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Abstract In a (t, n) secret sharing scheme, a secret s is divided into n shares and shared
among a set of n shareholders by a mutually trusted dealer in such a way that any t or more
than t shares will be able to reconstruct this secret; but fewer than t shares cannot know any
information about the secret. When shareholders present their shares in the secret reconstruc-
tion phase, dishonest shareholder(s) (i.e. cheater(s)) can always exclusively derive the secret
by presenting faked share(s) and thus the other honest shareholders get nothing but a faked
secret. Cheater detection and identification are very important to achieve fair reconstruction
of a secret. In this paper, we consider the situation that there are more than t sharehold-
ers participated in the secret reconstruction. Since there are more than t shares (i.e. it only
requires t shares) for reconstructing the secret, the redundant shares can be used for cheater
detection and identification. Our proposed scheme uses the shares generated by the dealer to
reconstruct the secret and, at the same time, to detect and identify cheaters. We have included
discussion on three attacks of cheaters and bounds of detectability and identifiability of our
proposed scheme under these three attacks. Our proposed scheme is an extension of Shamir’s
secret sharing scheme.
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1 Introduction

Secret sharing schemes were originally introduced by both Blakley [3] and Shamir [15]
independently in 1979 as a solution for safeguarding cryptographic keys and have been stud-
ied extensively in the literatures. In a secret sharing scheme, a secret s is divided into n shares
and shared among a set of n shareholders by a mutually trusted dealer in such a way that any
t or more than t shares will be able to reconstruct this secret; but fewer than t shares cannot
know any information about s. Such a scheme is called a (t, n) secret sharing, denoted as
(t, n)-SS.

Shamir’s (t, n)-SS scheme is very simple and efficient to share a secret among n share-
holders. However, when the shareholders present their shares in the secret reconstruction
phase, dishonest shareholder(s) (i.e. cheater(s)) can always exclusively derive the secret by
presenting faked share(s) and thus the other honest shareholders get nothing but a faked secret.
It is easy to see that the Shamir’s original scheme does not prevent any malicious behavior
of dishonest shareholders during secret reconstruction. Cheater detection and identification
are very important to achieve fair reconstruction of a secret.

There are many research papers in the literatures to investigate the problem of cheater
detection and/or identification for secret sharing schemes. Some of them [1,4–6,8,9,12–
14,18] consider that there are exactly t shareholders participated in the secret reconstruction.
In order to enable each shareholder the ability of cheater detection and identification, the
dealer needs to generate and distribute additional information, such as using check vectors
and certificate vectors for each shareholder. Some other papers [2,11] proposed to design a
secret sharing scheme based on an error-correcting code in which faked shares can be treated
as error codes to be detected and corrected based on coding technique. For example, McEliece
and Sarwate [11] described to construct a secret sharing scheme based on Reed-Solomons
code. The performance of their scheme can guarantee that the secret is correctly calculated by
honest participants with any group of t + 2e participants including at most e cheaters. There
are some papers [7,10,17] to propose secret sharing schemes based on well-known compu-
tational assumptions. Since these schemes are conditionally secure, the ability to detect and
identify cheaters are much stronger than those schemes that are unconditionally secure. For
example, the scheme based on RSA assumption [10] enables any honest participant to detect
and identify cheaters even when all of the other participants corrupt together.

In this paper, we use a different approach to prevent cheaters. We consider the situation
that there are more than t shareholders participated in the secret reconstruction. Since there
are more than t shares (i.e. it only requires t shares) for reconstructing the secret, the redun-
dant shares can be used for cheater detection and identification. Our proposed scheme uses
the shares generated by the dealer to reconstruct the secret and, at the same time, to detect and
identify cheaters. Simmons [16] has suggested to use the same method to detect cheaters.
In this paper, we have included discussion on possible attacks of cheaters and bounds of
detectability and identifiability of our proposed scheme under these attacks. One example is
included to illustrate our scheme.

The rest of this paper is organized as follows. In the next section, we provide some pre-
liminaries. In Sect. 3, we introduce cheater detection and identification scheme. In Sect. 4,
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Detection and identification of cheaters 17

we describe attacks of cheaters. In Sect. 5, we analyze our scheme under three attacks and
calculate bounds of detectability and identifiability of our proposed scheme. One example is
included in Sect. 6. We conclude in Sect. 7.

2 Preliminaries

In this section, we introduce some fundamental backgrounds.

