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Abstract We prove that every polarity of PG(2k − 1, q), where k ≥ 2, gives rise to a
design with the same parameters and the same intersection numbers as, but not isomorphic to,
PGk(2k, q). In particular, the case k = 2 yields a new family of quasi-symmetric designs. We
also show that our construction provides an infinite family of counterexamples to Hamada’s
conjecture, for any field of prime order p. Previously, only a handful of counterexamples
were known.
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1 Introduction

We prove that every polarity of PG(2k − 1, q), where k ≥ 2, gives rise to a design with the
same parameters and the same intersection numbers as, but not isomorphic to, PGk(2k, q),
the design of points and k-spaces in projective 2k-space over G F(q). The new designs are
obtained by distorting the classical geometric designs with the help of the given polarity,
acting on a fixed hyperplane in PG(2k, q). In particular, the case k = 2 yields a new family
of quasi-symmetric designs.
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132 D. Jungnickel, V. D. Tonchev

By construction, our new examples of designs with classical geometric parameters still
share many properties with the geometric designs PGk(2k, q). In particular, there always is
a set H of q2k−1 +· · ·+q +1 points on which the blocks of the design induce an isomorphic
copy of PG(2k − 1, q), while a copy of an affine 2k-space AG(2k, q) is induced on the set
A formed by the remaining q2k points. Moreover, the lines of the design joining two points
of H or two points of A still have the natural geometric size, that is, q + 1 or q , respectively,
whereas a point of H and a point of A always determine a line of size 2.

We also show that our construction provides an infinite family of counterexamples to
Hamada’s conjecture [8] from 1973, for fields of arbitrary prime order, and for any dimension
2k ≥ 4. Previously, only a handful of counterexamples were known, namely two parameter
sets, 2-(31, 7, 7) [7,29] and 3-(32, 8, 7) [29] for the binary case, and a single parameter set
2-(64, 16, 5) for the quaternary case (q = 4) [10,22].

Hamada’s conjecture is of fundamental importance for two reasons. First, it indicates
that the classical geometric designs, as designs having minimum p-rank among all pos-
sible designs with the given parameters, are the best choice to use for the construction
of error-correcting codes with majority-logic decoding [24,25]. It is known that the
number of non-isomorphic designs having the same parameters as the classical geomet-
ric designs of hyperplanes in PG(n, q) or AG(n, q), n ≥ 3, grows exponentially with linear
growth of n [15,17–19]. Secondly, the conjecture provides an elegant and computationally
simple characterization of the classical geometric designs in terms of the p-rank of their inci-
dence matrices: the complexity of computing the rank of a matrix is a cubic polynomial in the
number of rows (or columns), while the complexity of finding isomorphisms between block
designs is as hard as the notoriously difficult graph isomorphism problem; see [5, Remark
VII.6.6].

2 A construction method for pseudo-geometric designs

We begin by describing a general method for constructing 2-designs with the same parameters
as some classical geometric designs. To this end, let � denote PG(2k, q), the 2k-dimen-
sional projective space over the field G F(q) with q elements. As is well-known, the points
and k-spaces of � form a 2-(v, K , λ) design D = PGk(2k, q) with parameters

v = q2k+1 − 1

q − 1
, K = qk+1 − 1

q − 1
, λ = (q2k−1 − 1) . . . (qk+1 − 1)

(qk−1 − 1) . . . (q − 1)
. (1)

Furthermore, the lines of D are just the lines of � and hence all have cardinality q + 1.1

Now let H denote a fixed hyperplane of �. Trivially, the subspaces of � induce a geom-
etry �0 isomorphic to PG(2k − 1, q) on H . Since the lines of �0 are just those lines of D
which are contained in H , we may view H as a copy of the projective space PG(2k − 1, q)

in the design D. Moreover, let A be the set of points not contained in H . Then the subspaces
of � induce a geometry � isomorphic to the affine space AG(2k, q) on A. Now each line
of � corresponds to a line � of �; of course, considered as a line of the affine space �, the
projective line � loses its infinite point � ∩ H . Since � is also a line of the design D, we may
view A as a copy of the affine space AG(2k, q) in D. In view of the preceding observations,
we shall refer to H also as a hyperplane of D.

