q − 1)(q − 2) for n = 0, 1, 2, 3.
Since A has at most 3 eigenvalues, there is a polynomial f (x) = x3 + ax2 + bx + c with

f (A) = 0 and f (λ) = 0 for all eigenvalues λ of A. Hence, one can find the coefficients
a, b, c, d by solving the system of equations:
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⎧
⎨

⎩

f ((q + 2)(q − 1)) = 0,

f (−q − 2) = 0,

(q + 2)(q − 1)(q − 2) + a(q + 2)(q − 1) + c = 0,

where the third equation represents the diagonal entries of the matrix equation

A3 + a A2 + bA + cI = 0.

This results in f (x) = (x + 2 − q)(x + 2 + q)(x − q2 + 2 − q).
Hence A has eigenvalues −q − 2, q − 2, (q − 1)(q + 2) and hence H HT has eigenvalues

0, 2q and q(q + 2). �

Theorem 4.4 The algebraic multiplicities of the eigenvalues 0, 2q, q(q + 2) are q(q+1)2

2 ,
(q+2)(q2−1)

2 , 1.

Proof The last multiplicity follows from Lemma 4.2. Denote by µ1, µ2 the other eigenvalues
and expand the characteristic polynomial xµ1(x − 2q)µ2(x − q(q + 2)). Then linear algebra
tells us that the degree of the polynomial is the sum of the multiplicities, yielding

µ1 + µ2 + 1 = q2(q + 2).

The coefficient of xn−1 is equal to

−
q2(q+2)∑

i=1

(HT H)i i = −
q3+2q2∑

i=1

q = −q(q3 + 2q2).

Solving the system

{
µ1 + µ2 + 1 = q3 + 2q2

−(2qµ2 + q(q + 2)) = −q(q3 + 2q2)

in a computer algebra package gives the above values of µ1, µ2. �

If q + 2 �= 0 then dim C ≤ q(q+1)2

2 since 2q �= 0 by assumption. Theorem 3.3 now

becomes dim C ′ = q(q+1)2

2 . Since C ′ ≤ C this yields

q(q + 1)2

2
≥ dim C ≥ dim C ′ = q(q + 1)2

2
;

hence C = C ′ and C is generated completely by its plane words.
If q + 2 = 0, the same conclusion holds. All plane words correspond to the eigenvalue

0 over a field of characteristic 0, the only words that possibly need to be added for a basis
of C are the eigenvectors corresponding to an eigenvalue 0 over K which is not 0 over R. In
this case this is only (1, 1, . . . , 1)T. But this vector is a linear combination of plane words:
consider the sum of all plane words through one of L1, . . . , Lk having weight −1 for the
lines through pk . All lines not through pk have weight 1. All lines through pk have weight
−(q + 1) = 1 − (q + 2) = 1 since q + 2 = 0 over K. Hence (1, . . . , 1) ∈ C ′, which means
C = C ′ and C is generated completely by its plane words.
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4.3 The case K is a conic, q odd

For K a conic, every pair of equal or collinear points are projectively equivalent, but for non-
collinear points there are two types: the line they span in PG(3, q) can intersect the plane
containing K at an internal or external point of the conic K. They are called pairs of internal
and external points. Every two pairs of internal points are projectively equivalent and every
two pairs of external points are projectively equivalent.

Lemma 4.5 The matrices H HT and HT H only have eigenvalues 0, q, 2q and q(q + 1).

Proof Let us first look at the eigenvalues of A := H HT − (q + 1)I . There are only 4
projectively non-equivalent pairs of points in T ∗

2 (K): equal, collinear, non-collinear internal,
non-collinear external. Hence, each of the matrices I, A, A2, A3, A4 has at most 4 different
entries and the entry only depends on the type of the corresponding pair of points. Hence they
must be linearly dependent: c4 A4+c3 A3+c2 A2+c1 A+c0 I = 0 for some c0, . . . , c4. Hence
A has a minimal polynomial of degree at most 4 and A has at most 4 different eigenvalues.

