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Abstract The notion of algebraic immunity of Boolean functions has been generalized
in several ways to vector-valued functions and/or over arbitrary finite fields and reasonable
upper bounds for such generalized algebraic immunities has been proved in Armknecht and
Krause (Proceedings of ICALP 2006, LNCS, vol. 4052, pp 180–191, 2006), Ars and Faug-
ere (Algebraic immunity of functions over finite fields, INRIA, No report 5532, 2005) and
Batten (Canteaut, Viswanathan (eds.) Progress in Cryptology—INDOCRYPT 2004, LNCS,
vol. 3348, pp 84–91, 2004). In this paper we show that the upper bounds can be reached as
the maximal values of algebraic immunities for most of generalizations by using properties
of Reed–Muller codes.
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1 Introduction

In the past few years several successful algebraic attacks on stream ciphers were proposed
[1,2,6–8]. As a response to this situation, Meier et al. [8] and Batten [6] introduced the
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244 K. Feng et al.

notion of algebraic immunity for a Boolean function. Let Bm be the ring of m-variable
Boolean functions f : F

m
2 → F2.

Definition 1.1 For a Boolean function f = f (x1, . . . , xm) ∈ Bm , the algebraic immunity
of f is defined by

AIm( f ) = min{deg g|0 �= g ∈ Bm, g f = 0 or g( f + 1) = 0}
A large AIm( f ) is a necessary (but not sufficient) condition for resisting algebraic attacks.

It is proved (see [6] and [4]) that the maximal value of algebraic immunity for m-vari-
able Boolean functions is �m

2 � and several Boolean functions with maximal AI have been
constructed. The notion of algebraic immunity has been generalized in several ways to vec-
tor-valued functions and/or over arbitrary finite fields in [3,4,6], and the reasonable upper
bounds of all generalized algebraic immunities have been presented. In this paper we will
show that these upper bounds can be reached so that we can determine the maximal values
of algebraic immunities for most of generalized cases. For doing this, our main tool is the
(generalized) Reed–Muller codes over Fq . In Sect. 2 we introduce basic properties on RM
codes we will use in this paper. Then in the next three sections (3, 4 and 5) we introduce
three generalizations of algebraic immunity (Definition 1.1) and their upper bounds given in
[3,4,6], and prove that these upper bounds can be reached.

2 Reed–Muller codes over FFFq

In this section we introduce basic properties of Reed–Muller codes over arbitrary finite fields
Fq which we need in this paper. For systematic theory on RM codes we refer, for example,
to Assmus and Key’s book [5], Chap. 5.

Let m ≥ 1 and Fq be the finite field with q elements (q = pl , l ≥ 1 and p is a prime
number). Let Bm,q be the ring of all function f : F

m
q → Fq . We know that Bm,q =

Fq [x1, . . . , xm]/(xq
1 − x1, . . . , xq

m − xm) which means that each function f ∈ Bm,q can be
expressed uniquely as polynomial

f = f (x1, . . . , xm) =
∑

a=(a1,...,am )∈Zm
q

c(a)Xa (c(a) ∈ Fq) (2.1)

where Zq = {0, 1, . . . , q − 1} and Xa = xa1
1 , . . . , xam

m .
Let n = qm and F

m
q = {v0 = (0, . . . , 0), v1, . . . , vn−1}. For 0 ≤ ν ≤ m(q − 1), the ν-th

Reed–Muller code over Fq is defined by

RM(ν, m; q) = {c f = ( f (v0), f (v1), . . . , f (vn−1)) ∈ F
n
q | f ∈ Bm,q , deg f ≤ ν}

This is a linear code over Fq . Let α be a primitive element of Fqm so that Fqm =
{0, 1, α, α2, . . . , αn−2}(αn−1 = 1). With a fixed basis {e1, . . . , em} of Fqm over Fq (for
example, we can choose {e1, . . . , em} = {1, α, . . . , αm−1}), Fqm can be viewed as a vector
space F

m
q by

ϕ : Fqm
∼→ F

m
q , β = β1e1 + · · · + βmem(βi ∈ Fq) �→ (β1, . . . , βm)