1 Recall that the line determined by two points of a design is defined as the intersection of all blocks containing
these two points. See [4] for background on designs, and [12,11] for background on finite projective spaces.
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Polarities, quasi-symmetric designs, and Hamada’s conjecture 133

More generally, let D′ be any design with the parameters (1) of PGk(2k, q). If there exists
a set H of q2k−1 + · · · + q + 1 points on which the lines of the design induce an isomorphic
copy of PG(2k − 1, q), while a copy of AG(2k, q) is induced on the set A formed by the
remaining q2k points, we shall call H a hyperplane of D′. The points of H will be referred
to as the infinite points of D′, and the points in A as the affine points of D′.

If, in addition, the intersection numbers of D′ are the same as those of PGk(2k, q), we
shall call D′ a pseudo-geometric design. Our main result will be a construction method for
designs which are pseudo-geometric but not actually geometric.

We begin with a more general method yielding designs with the parameters of a geometric
design PGk(2k, q). Given any affine block B of D = PGk(2k, q)—that is, any k-space of
� which is not contained in the hyperplane H—we write B in the form

B = B∞ ∪ Baff , (2)

where B∞ := B ∩ H is a projective (k − 1)-space contained in the hyperplane H and
Baff := B ∩ A is a k-space of the affine space � induced on A. In particular,

|Baff | = qk and |B∞| = qk−1 + · · · + q + 1 = qk − 1

q − 1
. (3)

If B and C are affine blocks and B∞ = C∞, then Baff and Caff are affine translates of each
other.

Now let α be any permutation of the projective (k−1)-spaces contained in H , and associate
with each affine block B of D a point set α(B) as follows:

α(B) := α(B∞) ∪ Baff . (4)

Thus, we keep the affine points of all affine blocks unchanged, and merely exchange their
infinite parts, using the permutation α. We shall denote the incidence structure obtained from
D by replacing each affine block B by its distorted version α(B) as α(D). Then it is easy to
prove the following result.

Lemma 2.1 For each permutation α of the (k − 1)-spaces contained in H, the incidence
structure α(D) is a 2-design with the same parameters as D = PGk(2k, q).

In general, the designs just constructed may have intersection numbers different from
those of D. If we wish to preserve intersection sizes, we will have to choose α judiciously.
Before we address this problem, let us remark that Lemma 2.1 can be used to show that the
number of 2-designs with the parameters of PGk(2k, q) grows exponentially; this is a special
case of a more general result which will be presented elsewhere [16].

As it turns out, our aim can be achieved by choosing α as a polarity of the projective space
�0 ∼= PG(2k − 1, q) induced on H . Recall that a polarity of a projective space PG(n, q) is
an involutory isomorphism between PG(n, q) and its dual space; in other words, a polarity
is an incidence preserving bijection interchangeing points and hyperplanes. Note that any
polarity of �0 maps i-spaces to (2k − i − 2)-spaces, for i = 0, . . . , 2k − 2; in particular,
α induces a permutation on the (k − 1)-spaces contained in H , and hence can be used in
our construction. We refer the reader to [12] for a thorough discussion of polarities in finite
projective spaces.

Lemma 2.2 For each polarity α of �0 ∼= PG(2k − 1, q), the design α(D) has the same
intersection numbers as D = PGk(2k, q).
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134 D. Jungnickel, V. D. Tonchev

Proof The interesting case to consider concerns the intersection sizes of blocks of D′ which
correspond to affine blocks of D. As we will see, α even preserves these intersection sizes:

|α(B) ∩ α(C)| = |B ∩ C | (5)

for any two affine blocks B and C of D.
With the notation introduced in (2), the infinite parts B∞ and C∞ of the given two blocks

are (k − 1)-subspaces of H ∼= PG(2k − 1, q). In view of the construction given in (4), the
validity of (5) is clear provided that B∞ = C∞.

Next, note that B∞ and C∞ are disjoint if and only if their images under α are disjoint.
Indeed, by the dimension formula, these two (k − 1)-subspaces of H intersect if and only
if they are both contained in a hyperplane H0 of H ; as α is incidence preserving, this holds
if and only if their images α(B∞) and α(C∞) intersect in the point α(H0). This proves the
validity of (5) in the special case where B∞ ∩ C∞ = ∅.

We may now assume that U := B∞∩C∞ is an i-subspace of H , where 0 ≤ i ≤ k−2. Then
α(U ) is a (2k − i − 2)-subspace which contains the two (k − 1)-spaces α(B∞) and α(C∞),
as α is incidence preserving. Again using the dimension formula, α(B∞) and α(C∞) have
to intersect in a j-subspace for some j ≥ i . Applying this argument to α(B∞) and α(C∞)

and using that α is an involution shows that also i ≥ j . Hence α(B∞) ∩ α(C∞) is again an
i-subspace, and therefore (5) holds also in the case B∞ ∩ C∞ 	= ∅.

