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Abstract The first practical identity based encryption (IBE) scheme was published by
Boneh and Franklin at Crypto 2001, based on the elliptic curve pairing. Since that time,
many other IBE schemes have been published. In this paper, we describe a variant of
Boneh-Franklin with a tight reduction in the random oracle model. Our new scheme is
quite efficient compared to existing schemes; moreover, upgrading from Boneh-Franklin to
our new scheme is straightforward.
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1 Introduction

The concept of Identity-Based Encryption (IBE) was invented in 1984 by Adi Shamir [13].
It allows for a party to encrypt a message using the recipient’s identity as the public key. The
corresponding private-key is provided by a central authority. The first efficient and secure
IBE scheme was proposed by Boneh and Franklin at Crypto 2001 [3]. It is based on a bilinear
map between two groups, that is usually implemented using a pairing operation on some well
chosen elliptic-curve. The Boneh-Franklin scheme is provably secure in the random oracle
model, assuming that the Computational Bilinear Diffie-Hellman problem is hard to solve
on the underlying elliptic curve.

Since that time, many other IBE schemes have been proposed. An important research
direction consists in achieving security without the random oracle model, because the random
oracle model provides only heuristic security (see [6]). The two first IBE schemes secure
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116 J.-S. Coron

without random oracles were proposed by Boneh and Boyen in [4], but only in a restricted
model of security in which the attacker must tell in advance which identity he is going to
attack. Boneh and Boyen later proposed in [5] the first IBE scheme secure without random
oracles in the full model, but the scheme was impractical. The first practical and fully secure
IBE without random oracles was proposed at Eurocrypt 2005 by Waters [15], but with a
relatively long public parameter size. Eventually Gentry published at Eurocrypt 2006 [9] an
IBE scheme with short public parameters that is as of 2008 the most efficient IBE scheme
secure without random oracles.

An interesting property for a cryptographic scheme is to have a tight security reduction. A
security reduction is said to be “tight” when breaking the scheme is exactly as hard as solving
the underlying problem. This enables to avoid any security loss for the resulting scheme. The
Boneh-Franklin scheme does not have a tight reduction; namely, for standard parameters,
the Boneh-Franklin scheme looses roughly 151 bits of security compared to the underlying
elliptic-curve. Therefore if for some given parameter size the elliptic-curve is assumed to
provide 128 bits of security, then for this parameter size the Boneh-Franklin scheme does
not provide any security guarantee. To obtain a meaningful security guarantee, one must
therefore select an elliptic-curve with larger parameters, but this will make the scheme less
efficient.

Galindo [8] and Libert and Quisquater [12] proposed two IBE schemes with a better
reduction than Boneh-Franklin, but still not tight. The first IBE scheme with a tight security
reduction in the random oracle model was proposed by Katz and Wang in [10]; the scheme
was later described in more details and refined by Attrapadung et al. in [1]. The Gentry
scheme also achieves a tight security reduction (moreover, without random oracles), but with
an underlying assumption that depends on the number of private-key queries.

In this paper, we describe a variant of Boneh-Franklin with a tight reduction in the random
oracle model. Our scheme is quite efficient; we provide in Table 1 a comparison with other
IBE schemes. Compared to Boneh-Franklin, our scheme provides a tight security reduction;

Table 1 Comparison between IBE schemes

Scheme Assumption IND-ID-X Reduction ROM Ciphertext Enc Dec

size

Boneh-Franklin [3] BDH CCA O
(

1
q2

h qe

)
yes 2k + 2n 1P+2E 1P+1E

Galindo [8] BDH CCA O
(

1
q2

h

)
yes k + n + 80 1P+2E 1P+1E

Libert-Quisquater [12] GBDH CCA O
(

1
qe

)
yes k + n 1P+2E 1P+0E

Katz-Wang [10] BDH CPA O(1) yes 2k + 2n 2P+4E 1P+1E

ACF+ [1] DBDH CCA O(1) yes k + n + 420 2P+2E 1P+1E

Waters [15] DBDH CPA O
(

1
qe

)
no 2k + n 0P+4E 2P+0E

Gentry [9] qe-ABDHE CCA O(1) no 5k + n 0P+6E 2P+3E

Our scheme D-Square-BDH CCA O(1) yes 3k + 2n 1P+3E 1P+3E

P denotes a pairing operation, and E a group exponentiation in G or G1. Integer k denotes the bit-size of p, and
integer n denotes the bit-size of the message space. Here p is the prime modulus used to define the underlying
elliptic-curve. An element of G requires k bits (using point compression), whereas an element of G1 requires
2k bits
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A variant of Boneh-Franklin IBE with a tight reduction 117

however, Boneh-Franklin is slightly more efficient (for the same security parameters), with
a shorter ciphertext; moreover we use a stronger security assumption. Compared to the Katz
and Wang scheme and the Attrapadung et al. scheme (ACF+), our scheme is slightly more effi-
cient since only one pairing computation is required for encryption, instead of two; however,
our scheme has a longer ciphertext; our scheme also uses a stronger assumption compared to
Katz and Wang. Compared to Gentry, our scheme is more efficient for decryption (one pairing
instead of two), but less efficient for encryption (one pairing instead of zero). However, our
scheme is only proved secure in the random oracle model; but it has a more natural assump-
tion, because our assumption is static and does not depend on the number of private-key
queries.

In summary, our new IBE scheme compares favourably with other existing IBE schemes.
Clearly, the main drawback of our scheme is that it is only provably secure in the random
oracle model. The main advantage is that our scheme provides an easy upgrade from Boneh-
Franklin to a tightly secure scheme; namely, we show in Sect. 6 that one can keep the same
system parameters and that Boneh-Franklin private-keys can be upgraded offline by existing
users.

We note that our security reduction is based on the Decisional Square Bilinear Diffie-Hell-
man (D-Square-BDH) assumption, which is a stronger assumption than the Computational
Bilinear Diffie-Hellman (BDH) assumption used in Boneh-Franklin. Therefore, it could be
misleading to claim that our scheme’s tight reduction from D-Square-BDH is necessarily bet-
ter than Boneh-Franklin’s loose reduction from BDH; in other words, it is unclear whether
or not a tighter reduction under a stronger assumption improves security.