As

ρ(H) = q2(q + 1) − dim C ≤ q2(q + 1) − dim C ′ < q3,

H HT is singular and hence has an eigenvalue 0. This means A has an eigenvalue −q − 1.
Also, by Lemma 4.2, q2 − 1 is an eigenvalue of A. Now, consider Lemma 4.1 with twice the
same point and two collinear points. The corresponding entries in Ak are:

• k = 0: 1 and 0,
• k = 1: 0 and 1,
• k = 2: (q + 1)(q − 1) and q − 2 as T ∗

2 (K) contains no triangles,
• k = 3: (q + 1)(q − 1)(q − 2) and q3 + q2 − 4q + 3,
• k = 4: (q + 1)(q − 1)(q3 + q2 − 4q + 3) and q5 − 4q3 − 4q2 + 10q − 4.

Since A has at most 4 eigenvalues, there is a polynomial f (x) = x4 +ax3 +bx2 +cx +d
with f (A) = 0 and f (λ) = 0 for all eigenvalues λ of A. Hence, one can find the coefficients
a, b, c, d by solving the system of equations:
⎧
⎪⎪⎨

⎪⎪⎩

f (q2 − 1) = 0,

f (−q − 1) = 0,

(q + 1)(q − 1)(q3 + q2 − 4q + 3) + a(q + 1)(q − 1)(q − 2) + b(q + 1)(q − 1) + d = 0,

(q5 − 4q3 − 4q2 + 10q − 4) + a(q3 + q2 − 4q + 3) + b(q − 2) + c = 0.

where the last two equations represent the diagonal entries and collinear points-entries in

A4 + a A3 + bA2 + cA + d I = 0.

Solving this system results in f (x) = (x + q + 1)(x + 1)(x − q + 1)(x − q2 + 1).
Hence A has eigenvalues −q − 1,−1, q − 1, q2 − 1 and by definition of A this proves the
lemma. �

Theorem 4.6 The multiplicities of q(q + 1), 0, q, 2q are 1,
q(q2+1)

2 , q2 − 1,
q(q2−1)

2 .

Proof The first multiplicity follows from Lemma 4.2. Denote by µ1, µ2, µ3 the other mul-
tiplicities and expand the characteristic polynomial xµ1(x − q)µ2(x − 2q)µ3(x − q2 − q).
Then linear algebra tells us that:

• that the degree of the polynomial is the sum of the multiplicities:

µ1 + µ2 + µ3 + 1 = q3 + q2.
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• that the coefficient of xn−1 is equal to

−
q3+q2∑

i=1

(HT H)i i = −
q3+q2∑

i=1

q = −q(q3 + q2)

• that the coefficient of xn−2 of the characteristic polynomial of any matrix

B = (bi j )i=1,...,n; j=1,...,n

equals the sum of the 2 × 2 diagonal subdeterminants

∑

i �= j

∣∣∣∣
bii bi j

b ji b j j

∣∣∣∣ .

In this case each subdeterminant equals q2 − 1 if bi j = 1 and q2 if bi j = 0. Hence, this

coefficient equals
(q3+q2

2

)
q2 − q3

(q+1
2

)
.

Since the degree of xµ1(x − q)µ2(x − 2q)µ3(x − q2 − q) is µ1 + µ2 + µ3 + 1 and the
coefficients of xn−1 and xn−2 can formally be written as

−(q2 + q + 2µ3q + µ2q)

and

q2
(

µ2

2

)
+ (2q)2

(
µ3

2

)
+ q(2q)µ2µ3 + (q3 + q2)(µ2 + 2µ3),

yielding the system of equations
⎧
⎨

⎩

µ1 + µ2 + µ3 + 1 = q3 + q2,

−(q2 + q + 2µ3q + µ2q) = −q(q3 + q2),

q2
(
µ2
2

) + (2q)2
(
µ3
2

) + q(2q)µ2µ3 + (q3 + q2)(µ2 + 2µ3) = (q3+q2

2

)
q2 − q3

(q+1
2

)
.

Solving this system in a computer algebra package gives the values of µ1, µ2, µ3 as sug-
gested. �

If q + 1 �= 0 then dim C ≤ q(q2+1)
2 , since q, 2q �= 0 over K by assumption. Theorem 3.3

becomes dim C ′ = q(q2+1)
2 . Since C ′ ≤ C this yields

q(q2 + 1)

2
≥ dim C ≥ dim C ′ = q(q2 + 1)

2
;

hence C = C ′ and C is generated completely by its plane words.
If q + 1 = 0 over K the conclusion still holds as (1, . . . , 1) ∈ C ′ by the same argument

as in the previous subsection.