Finally, note that the multiset of the remaining intersection numbers does not change, as
blocks of D contained in H are kept in α(D) and as the infinite parts of the affine blocks are
merely permuted under α. (However, in general, the image α(B) of a given affine block B
may intersect a specific infinite block C in a different manner as B does). 
�
Lemma 2.3 For each polarity α of �0 ∼= PG(2k − 1, q), the design α(D) has line sizes
q + 1, q and 2. More precisely, any line of α(D) joining two infinite points has cardinality
q + 1; any line of α(D) joining two affine points has cardinality q; finally, an infinite point
and an affine point always determine a line of size 2 in α(D).

Proof Let us consider a fixed (affine) (k − 1)-subspace Uaff of the affine space � ∼=
AG(2k, q) induced on the set A of affine points of D. Then Uaff is contained in exactly
qk + · · · q + 1 affine blocks of D, as this is the number of k-dimensional subspaces of
AG(2k, q) containing a given (k − 1)-space. Recall that each such block B has the form
given in (2).

Now Uaff extends to a unique (k − 1)-subspace U of the underlying projective space �.
Note that U contains exactly qk−2 + · · · + q + 1 infinite points, as U has to intersect the
hyperplane H of � in a (k − 2)-dimensional subspace U∞. Hence any two distinct affine
blocks containing Uaff share exactly qk−2 +· · ·+ q + 1 infinite points, namely those in U∞;
and by (3), any such block B has precisely qk−1 infinite points outside of U∞. But then the
remaining q2k−1 +· · ·+qk +qk−1 infinite points are partitioned by the qk +· · · q +1 affine
blocks through Uaff :

(qk + · · · + q + 1)qk−1 = q2k−1 + · · · + qk + qk−1.

Thus, the infinite parts B∞ of the qk +· · · q +1 affine blocks B through Uaff form the bundle
of (k − 1)-subspaces of H through the common (k − 2)-subspace U∞. Under the polarity
α, this bundle is mapped to a set of qk + · · · + q + 1 (k − 1)-dimensional subspaces of the
k-subspace α(U∞). Hence, the images α(B∞) are simply all hyperplanes of the projective
space α(U∞) ∼= PG(k, q). Therefore, the images of the infinite parts of any two distinct
affine blocks through Uaff intersect in a (k − 2)-dimensional subspace of α(U∞). Hence,
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Polarities, quasi-symmetric designs, and Hamada’s conjecture 135

no point of U∞ lies in the intersection of all affine blocks α(B) through Uaff , and thus the
intersection of all these blocks in α(D) is simply Uaff .

Now, let � be any line of D joining two affine points, so that � has size q + 1 and consists
of q affine points and one infinite point �∞. Note that � is the intersection of all (k − 1)-
dimensional affine subspaces Uaff of � extended to subspaces U of �, and we have just seen
that the affine part Uaff of each such subspace U is simply the intersection of all blocks of
α(D) containing Uaff . This shows that the line corresponding to � in α(D) is precisely the
q-set � \ �∞: the distortion by α results in � losing its infinite point.2

Finally, it is clear that any line joining two infinite points of D remains a line of α(D).
Now it easily follows that an infinite point and an affine point always determine a line of size
2 in α(D). 
�

Combining the preceding three lemmas, we obtain our main result:

Theorem 2.4 Consider the design D = PGk(2k, q). Let H be a hyperplane of D, and
let A be the set of points not in H. In addition, let α be any polarity of the hyperplane
H ∼= PG(2k −1, q). Then the design α(D) defined above is a pseudo-geometric design with
the same parameters as, but not isomorphic to, PGk(2k, q). 
�

We conclude this section by pointing out that any two polarities of �0 ∼= PG(2k − 1, q)

lead to isomorphic pseudo-geometric designs, even if the polarities are of different types.
While this might seem surprising, it is in fact easy to prove: the product of two polarities is
a collineation, hence any two polarities differ by a collineation only. Now it is easy to check
that applying a non-trivial collineation β in our construction yields a design β(D) different
from, but isomorphic to, D.