However, nothing is known about the relative hardness of the D-Square-BDH problem and
BDH problems, except that D-Square-BDH is not harder than BDH. Both problems could
be equally hard, or D-Square-BDH could be much easier than BDH. Since the best known
algorithm to solve both problems is to compute the discrete log, we assume in this paper that
both problems are equally hard.

2 Definitions

First, we recall the formal definition of Identity-Based Encryption, following [3]; it consists
of four algorithms: Setup, Keygen, Encrypt and Decrypt:

– Setup: the Setup algorithm takes as input a security parameter k and generates the system
public parameters, denoted by params, and a private master-key denoted master-key.

– Keygen: the Keygen algorithm takes as input params, master-key and an identity v ∈
{0, 1}∗ and outputs a private key dv for identity v. The Keygen algorithm may be prob-
abilistic.

– Encrypt: the encryption algorithm takes as input a message m, an identity v and the
system parameters params and returns a ciphertext c. The Encrypt algorithm may be
probabilistic.

– Decrypt: the decryption algorithm takes as input params, a ciphertext c and a private-key
dv , and returns a plaintext m. The Decrypt algorithm must be deterministic.

These algorithms are required to satisfy a straightforward consistency constraint, namely
for any identity v, if dv ← Extract(params, v), then for any message m:

Decrypt(Encrypt(m, v, params), dv, params) = m
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118 J.-S. Coron

2.1 Security of IBE

The IND-ID-CPA security model [3] for IBE ensures that even if the adversary can learn pri-
vate-keys for identities of his choice, this does not help him in obtaining information about a
plaintext encrypted for a different identity v∗; we recall the formal definition in Appendix A.

Similarly, the IND-ID-CCA security model [3] for IBE ensures that even if the adversary
can additionally obtain the decryption of ciphertexts of his choice, this does not help him
in obtaining information about a plaintext encrypted for a different identity v∗. This is the
strongest notion of security for IBE, whose formal definition is recalled in Appendix A.

Our new construction will be proved secure in the random oracle model, as for the
Boneh-Franklin scheme. The random oracle model, introduced by Bellare and Rogaway
in [2], is a theoretical framework in which a hash function is seen as an oracle that outputs a
random value for each new query. Actually, a security proof in the random oracle model does
not necessarily imply that a scheme is secure in the real world (see [6]); this means that the
random oracle model only provides heuristic security. Nevertheless, it seems to be a good
engineering principle to design a scheme so that it is at least provably secure in the random
oracle model; of course, it is always better to have a proof without random oracles.

3 Bilinear map and complexity assumptions

3.1 Bilinear map

The new construction proposed in this report is based on bilinear maps, defined as follows.
Let G and G1 be two groups of order q for some large prime q . Throughout the paper we
view both groups G and G1 a multiplicative groups. We say that G has an admissible bilinear
map e : G× G→ G1 if the following conditions hold:

1. Bilinear: e(ga, hb) = e(g, h)ab for all g, h ∈ G and all a, b ∈ Z.
2. Non-degenerate: e(g, g) �= 1 for some g ∈ G.
3. Computable: there exists an efficient algorithm to compute e(g, h) for any g, h ∈ G.

The Weil pairing or the Tate pairing over certain class of elliptic curves are examples of
admissible bilinear map. In this paper we only consider symmetric pairings; our constructions
could also be used with more general types of pairings.

3.2 Computational assumptions

Let G and G1 be groups of prime order q and let e be an admissible bilinear map for G into
G1. Let g be a generator of G. The Bilinear Diffie-Hellman problem is defined as follows
[3]:

Definition 1 (Bilinear Diffie-Hellman Problem (BDH)) Given the 4-uple (g, ga, gb, gc)

where a, b, c← Zq , output e(g, g)abc.

Definition 2 (BDH assumption) We say that the BDH problem is (t, ε)-hard in G if no t-time
algorithm can solve the BDH problem with probability at least ε.

The decisional version is defined in the usual manner:

Definition 3 (Decisional Bilinear Diffie-Hellman Problem (DBDH)) Let g, ga , gb, gc de-
fined as previously. Let β be a random binary coin. Let z = e(g, g)abc if β = 1, and let z be
a random element in G1 otherwise. Given (g, ga, gb, gc, z), output a guess β ′ of β.
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A variant of Boneh-Franklin IBE with a tight reduction 119

The Decisional Square Bilinear Diffie-Hellman Problem (D-Square-BDH) is a variant of
DBDH, introduced by Kiltz in [11]:

Definition 4 (Decisional Square Bilinear Diffie-Hellman (D-Square-BDH)) Let g, ga , gb

defined as previously. Let β be a random binary coin. Let z = e(g, g)a2b if β = 1, and let z
be a random element in G1 otherwise. Given (g, ga, gb, z), output a guess β ′ of β.

We say that an algorithm as an advantage ε in solving DBDH or D-Square-BDH if
∣∣∣∣Pr[β ′ = β] − 1

2

∣∣∣∣ ≥ ε

Definition 5 (D-Square-BDH assumption) We say that the D-Square-BDH problem is (t, ε)-
hard in G if no t-time algorithm has an advantage at least ε in solving the D-Square-BDH
problem in G.

It is shown in [11] that the D-Square-BDH assumption is a stronger assumption than the
DBDH assumption.

When e is the Weil pairing or the Tate pairing over an elliptic-curve, no efficient algorithms
are known for solving the BDH, DBDH and D-Square-BDH problems.

4 The Boneh-Franklin scheme

In the following, we recall the Boneh-Franklin IBE scheme [3]. We first recall the basic
Boneh-Franklin scheme, referred to as BasicIdent. The basic scheme achieves security
against passive adversaries (IND-ID-CPA) but not against chosen-ciphertext attacks (IND-
ID-CCA). Then we recall the FullIdent Boneh-Franklin scheme that achieves IND-ID-CCA
security.