By the mapping ϕ, each element β ∈ Fqm can be considered as the vector ϕ(β) = (β1, . . . ,

βm) in F
m
q so that we can set

F
m
q = {0, v1, . . . , vn−1} = {0, 1, α, α2, . . . , αn−2} (2.2)
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Maximal values of generalized algebraic immunity 245

Namely, we take v0 = 0 and vi = αi−1 for 1 ≤ i ≤ n − 1. With this ordering (2.2) of
the elements of F

m
q , we define the punctured v-th Reed–Muller codes over Fq for 0 ≤ ν <

m(q − 1) as

RM∗(ν, m; q) = {c∗
f = ( f (1), f (α), . . . , f (αn−1)| f ∈ Bm,q , deg f ≤ ν}

RM∗(ν, m; q) is a cyclic code over Fq .
A linear code C in F

N
q is called cyclic if c = (c0, c1, . . . , cN−1) ∈ C implies

(c1, c2, . . . , cN−1, c0) ∈ C . If we identify each codeword c = (c0, c1, . . . , cN−1) by the
polynomial c(x) = c0 + c1x + . . . + cN−1x N−1 in the quotient ring R = Fq [x]/(x N − 1),
then a cyclic code C can be identified as a principle ideal C =< g(x) > of R where g(x) is
a monic polynomial in Fq [x], g(x) | x N − 1. We call g(x) as the generating polynomial of
the cyclic code C . And the dimension of C over Fq is N − deg g(x). The basis parameters
of RM(ν, m; q) and RM∗(ν, m; q) are

Lemma 2.1 ([5], Chap. 5) Let 0 ≤ ν < m(q − 1), then
(1) RM(ν, m; q) is a linear code over Fq with code length n = qm, dimension k(ν, m; q)

and minimal distance d where

k(ν, m; q) = dim
Fq RM(ν, m; q)

= �{Xa = xa1
1 · · · xam

m |0 ≤ a1, . . . , am ≤ q − 1, a1 + · · · + am ≤ ν}

=
ν∑

i=0

m∑

λ=0

(−1)λ
(

m
λ

) (
i + m − 1 − λq

i − λq

)

= the coefficient aν in the power series
(1 − tq)m

(1 − t)m+1 =
∞∑

i=0

ai t
i

and

d = (q − s)qm−r−1
(

r =
[

ν

q − 1

]
, s = ν − r(q − 1)

)
(2.3)

(2) RM∗(ν, m; q) is a cyclic code over Fq with code length n − 1, dimension k(ν, m; q)

and minimal distance d − 1 where d is defined by (2.3). The generating polynomial of
RM∗(ν, m; q) is

g(x) =
∏

1≤u≤n−2
1≤wq (u)≤m(q−1)−1−ν

(x − αu) ∈ Fq [x] (2.4)

where wq(u) = u0+· · ·+um−1 for q-adic expansion of u = u0+u1q+· · ·+um−1qm−1(ui ∈
{0, 1, . . . , q − 1}).

From Lemma 2.1 we can get the following result which is the main tool in next three
sections.

Lemma 2.2 Suppose that 0 < ν < m(q − 1), k = k(ν, m; q), s ≥ 1 and sk ≤ n = qm.
Then there exists s disjoint subsets A1, . . . , As of F

m
q satisfying the following conditions

(1) |Ai | = k(1 ≤ i ≤ s)
(2) For each nonzero polynomial f = f (x1, . . . , xm) ∈ Bm,q with deg f ≤ ν and each

i(1 ≤ i ≤ s), there exists v ∈ Ai such that f (v) �= 0.
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Proof As before we assume that α is a primitive element of Fqm and

F
m
q = Fqm = {v0, v1 = 1, v2 = α, . . . , vn−1 = αn−2}(n = qm)

We take

A1 = {v0, v1, . . . , vk−1},
A2 = {vk, vk+1, . . . , v2k−1},

...

