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Abstract A code C is Z2Z4-additive if the set of coordinates can be partitioned into two
subsets X and Y such that the punctured code of C by deleting the coordinates outside X
(respectively, Y ) is a binary linear code (respectively, a quaternary linear code). In this paper
Z2Z4-additive codes are studied. Their corresponding binary images, via the Gray map, are
Z2Z4-linear codes, which seem to be a very distinguished class of binary group codes. As
for binary and quaternary linear codes, for these codes the fundamental parameters are found
and standard forms for generator and parity-check matrices are given. In order to do this, the
appropriate concept of duality for Z2Z4-additive codes is defined and the parameters of their
dual codes are computed.

Keywords Binary linear codes · Duality · Quaternary linear codes · Z2Z4-additive codes ·
Z2Z4-linear codes
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1 Introduction

Let Z2 and Z4 be the ring of integers modulo 2 and 4, respectively. Let Z
n
2 denote the set of all

binary vectors of length n and let Z
n
4 be the set of all n-tuples over the ring Z4. In this paper,

the elements of Z
n
4 will also be called quaternary vectors of length n. Any non-empty subset

C of Z
n
2 is a binary code and a subgroup of Z

n
2 is called a binary linear code or a Z2-linear

code. Equivalently, any non-empty subset C of Z
n
4 is a quaternary code and a subgroup of Z

n
4

is called a quaternary linear code.
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168 J. Borges et al.

Quaternary codes can be viewed as binary codes under the Gray map defined as φ(0) =
(0, 0), φ(1) = (0, 1), φ(2) = (1, 1), φ(3) = (1, 0). If C is a quaternary linear code, then
the binary code C = φ(C) (coordinatewise extended) is said to be a Z4-linear code. The
notion of quaternary dual code of a quaternary linear code C, denoted by C⊥, as well as the
notion of binary Z4-dual code, denoted by C⊥ = φ(C⊥), are defined in the standard way in
Sect. 4 following [12] and [18].

Since 1994, quaternary linear codes have became significant due to its relationship to
some classical well-known binary codes as the Nordstrom–Robinson, Kerdock, Preparata,
Goethals or Reed–Muller codes [12]. It was proved that the Kerdock code and some Prep-
arata-like code are Z4-linear codes and, moreover, the Z4-dual code of the Kerdock code
is a Preparata-like code. Lately, more families of quaternary linear codes, related to the
Reed–Muller codes, have been studied in [2,3,21].

Additive codes were first defined by Delsarte in 1973 in terms of association schemes
[10,11]. In general, an additive code, in a translation association scheme, is defined as a
subgroup of the underlying abelian group. On the other hand, translation invariant propelin-
ear codes were first defined in 1997 [20], where it is proved that all these binary codes are
group-isomorphic to subgroups of Z

α
2 ×Z

β
4 ×Q

σ
8 , being Q8 the non-abelian quaternion group

on eight elements. In the special case when the association scheme is the binary Hamming
scheme, that is, when the underlying abelian group is of order 2n , the additive codes coincides
with the abelian translation invariant propelinear codes. Hence, as it is pointed out in [11],
the only structures for the abelian group are those of the form Z

α
2 × Z

β
4 , with α + 2β = n.

Therefore, the subgroups C of Z
α
2 × Z

β
4 are the only additive codes in the binary Hamming

scheme. In order to distinguish them from additive codes over finite fields [1], from now on,
we will call them Z2Z4-additive codes.

The binary image of a Z2Z4-additive code under the extended Gray map defined in
Sect. 2 is called Z2Z4-linear code. There are Z2Z4-linear codes in several important clas-
ses of binary codes. For example, Z2Z4-linear perfect single error-correcting codes (or
1-perfect codes) are found in [20] and fully characterized in [8]. Also, in subsequent papers
[7,15,19,23], Z2Z4-linear extended 1-perfect and Hadamard codes are studied and
classified.

As we have seen, the Z2Z4-additive codes belong to the more general family of additive
codes. However, note that one could think of other families of codes with an algebraic struc-
ture that also include the Z2Z4-additive codes; such as mixed group codes [6,13,17] and
translation invariant propelinear codes [20,22].

Most of the concepts on Z2Z4-additive codes described in this paper have been imple-
mented by the authors as a new package [5] in Magma [9]. A beta version of this new package
for Z2Z4-additive codes and the manual with the description of all functions can be down-
loaded from the web page http://www.ccg.uab.cat (for any comment or further information
about this package, you can send an e-mail to support-ccg@deic.uab.cat).