4.1 BasicIdent

Let G be a group of prime order q , let g be a generator of G, and let e be an admissible
bilinear map into G1. Let H1 : {0, 1}∗ → G and H2 : G1 → {0, 1}n be hash-functions, for
some parameter n. The message space is M = {0, 1}n . The hash functions H1 and H2 are
viewed as random oracles in the security proof.
Setup: A secret a ∈ Zq is chosen at random. One sets h = ga . The public parameters are
g, h. The master secret is a.
Keygen: Let v ∈ {0, 1}∗ be an identity. Given the master-key a, the private-key dv for identity
v is computed as:

dv = H1(v)a

Encryption: A message m ∈ {0, 1}n is encrypted for identity v as follows. A random r ∈ Zq

is generated; the ciphertext is then:

C = (
gr , m ⊕ H2

(
e(H1(v), h)r ))

Decryption: To decrypt a ciphertext C = (c1, c2) using private-key dv = H1(v)a , compute:

m = H2 (e(dv, c1))⊕ c2
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This completes the description of the BasicIdent scheme. We note that decryption works
because

e(H1(v), h)r = e(H1(v), ga)r = e(H1(v)a, gr ) = e(dv, c1)

Theorem 1 (Boneh-Franklin) The BasicIdent scheme is a (t, qh, qe, ε) semantically-secure
IBE scheme (IND-ID-CPA) if the BDH problem is (t ′, ε′)-hard on G, G1, where:

t = O(t ′)
ε = e

2
· (1+ qe) · qh · ε′

where e 	 2.71 is the base of the natural logarithm, qh the number of hash queries and qe

the number of private-key queries.

We observe that the security of the basic Boneh-Franklin scheme is not tightly related
to the security of the underlying BDH problem. Namely, if we assume that no attacker can
solve the BDH problem with probability at least ε′ in a given amount of time, then the prob-
ability to break BasicIdent in roughly the same amount of time is only upper-bounded by
ε 	 qe · qh · ε′. This implies that the probability of breaking Boneh-Franklin can be much
higher than the probability of breaking the elliptic-curve. For example, if we assume that
the adversary makes at most qe = 230 private-key queries and qh = 260 hash-queries, the
probability to break BasicIdent is upper-bounded by ε 	 290 · ε′. Therefore, even if no
adversary can solve BDH with probability greater than ε′ = 2−91, we only obtain that the
probability to break BasicIdent is bounded by ε = 1/2, which is clearly insufficient. In
other words, 30 + 60 = 90 bits of security are lost compared to the security provided by
the underlying elliptic-curve. To obtain a meaningful security guarantee, one must therefore
increase the parameter size so that a smaller probability ε′ of solving BDH can be assumed.
However, this decreases the scheme’s efficiency.

4.2 FullIdent

The BasicIdent scheme is converted into a chosen-ciphertext secure scheme FullIdent using
a technique due to Fujisaki and Okamoto [7]; one obtains the following scheme:
Setup: Identical to the BasicIdent scheme. A secret a ∈ Zq is chosen at random. One sets
h = ga . The public parameters are g, h. The master secret is a. Additionally, hash functions
H3 : {0, 1}n × {0, 1}n → Z

∗
q and H4 : {0, 1}n → {0, 1}n are used.

Keygen: Identical to the BasicIdent scheme. Let v be an identity. Given the master-key a,
the private-key dv for identity v is computed as:

dv = H1(v)a

Encryption: A message m is encrypted for identity v as follows.

1. Generate a random σ ∈ {0, 1}n
2. Set r = H3(σ, m)

3. The ciphertext is then:

C = (
gr , σ ⊕ H2

(
e(H1(v), h)r ) , m ⊕ H4(σ )

)
Decryption: To decrypt a ciphertext C = (c1, c2, c3) using private-key dv

1. Compute c2 ⊕ H2 (e(dv, c1)) = σ

2. Compute c3 ⊕ H4(σ ) = m
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A variant of Boneh-Franklin IBE with a tight reduction 121

3. Set r = H3(σ, m). Test if c1 = gr . If not, reject the ciphertext.
4. Output m as the decryption of C .

Theorem 2 (Boneh-Franklin) The FullIdent scheme is a (t, qh, qe, qd , ε)-IND-ID-CCA
secure IBE scheme in the random oracle model, assuming that the BDH problem is (t ′, ε′)-
hard in G, where:

ε = e · (1+ qe + qd) ·
(

4qd

q
+ (qh)2 · ε′

)

t = O(t ′)

where q is the group order, qh is the number of hash queries, qe is the number of private-key
queries, and qd is the number of decryption queries.

As previously, we note that the FullIdent Boneh-Franklin scheme does not achieve a tight
security, as there is a security loss factor of roughly (qe + qd) · q2

h . In particular, the security
loss is a function of the number of issued private-keys. This means that if the adversary
performs at most qe = 230 private-key queries, qd = 230 decryption queries and qh = 260

hash queries, then 1 + 30 + 2 · 60 = 151 bits of security are lost compared to the underly-
ing elliptic-curve. As previously, this security loss must be compensated by selecting larger
security parameters. The goal of the new construction in the next section is to eliminate this
security loss, so as to obtain a variant of Boneh-Franklin that is as secure as the underlying
elliptic-curve.

5 The new construction

In the following, we describe our new IBE scheme. As for the Boneh-Franklin scheme,
for clarity of exposition, we first describe a basic version that achieves only IND-ID-CPA
security; then we describe the fully secure IND-ID-CCA construction.

5.1 Basic construction

The parameters are the same as in the basic Boneh-Franklin IBE scheme: let G be a group
of prime order q and g be a generator of G, and let e be an admissible bilinear map into G1.
Let H1 : {0, 1}∗ → G and H2 : G1 → {0, 1}n for some n, be hash-functions. The message
space is M = {0, 1}n . The hash functions H1 and H2 are viewed as random oracles in the
security proof.
Setup: Identical to the basic Boneh-Franklin scheme. A secret a ∈ Zq is chosen at random.
One sets h = ga . The public parameters are g, h. The master secret is a.
Keygen: Let v be an identity. Let y be random in Zq . Given the master-key a, the private
key dv for identity v is computed as:

dv =
((

H1(v) · h−y)a
, y

)
If the same query for identity v is repeated twice, then the same private-key dv is provided,
i.e. the same value for y is used. This can be done by storing (v, y) in a database, or by using
a keyed hash-function for generating y.
Encryption: A message m is encrypted for identity v as follows. A random r ∈ Zq is
generated; the ciphertext is then:

C = (
gr , e(h, h)r , m ⊕ H2

(
e(H1(v), h)r ))
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Decryption: To decrypt a ciphertext C = (c1, c2, c3) using private-key dv = (δ, y), com-
pute:

m = c3 ⊕ H2
(
e(δ, c1) · (c2)

y)
This completes the description of our new scheme. We note that decryption works because:

e(H1(v), h)r = e(H1(v), ga)r = e(H1(v)a, gr ) = e(δ · hy·a, gr ) = e(δ, gr ) · e(hya, gr )

= e(δ, c1) · e(h, ga)r y = e(δ, c1) · e(h, h)r y = e(δ, c1) · (c2)
y

The difference with the BasicIdent Boneh-Franklin scheme is that we add a “randomisa-
tion” of the private-key dv by multiplying the H1(v)a element by h−ya , for a random y ∈ Zq .
The Boneh-Franklin scheme can then be seen as a particular case with y = 0. The follow-
ing theorem shows that our new construction achieves IND-ID-CPA security in the random
oracle model, with a tight security.