2.1 Shamir’s (t, n)-SS

In Shamir’s (t, n)-SS based on Lagrange interpolating polynomial, there are n sharehold-
ers P = {P1, . . . , Pn} and a mutually trusted dealer D, and the scheme consists of two
algorithms:

1. Share generation algorithm the dealer D first picks a polynomial f (x) of degree t −1 ran-
domly: f (x) = a0 +a1x +· · ·+at−1xt−1, in which the secret s = a0 and all coefficients
a0, a1, . . . , at−1 are in a finite field F, and D computes:

s1 = f (1), s2 = f (2), . . . , sn = f (n).

Then, the algorithm outputs a list of n shares (s1, s2, . . . , sn) and distributes each share
si to corresponding shareholder Pi secretly.

2. Secret reconstruction algorithm this algorithm takes any t shares (si1 , . . . , sit ) where
{i1, . . . , it } ⊂ {1, 2, . . . , n} as inputs, and outputs the secret s.

We note that the above scheme satisfies the basic requirements of secret sharing scheme as
follows: (1) With knowledge of any t or more than t shares, it can reconstruct the secret s
easily; (2) With knowledge of fewer than t shares, it cannot get any information about the
secret s. Shamir’s scheme is information-theoretically secure since the scheme satisfies these
two requirements without making any computational assumption. For more information on
this scheme, readers can refer to the original paper [15].

2.2 Consistency

Let S be the domain of a secret and T be the domain of shares corresponding to the secret.
We say that the function FI : T t → S is an induced function of the (t, n)-SS for each subset
I ⊂ {1, 2, . . . , n} with |I | = t . This function defines the secret s as follows with any set of
t shares si1 , . . . , sit .

s = F(I ) = FI (si1 , . . . , sit ), where I = {i1, . . . , it }.
Actually, the sharing secret s is computed from the polynomial f I (x) which is constructed

by the interpolation of the points (i1, si1), . . . , (it , sit ).

Definition 1 (Consistency) In a (t, n)-SS scheme, let m ≥ t , a set of m shares s1, s2, . . . , sm

is said to be consistent if any subset containing t shares of the set reconstructs the same
secret. Formally, let T = {T1, . . . , Tu} be the set of u elements where each element contains

t shares of the set of m shares, where u =
(

m
t

)
denotes the total number of these subsets,

then we have

si = F(Ti ) = FTi (si1 , . . . , sit ), where i = 1, . . . , u.

s1, s2, . . . , sm are consistent which means that
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18 L. Harn, C. Lin

s1 = · · · = su .

Moreover, if s1, s2, . . . , sm are consistent, then the reconstructed secrets si for i = 1, . . . , u
are all identical.

Remark 1 In fact, since all shares are generated by a polynomial in Shamir’s (t, n)-SS
scheme, to check whether m, where m ≥ t , shares are consistent or not, we only need
to check whether the interpolation of m points (1, s1), . . . , (m, sm) yields a polynomial with
degree t − 1 or not. If this condition is satisfied, we can conclude that all secrets si for
i = 1, . . . , u are identical and all shares are consistent. This approach to check shares’
consistency only requires one computation instead of u combinations of t out of m shares.

2.3 Majority of secrets

If the shares s1, . . . , sm are inconsistent, it is easy to see that secrets si for i = 1, . . . , u
reconstructed by combinations of t out of m shares are not identical. Then, we can divide the
set U = {s1, . . . , su} containing all reconstructed secrets into several mutually disjoint sub-
sets Ui , for i = 1, . . . , v. Each subset contains same secret. These subsets satisfy following
conditions.
– U = U1 ∪ · · · ∪ Uv , where Ui = {si1 , . . . , siwi } and swi = si1 = · · · = siwi ;
– Uk ∩ Ul = ∅ for 1 ≤ k, l ≤ v and k �= l.

Definition 2 (Majority of secrets) For all subsets Ui for i = 1, . . . , v as defined previously,
set wi = |Ui | and wz = maxi {wi }, then the secret swz is said to be the majority of secrets.