The aim of this paper is a general study of Z2Z4-additive codes and the corresponding
Z2Z4-linear codes. It is organized as follows. In Sect. 2, we give the definition of Z2Z4-
additive and Z2Z4-linear codes, we find the fundamental parameters and we discuss about
the automorphism groups of these codes. In Sect. 3, we deduce a standard form for gen-
erator matrices of Z2Z4-additive codes. Section 4 is devoted to the duality concept for
Z2Z4-additive codes defining the appropriate inner product. In Sect. 5, we show how the
generator and parity-check matrices are related and we also compute the parameters of
the dual code. Finally, in Sect. 6, we give some conclusions and discuss about further
research.
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2 Definitions

From now on, we will focus on Z2Z4-additive codes C, which are subgroups of Z
α
2 × Z

β
4 .

We will take an extension of the usual Gray map: � : Z
α
2 × Z

β
4 −→ Z

n
2, where n = α + 2β,

given by

�(x, y) = (x, φ(y1), . . . , φ(yβ))

∀x ∈ Z
α
2 , ∀y = (y1, . . . , yβ) ∈ Z

β
4 ;

where φ : Z4 −→ Z
2
2 is the usual Gray map, that is,

φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1), φ(3) = (1, 0).

This Gray map is an isometry which transforms Lee distances defined in a Z2Z4-additive
code C over Z

α
2 × Z

β
4 to Hamming distances defined in the binary code C = �(C). Note that

the length of the binary code C is n = α + 2β.
Since C is a subgroup of Z

α
2 ×Z

β
4 , it is also isomorphic to an abelian structure like Z

γ
2 ×Z

δ
4.

Therefore, C is of type 2γ 4δ as a group, it has |C| = 2γ+2δ codewords and the number of
order two codewords in C is 2γ+δ .

Let X (respectively Y ) be the set of Z2 (respectively Z4) coordinate positions, so |X | = α

and |Y | = β. Unless otherwise stated, the set X corresponds to the first α coordinates and
Y corresponds to the last β coordinates. Call CX (respectively CY ) the punctured code of C
by deleting the coordinates outside X (respectively Y ). Let Cb be the subcode of C which
contains all order two codewords and let κ be the dimension of (Cb)X , which is a binary
linear code. For the case α = 0, we will write κ = 0.

Considering all these parameters, we will say that C (or equivalently C = �(C)) is of
type (α, β; γ, δ; κ). Notice that CY is a quaternary linear code of type (0, β; γY , δ; 0), where
0 ≤ γY ≤ γ , and CX is a binary linear code of type (α, 0; γX , 0; γX ), where κ ≤ γX ≤ κ +δ.

Definition 1 Let C be a Z2Z4-additive code, that is, a subgroup of Z
α
2 × Z

β
4 . We say that the

binary image C = �(C) is a Z2Z4-linear code of length n = α+2β and type (α, β; γ, δ; κ),
where γ , δ and κ are defined as above.

Note that Z2Z4-linear codes are a generalization of binary linear codes and Z4-linear
codes. When β = 0, the binary code C = C corresponds to a binary linear code. On the other
hand, when α = 0, the Z2Z4-additive code C is a quaternary linear code and its corresponding
binary code C = �(C) is a Z4-linear code.

Two Z2Z4-additive codes C1 and C2 both of type (α, β; γ, δ; κ) are said to be monomially
equivalent, if one can be obtained from the other by permutating the coordinates and (if
necessary) changing the signs of certain Z4 coordinates. Two Z2Z4-additive codes are said
to be permutation equivalent if they differ only by a permutation of coordinates. The mono-
mial automorphism group of a Z2Z4-additive code C, denoted by M Aut (C), is the group
generated by all permutations and sign-changes of the Z4 coordinates that preserves the set
of codewords of C, while the permutation automorphism group of C, denoted by P Aut (C),
is the group generated by all permutations that preserves the set of codewords of C [14].

If two Z2Z4-additive codes C1 and C2 are monomially equivalent, then, after the Gray
map, the corresponding Z2Z4-linear codes C1 = �(C1) and C2 = �(C2) are isomorphic as
binary codes. Note that the inverse statement is not always true.
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170 J. Borges et al.