Theorem 3 The previous scheme is (t, qh, qe, ε)-IND-ID-CPA secure in the random oracle
model, assuming that the D-Square-BDH problem is (t ′, ε′)-hard in the group G, where:

ε = 2 · ε′ + qh

q
(1)

t = O(t ′) (2)

where qh is the number of hash-queries, qe the number of private-key queries and q the group
order.

Proof Assume that there exists a (t, qh, qe, ε) adversary A against the basic scheme. We
construct a simulator B that solves the D-Square-BDH problem with advantage at least ε′
while interacting with A.
Setup: The simulator B receives the D-Square-BDH challenge (g, A = ga, B = gb, T ) and
must output a guess β ′ as to whether T = e(g, g)a2b (when β = 1) or T is uniformly distrib-
uted in G1 (when β = 0). The simulator first sets h = A and sends (g, h) to the adversary
as the system public parameters. Note that h = ga but the corresponding master-key a is
unknown to B.
Hash-queries: When A submits a fresh hash-query for H1(v), the simulator B generates
two randoms x and y in Zq ; it stores (v, x, y) in a table and returns:

H1(v) = gx · hy (3)

When A submits a fresh hash-query for H2, the simulator B returns a random element in
{0, 1}n .
Phase 1: We assume that when A submits a private-key query for identity v, it has already
made a query for H1(v). If this is not the case, B can simulate this hash-query before answer-
ing the corresponding private-key query. When A submits a private-key query for identity v,
the simulator B can therefore recover (x, y) such that H1(v) = gx · hy . It lets δ = hx and
returns:

dv = (δ, y)

as a private-key for identity v. Note that this is a valid private-key for v because using (3) we
have

δ = hx = gax = (
H1(v) · h−y)a
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A variant of Boneh-Franklin IBE with a tight reduction 123

as required and y is uniformly distributed in Zq . Observe also that our simulator B can always
answer the private-key queries made by the adversary.
Challenge: the adversary submits an identity v∗ and two messages m0 and m1. Here we also
assume that A has already done a hash-query for v∗; in this is not the case, B can simulate
this hash-query by himself. Therefore, the simulator knows (x∗, y∗) such that

H1(v
∗) = gx∗ · hy∗

and can compute a private key dv∗ = (δ∗, y∗) where δ∗ = hx∗ . The simulator then flips a
fair binary coin γ and returns the following ciphertext:

C = (
B, T, mγ ⊕ H2(α

∗)
)

(4)

where
α∗ = e(δ∗, B) · T y∗ (5)

Phase 2: the simulator answers private-key queries as in phase 2.
Guess: the adversary outputs a guess γ ′ for γ . If γ = γ ′, the simulator B answer β ′ = 1.
Otherwise, it answers β ′ = 0.

This terminates the description of the simulator. In the following, we show that when
(g, A, B, T ) is a legitimate D-Square-BDH tuple (i.e., β = 1), the adversary’s view has
exactly the same distribution as in the original attack scenario. Since the adversary is assumed
to (t, qh, qe, ε)-break the scheme, we have:∣∣∣∣Pr[γ ′ = γ |β = 1] − 1

2

∣∣∣∣ ≥ ε

When β = 1, we have that γ ′ = γ ⇔ β ′ = β; this implies:∣∣∣∣Pr[β ′ = β|β = 1] − 1

2

∣∣∣∣ ≥ ε (6)

On the other hand, we show that when T �= e(g, g)a2b, then conditioned on the adversary’s
view except c3 = mγ ⊕ H2(α

∗), the random variable:

α∗ = e(δ∗, B) · T y∗

has the uniform distribution in G1. Therefore, the adversary makes a H2-query for α∗ with
probability at most qh/q (where q is the group order). If the adversary has not made a
H2 query for α∗, then H2(α

∗) has the uniform distribution in {0, 1}n ; the message mγ in
c3 = mγ ⊕ H2(α

∗) is then perfectly masked and the adversary obtains no information about
γ . Therefore, we obtain: ∣∣∣∣Pr[γ ′ �= γ |β = 0] − 1

2

∣∣∣∣ ≤ qh

q

which gives: ∣∣∣∣Pr[β ′ = β|β = 0] − 1

2

∣∣∣∣ ≤ qh

q
(7)

Combining (6) and (7), we obtain:∣∣∣∣Pr[β ′ = β] − 1

2

∣∣∣∣ ≥ ε

2
− qh

2q
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This shows that from an adversary that ε-breaks the scheme, one can build an algorithm that
ε′-solves D-Square-BDH, with ε′ = ε/2− qh/(2q), which gives (1).

We now proceed to prove the two previous claims. First, we write T = e(h, h)s for some
s ∈ Zq ; writing B = gr , we obtain from (5):

α∗ = e(δ∗, B) · T y∗ = e(hx∗ , gr ) · e(h, h)sy∗ = e(gx∗ , h)r · e(h, h)sy∗

α∗ = e(H1(v
∗) · h−y∗ , h)r · e(h, h)sy∗ = e(H1(v

∗), h)r · e(h, h)y∗·(s−r)

First, we show that that when (g, A, B, T ) is a legitimate D-Square-BDH tuple, the adver-
sary’s view has exactly the same distribution as in the original attack scenario. Namely in this
case we have that T = e(g, g)a2b = e(g, g)a2r = e(h, h)r which gives s = r ; the challenge
ciphertext is then equal to:

C = (
gr , e(h, h)r , mb ⊕ H2

(
e(H1(v

∗), h)r ))
which shows that C is a legitimate encryption of mb under identity v∗. This proves the first
claim.