As = {v(s−1)k, v(s−1)k+1, . . . , vsk−1}
(2.5)

From assumption sk ≤ n we know that Ai (1 ≤ i ≤ s) are disjoint subsets of F
m
q and

|Ai | = k(1 ≤ i ≤ s). Next we confirm the condition (2). Let f be a polynomial in Bm,q

with deg f ≤ ν. Then c f = ( f (v0), f (v1), . . . , f (vn−1)) is a codeword in RM(ν, m; q)

and c∗
f = ( f (v1), . . . , f (vn−1)) ∈ RM∗(ν, m; q). Suppose that there exists i(1 ≤ i ≤ s)

such that f (v) = 0 for all v ∈ Ai .
If i ≥ 2, by definition (2.5) of Ai , we know that there are at least k sequential components

of vector c∗
f being zero: f (v j ) = f (v j+1) = . . . = f (v j+k−1) = 0 where j = (i − 1)k.

But RM∗(ν, m; q) is a cyclic code with dimension k = k(ν, m; q) by Lemma 2.1 and c∗
f is

a codeword in RM∗(ν, m; q), we know that

c∗ = ( f (vi+k), . . . , f (vn−1), f (v1), f (v2), . . . , f (vi−1), 0, . . . , 0) ∈ RM∗(ν, m; q)

The cyclic code RM∗(ν, m; q) is considered to be a principle ideal (g(x)) of the quotient
ring R = Fq [x]/(xn−1 − 1) where g(x) is the generating polynomial of RM∗(ν, m; q) with
deg g(x) = n − 1 − k, and the codeword c∗ is considered to be the polynomial

c∗(x) = f (vi+k) + f (vi+k+1)x + · · · + f (vn−1)xn−i−k−1 + f (v1)xn−i−k

+ · · · + f (vi−1)xn−k−2 ∈ R

Since g(x)|c∗(x) and n−1−k = deg g(x) > n−k−2 ≥ deg c∗(x), we know that c∗(x) = 0
so that f (v) = 0 for all v ∈ F

m
q \{0}. From ν < m(q − 1) we know that the minimal distance

of RM(ν, m; q) is at least 2 by (2.3). Therefore f (0) = 0 so that f ≡ 0.
If i = 1, we have f (v1) = · · · = f (vk−1) = 0 and

c∗
f = (0, . . . , 0, f (vk), . . . , f (vn−1)) = f (vk)xk−1 + f (vk+1)xk + . . . + f (vn−1)xn−2

= xk−1h(x) ∈ (g(x)) = RM∗(ν, m; q)

where h(x) = f (vk) + f (vk+1)x + · · · + f (vn−1)xn−k−1 is divisible by g(x). From
deg g(x) = n − k −1 we know that h(x) = ag(x) for some a ∈ Fq . Since ν < m(q −1), we
have 0 = f (v0) + · · · + f (vn−1) = f (v0) + ag(1) so that f (v0) = −ag(1). But f (v0) = 0
by v0 ∈ A1, and g(1) �= 0 since 1 is not a root of the polynomial g(x) by (2.4), we know
that a = 0 so that f ≡ 0.

This completes the proof of Lemma 2.2. �

3 Generalized algebraic immunity (1): from FFF2 to FFFq

Let Bm,q be the ring of all functions f : F
m
q −→ Fq . Batten [6] presented the following

generalization of algebraic immunity. Each function of f ∈ Bm,q can be expressed uniquely
as a polynomial in formula (2.1).
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Maximal values of generalized algebraic immunity 247

Definition 3.1 For f = f (x1, . . . , xm) ∈ Bm,q , the algebraic immunity of f is defined by

AIm( f ) = min{deg g | 0 �= g ∈ Bm,q , g f = 0 or g( f q−1 − 1) = 0}
It is easy to see that this definition is a generalization of the Definition 1.1 with q = 2.

Lemma 3.2 For each 0 �= f ∈ Bm,q , AIm( f ) ≤ � (q−1)m
2 � where, for real number α, �α� is

the smallest integer n such that n ≥ α.