3 New quasi-symmetric designs

In this section, we consider the special case k = 2. Here the points and planes of � =
PG(4, q) yield a 2-design which is quasi-symmetric; that is, it has just two intersection num-
bers, namely 1 and q + 1. Also, the lines of this design are just the lines of � and hence all
have cardinality q + 1.3

The designs PG2(4, q) form a well-known family of quasi-symmetric designs. They
have been studied quite intensively, and several characterizations are available. To mention
the most natural result, a quasi-symmetric design with the parameters of PG2(4, q) and
intersection numbers 1 and q + 1 is classical if and only if all lines have size q + 1. This is
due to Sane and Shrikhande [26], who also gave various other characterizations.

Theorem 2.4 specializes to the following construction for a new family of quasi-symmetric
designs with the parameters of PG2(4, q):

Theorem 3.1 Consider the design D = PG2(4, q), let H be a hyperplane of D, and let A be
the set of points not in H. In addition, let α be any polarity of the hyperplane H ∼= PG(3, q).
Then the design α(D) defined in Sect.2 is a pseudo-geometric quasi-symmetric design with
the same parameters as, but not isomorphic to, PG2(4, q). 
�

With the exception of the smallest case, i.e. q = 2, none of the designs in Theorem 3.1 was
known previously; thus we indeed have a new infinite family of quasi-symmetric designs.

2 More generally, all subspaces of � of dimension at most k−1 which are not contained in H can be recovered
as suitable intersections of blocks of D; under α, the intersection of the corresponding distorted blocks no
longer contains an infinite point and simply is the original affine part of the subspace.
3 See [27] for a monograph on quasi-symmetric designs.

123



136 D. Jungnickel, V. D. Tonchev

By a result of Tonchev [29], there are exactly five quasi-symmetric 2—(31,7,7)-designs
with intersection numbers 1 and 3; among these designs is, of course, the classical example
PG2(4, 2). It is interesting to note that just one of the further four examples contains a hyper-
plane; hence this design has to arise from Theorem 3.1. Actually, we discovered our general
construction for pseudo-geometric designs when we tried to get a better understanding of
this specific design which shares so many properties with the classical example. It seemed
to us that there ought to be a geometric way of obtaining it—an intuition which fortunately
turned out to be correct.

A more recent characterization of the geometric designs PG2(4, q) in terms of good
blocks—a notion introduced in [23]—is due to Mavron, McDonough and Shrikhande [21].
In any quasi-symmetric design with intersection numbers x and y, where 0 ≤ x < y, a
block B is said to be good if, for any block C with |B ∩ C | = y and any point p /∈ C , there
is a (unique) block containing p and B ∩ C . The result of [21] characterizes the geometric
design PG2(4, q) among all quasi-symmetric designs with the same parameters and with
intersection numbers 1 and q + 1 by the property that all blocks of the design are good.
Subsequently, this result was strengthened by Baartmans and Sane [3] who proved that it
suffices to assume that all the blocks passing through a fixed point p are good.

The authors of [21] also knew4 just one example of a quasi-symmetric design with the
parameters of PG2(4, q) where some of the blocks, but not all blocks, are good, namely the
pseudo-geometric 2—(31,7,7)-design discussed above. It is easy to check that if α(D) is a
design obtained using a polarity α in a hyperplane H , then precisely the blocks contained in
H are good.

4 Counterexamples to Hamada’s conjecture

In this section, we shall see that our construction from Sect. 2 provides an infinite family of
counterexamples to a famous conjecture by Hamada [8] from 1973. This conjecture reads as
follows:

Conjecture 4.1 (Hamada’s Conjecture) Let D be a design with the parameters of a geomet-
ric design PGd(n, q) or AGd(n, q), where q is a power of a prime p. Then the p-rank of the
incidence matrix of D is greater than or equal to the p-rank of the corresponding geometric
design. Moreover, equality holds if and only if D is isomorphic to the geometric design.

Hamada’s conjecture has been proved in the following cases: Hamada and Ohmori [9]
established the conjecture for the design of hyperplanes in a binary projective or affine space
(q = 2, d = n − 1). Doyen et al. [6] proved the conjecture for the design of lines in a binary
projective space (q = 2, d = 1), as well as for the design of lines in a ternary affine space
(q = 3, d = 1). Teirlinck [28] proved the conjecture for the design of planes in a binary affine
space (q = 2, d = 2). Tonchev [30] proved a modified version of Hamada’s conjecture using
generalized incidence matrices with entries over G F(q) instead of (0, 1)-incidence matrices,
for the classical designs having as blocks the complements of hyperplanes in PG(d, q) or
AG(d, q) (d = n − 1, q an arbitrary prime power).