Now we consider the case when (g, A, B, T ) is not a legitimate D-Square-BDH tuple,
that is s �= r . We consider that all the random variables that appear in the adversary’s view
are fixed, except c3. Note that since T is part of the ciphertext, we have that s is fixed. More-
over we have that h, r and H1(v

∗) are fixed. We claim the variable y∗ still has the uniform
distribution in Zq . Namely, since the adversary is not allowed to make a private-key query
for v∗, the variable y∗ only appears in the adversary’s view with H1(v

∗) = gx∗ · hy∗ where
x∗ and y∗ are randomly generated in Zq . This implies that for a fixed H1(v

∗), the variable:

y∗ = logh(H1(v
∗) · g−x∗) = logh H1(v

∗)− x∗/a

has the uniform distribution in Zq . This in turn implies that with s �= r ,

α∗ = e(H1(v
∗), h)r · e(h, h)y∗·(s−r)

has the uniform distribution in G1, conditioned on the adversary’s view except c3. This proves
the second claim and terminates the proof. �
5.2 Discussion

First, we note that hash function H2 can be eliminated by having the message m lie in the
group G1 and computing m · e(H1(v), h)r instead.

Theorem 3 shows that if no algorithm can solve the D-Square-BDH problem with prob-
ability at least ε′, then the probability to break the new construction is upper-bounded by
ε 	 2 ·ε′. This shows that as opposed to the Boneh-Franklin scheme, there is no security loss:
if the probability to solve D-Square-BDH is assumed to be at most 2−91, then the probability
of breaking the new IBE scheme is upper-bounded by 2−90. For the same level of security,
one can now use smaller parameters than for Boneh-Franklin, which improves efficiency.

5.3 A variant with tight security under DBDH assumption

The following variant was suggested by one of the referees:
Setup: Let a ← Zq and b ← Zq . Let h = ga and t = gb. Public parameters are (g, h, t).
Master secret key is: a
Keygen: Let y ← Zq , unique for a given identity v.

dv =
((

H1(v) · t−y)a
, y

)
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Encryption: Let r ← Zq . The encryption of m is:

C = (
gr , e(t, h)r , m ⊕ H2

(
e(H1(v), h)r ))

Decryption: Given C = (c1, c2, c3) and dv = (δ, y), let:

m = c3 ⊕ H2
(
e(δ, c1) · (c2)

y)
Using the same approach as in Theorem 3, one can show that this variant as a tight security

proof under the DBDH assumption instead of the D-Square-BDH assumption. Therefore, the
advantage of this variant is that it is based on a weaker assumption; a (minor) drawback is
that it has a longer public parameters.

5.4 Chosen-ciphertext secure construction

In this section, we construct an IBE scheme that achieves CCA security, in the random ora-
cle model. As for the Boneh-Franklin IBE scheme, we use the Fujisaki-Okamoto [7] generic
conversion. Note that we cannot use the generic approach in [16], because it does not provide
a tight security reduction.
Setup: Identical to our basic scheme. A secret a ∈ Zq is chosen at random. One sets
h = ga . The public parameters are g, h. The master secret is a. Additionally, hash functions
H3 : {0, 1}n × {0, 1}n → Z

∗
q and H4 : {0, 1}n → {0, 1}n are used.

Keygen: Identical to our basic scheme. Let v be an identity. Let y be random in Zq . Given
the master-key a, the private key dv for identity v is computed as:

dv =
((

H1(v) · h−y)a
, y

)
As previously, when the same identity v is queried twice, the same private-key dv is provided.
Encryption: A message m is encrypted for identity v as follows.

1. Generate a random σ ∈ {0, 1}n
2. Set r = H3(σ, m)

3. The ciphertext is then:

C = (
gr , e(h, h)r , σ ⊕ H2

(
e(H1(v), h)r ) , m ⊕ H4(σ )

)
Decryption: To decrypt a ciphertext C = (c1, c2, c3, c4) using private-key dv = (d1, d2),
one computes:

α = e(d1, c1) · (c2)
d2 (8)

σ = c3 ⊕ H2(α) (9)

m = c4 ⊕ H4(σ ) (10)

r = H3(σ, m) (11)

Then it is checked that c1 = gr and c2 = e(h, h)r . If not, the ciphertext gets rejected.
Otherwise, m is returned as the decryption of C .

This completes the description of the new IBE scheme. The following theorem shows
that this new construction achieves IND-ID-CCA security in the random oracle model, with
security tightly related to the D-Square-BDH problem. The proof is given in Appendix B.

Theorem 4 The previous scheme is (t, qh, qe, qd , ε)-IND-ID-CCA secure in the ran-
dom oracle model, assuming that the D-Square-BDH problem is (t ′, ε′)-hard in the
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group G, where:

ε = 2 · ε′ + 4qh + 4qd

q

t = O(t ′)

6 Upgrading from Boneh-Franklin to the new construction

As mentioned previously, the Boneh-Franklin private-keys H1(v)a are identical to the new
construction private-keys with y = 0. This implies that given a Boneh-Franklin private-key
H1(v)a , one can generate the private-key:

dv = (H1(v)a, 0)

which a valid private-key for the new construction. This enables an easy upgrade from
Boneh-Franklin to our new scheme. Namely, the system public parameter need not be changed
and the PKG does not need to distribute new private-keys to already registered users, since
those users can upgrade their private-keys by themselves.

More precisely, assume that an IBE system based on Boneh-Franklin has been imple-
mented. The PKG has already published the system parameters (g, h), and has already sent to
registered users their Boneh-Franklin private-keys dv . The IBE system can then be upgraded
to our new construction as follows:

1. Users convert their existing private-key dv into d ′v = (dv, 0), which is a valid private-key
for the new construction.

2. Users are instructed to send ciphertexts using the new construction instead of Boneh-
Franklin.

3. The PKG now distributes private-keys according to the new construction.

The advantage of the upgrade is that the security level is now independent of the number
of newly issued private-keys.

7 Implementation and comparison with Boneh-Franklin

We have implemented the Boneh-Franklin scheme and our new construction, using the Weil
pairing on the elliptic-curve y2 = x3 + 1 over Fp as in [3]. We summarise in Table 2 the
observed timings with a prime p of size 512 bits and a subgroup size of 164 bits.

