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Abstract In this paper, we present two constructions of divisible difference sets based on
skew Hadamard difference sets. A special class of Hadamard difference sets, which can be
derived from a skew Hadamard difference set and a Paley type regular partial difference set
respectively in two groups of orders v1 and v2 with |v1 − v2| = 2, is contained in these con-
structions. Some result on inequivalence of skew Hadamard difference sets is also given in
the paper. As a consequence of Delsarte’s theorem, the dual set of skew Hadamard difference
set is also a skew Hadamard difference set in an abelian group. We show that there are seven
pairwisely inequivalent skew Hadamard difference sets in the elementary abelian group of
order 35 or 37, and also at least four pairwisely inequivalent skew Hadamard difference sets
in the elementary abelian group of order 39. Furthermore, the skew Hadamard difference sets
deduced by Ree-Tits slice symplectic spreads are the dual sets of each other when q ≤ 311.

Keywords Skew Hadamard difference sets · Hadamard difference sets ·
Partial difference sets

AMS Classification 05B10

1 Introduction

Let G be a finite group of order v and with identity e. A k-element subset D of G is called a
(v, k, λ) difference set if the list of “differences” xy−1 (x, y ∈ D and x �= y) represents each
non-identity element in G exactly λ times. The study of difference sets is one of the central
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94 G. Weng, L. Hu

problems in discrete mathematics, and is with interest from not only pure mathematics but
also applied sciences, for example signal design in the communication theory.

When G is abelian, the character theory of finite groups can be applied and it is a powerful
tool to study difference sets. In this paper, we present some results on different sets which
are related to skew Hadamard different sets. We discuss these results in the view of character
theory and prove them in terms of two-character-valued sets (TCVS). TCVS are subsets of
G that take exactly two values for all nontrivial character of G.

This paper is organized as follows. In Sect. 2, we give preliminaries on difference set,
partial difference set, and divisible difference set, and summarize known results on TCVS.
In Sect. 3, along the way of Menon’s construction, we derive two skew Hadamard difference
set based constructions for divisible difference sets. A construction of Hadamard difference
sets is also given in both cases of G being abelian and nonabelian. In Sect. 4, we discuss the
equivalence of skew Hadamard difference sets, and moreover, we discuss the classification
of known skew Hadamard difference sets that are defined in elementary abelian groups of
small order q = 35, 37, 39, and 311.

2 Preliminaries

A k-element subset D of G is called a (v, k, λ) difference set if the list of “differences” xy−1,
x, y ∈ D, represents each nonidentity element in G exactly λ times. A k-element subset D
of G is called a (v, k, λ, µ) partial difference set if the list of “differences” xy−1, x, y ∈ D,
represents each non-identity element in D exactly λ times and each non-identity element in
G\D exactly µ times. A k-element subset D of G is called a (m, n, k, λ1, λ2) divisible dif-
ference set relative to N if the list of “differences” xy−1, x, y ∈ D, represents each element
in G\N exactly λ2 times and each non-identity element in N exactly λ1 times, where N is a
subgroup of order n with v = mn.

A difference set D in a finite group G is called a Hadamard difference set if its corre-
sponding parameters are (v, v−1

2 , v−3
4 ), and is called a Menon difference set if its parameters

are (4h2, 2h2 ± h, h2 ± h). They are most important classes of difference sets with plentiful
results. A difference set D in group G is called a skew Hadamard difference set (SHDS) if
G is the disjoint union of D, D(−1), and {e}. A partial difference set D in a finite group G
is of Paley type if its parameters are (v, v−1

2 , v−5
4 , v−1

4 ). A subset D is called reversible if
D(−1) = D, and further called regular if e /∈ D and D(−1) = D. Two subsets D and E of
G are equivalent if there exist an automorphism σ of G and an element g ∈ G such that
D = gσ(E) := {gσ(x) | x ∈ G}. Let D be a subset in an abelian group G of order v. An auto-
morphism g �→ gt of G for an integer t prime with v is called a (numerical) multiplier of D, if
there is an element g ∈ G such that D(t) = gD = {gd | d ∈ D}, where D(t) := {xt | x ∈ D}.