3 Generator matrices of Z2Z4-additive codes

Let C be a Z2Z4-additive code. Although C is not a free module, every codeword is uniquely
expressible in the form

γ∑

i=1

λi u
(i) +

γ+δ∑

j=γ+1

µ jv
( j),

where λi ∈ Z2 for 1 ≤ i ≤ γ , µ j ∈ Z4 for γ + 1 ≤ j ≤ γ + δ and u(i), v( j) are vectors

in Z
α
2 × Z

β
4 of order two and order four, respectively. Vectors u(i), v( j) give us a generator

matrix G of size (γ + δ) × (α + β) for the code C. Moreover, we can write G as

G =
(

B1 2B3

B2 Q

)
, (1)

where B1, B2 are matrices over Z2 of size γ × α and δ × α, respectively; B3 is a matrix over
Z4 of size γ × β with all entries in {0, 1} ⊂ Z4; and Q is a matrix over Z4 of size δ × β with
quaternary row vectors of order four.

Let Ik be the identity matrix of size k × k. In [12], it was shown that any quaternary
linear code of type (0, β; γ, δ; 0) is permutation equivalent to a quaternary linear code with
a generator matrix of the form

GS =
(

2T 2Iγ 0
S R Iδ

)
, (2)

where R, T are matrices over Z4 with all entries in {0, 1} ⊂ Z4, of size δ × γ and γ × (β −
γ − δ), respectively; and S is a matrix over Z4 of size δ × (β − γ − δ). In this section, we
will generalize this result for Z2Z4-additive codes, that is, we will give a canonical generator
matrix for these codes [4].

First, note that replacing ones with twos in the coordinates over Z2, we can see the Z2Z4-
additive codes as quaternary linear codes. Let χ be the map from Z2 to Z4, which is the usual
inclusion from the additive structure in Z2 to Z4: χ(0) = 0, χ(1) = 2. This map can be
extended to the map (χ, I d) : Z

α
2 × Z

β
4 −→ Z

α
4 × Z

β
4 , which will also be denoted by χ .

Theorem 1 Let C be a Z2Z4-additive code of type (α, β; γ, δ; κ). Then, C is permutation
equivalent to a Z2Z4-additive code with canonical generator matrix of the form

GS =
⎛

⎝
Iκ Tb 2T2 0 0
0 0 2T1 2Iγ−κ 0
0 Sb Sq R Iδ

⎞

⎠, (3)

where Tb, Sb are matrices over Z2; T1, T2, R are matrices over Z4 with all entries in {0, 1} ⊂
Z4; and Sq is a matrix over Z4.

Proof Since κ is the dimension of the matrix B1 over Z2 given in (1), the code C is permutation
equivalent to a code with a generator matrix of the form

⎛

⎝
Iκ B̄1 2B̄3

0 0 2B̄4

0 B̄2 Q̄

⎞

⎠,
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where B̄1, B̄2 are matrices over Z2 of size κ × (α − κ) and δ × (α − κ), respectively; B̄3, B̄4

are matrices over Z4 with all entries in {0, 1} ⊂ Z4 of size κ×β and (γ −κ)×β, respectively;
and Q̄ is a matrix over Z4 of size δ × β.

The quaternary linear code C− of type (0, α − κ +β; γ − κ, δ; 0) generated by the matrix
(

0 2B̄4

2B̄2 Q̄

)

is permutation equivalent to a quaternary linear code with generator matrix of the form

G− =
(

0 2T1 2Iγ−κ 0
2Sb Sq R Iδ

)
,

where the permutation of coordinates fixes the first α − κ coordinates, [12], (2). So, the
quaternary linear code χ(C) generated by the matrix

⎛

⎝
2Iκ 2B̄1 2B̄3

0 0 2B̄4

0 2B̄2 Q̄

⎞

⎠

is permutation equivalent to a quaternary linear code with generator matrix of the form

Gχ =
⎛

⎝
2Iκ 2Tb 2T2 0 0
0 0 2T1 2Iγ−κ 0
0 2Sb Sq R Iδ

⎞

⎠.

Finally, C is permutation equivalent to a Z2Z4-additive code with generator matrix
χ−1(Gχ ) = GS . ��
Example 1 Let C1 denote the Z2Z4-additive code of type (1, 3; 1, 2; 1) with generator matrix

G =
⎛

⎝
1 2 2 2
0 1 1 0
1 1 2 3

⎞

⎠.

The code C1 can also be generated by the matrix
⎛

⎝
1 2 2 2
0 1 1 0
0 1 0 3

⎞

⎠.