From Table 2 we observe that the difference in timing between Boneh-Franklin and our
new scheme is quite negligible: our new scheme is only 2% slower than Boneh-Franklin.
This is due to the fact that the additional operation required in our scheme—exponentiation
in G1—takes a negligible amount of time compared to the main pairing operation. We note
that this holds for the particular curve that we have chosen and for our particular implemen-
tation; a more efficient implementation over a possibly different curve could exhibit a less
favourable ratio between exponentiation cost and pairing cost. With k = 512 and n = 160,
ciphertext size in Boneh-Franklin is 1344 bits while ciphertext size in our construction is
1856 bits.
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Table 2 Timings observed for a
C++ implementation of
Boneh-Franklin and the new
scheme, on a 1.55 GHz laptop

Operation Time

Pairing (P) 1.05 s

Exponentiation in G (G) 0.05 s

Exponentiation in G1 (E) 0.01 s

Hash into G (H) 0.08 s

Encryption (Boneh-Franklin) 1.18 s

Decryption (Boneh-Franklin) 1.09 s

Encryption (new scheme) 1.19 s

Decryption (new scheme) 1.11 s

8 Conclusion

We have described a variant of Boneh-Franklin IBE with a tight security reduction in the
random oracle model. This enables to select smaller security parameters, which in turn
improves the scheme’s efficiency. Our new scheme is quite efficient compared to existing
IBE schemes. The main advantage is that our scheme provides an easy upgrade from Boneh-
Franklin to a tightly secure IBE scheme; namely, we have shown that one can keep the same
system parameters and that Boneh-Franklin private-keys can be upgraded offline by existing
users.

Acknowledgments I wish to thank the anonymous referees for many useful comments. Work supported by
Oberthur Card Systems contract ref. OCS-2005-607.

Appendix A: Security of IBE

A.1 IND-ID-CPA security

The IND-ID-CPA security model is formalised using the following game between an attacker
and a challenger [3]:
Setup: the challenger generates the system public parameters and gives them to the adversary.
The challenger keeps the corresponding master-key for himself.
Phase 1: the adversary can request the private-key corresponding to an identity v of his
choice. The adversary can repeat this multiple times for different identities. The challenger
answers the private-key queries using the master-key. These queries can be asked adaptively,
that is, each query may depend on the previous replies.
Challenge: the adversary submits an identity v∗, different from the identities in phase 1, and
two messages m0 and m1. The challenger flips a binary coin γ and returns the encryption c∗
of mγ under identity v∗.
Phase 2: phase 1 is repeated with the restriction that the adversary cannot request the private
key for v∗. As in phase 1, the queries may be done adaptively.
Guess: eventually, the adversary submits a guess γ ′ of γ and wins the game if γ ′ = γ .

This completes the description of the scenario. We refer to such an adversary A as an
IND-ID-CPA adversary (for Indistinguishability under a Chosen Plaintext Attack). The
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adversary A’s advantage in breaking the scheme is defined as:

AdvA =
∣∣∣∣Pr[γ ′ = γ ] − 1

2

∣∣∣∣
where the probability is taken over the random bits used by the adversary and the challenger.

Definition 6 (IND-ID-CPA) An IBE scheme is said to be (t, q, ε)-semantically secure
against passive adversaries if all t-time adversaries making at most q private key queries
have an advantage at most ε in breaking the scheme.

A.2 IND-ID-CCA security

The IND-ID-CCA security model is formalised using the following scenario between an
attacker and a challenger [3]:
Setup: as previously, the challenger generates the system public parameters and gives them
to the adversary. The challenger keeps the corresponding master-key for himself.
Phase 1: as previously, the adversary can request the private-key corresponding to an iden-
tity v of his choice. Additionally, the adversary may request the decryption of any ciphertext
of his choice, for an identity v of his choice. Both types of queries can be done adaptively.
Challenge: the adversary submits an identity v∗ for which no private-key query was done
is Phase 1, and two messages m0 and m1. The challenger flips a binary coin γ and returns
the encryption c∗ of mγ under identity v∗.
Phase 2: phase 1 is repeated with the restriction that the adversary cannot request a private
key for v∗, and cannot request the decryption of ciphertext c∗ for identity v∗. As in phase 1,
the queries may be done adaptively.
Guess: eventually, the adversary submits a guess γ ′ of γ and wins the game if γ ′ = γ .

This completes the description of the scenario. We refer to such an adversary A as an
IND-ID-CCA adversary (for Indistinguishability under a Chosen Ciphertext Attack). As pre-
viously, the adversary A’s advantage in breaking the scheme is defined as:

AdvA =
∣∣∣∣Pr[γ ′ = γ ] − 1

2

∣∣∣∣
where the probability is taken over the random bits used by the adversary and the challenger.

Definition 7 (IND-ID-CCA) An IBE cryptosystem is said to be (t, qe, qd , ε)-semantically
secure against passive adversaries if all t-time adversaries making at most qe private key
queries and qd decryption queries have an advantage at most ε in breaking the scheme.

Appendix B: Proof of Theorem 4

As in [14], we describe a sequence of attacks games that each operate on the same underly-
ing probability space. Game G0 corresponds to the original IND-ID-CCA scenario between
the attacker and the challenger, while Games G1, . . . , G7 are modified games in which the
adversary’s view gets modified.

We use the following Difference lemma to bound the probability of certain events defined
over the successive games:

Lemma 1 (Shoup) Let E, E ′ and F be events defined on a probability space such that
Pr[E ∧ ¬F] = Pr[E ′ ∧ ¬F]. Then we have

|Pr[E] − Pr[E ′]| ≤ Pr[F].
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Proof We have:

|Pr[E] − Pr[E ′]| = |Pr[E ∧ F] + Pr[E ∧ ¬F] − Pr[E ′ ∧ F] − Pr[E ′ ∧ ¬F]|
≤ |Pr[E ∧ F] − Pr[E ′ ∧ F]| ≤ Pr[F]

�
We first begin with a few notations. Any ciphertext C = (c1, c2, c3, c4) for identity v

implicitly defines values α, σ, m, r via the decryption Eqs. 8–11. We let C∗ be the challenge
ciphertext for identity v∗ and α∗, σ ∗, m∗, r∗ be the corresponding implicitly defined values,
with m∗ = mγ .