Nevertheless, the strong version of Hamada’s conjecture is not true in general: there are
designs with the same parameters and the same p-rank as a classical geometric design D,
but not isomorphic to D. The smallest examples for this phenomenon are the quasi-sym-
metric designs with the parameters of PG2(4, 2), namely, 2-(31, 7, 7) [29], which were

4 This is not contained in the published paper [21], but was mentioned by Mavron and McDonough to the
second author when he was visiting The University of Wales at Aberystwyth.
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Polarities, quasi-symmetric designs, and Hamada’s conjecture 137

already discussed in the previous section. We note that one of these 2-(31, 7, 7) designs,
namely, the design supported by the minimum weight vectors in the quadratic-residue code
of length 31, was mentioned in the paper by Goethals and Delsarte [7]. The extensions of the
quasi-symmetric 2-(31, 7, 7) designs are 3-(32, 8, 7) designs having the same parameters
and block intersection numbers as AG3(5, 2) [29]. All these designs have the same 2-rank,
namely 16.

The only other previously known parameter set for which a non-geometric design exists
that has the same p-rank as the corresponding geometric design is 2-(64, 16, 5): in [10],
Harada et al. found two affine 2-(64, 16, 5) designs having the same 2-rank (equal to 16) as
the classical geometric design of the planes in AG(3, 4). The two exceptional designs were
found as minimum weight vectors in binary codes spanned by incidence matrices of sym-
metric (4, 4)-nets. Mavron et al. [22] showed that one of the pseudo-geometric 2-(64, 16, 5)

designs from [10] can be obtained also by using a certain line spread in PG(5, 2).
However, the weak version of Conjecture 4.1, that is, the statement that the p-rank of any

design with the same parameters as a geometric design PGd(n, q) or AGd(n, q) is at least as
large as that of the corresponding geometric design, is still open in general, with the exception
of the few proven cases mentioned above.

Thus, it is rather interesting that the designs described in Theorem 2.4 in the case when q
is a prime number provide the first infinite family of counterexamples to the strong version
of Hamada’s conjecture:

Theorem 4.2 If q = p is a prime number, the pseudo-geometric designs described in The-
orem 2.4 have the same p-rank as the geometric design PGk(2k, p).

We will need two lemmas for the proof of Theorem 4.2.

Lemma 4.3 Let α be a polarity in PG(2k − 1, q), where q = ps and p is a prime. The
p-rank rp(α) of the incidence matrix of the design α(D) from Theorem 2.4 satisfies the
inequalities

rp(D) ≤ rp(α) ≤ 1

2

(
q2k+1 − 1

q − 1
+ 1

)
, (6)

where rp(D) is the p-rank of the geometric design D = PGk(2k, q).

Proof By the construction described in Sect. 2, the design α(D) has an incidence matrix of
the form

M =
(

M1 M2

0 M3

)
,

where M1 is a point by block incidence matrix of the geometric design PGk(2k − 1, q), and
M3 is a point by block incidence matrix of the geometric design AGk(2k, q). Thus, we have

rp(M1) + rp(M3) ≤ rp(α).

On the other hand, it follows from [1, Corollary 5.7.3, p. 186], that

rp(PGk(2k, q)) = rp(PGk(2k − 1, q)) + rp(AGk(2k, q)).

Hence, we have

rp(D) = rp(M1) + rp(M3).

This proves the left-hand side inequality in (6). To prove the right-hand side inequality in
(6), we consider the complementary design α(D). By Lemma 2.2, the design α(D) has the
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138 D. Jungnickel, V. D. Tonchev

same intersection numbers as D = PGk(2k, q), that is, (qi − 1)/(q − 1) for i in the range
1 ≤ i ≤ k. Consequently, the block intersection numbers of the complementary design α(D)

are

qi (q2k+1−i − 2qk+1−i + 1)

q − 1
, 1 ≤ i ≤ k.