4.4 The case K is a sufficiently large arc

The main idea here is as follows: if one removes a point from K, the property that the code
is spanned by its minimum weight code words remains valid. This is shown in the following
theorem.

Theorem 4.7 If the code associated with T ∗
2 (K ∪ {r}) is spanned by its minimum weight

code words, then so is T ∗
2 (K).
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Proof In the proof of Theorem 3.3 we saw that adding an i th point to an (i −1)-arc increases
dim C ′ with exactly q + (i − 2)(q − 1) and hence dim C with at least q + (i − 2)(q − 1).
This means that if one removes a point, dim C decreases with at least q + (i − 2)(q − 1).

Remove each of the k points one by one, except for the last one. This yields that the
dimension is now 0 and has decreased by at least

k∑

i=2

(q + (i − 2)(q − 1)) = (k − 1)(qk − k + 2)

2
= dim C ′ = dim C.

Hence, in each step the dimension has decreased by exactly that much. Hence, in each step
dim C = dim C ′ is maintained. �

Now we want to examine the arcs that can be obtained by removing points from a hyperoval
or a conic, leading to the theory of (in)complete arcs.

Remark If q is even, every arc has at most q +2 points and the arcs with exactly q +2 points
are called hyperovals. If q is odd, every arc has at most q + 1 points. Both of these are called
maximum arcs.

Proof See Ref. [3].

Theorem 4.8 If q is odd, every (q + 1)-arc is a conic.

Proof See Ref. [23].

Theorem 4.9 Denote by m′(2, q) the size of the largest arc which is not contained in a
maximum arc of PG(2, q) and let q = ph with p prime. Then Tables 1 and 2 provide upper
bounds on m′(2, q).

Proof See Ref. [7] for an overview of results on this topic.

Remark Note that Table 2 does not cover q = 2, 4, since in those cases every arc in PG(2, q)

is contained in a (q +2)-arc. For q = 2 this is trivial and for q = 4 this follows from Lemma
9.2.1 in [6].

The following theorem summarizes the results obtained so far.

Table 1 Upper bounds on
m′(2, q), q odd

Any larger arc is contained in a
(q + 1)-arc

q = ph Upper bound on m’(2,q)

q = p2e, e ≥ 1 m′(2, q) ≤ q − √
q/4 + 25/16

q = p2e+1, e ≥ 1 m′(2, q) ≤ q−√
pq/4 + 29p/16+1

q = p m′(2, q) ≤ 44q/45 + 8/9

q = ph , p ≥ 5 m′(2, q) ≤ q − √
q/2 + 5

q = ph , q ≥ 232, q �= 55, 36, m′(2, q) ≤ q − √
q/2 + 3

h even if p = 3

Table 2 Upper bounds on
m′(2, q), q even

Any larger arc is contained in a
(q + 2)-arc

q = ph Upper bound on m’(2,q)

q = 22e, e > 1 m′(2, q) = q − √
q + 1

q = 22e+1, e ≥ 1 m′(2, q) ≤ q − √
2q + 2
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Theorem 4.10 If K is a k-arc that can be extended to a maximum arc, then the code asso-
ciated with T ∗

2 (K) has dimension (k−1)(qk−k+2)
2 over any field K with char K �= 2, p.

Now we will eliminate the restriction char K �= 2 as claimed. When q is even, this is
trivial as 2 = p. If q is odd, then every arc that is contained in a conic is either equal to a
conic, in which case char K �= 2 is not claimed, or it is contained in a conic minus one point.

A conic minus one point is exactly the arc used in the construction of LU (3, q)D. Since
LU (3, q) has a square incidence matrix, LU (3, q) and LU (3, q)D have the same dimension.
Hence

dim C = q3 − 2q2 + 3q − 2

2

from [24], since the binary dimension is the same as over any other finite field of character-
istic 2. From Theorem 3.3 it follows that this is also equal to dim C ′, hence dim C = dim C ′.
The rest of the reasoning works perfectly when char K = 2.
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