We define the adversary’s view as the sequence of random variables:

V iew = (ω, params, X1, . . . Xqd+qe+qh )

where ω is the adversary’s random tape, params are the system public parameters and the
Xi for i ≥ 1 are a response to either a random oracle query, a decryption oracle query, or the
challenge ciphertext itself. We also define

CurrentV iew = (ω, params, X1, . . . , Xm)

at any fixed point of time when the adversary has made m queries.

Game G0: the adversary and the challenger interact exactly as in the attack scenario. Let
denote by S0 the event that γ ′ = γ . Similarly we denote by S1, . . . , S7 the event that γ ′ = γ in
games G1, . . . , G7, respectively. We denote by SH2 the list of queries made by the adversary
to H2.
Game G1: one proceeds as in G0, except that the decryption oracle now rejects a ciphertext
C if (c1, c2) = (c∗1, c∗2) and α = α∗. More precisely, given a ciphertext C , the decryption
oracle computes α, σ, m and r as in G0, and rejects the ciphertext if c1 �= gr or c2 �= e(h, h)r

as in G0; additionally, it rejects the ciphertext if (c1, c2) = (c∗1, c∗2) and α = α∗. Otherwise,
it outputs m as in G0.

Let F1 be the event that a ciphertext is rejected by the decryption oracle in G1 that would
not have been rejected under G0. We have that G0 and G1 proceed identically unless event
F1 occurs, which implies Pr[S0 ∧ ¬F1] = Pr[S1 ∧ ¬F1].

We now proceed to bound Pr[F1]. Let C be any ciphertext submitted to the decryption
oracle. We first assume that the encryption oracle as already been queried before this decryp-
tion oracle query, so C �= C∗; then if (c1, c2) = (c∗1, c∗2), we must have (σ, m) �= (σ ∗, m∗). If
ciphertext C is not rejected under G0, we must have c1 = gr and c2 = e(h, h)r , which gives
r = r∗. Then H3(σ, m) = H3(σ

∗, m∗) which happens with probability at most qh/q over the
course of the attack. If the encryption oracle has not been queried yet, then (c1, c2) = (c∗1, c∗2)

with probability at most 1/q . We conclude that Pr[F1] ≤ qh/q and then from the Difference
lemma:

|Pr[S1] − Pr[S0]| ≤ (qh + qd)/q (12)

Game G2: we proceed as in game G1, except that instead of letting c∗3 ← σ ∗ ⊕ H2(α
∗),

the encryption oracle lets c∗3 ← σ ∗ ⊕ Y where Y ← {0, 1}n . When the adversary or the
decryption oracle makes a H2-query for α∗, one returns Y instead of H2(α

∗). It is clear that
games G1 and G2 are identical, so:

Pr[S2] = Pr[S1] (13)

Game G3: we proceed as in game G2, except that if the adversary or the decryption oracle
makes a H2-query for α∗, we return Y ′ ← {0, 1}n instead of Y . Let F3 the event that the
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adversary or the decryption oracle makes a H2-query to α∗; we have that games G2 and G3

proceed identically unless event F3 occurs, which implies Pr[S2 ∧ ¬F3] = Pr[S3 ∧ ¬F3],
which gives:

|Pr[S3] − Pr[S2]| ≤ Pr[F3] (14)

The probability of event F3 will be bounded in the next games.

Game G4: we proceed as in game G3, except that we let c∗4 ← m∗ ⊕ Z where Z ← {0, 1}n
instead of c∗4 ← m∗ ⊕ H4(σ

∗); moreover, we let r∗ ← Zq instead of r∗ ← H3(σ
∗, m∗).

When the adversary or the decryption oracle make a H4-query for σ ∗, we return Z instead
of H4(σ

∗); similarly, when the adversary or the decryption oracle make a H3-query for
(σ ∗, m∗), we return r∗ instead of H3(σ

∗, m∗). It is clear that games G3 and G4 are identical,
so:

Pr[S4] = Pr[S3] (15)

Moreover, letting F4 be the event in game G4 that the adversary or the decryption oracle
make a H2-query to α∗, we have that

Pr[F4] = Pr[F3] (16)

Game G5: we proceed as in game G4, except that when the adversary or the decryption
oracle makes a H4-query for σ ∗, we return Z ′ where Z ′ ← {0, 1}n instead of Z . Similarly,
when the adversary or the decryption oracle makes a H3-query for (σ ∗, m∗), we return r ′
where r ′ ← Zq instead of r∗.

To summarise, the challenge ciphertext C∗ for m∗ is now:

C∗ =
(

gr∗ , e(h, h)r∗ , σ ∗ ⊕ Y, m∗ ⊕ Z
)

where σ ∗ ← {0, 1}n , r∗ ← Zq , Y ← {0, 1}n and Z ← {0, 1}n . The value α∗ is still
computed as:

α∗ = e(H1(v
∗), h)r∗

Finally, the decryption oracle Decryption’ proceeds as follows:
Decryption’:
Input: A ciphertext C = (c1, c2, c3, c4) and a private-key dv = (d1, d2).
Output: A message m or ⊥.

1. Compute α = e(d1, c1) · (c2)
d2 .

2. If (c1, c2) = (c∗1, c∗2) and α = α∗, return ⊥.
3. If α �= α∗, compute σ = c3 ⊕ H2(α). Otherwise, compute σ = c3 ⊕ Y ′.
4. If σ �= σ ∗, compute m = c4 ⊕ H4(σ ). Otherwise, compute m = c4 ⊕ Z ′.
5. If (σ, m) �= (σ ∗, m∗), compute r = H3(σ, m). Otherwise, let r = r ′.
6. If c1 = gr and c2 = e(h, h)r , output m. Otherwise, output ⊥.