Proof See [6]. �
Now we prove that the upper bound can be reached for any m ≥ 1 and prime power q .

Theorem 3.3 For each m ≥ 1 and finite field Fq , there exists f ∈ Bm,q such that AIm( f ) =
� (q−1)m

2 �.

Proof Let ν = � (q−1)m
2 � − 1 and consider the Reed–Muller code RM(ν, m; q). Let n = qm

andα be a primitive element of Fqm . As before we identify a vectorv = (v0, . . . , vm−1) ∈ Fqm

with v0 + v1α + · · · + vm−1α
m−1 ∈ Fqm .

From ν = � (q−1)m
2 � − 1 <

(q−1)m
2 we know that

k = k(ν, m; q)(= dim RM(ν, m; q)) = �{xa1
1 · · · xam

m |0 ≤ ai ≤ q − 1(1 ≤ i ≤ m)} ≤ qm

2

By Lemma 2.2, we have two disjoint subsets A1 and A2 of Fqm such that |A1| = |A2| = k
and any g ∈ Bm,q with deg g ≤ ν satisfying g(β) = 0 for all β ∈ A1 or g(γ ) = 0 for all
γ ∈ A2 is necessarily equal to zero. Now we consider f ∈ Bm,q defined by

f (β) =
⎧
⎨

⎩

0, for β ∈ A1

b∗, for β ∈ A2

b, otherwise
(3.1)

where b∗ can be any non-zero element of Fq and b can be arbitrary element of Fq . We claim

that AIm( f ) = � (q−1)m
2 � = ν + 1.

Suppose that g ∈ Bm,q , deg g ≤ ν. If g f = 0 and then g(β) = 0 for each β ∈ A2 by
(3.1). Therefore g = 0.

Similarly, if g( f q−1 − 1) = 0, then f q−1(β) − 1 = −1 and g(β) = 0 for each β ∈ A1.
Therefore we also have g = 0. Thus AIm( f ) ≥ ν +1 and by Lemma 3.2 we have AIm( f ) =
� (q−1)m

2 �. �

By action of GL(m, Fq) as Fq -linear transformations on {x1, . . . , xm}, we can get more

functions f ∈ Bm,q with algebraic immunity AIm( f ) = � (q−1)m
2 �.

4 Generalized algebraic immunity (2): vector-valued

Let m ≥ n ≥ 1 and Bm,n be the ring of all functions

f = ( f1, . . . , fn) : F
m
2 → F

n
2

where fi ∈ Bm(1 ≤ i ≤ n). For a subset S of F
m
2 , the annihilating ideal of S is defined by

N (S) = {g ∈ Bm : g|S = 0}
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where g|S is the restriction of g on S. Namely, g|S = 0 means that g(v) = 0 for all v ∈ S.
Let

AI(S) = min{deg g|0 �= g ∈ N (S)} = min{deg g|0 �= g ∈ Bm, g|S = 0}
Armknecht and Krause [3] presented the following definition of generalized algebraic immu-
nity to deal with S-boxes in block ciphers.

Definition 4.1 For 0 �= f = ( f1, . . . , fn) ∈ Bm,n , the algebraic immunity of f is defined by

AI ( f ) = min{AI ( f −1(a)) : a ∈ F
n
2}

= min{deg g : 0 �= g ∈ Bm and ∃a ∈ F
n
2 such that g| f −1(a) = 0}

where for a = (a1, . . . , an) ∈ F
n
2, f −1(a) is defined by

f −1(a) = {v ∈ F
m
2 : fi (v) = ai (1 ≤ i ≤ n)}

It is easy to see that Definition 4.1 is a generalization of Definition 1.1(n = 1). Let d

be the smallest integer such that
∑d

i=0

(
m
i

)
> 2m−n . An upper bound of AI( f ) has been

presented in [3].

Lemma 4.2 ([3]) Assume that m ≥ n ≥ 1. For 0 �= f ∈ Bm,n we have AI ( f ) ≤ d.