As an example of difference sets, let Fq be the finite field of order q , the set of all nonzero
squares of Fq is a SHDS when q ≡ 3 mod 4, and is a regular Paley type partial difference
set when q ≡ 1 mod 4.

Let R be a communicative ring with identity 1. The group ring R[G] =
{ ∑

g∈G
agg | ag ∈ R

}
with the multiplication rule “·” as

⎛
⎝∑

g∈G

agg

⎞
⎠ ·

(∑
h∈G

bh g

)
=

∑
g∈G

∑
h∈G

(ahbh−1g)g
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Skew Hadamard difference sets 95

is a free R-module of rank v. Obviously, e is the identity of R[G]. We use the same symbol
D to denote the element

∑
g∈D

g in R[G] for a subset D of G.

Usually, R is taken as the ring Z of integers, the field Q of rational numbers, or the complex
field C. Employing notion in Z[G], D is a (v, k, λ) difference set if and only if

DD(−1) = (k − λ)e + λG,

D is a (v, k, λ, µ) partial difference set if and only if

DD(−1) = se + µG + (λ − µ)D,

and D is a (m, n, k, λ1, λ2) divisible difference set relative to N if and only if

DD(−1) = (k − λ1)e + λ2G + (λ1 − λ2)N ,

where s = k(k − λ) − µ(v − k).
When G is abelian, we can make use the notion of character. A character of G is a group

homomorphism χ : G → C∗, where C∗ is the multiplicative group of C. The set Ĝ of all
characters of G is a group and is isomorphic to G. For the sake of completeness, we list the
following two well known fundamental results on characters.

Lemma 2.1 (Orthogonality relations) Let G be a finite abelian group of order v and with
identity e. Then

∑
χ∈Ĝ

χ(g) =
{

0, if g �= e,
v, if g = e,

∑
g∈G

χ(g) =
{

0, if χ �= χ0,

v, if χ = χ0,

where χ0 is the trivial character of G, that is, χ0(g) = 1 for all g ∈ G.

Lemma 2.2 (Inversion formula) Let G be a finite abelian group of order v. Let A =∑
g∈G

agg ∈ C[G], and χ(A) := ∑
g∈G

agχ(g). Then we can recover the coefficients of A

as follows:

ag = 1

v

∑
χ∈Ĝ

χ(A)χ(g−1).

Hence, if A, B ∈ C[G] satisfy χ(A) = χ(B) for all characters χ of G, then A = B.

Using Lemma 2.2 and the fact that χ(D(−1)) = χ(D), we have another description on
difference sets and partial difference sets as follows.

Lemma 2.3 Let D be a k-subset of an abelian group G of order v. Then D is a (v, k, λ)

difference set if and only if the condition

|χ(D)| = √
k − λ

holds for every nontrivial character χ of G.
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96 G. Weng, L. Hu

Lemma 2.4 Let D be a k-subset of an abelian group G of order v. Then D is a (v, k, λ, µ)

partial difference set if and only if the condition

χ(D) = β ± √
�

2

holds for every nontrivial character χ of G, where β = λ − µ and � = β2 + 4γ with
γ = k − µ if e /∈ D and γ = k − λ if e ∈ D.

In view of the above lemma, we see that β and � are another two important parameters, so
D is usually called a (v, k, λ, µ, β,�) partial difference set.

Lemma 2.5 Let D be a k-subset of an abelian group G of order v. Then D is a skew
Hadamard difference set if and only if the condition

χ(D) = −1 ± √−v

2

holds for every nontrivial character χ of G.

Let D ∈ C[G]. By Lemma 2.2, χ(D) is a constant for all nontrivial character χ if and
only if

D = ae + bG.

If D is a subset of abelian group G, and χ(D) = a or b, a �= b, for all nontrivial character
χ , then we call D a two-character-valued set (TCVS). By Lemmas 2.4 and 2.5, if D is a
SHDS, reversible difference set, or partial difference set, then D is a TCVS.

Let D be a TCVS in an abelian group G. If e ∈ D, then D\{e} and G\D are also TCVS.
Thus in the sequel, when D is a TCVS, we always assume e /∈ D and χ(D) = a or b, for
every nontrivial character χ .