The quaternary linear code C− generated by

(
1 1 0
1 0 3

)
is permutation equivalent (indeed,

equal) to a quaternary linear code with generator matrix G− =
(

1 1 0
3 0 1

)
. So, the quaternary

linear code χ(C) generated by
⎛

⎝
2 2 2 2
0 1 1 0
0 1 0 3

⎞

⎠

is permutation equivalent to a quaternary linear code with generator matrix

Gχ =
⎛

⎝
2 2 0 0
0 1 1 0
0 3 0 1

⎞

⎠.
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172 J. Borges et al.

Therefore, the code C1 is permutation equivalent to a Z2Z4-additive code with canonical
generator matrix

GS = χ−1(Gχ ) =
⎛

⎝
1 2 0 0
0 1 1 0
0 3 0 1

⎞

⎠.

Example 2 Let C2 be a Z2Z4-additive code of type (3, 4; 3, 1; 3) with generator matrix
⎛

⎜⎜⎝

1 0 0 2 2 0 0
1 1 1 2 2 2 2
1 1 0 2 2 0 0
1 1 1 1 1 1 1

⎞

⎟⎟⎠.

By Theorem 1, C2 is permutation equivalent to a Z2Z4-additive code with canonical generator
matrix

⎛

⎜⎜⎝

1 0 0 2 2 0 0
0 1 0 0 0 0 0
0 0 1 2 2 0 0
0 0 0 1 1 1 1

⎞

⎟⎟⎠.

4 Duality of Z2Z4-additive codes

For linear codes over finite fields or finite rings, there exists the well-known concept of dual-
ity. In this section, we will study the duality for Z2Z4-additive codes, taking advantage of
their abelian group structure.

It is well-known that any finite abelian group G is isomorphic to a direct sum of cyclic
groups, each one of order a prime power [16]. Say G = 〈a1〉 ⊕ · · · ⊕ 〈ak〉, where ai is of
order a prime power pαi

i , for any i ∈ {1, . . . , k}. The set of elements ai ∈ G are called a
basis of G and fully determine the algebraic structure of G.

Given a basis of G, every element u ∈ G can be represented by the k-tuple of integers,
u = (u1, u2, . . . , uk) with u = ∑k

i=1 ui ai . This expression is unique in the sense that
any other expression like u = ∑k

i=1 u′
i ai means that, for all indices i ∈ {1, . . . , k}, ui ≡

u′
i (mod pαi

i ). Note that the exponent m of the group G can be computed as m = lcm{pαi
i | i =

1, . . . , k} and is divisible by any pαi
i . Therefore, taking m = si pαi

i we obtain si , which has
order pαi

i in Zm . Given a basis of G and fixed elements s̄i of order pαi
i in Zm (e.g., the above

si ), the inner product of elements u = (u1, u2, . . . , uk), v = (v1, v2, . . . , vk) ∈ G is defined
as the equivalence class of

∑k
i=1 uivi s̄i in Zm and denoted by 〈u, v〉. Hence,

〈u, v〉 =
k∑

i=1

uivi s̄i ∈ Zm . (4)

Now, consider the specific case of the finite abelian group Z
α
2 × Z

β
4 of exponent m = 4,

whose elements are vectors of α + β coordinates (the first α over Z2 and the last β over Z4).
Take as generators ai = 1 ∈ Z2, for 1 ≤ i ≤ α, and ai ∈ {1, 3} ∈ Z4, for α +1 ≤ i ≤ α +β.
Also take the values s̄i = 2, for 1 ≤ i ≤ α, which is the only possible value of order two in
Z4, and s̄i = 1 ∈ {1, 3} ⊂ Z4, for α + 1 ≤ i ≤ α + β. The inner product given by (4) will
be called standard inner product and can be written as
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〈u, v〉 = 2

(
α∑

i=1

uivi

)
+

α+β∑

j=α+1

u jv j ∈ Z4,

where u, v ∈ Z
α
2 × Z

β
4 and the computations are made taking the zeros and ones in the α

binary coordinates as quaternary zeros and ones, respectively.
Note that although s̄i is uniquely defined for 1 ≤ i ≤ α, the value of s̄i , for α + 1 ≤ i ≤

α + β, can be chosen from {1, 3} and so, we can produce several different presentations for
the inner product. Also note that all these different presentations of the inner product can be
reduced to the standard one, as long as in the computation of 〈u, v〉 we take the represen-
tation of vector u using the given generators ai and the representation of vector v using the
generators a′

i = ai ∈ Z2, for 1 ≤ i ≤ α, and a′
i = s̄i ai ∈ Z4, for α + 1 ≤ i ≤ α + β.