Now we prove that the upper bound d can be reached.

Theorem 4.3 Assume that m ≥ n ≥ 1. There exists f ∈ Bm,n such that AI ( f ) = d where

d is the smallest integer satisfying
∑d

i=0

(
m
i

)
> 2m−n.

Proof From the definition of d we know that
∑d−1

i=0

(
m
i

)
≤ 2m−n . By Lemma 2.1(1) we

konw that
∑d−1

i=0

(
m
i

)
is the dimension k = k(d −1, m; 2) of the binary Reed–Muller code

RM(d − 1, m; 2). By Lemma 2.2 we have 2n disjoint subsets S j (0 ≤ j ≤ 2n − 1) of F
m
2

satisfying |S j | = ∑d−1
i=0

(
m
i

)
(0 ≤ j ≤ 2n − 1) and for each 0 �= g ∈ Bm, deg g ≤ d − 1,

and each j (0 ≤ j ≤ 2n − 1) there exists v ∈ S j such that g(v) �= 0.
Now we define fλ ∈ Bm(0 ≤ λ ≤ n − 1) by

fλ(v) =
⎧
⎨

⎩

1, if v ∈ S j and jλ = 1(0 ≤ j ≤ 2n − 1)

0, if v ∈ S j and jλ = 0(0 ≤ j ≤ 2n − 1)

c, if v � S0
⋃

S1
⋃

. . .
⋃

S2n−1

where jλ is the coefficient in the 2-adic expansion j = j0 + j12 +· · ·+ jn−12n−1, and c can
be any element of F2.

We claim that for f = ( f0, . . . , fn−1) ∈ Bm,n , we have AI ( f ) = d . In fact, for each
b = (b0, b1, . . . , bn−1) ∈ F

n
2, and a ∈ S0

⋃
S1

⋃
. . .

⋃
S2n−1,

a ∈ f −1(b) ⇐⇒ fλ(a) = bλ(0 ≤ λ ≤ n − 1)

⇐⇒ for each λ(0 ≤ λ ≤ n − 1), a ∈
⋃

{S j |0 ≤ j ≤ 2n − 1, jλ = bλ}
⇐⇒ a ∈ S j where j = b0 + b12 + · · · + bn−12n−1
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Therefore f −1(b) ⊇ S j for j = b0 + b12 + · · · + bn−12n−1. Suppose that g ∈ Bm and
deg g ≤ d − 1. If g| f −1(b) = 0 for some b = (b0, . . . , bn−1) ∈ F

n
2, then g|S j = 0 for

j = b0 + b12 + · · · + bn−12n−1 so that g ≡ 0. Thus AI ( f ) ≥ d and then AI ( f ) = d by
Lemma 4.2. This completes the proof of Theorem 4.3. �

There is another kind of algebraic immunity of f ∈ Bm,n defined in [3]. The subset

gr( f ) = {(x, f (x)) ∈ F
m+n
2 | x ∈ F

m
2 }

of F
m+n
2 is called the graph of f . The algebraic immunity of gr( f ) is defined by

AI (gr( f )) = min{deg G | 0 �= G = G(x, y) ∈ Bm+n, G|gr( f ) = 0}
It is proved in [3] that AI ( f ) ≤ AI (gr( f ))≤ AI ( f )+n for each f ∈ Bm,n , and AI (gr( f ))≤
Dm,n where Dm,n is the smallest integer such that

∑D
i=0

(m+n
i

)
> 2m . For n = 1, the maximal

value AI (gr( f )) = Dm,1(=� n+1
2 �) can be reached by some f ∈ Bm,1 = Bm . It is conjec-

tured in [3] that the upper bound Dm,n can also be reached for general case m ≥ n ≥ 2. A
necessary and sufficient condition for max{AI (gr( f )) : f ∈ Bm,n} = Dm,n has been made
in [3] with matroid language. Using the matroid criterion and by computation, the conjecture
has been verified to be true for 2 ≤ n ≤ m ≤ 14 and (m, n) = (15, 2) in [3]. But it seems
that the conjecture has not been solved completely.