3 Our algorithms

In this section, we first describe our approach to detect and identify cheaters. Then, we pro-
pose our scheme which is based on Shamir’s (t, n)-SS scheme. One unique feature of our
proposed scheme is that we use the same share for secret reconstruction to detect and identify
cheaters. Our scheme is an extension of Shamir’s (t, n)-SS scheme.
– Method for detecting cheaters In Shamir’s (t, n)-SS scheme, a t − 1 degree interpolating

polynomial can be uniquely reconstructed based on t shares. Thus, if there are more than t
shares and there is no faked share, according to Def. 1, a consistent polynomial should be
reconstructed for all combinations of t shares. Cheater detection is determined by detecting
inconsistent polynomials (or secrets) among all reconstructed secrets. However, cheaters
can collaborate to determine their faked shares to fool honest shareholders to believe that
a faked secret is a real secret. In Sec. 5, we will discuss bounds of detectability of our
proposed detecting scheme under three attacks as presented in next section.

– Method for identifying cheaters When cheaters have been detected, there are inconsistent
reconstructed polynomials (or secrets) for all combinations of t shares. Among all recon-
structed secrets, if the legitimate secret is the majority of secrets as we have defined in
Def. 2, we can use the majority voting mechanism to identify each faked share. We need
to investigate conditions that the legitimate secret is the majority of secrets. In addition,
we will discuss bounds of identifiability of our proposed identifying scheme under three
attacks as presented in next section.

We use c to denote the number of faked shares and j (n ≥ j ≥ t) to denote the number
of participants in a secret reconstruction. There are j − c legitimate shares in a secret recon-
struction. We use J = {i1, . . . , i j } ⊆ {1, . . . , n} to denote all participants, T = {T1, . . . , Tu}
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to denote all subsets with t participants of J where u =
(

j
t

)
, H to denote the set of the

honest participants, and C to denote the set of the cheaters. Our proposed scheme consists
of the following algorithms.

1. Share generation algorithm this algorithm is same as Shamir’s scheme.
2. Secret reconstruction algorithm this algorithm consists of following two sub-algorithms

for cheater detection and cheater identification respectively.

Algorithm 1 (Cheater detection)

Input: t , n, J , si1 , . . . , si j

1. Compute an interpolated polynomial f (x) of j points (ii , si1), . . . , (i j , si j ). Set
the degree of f (x) to be d .

2. If d = t − 1, then s = f (0), and

Output: There is no cheater and Secret is s ; otherwise

Output: There are cheaters.

Algorithm 2 (Cheater identification)

Input: t , n, s, J , T, si1 , . . . , si j

1. For all Ti ∈ T, compute si = F(Ti ) where i = 1, . . . , u.
2. Divide U = {s1, . . . , su} into v subsets Ui such that U = U1 ∪ · · · ∪ Uv where

Uk ∩ Ul = ∅ for 1 ≤ k, l ≤ v and k �= l, and Ui = {si1 , . . . , siwi } where
swi = si1 = · · · = siwi .

3. Set wz = maxi {wi }, and set s = swz .
4. Pick Tk ∈ T such that s = F(Tk) = FTk (sik1

, . . . , sikt
), and set R = J −

{ik1 , . . . , ikt }.
5. Pick ir ∈ R orderly and remove it from R, and compute sr =F(sir , sik2

, . . . , sikt
).

6. If sr = s, then put ir into H ; otherwise put ir into C .
7. Return Step 5 until R = ∅.

Output: The cheater set is C .

Remark 2 The computational complexity of algorithm 1 is O(1) and the complexity of algo-
rithm 2 is O( j !), where j ≤ n. We want to point out that n is the total number of shares in
a secret sharing scheme and n is independent with the security of secret sharing scheme. In
most secret sharing applications, n can be a small positive integer.

4 Attacks of cheaters

In this section, we consider three attacks of cheaters that are against our proposed detection
and the identification scheme.

– Type 1 attack the cheaters of this type attack can be either honest shareholders who present
their shares in error accidentally or dishonest shareholders who present their faked shares
without any collaboration. Each faked share of this attack is just a random integer and is
completely independent with other shares.
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– Type 2 attack the cheaters of this type attack are dishonest shareholders who modify
their shares on purpose to fool honest shareholders. In this type attack, we assume that
all shareholders release their shares synchronously. Thus, cheaters can only collaborate
among themselves to figure out their faked shares before secret reconstruction; but cannot
modify their shares after knowing honest shareholders’ shares (i.e. we assume that all
shares must be revealed simultaneously). Under this assumption, only when the number
of cheaters is larger than or equal to the threshold value t , the cheaters can implement an
attack successfully to fool honest shareholders.