We can also write the standard inner product as

〈u, v〉 = u·Jn ·vt ,

where Jn =
(

2Iα 0
0 Iβ

)
is a diagonal matrix over Z4. Note that when α = 0 the inner product

is the usual one for Z4-vectors (i.e., vectors over Z4) and when β = 0 it is twice the usual
one for Z2-vectors.

Let C be a Z2Z4-additive code of type (α, β; γ, δ; κ) and let C = �(C) be the correspond-
ing Z2Z4-linear code. The additive orthogonal code of C, denoted by C⊥, is defined in the
standard way

C⊥ = {v ∈ Z
α
2 × Z

β
4 | 〈u, v〉 = 0 for all u ∈ C}.

We will also call C⊥ the additive dual code of C. The corresponding binary code �(C⊥) is
denoted by C⊥ and called Z2Z4-dual code of C . In the case that α = 0, that is, when C is a
quaternary linear code, C⊥ is also called the quaternary dual code of C and C⊥ the Z4-dual
code of C .

The additive dual code C⊥ is also a Z2Z4-additive code, that is, a subgroup of Z
α
2 × Z

β
4 .

Moreover, as it is pointed out in [11], Z2Z4-additive codes are the additive codes in the
binary Hamming association scheme, in the sense of Delsarte [10]. The weight distribu-
tion of C and C⊥ are related to each other by the MacWilliams identities in the usual sense
[11, p. 2501], [20]. Note that the weight distribution of a Z2Z4-additive code C refers to the
Lee weight, which coincides with the Hamming weight of the corresponding Z2Z4-linear
code C = �(C), after applying the Gray map. The codes C and C⊥ are not necessarily linear,
so they are not dual in the binary linear sense, but the weight enumerator polynomial of C⊥
is the MacWilliams transform of the weight enumerator polynomial of C . This remarkable
relationship was first established for the specific case of Z4-linear codes in [12], where it is
pointed out that the Kerdock code is the additive dual of some Preparata like code.

Lemma 1 Let C be a Z2Z4-additive code of type (α, β; γ, δ; κ) and C⊥ its additive dual
code. Then, |C||C⊥| = 2n, where n = α + 2β.

Proof Let WC(x, y) be the weight enumerator polynomial of C. That is,

WC(x, y) =
∑

c∈C
xn−wt (c)ywt (c),

where wt (c) stands for the Lee weight of codeword c ∈ C or, equivalently, the Hamming
weight of �(c).
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From MacWilliams Identity,

WC⊥(x, y) = 1

|C| WC(x + y, x − y).

Taking x = y we obtain,

|C⊥|xn = 1

|C| (2x)n−wt (0)

and hence |C⊥||C| = 2n . ��
Finally, note again that one could think on Z2Z4-additive codes (or Z2Z4-linear codes)

only as quaternary linear codes (or Z4-linear codes), under the χ map; that is, replacing ones
with twos in the coordinates over Z2. However, if C is a Z2Z4-additive code and C⊥ is its
additive dual code, considering the standard inner product defined in Z

α
2 × Z

β
4 , then χ(C⊥)

and χ(C) are not necessarily quaternary dual codes. Take, for example, α = β = 1 and
the vectors v = (1, 3) and w = (1, 2). It is easy to check that 〈v,w〉 = 0, so v and w are
orthogonal. If we replace the ones with twos in the coordinates over Z2 of these vectors we
get v′ = (2, 3) and w′ = (2, 2), which are not orthogonal in the quaternary sense.

5 Parity-check matrices of Z2Z4-additive codes

In this section, first we will prove two different methods to construct the additive dual code
of a Z2Z4-additive code and we will compute the type of this additive dual code. Then, we
will apply one of these two methods to show how to construct a parity-check matrix of a
Z2Z4-additive code, or equivalently a generator matrix of its additive dual code, when the
Z2Z4-additive code is generated by a canonical generator matrix as in (3).

Let C be a Z2Z4-additive code of type (α, β; γ, δ; κ). The code C is generated by γ vectors
of order two and δ vectors of order four, which can be written as the row vectors of a generator
matrix G. The codewords of C⊥, the additive dual code of C, are the vectors in Z

α
2 ×Z

β
4 which

are orthogonal to C. By linearity, we can take G as a parity check matrix for C⊥. Analogously,
a generator matrix of C⊥ can be seen as a parity check matrix for C.