5 Generalized algebraic immunity (3): FFFq and vector-valued

Let m ≥ n ≥ 1 and q be a prime power. Ars and Faugere [4] present the following defini-
tion of algebraic immunity for a function f = ( f1, . . . , fn) : F

m
q → F

n
q( fi = fi (X) =

fi (x1, . . . , xm) ∈ Bm,q). They consider the ring

R = Fq [x1, . . . , xm; z1, . . . , zn]/(xq
i − xi , zq

j − z j | 1 ≤ i ≤ m, 1 ≤ j ≤ n)

and the ideal

I =< z1 − f1(X), . . . , zn − fn(X) >

of R generated by zi − fi (X)(1 ≤ i ≤ n).

Definition 5.1 ([4]) The algebraic immunity AIS( f ) of f ∈ Bm,n,q is defined by

AIS( f ) = min{degX P | 0 �= P = P(X, Z) ∈ I }
where degX P is the degree of P = P(X, Z) = P(x1, . . . , xm; z1, . . . , zn) viewed as a
polynomial in x1, . . . , xm .

Lemma 5.2 (1) If n = 1 and q = 2, then for f ∈ Bm, AIS( f ) is the same as AIm( f )

defined by the Definition 1.1.
(2) ([4]) Let (1−tq )m

(1−t)m+1 = ∑
i≥0 ci t i ∈ Z[[t]] and d = d(m, n; q) be the smallest integer

such that cd > qm−n, then AIS( f ) ≤ d.

Proof (1) Let f ∈ Bm, d ′ = AIm( f ) and d = AIS( f ). Let g ∈ Bm, deg g = d ′ such that
f g = 0 or g( f + 1) = 0. Remark that I =< z + f > so that (z + f )g ∈ I . And

(z + f )g =
{

zg, if f g = 0
zg + g, if ( f + 1)g = 0
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Therefore degX (z + f )g = d ′ so that AIS( f ) ≤ d ′ = AIm( f ). On the other hand, let
g, h, g′, h′ ∈ Bm, max(deg g′, deg h′) = d and (z + f )(gz + h) = g′z + h′ which means
that

f h = h′ and ( f + 1)g + h = g′

Then f g′ = f h = h′, f (g′ + h′) = 0 and deg(g′ + h′) ≤ d . If g′ + h′ �= 0, from
f (g′ + h′) = 0 we get AIm( f ) ≤ d = AIS( f ). If g′ + h′ = 0, then from f g′ = h′ we get
( f + 1)g′ = 0 and d = max(deg g′, deg h′) = deg g′ since g′ = h′. Therefore we also get
AIm( f ) ≤ d = AIS( f ).

(2) A = R/I is a vector space over Fq with dimension qm since {xa1
1 · · · xam

m |0 ≤ ai ≤
q − 1(1 ≤ i ≤ m)} is a basis of A. Consider the set

S = {Xa Zb = xa1
1 · · · xam

m zb1
1 · · · zbn

n | 0 ≤ ai , b j ≤ q − 1, a1

+ . . . + am(= degX (Xa Zb)) ≤ d}
It is easy to see that |S| = qncd . By assumption qncd > qm = dim A we know that there
exists 0 �= g(X, Z) ∈ R, degX g ≤ d such that g(X, Z) = 0 ∈ A. Namely, g(X, Z) ∈ I
which means that AIS( f ) ≤ d . �

Now we show that the upper bound of AIS( f ) given in Lemma 5.2(2) can be reached.

Theorem 5.3 For each prime power q and 1 ≤ n ≤ m, let d = d(m, n; q) be the integer
defined in Lemma 5.2. Then there exists f ∈ Bm,n,q such that AIS( f ) = d.