Let D be a TCVS. Then the subset of Ĝ,

{χ | χ(D) = a},
is called the dual set of D, denoted by D∗. Set a map φg from Ĝ to C∗ as

φg(χ) = χ(g), ∀χ ∈ Ĝ.

Then {φg : ∀g ∈ G} is the set of all characters since Ĝ is abelian and isomorphic to G. We
have the following theorem, which is due to Delsarte.

Theorem 2.6 (Delsarte [6]) Let D be a k-element subset in an abelian group G of order
v, and assume the identity of G is not in D. Suppose that for every nontrivial character χ ,
χ(D) = a or b. Then the dual set D∗ is a k∗-element subset in Ĝ, and for every nontrivial
character φ of Ĝ, φ(D∗) = a∗ or b∗, where k∗ = −k+b−bv

a−b , a∗ = v−k+b
a−b , and b∗ = −k+b

a−b .

Furthermore D(−1) is the dual set of D∗.

When D is a SHDS, set a = −1+√−v
2 , b = −1−√−v

2 . Then k∗ = k = v−1
2 , a∗ = b, and

b∗ = a. Hence,

Corollary 2.7 Let D be a SHDS in abelian group G, and D∗ be the dual set of D. Then D∗
is again a SHDS in Ĝ.
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Skew Hadamard difference sets 97

Now let D be an arbitrary TCVS in G. Set E = D((a + b)e − D) ∈ C[G]. Then we
easily have for every nontrivial character χ of G,

χ(E) = ab.

Thus E = abe + tG, namely,

D2 = −abe − tG + (a + b)D.

By comparing the coefficients of both sides, we find a + b and ab are all integers. Thus, a is
either an integer or an algebraic number of degree 2, that is, Q(a)/Q is an extension of fields
of degree 2. By the properties of cyclotomic fields, the multipliers of TCVS can be easily
determined. The following theorem is partially listed in the works of [4,9–11,15,16].

Theorem 2.8 Let D be a two-character-valued subset of an abelian group G of order v,
χ(D) = a or b, and e /∈ D. Then D is a SHDS or a regular partial difference set. Further-
more,

(1) If a is an integer, then any t with gcd(t, v) = 1 is a multiplier of D; and
(2) If a is not an integer, then v = ph for an odd prime p and an odd integer h. Further-

more, an integer t with gcd(t, v) = 1 is a multiplier of D if and only if t is a quadric

residue modulo v; and a, b = −1±
√

(−1)
p−1

2 v
2 .

In [5,21], it was further proved that exp(G)≤ p
h+1

4 holds in the case a /∈ Q. All known
examples in this case exist in elementary abelian groups, and it was conjectured that
exp(G)=p. An important case is that a + b = −1, which is determined as follows.

Theorem 2.9 [1] Let D be a two-character-valued set of an abelian group G, e /∈ D, and
χ(D) = a or −1 − a. Then

(1) D is a SHDS;
(2) D is a (v, v−1

2 , v−5
4 , v−1

4 ) partial difference set; or
(3) D is a (243, 22, 1, 2) or (243, 220, 199, 200) partial difference set.

3 Divisible difference sets from skew Hadamard difference sets

In this section, we modify Menon’s method to give two constructions of divisible difference
sets. Firstly, we give the character distribution of divisible difference sets.

Lemma 3.1 A subset D of an abelian group G is a (m, n, k, λ1, λ2) divisible difference sets
relative to N if and only if

|χ(D)| =
⎧⎨
⎩

k, if χ is trivial character,√
k2 − λ2mn, if χ is nontrivial but trivial over N,√
k − λ1, if χ is nontrivial over N.

Let D1 and D2 be two subset in abelian groups H1 and H2, respectively, set

D1 × D2 = {(x, y) | x ∈ D1, y ∈ D2}
be a subset in the abelian group G = H1 × H2, and simplify e × H2 as H2 and H1 × e as
H1, where e is the identity of H1 and H2. Suppose Di is a (vi , ki , λi ) difference set in Hi for
i = 1, 2, and we set

D = D1 × D2 ∪ (H1 − D1) × (H2 − D2).
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98 G. Weng, L. Hu

Note that any character χ of G can be written as χ = (χ1, χ2), where χi is a character of
Hi , i = 1, 2. So

|χ(D)| =
⎧⎨
⎩

|(2k1 − v1)|√k2 − λ2, if χ1 is trivial,
|(2k2 − v2)|√k1 − λ1, if χ2 is trivial,
2
√

k1 − λ1
√

k2 − λ2, if both χ1 and χ2 are nontrivial.