Example 3 The code C1 (or the corresponding C1 = �(C1)) in Example 1 is a Z2Z4-additive
code (or a Z2Z4-linear code) of type (1, 3; 1, 2; 1) with generator matrix

G1 =
⎛

⎝
1 2 2 2
0 1 1 0
1 1 2 3

⎞

⎠.

The generator matrix G1 for C1 can be also viewed as a parity-check matrix for its additive dual
code C⊥

1 . Notice also that |C1| = |C1| = 2 × 42 = 32, so by Lemma 1, |C⊥
1 | = 27/32 = 4.

In order to construct the additive dual code of a Z2Z4-additive code, we will need the
following maps: ξ from Z4 to Z2 which is the usual modulo two map, that is ξ(0) = 0,
ξ(1) = 1, ξ(2) = 0, ξ(3) = 1; and the identity map ι from Z2 to Z4, that is ι(0) = 0,
ι(1) = 1. These maps can be extended to the maps (ξ, I d) : Z

α
4 × Z

β
4 −→ Z

α
2 × Z

β
4 and

(ι, I d) : Z
α
2 × Z

β
4 −→ Z

α
4 × Z

β
4 , which will also be denoted by ξ and ι, respectively. Recall

also the map χ from Z2 to Z4 which is the normal inclusion from the additive structure in
Z2 to Z4, that is χ(0) = 0, χ(1) = 2; and its extension (χ, I d) : Z

α
2 × Z

β
4 −→ Z

α
4 × Z

β
4 ,

denoted also by χ . We denote by 〈·, ·〉4 the standard inner product for quaternary vectors.
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Lemma 2 If u ∈ Z
α
2 × Z

β
4 , v ∈ Z

α+β
4 , then 〈χ(u), v〉4 = 〈u, ξ(v)〉.

Proof 〈χ(u), v〉4 = ∑α
i=1(2ui )vi+∑α+β

j=α+1 u jv j = ∑α
i=1(2ui )(vi mod 2)+∑α+β

j=α+1 u jv j

= 〈u, ξ(v)〉. ��
Corollary 1 If u, v ∈ Z

α
2 × Z

β
4 , then 〈χ(u), ι(v)〉4 = 〈u, v〉.

Proof By Lemma 2, 〈χ(u), ι(v)〉4 = 〈u, ξ(ι(v))〉 = 〈u, v〉. ��
Proposition 1 Let C be a Z2Z4-additive code of type (α, β; γ, δ; κ). Then,

C⊥ = ξ(χ(C)⊥).

Proof We know that if v ∈ C⊥, then 〈u, v〉 = 0, for all u ∈ C. By Corollary 1, 〈u, v〉 =
〈χ(u), ι(v)〉4 = 0. Therefore, ξ(ι(v)) = v ∈ ξ(χ(C)⊥) and C⊥ ⊆ ξ(χ(C)⊥). On the other
hand, if v ∈ χ(C)⊥, then 〈χ(u), v〉4 = 0, for all u ∈ C. By Lemma 2, 〈χ(u), v〉4 =
〈u, ξ(v)〉 = 0. Thus, ξ(χ(C)⊥) ⊆ C⊥ and we obtain the equality. ��
Proposition 2 Let C be a Z2Z4-additive code of type (α, β; γ, δ; κ). Then,

C⊥ = χ−1(ξ−1(C)⊥).

Proof Let G be a generator matrix of the Z2Z4-additive code C written as in (1). Then, the
quaternary linear code ξ−1(C) has a generator matrix of the form

⎛

⎝
2Iα 0
B1 2B3

B2 Q

⎞

⎠. (5)

We will show that v ∈ C⊥ if and only if χ(v) ∈ ξ−1(C)⊥. In fact, for each row vector f in
the matrix (2Iα 0), we have 〈χ(v), f 〉4 = ∑α

i=1 fi 2vi = 0 because there is only one index
i such that fi = 2. Moreover, by Corollary 1, 0 = 〈v, u〉 = 〈χ(v), ι(u)〉4, for all u ∈ C. ��

The following question we will settle is the computation of the type of the additive dual
code of a given Z2Z4-additive code C. First, we will remember this well-known result for
quaternary linear codes, that is for Z2Z4-additive codes with α = 0. Then, we will generalize
it for Z2Z4-additive codes, not necessarily quaternary linear codes.