Note that all these numbers are divisible by q , and that the blocks of α(D) are of size

qk+1(qk − 1)

q − 1
,

which is also divisible by q . Thus, the incidence vectors of the blocks of α(D) span a linear
self-orthogonal code of length (q2k+1 − 1)/(q − 1) over G F(p). Hence, the p-rank of the
incidence matrix (J − M) of α(D), where J denotes the all-one matrix of appropriate size,

does not exceed (
q2k+1−1

q−1 −1)/2 (note that the number of points of α(D), (q2k+1 −1)/(q −1)

is an odd number). The columns of J − M have 0 and 1 entries, and the number of 1’s in each
column is a multiple of p. Therefore, each column of J − M is orthogonal (over G F(p)) to
the all-one column j, and consequently, the whole column space is orthogonal to j. Since j
is not orthogonal to itself, j is not in the column space of J − M . On the other hand, j is a
nonzero multiple of the sum of columns of M over G F(p). This implies

rp(M) = rp(J − M) + 1,

and therefore

rp(M) ≤ 1

2

(
q2k+1 − 1

q − 1
− 1

)
+ 1 = 1

2

(
q2k+1 + 1

q − 1
+ 1

)
.

This proves the right-hand side inequality in (6). 
�

A summation formula for the p-rank of the incidence matrix of a geometric design
PGr (n, q), 1 ≤ r ≤ n − 1, q = pt , p a prime, was found by Hamada [8]. If r 	= 1, n − 1,
Hamada’s formula involves some parameters that have to be computed. A simplified formula
for the case when q = p is a prime was found by Hirschfeld and Shaw [13, Theorem 5.10].
In particular, the p-rank of D = PGk(2k, p) is given by:

rp(D) = p2k+1 − 1

p − 1
−

k−1∑
i=0

(−1)i
(

(k − i)(p − 1) − 1
i

) (
k + (k − i)p

2k − i

)
. (7)

If p = 2, the linear code spanned by the blocks of D = PGk(2k, 2) is a punctured
Reed-Muller code of length v = 22k+1 − 1 and order k [1, Proposition 5.3.2], so we have an
alternative formula for r2(D) which can be written in a simple closed form, namely

r2(D) =
k∑

i=0

(
2k + 1

i

)
= 22k .

Note that 22k = (v + 1)/2, so the inequalities in (6) are replaced by equalities:

r2(D) = r2(α) = 22k = (v + 1)/2.

Thus, the pseudo-geometric designs from Sect. 2 for q = p = 2 are counter-examples to the
“only if” part of Hamada’s conjecture.
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In addition, the two formulas for r2(D) imply the following identity:

22k − 1 =
k−1∑
i=0

(−1)i
(

k − i − 1
i

) (
3k − 2i
2k − i

)
. (8)

It turns out that a similar closed formula for rp(D) holds for any prime number p.

Lemma 4.4 If p is any prime, the p-rank of D = PGk(2k, p) is equal to

rp(D) = 1

2

(
p2k+1 − 1

p − 1
+ 1

)
. (9)

Proof We will use the following result by Hirschfeld and Shaw [13, Corollary 5.5]): if p is
a prime and C∗(k, n, p) is the dual of the linear code over G F(p) spanned by the incidence
vectors of the k-dimensional subspaces of PG(n, p), 1 ≤ k ≤ n − 1, then

dim C∗(k, n, p) + dim C∗(n − k, n, p) = pn+1 − 1

p − 1
− 1. (10)

In the special case n = 2k, (10) implies that

dim C∗(k, 2k, p) = 1

2

(
p2k+1 − 1

p − 1
− 1

)
.

Note that C∗(k, 2k, p) is the code having the incidence matrix of D=PGk(2k, p) as a parity
check matrix, hence

rp(D) = p2k+1 − 1

p − 1
− dim C∗(k, 2k, p) = 1

2

(
p2k+1 − 1

p − 1
+ 1

)
.


�
Now Theorem 4.2 follows from Lemmas 4.3 and 4.4.
We note that comparing (7) and (9) gives the following identity, which generalizes (8):

Corollary 4.5

1

2

(
p2k+1 − 1

p − 1
− 1

)
=

k−1∑
i=0

(−1)i
(

(k − i)(p − 1) − 1

i

)(
k + (k − i)p

2k − i

)
. (11)

It was pointed out to us by one of the reviewers, that Eq. 11 is actually true for all positive
integers p and not just for primes; it follows from a formula of J.L.W.V. Jensen [14, Eq. 18],
which is given a modern setting in [20, Sect. 14.1]. Of course, with (11) in hand, Lemma 4.4
is an immediate consequence of (7).

We finally remark that Theorem 4.2 does not extend to arbitrary prime powers q: the
classical design PG2(4, 4) has 2-rank 146, whereas the pseudo-geometric design obtained
from a polarity has 2-rank 154.
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