Menon gave the following construction.

Theorem 3.2 (Menon [17]) Let D1 be a Menon difference set in an abelian group H1, and
D2 be a difference set in an abelian group H2. Then the subset D in the group G = H1 × H2

defined by

D = D1 × D2 ∪ (H1 − D1) × (H2 − D2)

is a divisible difference set relative to H2. Furthermore, if D2 is a Menon difference set, then
D is also a Menon difference set, and D is reversible if and only if both D1 and D2 are
reversible.

Below we assume D1 does not contain the identity e. Set

D = D1 × D2 ∪ (H1 − D1 − e) × (H2 − D2).

Then we have

χ(D) =
⎧⎨
⎩

(2k1 + 1 − v1)χ2(D2), if χ1 is trivial,
(2k2 − v2)χ1(D1) + k2 − v2, if χ2 is trivial,
(2χ1(D1) + 1)χ2(D2), if χ1 and χ2 are nontrivial,

for any nontrivial character (χ1, χ2) of G. Generally, (2k2 − v2)χ1(D1) + k2 − v2 and
(2χ1(D1) + 1)χ2(D2) are not of constant magnitude, they are of constant magnitude when
D1 is a certain TCVS.

Theorem 3.3 Let D1 be a SHDS in an abelian group H1 of order v1, and D2 be a (v2, k2, λ2)

difference set in an abelian group H2. Then the subset D in the group G = H1 × H2 given
by

D = D1 × D2 ∪ (H1 − D1 − e) × (H2 − D2)

and the subset D ∪ H2 are both divisible difference sets relative to H1, provided v1 = v2

and H2 is a Hadamard difference set.

Similarly, when e /∈ Di , i = 1, 2, we have

Theorem 3.4 Let D1 be a SHDS in an abelian group H1 of order v1, and D2 be a
(v2, k, λ, µ,−1,�) regular partial difference set in an abelian group H2. Let D be a subset
in the group G = H1 × H2 defined by

D = D1 × D2 ∪ (H1 − D1 − e) × (H2 − D2 − e).

(1) If v1 = � + 2, then D, D ∪ H2, D ∪ (H1\e), and D ∪ H2 ∪ H1 are divisible difference
sets relative to H2. Furthermore, if � = v2, D ∪ H2 is a Hadamard difference set.

(2) If v1 = �−2, then D ∪ H1 and D ∪ (H2\e) are divisible difference sets relative to H2.
Furthermore, if � = v2, D ∪ H1 is a Hadamard difference set, and D and D ∪ H2 ∪ H1

are divisible difference sets relative to H1.
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Skew Hadamard difference sets 99

These three theorems can be proved in a similar way by using the character theory. Below
we just give the proof of Theorem 3.4.

Proof Let v1 = |H1|. For any nontrivial character χ1 of H1 and nontrivial character χ2 of

H2, χ1(D1) = −1±√−v1
2 , and χ2(D2) = −1±√

�
2 , then

(χ1, χ2)(D) = χ1(D1)χ2(D2) + (−χ1(D1) − 1)(−χ2(D2) − 1)

= 1
2 ((2χ1(D1) + 1)(2χ2(D2) + 1) + 1)

= 1±√−v1�
2 .

For the trivial character χ0 of H1 and any nontrivial character χ2 of H2, we have

(χ0, χ2)D = v1−1
2 χ2(D2) + v1−1

2 (−χ2(D2) − 1)

= − v1−1
2 .

Finally, for any nontrivial character χ1 of H1 and the trivial character χ0 of H2, we have

(χ1, χ0)D = kχ1(D1) + (v2 − k − 1)(−χ1(D1) − 1)

= (2k + 1 − v2)χ1(D1) − (v2 − k − 1)

= − v2−1
2 ± (2k+1−v2)

√−v1
2 .