Lemma 3 [12] If C is a quaternary linear code of type (0, β; γ, δ; 0), then the quaternary
dual code C⊥ is of type (0, β; γ, β − γ − δ; 0).

Theorem 2 Let C be a Z2Z4-additive code of type (α, β; γ, δ; κ). The additive dual code
C⊥ is then of type (α, β; γ̄ , δ̄; κ̄), where

γ̄ = α + γ − 2κ,

δ̄ = β − γ − δ + κ,

κ̄ = α − κ.

Proof Let G be a generator matrix of the Z2Z4-additive code C written as in (1). Then, the
matrix (5) is a generator matrix for the quaternary linear code ξ−1(C), which is of type
(0, α + β; γ ′, δ′; 0), where γ ′ = α + γ − 2κ and δ′ = δ + κ . The value of δ′ comes from
the fact that the κ independent binary vectors of (Cb)X are in B1 and, so, the number of
independent quaternary vectors of order four becomes δ + κ . The value of γ ′ comes from
the fact that the cardinality of the quaternary linear code ξ−1(C) is 2γ ′+2δ′ = 2γ+2δ+α .
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By Lemma 3, the quaternary dual code ξ−1(C)⊥ is of type (0, α + β; γ̄ , δ̄; 0), where
γ̄ = γ ′ and δ̄ = α + β − γ ′ − δ′ = α + β − (γ + α − 2κ) − (δ + κ) = β − γ − δ + κ .

Note that the δ̄ independent vectors in ξ−1(C)⊥, restricted to the first α coordinates, are
vectors of order two, because in ξ−1(C) there are the row vectors of the matrix (2Iα 0).
Finally, applying χ−1 we obtain the additive dual code of C. For this additive dual code C⊥,
the value of κ̄ can be easily computed from the fact that, again, the additive dual coincides
with C. ��

There are two different methods to obtain the additive dual code C⊥, one given by Propo-
sition 1 and another one by Proposition 2. Using any of these two methods, we can construct
a generator matrix of C⊥, or equivalently a parity-check matrix of C, starting from a generator
matrix of C. In Example 4, we consider the canonical generator matrix of a Z2Z4-additive
code and apply these two methods to obtain a generator matrix of its additive dual code. Note
that the process to obtain this matrix is different using both methods but, in this case, the
generator matrices obtained coincide.

Theorem 3 shows how to construct the parity-check matrix of a Z2Z4-additive code gen-
erated by a canonical generator matrix as in (3). This result is proved using the method given
by Proposition 1. Notice also that we can apply any of the two methods to any generator
matrix, not necessary a canonical generator matrix, to get a parity-check matrix.

Lemma 4 [12] If C is a quaternary linear code of type (0, β; γ, δ; 0) with canonical gener-
ator matrix (2), then the generator matrix of C⊥ is

HS =
(

0 2Iγ 2Rt

Iβ−γ−δ T t −(S + RT )t

)
, (6)

where R, T are matrices over Z4 with all entries in {0, 1} ⊂ Z4 of size δ×γ andγ×(β−γ−δ),
respectively; and S is a matrix over Z4 of size δ × (β − γ − δ).

Theorem 3 Let C be a Z2Z4-additive code of type (α, β; γ, δ; κ) with canonical generator
matrix (3). Then, the generator matrix of C⊥ is

HS =
⎛

⎝
T t

b Iα−κ 0 0 2St
b

0 0 0 2Iγ−κ 2Rt

T t
2 0 Iβ+κ−γ−δ T t

1 −(
Sq + RT1

)t

⎞

⎠, (7)

where Tb, T2 are matrices over Z2; T1, R, Sb are matrices over Z4 with all entries in {0, 1} ⊂
Z4; and Sq is a matrix over Z4. Moreover, T2 and Sb are obtained from the matrices of (3)
with the same name after applying ι−1 and ξ−1, respectively.