– Type 3 attack the cheaters of this type attack are dishonest shareholders who modify their
shares on purpose to fool honest shareholders. In this type attack, we assume that all
shareholders release their shares asynchronously. Since shareholders release their shares
one at a time, the optimum choice for cheaters is to release their shares after all honest
shareholders releasing their shares. The cheaters can modify their shares accordingly. We
consider the worst-case analysis to determine the bounds of detectability and identifiability
of our proposed scheme.

5 Algorithms analysis

In this section, we analyze our scheme proposed in Sect. 3 to detect and identify cheaters
using the property of consistency and the notion of majority of secrets respectively. We also
investigate the bounds of detectability and the identifiability of our proposed scheme under
Type 1, Type 2 and Type 3 attacks.

Theorem 1 Under type 1 attack, our proposed scheme can detect cheaters if j ≥ t + 1, and
identify cheaters if j − c > t .

Proof In our proposed scheme, the detection of cheaters is determined by detecting inconsis-
tent secrets (or polynomials) among all reconstructed secrets. For j participating sharehold-

ers, there are u =
(

j
t

)
secret reconstruction cases. In order to detect the cheaters in type 1

attack, it requires j ≥ t + 1. It is easy to see that if there exists any cheater, the reconstructed
secrets si for i = 1, . . . , u are inconsistent. Thus, we can detect cheaters using algorithm 1.

The identification of cheaters is determined by the majority of secrets among all recon-

structed secrets. When j − c > t , there are

(
j − c

t

)
cases that will construct the legitimate

secret. This legitimate secret is the majority of secrets and can be used in majority voting to
identify all faked shares using algorithm 2. ��

Theorem 2 Under type 2 attack, our proposed scheme can detect cheaters if {(c < t)∩( j ≥
t + 1)} ∪ {(c ≥ t)∩ ( j − c ≥ t)}, and identify cheaters if {(c < t)∩ ( j − c ≥ t + 1)} ∪ {(c ≥
t) ∩ ( j − c > c + t − 1)}.

Proof For type 2 attack, if c ≥ t , cheaters can determine the secret before secret recon-
struction. Cheaters can modify their shares accordingly without being detected by honest
shareholders. This attack succeeds only when j − c < t . We give detail description of this
attack. For example, we suppose that c = t , j = 2t − 1, and s1, . . . , s j are shares for the j
participants P1, . . . , Pj respectively. Then, there are t − 1 honest participants. Without loss
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of generality, we assume P1, . . . , Pt−1 are honest and other participants are dishonest. These
t cheaters first generate the interpolating polynomial f (x) using their shares, and they can
compute shares si , for i = 1, . . . , t −1, using f (x). Thus, these cheaters through these t −1
legitimate shares and a faked share s′

t . Then cheaters generate another t − 1 faked shares
s′

t+1, . . . , s′
j using g(x). When all shareholders want to reconstruct the secret, P1, . . . , Pt−1

present legitimate shares s1, . . . , st−1 respectively, while the other shareholders present faked
shares. The reconstructed secret is

s′ = F(s1, . . . , st−1, s′
t )s = F(s1, . . . , st−1, st ).

This implies that these cheaters successfully fool P1, . . . , Pt−1 who obtain a faked secret s′;
however cheaters obtain the correct secret s. To avoid this attack, it requires j − c ≥ t when
c ≥ t .

The identification of the cheater is determined by the majority of secrets among all recon-

structed secrets. When j −c > t , there are

(
j − c

t

)
cases that can reconstruct the legitimate

secret s since all involving shares are legitimate. When c ≥ t , all cheaters can determine the
secret before secret reconstruction. They can utilize up to t − 1 legitimate shares and mod-
ify their shares accordingly. Cheaters first generate the interpolating polynomial f (x) using
their shares, and they can compute shares si , for i = 1, . . . , t − 1, using f (x). Thus, these
cheaters can choose a new (t − 1)th interpolating polynomial g(x) passing through these
t − 1 legitimate shares and a faked share s′

1. Then, cheaters generate additional c − 1 faked

shares s′
2, . . . , s′

c using g(x). There are

(
c + t − 1

t

)
cases that reconstruct the illegitimate

secret s′ since there are t −1 legitimate shares and c illegitimate shares passing through g(x).

If the number

(
j − c

t

)
is smaller than the number

(
c + t − 1

t

)
, our scheme fails since the

majority of secrets is a faked secret s′. In other words, when c + t − 1 > j − c, cheaters can
fail our proposed identifying scheme. Thus, it requires j − c > c + t − 1 to identify cheaters
when c ≥ t .