If v1 = � + 2, v1 − 1 = |1 ± √−v1�|, then D, D ∪ H2, D ∪ (H1\e), and D ∪ H2 ∪ H1

are all divisible difference sets relative to H2. Furthermore, if � = v2, then v2 = 2k + 1
follows Theorem 2.9. Hence, D ∪ H2 is a Hadamard difference set.

If v1 = �−2, v1+1 = |1±√−v1�|, then D∪H1 and D∪(H2\e) are divisible difference
sets relative to H2. Furthermore, if � = v2, then v2 = 2k + 1 follows Theorem 2.9. Hence,
D ∪ H1 is a Hadamard difference set, and D and D ∪ H2 ∪ H1 are divisible difference sets
relative to H1. ��
Remark: 1. Twin prime power difference sets (we refer the reader to [2, Theorem 5.27,
p. 131]) and [8, Theorems 5.1 and 5.2] are two special cases of the Hadamard difference sets
in Theorem 3.4.

2. In Theorem 3.4, since gcd(|H1|, |H2|) = 1, we have Aut (G) = Aut (H1) × Aut (H2).
Hence, if D1 and D′

1 are two SHDS in H1 and D2 and D′
2 are two regular partial differ-

ence sets with same parameters, then D and D′ are equivalent if and only if D1 and D2 are
respectively equivalent to D′

1 and D′
2, or to D′

1 and H2 − D′
2 − e.

Some examples from Theorems 3.3 and 3.4 are listed below.
1. Let D1 be a Paley difference set in a group H1 of order 27. Then D = D1 × D1 ∪

(H1 − D1 − e)× (H1 − D1) is a (729, 27, 351, 162, 169) divisible difference set in H1 × H1

relative to H1 × e.
2. Let D1 = P, DY (±1), RT (±1), or DY (±1)∗ be a SHDS in (F243,+) (we will define

and discuss these seven sets in Sect. 4), and D2 be the (241, 120, 59, 60) regular partial
difference set in H2 formed by all quadratic residues modulo 241. Then

D1 × D2 ∪ (H1 − D1 − e) × (H2 − D2 − e) ∪ H2

are 7 pairwise inequivalent Hadamard difference sets in H1 × H2.
3. Let D1 be the Paley difference set in H1 = (F83,+), and D2 be the Paley partial

difference set, or biquadratic residues partial difference set P∗ (not the dual set here) [18],
or the Dickson partial difference set [20] in H2 = (F81,+). Then

D1 × D2 ∪ (H1 − D1 − e) × (H2 − D2 − e) ∪ H2
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are 3 pairwise inequivalent Hadamard difference sets in H1 × H2.
4. Let D1 be the Paley difference set in H1 = (F83,+), D2 be a (81, 40, 19, 20) partial

difference set in H2 = Z9 × Z9 (We refer readers to Leifman and Muzychuk [13] and Leung
and Ma [14].) Then

D1 × D2 ∪ (H1 − D1 − e) × (H2 − D2 − e) ∪ H2

is Hadamard difference set in Z747 × Z9.
5. Let D1 be the Paley difference sets in H1 = (F83,+), D2 be a (243, 22, 1, 2) partial

difference set in H2 = (F243,+). Then

D1 × D2 ∪ (H1 − D1 − e) × (H2 − D2 − e)

is (83, 243, 9922, 8241, 4840) divisible difference set in H1 × H2 relative to H2.
It should be noted that Theorems 3.2, 3.3, and 3.4 can be proved in the group ring notion

where the condition that H1 and H2 are abelian is not necessarily assumed. The reader can do
this by calculating DD(−1). For instance, we state the construction of Hadamard difference
sets as the following corollary.

Corollary 3.5 Let D1 be a SHDS in a group H1 of order v1, and let D2 be a
(v2,

v2−1
2 , v2−5

4 , v2−1
4 ) regular partial difference set in a group H2. Define D as a subset

in the group G = H1 × H2 by

D = D1 × D2 ∪ (H1 − D1 − e) × (H2 − D2 − e).

(1) When v1 = v2 + 2, then D ∪ H2 is a Hadamard difference set in G.
(2) When v1 = v2 − 2, then D ∪ H1 is a Hadamard difference set in G.