Proof By Lemma 4, if C̄ is a quaternary linear code with generator matrix

Ḡ =
⎛

⎝
2Tb 2T2 2Iκ 0 0
0 2T1 0 2Iγ−κ 0

2Sb Sq 0 R Iδ

⎞

⎠,

then the quaternary dual code C̄⊥ has generator matrix

H̄ =

⎛

⎜⎜⎝

0 0 2Iκ 0 0
0 0 0 2Iγ−κ 2Rt

Iα−κ 0 T t
b 0 2St

b
0 Iβ−γ−δ+κ T t

2 T t
1 −(

Sq + RT1
)t

⎞

⎟⎟⎠.
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Hence, if C is a Z2Z4-additive code with generator matrix (3), then the generator matrix of
χ(C)⊥ is

Hξ =

⎛

⎜⎜⎝

2Iκ 0 0 0 0
0 0 0 2Iγ−κ 2Rt

T t
b Iα−κ 0 0 2St

b
T t

2 0 Iβ−γ−δ+κ T t
1 −(

Sq + RT1
)t

⎞

⎟⎟⎠.

Finally, by Proposition 1, HS = ξ(Hξ ) is the generator matrix of C⊥. ��
Note that by Theorems 2 and 3, if C is a Z2Z4-additive code of type (α, β; γ, δ; κ) with

canonical generator matrix (3), then C⊥ is permutation equivalent to a Z2Z4-additive code
with canonical generator matrix

⎛

⎝
Iκ̄ T t

b 2St
b 0 0

0 0 2Rt 2Iγ̄−κ̄ 0
0 T t

2 −(
Sq + RT1

)t
T t

1 Iδ̄

⎞

⎠, (8)

where Tb, T2 are matrices over Z2; T1, R, Sb are matrices over Z4 with all entries in {0, 1} ⊂
Z4; and Sq is a matrix over Z4. Moreover, γ̄ = α+γ −2κ , δ̄ = β −γ −δ+κ and κ̄ = α−κ .

Example 4 Let CS1 denote the Z2Z4-additive code of type (1, 3; 1, 2; 1) with canonical gen-
erator matrix

GS =
⎛

⎝
1 2 0 0
0 1 1 0
0 3 0 1

⎞

⎠.

By Theorem 2, the additive dual code C⊥
S1 is of type (1, 3; 0, 1; 0). There are two methods to

obtain a parity-check matrix of CS1 from the matrix GS .
The first one uses Proposition 1. We know that if C̄ is a quaternary linear code with generator

matrix Ḡ =
⎛

⎝
2 2 0 0
1 0 1 0
3 0 0 1

⎞

⎠, the quaternary dual code C̄⊥ has generator matrix H̄ =
(

0 2 0 0
1 1 3 1

)
.

So, the generator matrix of χ(CS1)
⊥ is

(
2 0 0 0
1 1 3 1

)
and finally, applying ξ , the generator

matrix of C⊥
S1 = ξ(χ(CS1)

⊥) is

HS = (
1 1 3 1

)
.

The second method uses Proposition 2. We know that the quaternary linear code ξ−1(CS1)

with generator matrix
⎛

⎜⎜⎝

2 0 0 0
1 2 0 0
0 1 1 0
0 3 0 1

⎞

⎟⎟⎠,

or equivalently

⎛

⎝
1 2 0 0
0 1 1 0
0 3 0 1

⎞

⎠, has parity-check matrix
(

2 1 3 1
)
. So, applying χ−1, the

generator matrix of C⊥
S1 = χ−1(ξ−1(CS1)

⊥) is

HS = (
1 1 3 1

)
.
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Example 5 Let CS2 be a Z2Z4-additive code of type (3, 4; 3, 1; 1) with canonical generator
matrix

⎛

⎜⎜⎝

1 0 0 2 2 0 0
0 1 0 0 0 0 0
0 0 1 2 2 0 0
0 0 0 1 1 1 1

⎞

⎟⎟⎠.

By Theorems 2 and 3, the additive dual code C⊥
S2 is of type (3, 4; 0, 3; 0) and has generator

matrix
⎛

⎝
1 0 1 1 0 0 3
1 0 1 0 1 0 3
0 0 0 0 0 1 3

⎞

⎠.

6 Conclusions and further research

We have developed a general theory for Z2Z4-linear codes including generator matrices,
parity-check matrices and duality. Such class of codes includes classical binary and quater-
nary linear codes generalizing them. There are some interesting classes of nonlinear binary
codes that can be viewed as Z2Z4-linear codes but not as Z4-linear codes (e.g., some perfect
single error-correcting codes). Moreover, Z2Z4-duality shows that Z2Z4-linear codes cannot
be considered only as a variant of Z4-linear codes.

Further research could be done on self-duality. Perhaps enumerator polynomials of addi-
tive self-dual codes can be studied and characterized in some way.
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