It is easy to see that if c < t , this attack is the same as type 1 attack. ��
Theorem 3 Under type 3 attack, our proposed scheme can detect cheaters if j − c ≥ t , and
identify cheaters if { j ≥ t + 1} ∩ { j − c > c + t − 1}.
Proof For type 3 attack, since shareholders release their shares asynchronously, the opti-
mum choice for cheaters is to release their shares after knowing all honest shareholders’
shares. Cheaters can modify their shares accordingly. This attack succeeds even if c < t . The
detection of cheaters is determined by detecting inconsistent secrets among all reconstructed
secrets. Since cheaters can modify their shares after knowing all honest shareholders’ shares,
it requires j − c ≥ t to ensure that reconstructed secrets are inconsistent if there is any faked
share.

The identification of the cheater is determined by the majority of secrets among all recon-

structed secrets. When j −c > t , there are

(
j − c

t

)
cases that can reconstruct the legitimate

secret s since all involving shares are legitimate. The cheaters can utilize up to t − 1 legit-
imate shares and modify their shares accordingly. Cheaters first choose a new interpolating
polynomial g(x) passing through these t − 1 legitimate shares and one faked share. Then,

generate c − 1 faked shares using g(x). There are

(
c + t − 1

t

)
cases that can reconstruct

the illegitimate secret since there are t − 1 legitimate shares and c illegitimate shares passing
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through g(x). If the number

(
j − c

t

)
is smaller than the number of cases

(
c + t − 1

t

)
of

the illegitimate secret, our scheme fails since the majority of secrets is a faked secret. In other
words, when c + t − 1 > j − c, cheaters can fail our proposed identifying scheme. Thus, it
requires j − c > c + t − 1 to identify cheaters. ��

Table 1 Detectability for
(4, n)-SS Scheme for j = 5

cmax Conditions used to determine cmax

Type 1 5 j ≥ t + 1

Type 2 3 {(c < t) ∩ ( j ≥ t + 1)} ∪
{(c ≥ t) ∩ ( j − c ≥ t)}

Type 3 1 j − c ≥ t

Table 2 Identifiability for
(4, n)-SS Scheme for j = 9

cmax Conditions used to determine cmax

Type 1 4 j − c ≥ t + 1

Type 2 3 {(c < t) ∩ ( j − c ≥ t + 1)}∪
{(c ≥ t) ∩ ( j − c > c + t − 1)}

Type 3 2 { j ≥ t + 1} ∩ { j − c > c + t − 1}

j

1

2

3

4

5

6

7

8

9

10

11

12

cmax

0 1 2 3 4 5 6 7 8 9 10 11 12

type 1:

type 2:

type 3:

Fig. 1 Detectability for (4, n)-SS scheme
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0 1 2 3 4 5 6 7 8 9 10 11 12 j

1

2

3

4

5

6

7

8

9

10

cmax

type 1:

type 2:

type 3:

Fig. 2 Identifiability for (4, n)-SS scheme

6 Example

In this section, we illustrate our proposed scheme with a (4, n)-SS scheme. We denote cmax as
the maximum number of cheaters when the number of participants j is fixed in our proposed
scheme.

We summarize bounds for detectability and identifiability of our proposed scheme under
three attacks in Tables 1 and 2. In Table 1, it shows that detectability of our proposed scheme
decreases gradually from type 1 to type 3 for participants j = 5. Similarly, in Table 2, it
shows that identifiability of our proposed scheme decreases gradually from type 1 to type 3
for participants j = 9. The decrement of detectability and identifiability from type 1 attack
to type 3 attack is caused by the increment of attackers ability from type 1 attack to type 3
attack.

In Fig. 1, it illustrates that detectability of our proposed scheme is in proportion to the
number of participants. Similarly, in Fig. 2, it illustrates that identifiability of our proposed
scheme is in proportion to the number of participants.

7 Conclusions

In this paper, we consider the cases when there are more than t shareholders participated in
secret reconstruction. Since there are more than t shares for reconstructing the secret, the
redundant shares of a (t, n) secret sharing scheme can be used to detect and identify cheaters.
We introduce the property of consistency and the notion of the majority of secrets to detect
and identity cheaters. The bounds of detectability and identifiability under three attacks are
presented. We utilizes shares for secret reconstruction to detect and identify cheaters. Our
scheme is an extension of Shamir’s secret sharing scheme.
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