Proof By the definition of d we have cd−1 ≤ qm−n . Since cd−1 is just the same as the
dimension k(d − 1, m; q) of the Reed–Muller code RM(d − 1, m; q), from Lemma 2.2 we
have qn disjoint subsets Sb(b = (b1, . . . , bn) ∈ F

n
q) of F

m
q as a partition of F

m
q , such that

|Sb| = qm−n(b ∈ F
n
q), and for each b ∈ F

n
q and 0 �= g(X) ∈ Bm,q with deg g(X) ≤ d − 1,

there exists v ∈ Sb such that g(v) �= 0. Now we define fi ∈ Bm,q(1 ≤ i ≤ n) by, for each
X ∈ F

m
q ,

fi (X) = bi if X ∈ Sb and b = (b1, . . . , bn) (5.1)

We claim that for f = ( f1, . . . , fn) : F
m
q −→ F

n
q , we have AIS( f ) = d .

Suppose that

n∑

i=1

(zi − fi (X))Hi (X, Z) = G(X, Z) ∈ I (5.2)

where Hi (X, Z) ∈ Fq [x1, . . . , xm; z1, . . . , zn](1 ≤ i ≤ n) and degX G(X, Z) ≤ d − 1,
we need to prove G(X, Z) ≡ 0. For doing this, we consider the following polynomials
{M (b)(Z)|b = (b1, . . . , bn) ∈ F

n
q} defined by

M (b)(Z) = (1 − (z1 − b1)
q−1) · · · (1 − (zn − bn)q−1) =

{
1, if (z1, . . . , zn) = b
0, otherwise

Then each polynomial Hi (X, Z) can be expressed uniquely as

Hi (X, Z) =
∑

b∈F
n
q

M (b)(Z)h(b)
i (X)

where

h(b)
i (X) = Hi (X, b)(1 ≤ i ≤ n, b ∈ F

n
q)
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Similarly we have

G(X, Z) =
∑

b∈F
n
q

M (b)(Z)g(b)(X)

and assumption degX G(X, Z) ≤ d − 1 is the same as deg g(b)
i (X) ≤ d − 1 for all b ∈ F

n
q .

We need to prove g(b)
i (X) ≡ 0 for all b ∈ F

n
q .

Now by the definition of M (b)(Z) the equality (5.2) becomes that

∑

b∈F
n
q

M (b)(Z)g(b)(X) =
n∑

i=1

(zi − fi (X))
∑

b∈F
n
q

M (b)(Z)h(b)
i (X)

=
∑

b∈F
n
q

M (b)(Z)

n∑

i=1

(zi − fi (X))h(b)
i (X)

=
∑

b∈F
n
q

M (b)(Z)

n∑

i=1

(bi − fi (X))h(b)
i (X)

Therefore for each b ∈ F
n
q ,

g(b)(X) =
n∑

i=1

(bi − fi (X))h(b)
i (X)

which implies that g(b)(X)| f −1(b) = 0. But

f −1(b) = {X = (x1, . . . , xm) ∈ F
m
q | fi (X) = bi (1 ≤ i ≤ n)}

= Sb (by definition (5.1) of fi (X))

Thus g(b)(X)|Sb = 0 so that g(b)(X) ≡ 0 by assumption deg g(b)(X) ≤ d − 1 for all b ∈ F
n
q .

This completes the proof of AIS( f ) ≥ d and then AIS( f ) = d by Lemma 5.2. �
Remark Ars and Faugere [4] have defined another algebraic immunity of f = ( f1, . . . , fn) :
F

m
q → F

n
q by

AIB( f ) = min{deg g(X, Z)|0 �= g(X, Z) ∈ I }
where deg g is the degree of g(X, Z) as a polynomial in x1, . . . , xm; z1, . . . , zn . Let
(1−tq )m+n

(1−t)m+n+1 = ∑
i≥0 Ai t i and D = D(m, n; q) be the smallest integer i satisfying Ai > qn .

It is shown in [4] by a similar argument in the proof of Lemma 5.2(2) that AIB( f ) ≤ D for
all f ∈ Bm,n,q . We are not sure if the upper bound D(m, n; q) of f ∈ Bm,n;q is tight.
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