Let denote by E5 the event that the adversary or the decryption oracle makes a H4-query
for σ ∗ or a H3-query for (σ ∗, m∗). Since σ ∗ only appears in c3 = σ ∗ ⊕Y and Y is randomly
generated in {0, 1}n , the random variable σ ∗ is independent of CurrentView. Therefore,
Pr[E5] ≤ (qh + qd)/q . Moreover, we have that games G4 and G5 proceed identically unless
event E5 occurs, which implies using the Difference lemma:

|Pr[S5] − Pr[S4]| ≤ qh + qd

q
(17)

|Pr[F5] − Pr[F4]| ≤ qh + qd

q
(18)
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We also observe that in Game G5, the message m∗ is perfectly masked by Z , so

Pr[S5] = 1

2
(19)

Game G6: now we show that a game identical to G5 can be obtained without knowing the
master-key a. Namely, we assume that we are only given a legitimate D-Square-BDH 4-uple
(g, A = ga, B = gb, T = e(g, g)a2b) as input. Letting h = A, we proceed as in the proof
of theorem 3: when the adversary makes a fresh hash-query for H1(v), we generate two
randoms x and y in Zq and return:

H1(v) = gx · hy

Then the corresponding private-key can be computed as

dv = (hx , y)

Moreover, the challenge ciphertext C∗ is computed as follows:

C = (
B, T, σ ∗ ⊕ Y, m∗ ⊕ Z

)
Therefore, the ciphertext is defined as in game G5 but with r∗ = b. Since b is unknown, the
value α∗ cannot be computed as α∗ = e(H1(v

∗), h)r∗ ; instead, it is computed as:

α∗ = e(hx∗ , c∗1) · T y∗

Using H1(v
∗) = gx∗ · hy∗ and T = e(h, h)r , one obtains the same value for α∗.

It is clear that games G5 and G6 are identical. Therefore, we obtain:

Pr[F6] = Pr[F5] (20)

Game G7: we proceed as in game G6, except that now T is uniformly distributed in G1; we
write T = e(h, h)s for some s ∈ Zq . The variable α∗ is computed as in game G6. Writing
B = gr∗ , we obtain as in the proof of Theorem 3:

α∗ = e(δ∗, B) · T y∗ = e(hx∗ , gr∗) · e(h, h)sy∗ = e(gx∗ , h)r∗ · e(h, h)sy∗ (21)

α∗ = e(H1(v
∗) · h−y∗ , h)r∗ · e(h, h)sy∗ = e(H1(v

∗), h)r∗ · e(h, h)y∗·(s−r∗) (22)

First, we argue that y∗ is independent of CurrentView. The variable y∗ appears both in
H1(v

∗) = gx∗ · hy∗ and when computing decryption queries for identity v∗. First, we show
that the output from the decryption queries for identity v∗ is independent of y∗. Namely, the
decryption oracle outputs a plaintext m only if c1 = gr and c2 = e(h, h)r . Therefore, we
have:

α = e(d1, c1) · cy∗
2 = e(hx∗ , gr ) · e(h, h)r y∗ = e(gx∗ , hr ) · e(h, h)r y∗ = e(gx∗ · hy∗ , h)r

= e(H1(v
∗), h)r

Therefore, for a fixed H1(v
∗), the value of α is independent of y∗. This implies that the

message m output by the decryption oracle is independent of y∗.
Secondly, as in the proof of Theorem 3, for a fixed H1(v

∗), the variable:

y∗ = logh(H1(v
∗) · g−x∗) = logh H1(v

∗)− x∗/a

has the uniform distribution in Zq and is therefore independent of CurrentView. This in turn
implies that if s �= r , then

α∗ = e(H1(v
∗), h)r · e(h, h)y∗·(s−r)
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has the uniform distribution in G1 independently from CurrentView. Denoting by F ′7 the
event in game G7 that the adversary makes a H2-query to α∗, we obtain:

Pr[F ′7] ≤
qh

q
(23)

It remains to consider the case when the decryption oracle makes a H2-query to α∗. Let
(c1, c2, c3, c4)be a ciphertext queried for decryption with identityv∗. We must have (c1, c2) �=
(c∗1, c∗2) since when (c1, c2) = (c∗1, c∗2) and α = α∗ the ciphertext gets immediately rejected.
We write c1 = gr̃ and c2 = e(h, h)s̃ . We have:

α = e(d1, c1) · cy∗
2 = e(H1(v

∗), h)r̃ · e(h, h)y∗·(s̃−r̃)

which gives:

α/α∗ = e(H1(v
∗), h)r̃−r∗ · e(h, h)y∗·(s̃−r̃+r∗−s∗)

Since y∗ has the uniform distribution independently of Currentview, if s̃ − r̃ + r∗ − s∗ �= 0
then α = α∗ with probability 1/q . If s̃ − r̃ + r∗ − s∗ = 0 then α = α∗ implies r̃ = r∗ and
s̃ = s∗, a contradiction since we must have (c1, c2) �= (c∗1, c∗2). This shows that the decryp-
tion oracle makes a H2-query for α∗ with probability at most qd/q over the course of the
game. Denoting F7 the event that the adversary or the decryption oracle makes a H2-query
to α∗, we obtain using (23):

Pr[F7] ≤ qh + qd

q
(24)

Observe that Games G6 and G7 only differ by the input 4-uple (g, A, B, T ) which is a
legitimate D-Square-BDH 4-uple in Game G6 whereas T is random in G1 in Game G7. One
can therefore construct a distinguisher that performs the same operations as in Games G6

and G7 and outputs 1 if the adversary or the decryption oracle has made a H2-query for α∗
and 0 otherwise. Then in Game G6, the distinguisher guesses correctly if event F6 occurs,
while in Game G7 the distinguisher guesses correctly if event F7 does not occur. Therefore,
the distinguisher D advantage is:

AdvD =
∣∣∣∣Pr[F6]

2
+ 1− Pr[F7]

2
− 1

2

∣∣∣∣ = 1

2
|Pr[F6] − Pr[F7]|

Since the D-Square-BDH problem is assumed to be (t ′, ε′)-hard, the distinguisher advan-
tage must be bounded by ε′ and therefore:

|Pr[F7] − Pr[F6]| ≤ 2 · ε′ (25)

Finally, combining inequalities (16), (18), (20), (24), (25), we obtain:

Pr[F3] ≤ 2qh + 2qd

q
+ 2 · ε′

Combining inequalities (12), (13), (14), (15), (17) and (19), we obtain:
∣∣∣∣Pr[S0] − 1

2

∣∣∣∣ ≤ 2qh + 2qd

q
+ Pr[F3] ≤ 4qh + 4qd

q
+ 2 · ε′

which terminates the proof.
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