In [12], all difference sets with k < 20 are listed. There are two Hadamard difference sets
D1 and D2 in a nonabelian group G of order 27, and moreover, D1 is a SHDS, where

G = 〈a, b | a3 = b9 = e, a−1ba = b4〉,
D1 = b + b5 + b6 + b7 + a(e + b + b2 + b3 + b4 + b6) + a2(b + b5 + b7),

D2 = e + b + b3 + b4 + b5 + b7 + a(e + b + b2 + b6) + a2(e + b2 + b3).

Thus, we can get new Hadamard difference sets in nonabelian group G × Z29 and G × Z2
5

by Corollary 3.5, and can also get (27, 27, 351, 162, 169) divisible difference sets in G × G
and G × Z3

3.

4 Skew Hadamard difference sets in elementary abelian groups

A classical example of SHDS is the Paley difference sets in the additive groups of finite fields
Fq formed by the nonzero squares of Fq , where q ≡ 3(mod 4). Recently, Ding and Yuan
give a new construction for SHDS in [7], and another construction for SHDS is given by
Ding et al. [8]. We conclude these as the following theorem.

Theorem 4.1 Let Fq be the finite field of order q. Then the subsets

P = {x2 | x ∈ Fq , x �= 0},
DY (±1) = {x10 ± x6 − x2 | x ∈ Fq = F3h , x �= 0},
RT (±1) = {x4α+6 ± x2α − x2 | x ∈ Fq = F3h , x �= 0},

are SHDS in the additive groups of Fq , where h is odd and α = 3
h+1

2 . Furthermore, they are
pairwise inequivalent when q = 35 and 37.
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Let D be a SHDS in an abelian group G with |G| = v = 4n − 1. Then

DD(−1) = ne + (n − 1)G, D(−1) = G − D − e,

and

D2 = nG − ne − D, (D(−1))2 = (n − 1)G − (n − 1)e + D.

Thus, the subalgebra of C[G] spanned by e, D, and D(−1) is of dimension 3. It follows that
for any integers s and t ,

Ds(D(−1))t = n1e + n2 D + n3 D(−1),

holds for some integers n1, n2, and n3.

Lemma 4.2 Let D be a SHDS in an abelian group G with |G| > 3, g ∈ G and σ ∈ Aut(G).
Then gσ(D) is again a SHDS if and only if g = e.

Proof Obviously, D is SHDS if and only if σ(D) is SHDS, so we assume without loss of
generality that σ is the identity automorphism. When both D and gD are SHDS, we have
D2 = nG − ne − D and (gD)2 = nG − ne − (gD), where n = v+1

4 > 1. Thus g = e
follows that nG − ng2 − g2 D = nG − ne − (gD). ��

This lemma implies that there exists an automorphism σ such that D = σ(E) if D and
E are two equivalent SHDS. Lemma 4.2 still holds when G is replaced by the nonabelian
group of order 27 mentioned in Sect. 3.

Lemma 4.3 Let D be a SHDS in an elementary abelian group G. Then
∏

g∈D
g = e if |G| > 3.

Proof Set d = ∏
g∈D

g. For any quadratic residue t modulo p, we have D(t) = D. Hence,

dt = ∏
g∈D

gt = ∏
h∈D(t)

h = d . When p > 3, there exist a quadratic residue t such that

(t − 1, p) = 1, and hence, d = e. When G is elementary abelian and of order 3h > 3, we
can give a proof which follows by Lemma 4.4 and Corollary 4.5. ��
Lemma 4.4 Let D be a SHDS in an abelian group G, and e be the identity of G. Denote by
Pst (a) the number of the solutions to the equation

x1 x2 . . . xs y1 y2 . . . yt = a, xi ∈ D, y j ∈ D(−1).

Then

Pst (a) =
⎧⎨
⎩

n1, if a = e,
n2, if a ∈ D,

n3, if a ∈ D(−1),

where n1, n2, and n3 are defined by Ds(D(−1))t = n1e + n2 D + n3 D(−1).

Corollary 4.5 Let D be a SHDS in an elementary abelian group G of order 3h. Denote by
Qst (a) the number of solutions to following equation

x1 x2 . . . xs y1 y2 . . . yt = a,
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where xi ∈ D, y j ∈ D(−1), and the 〈xi 〉 and the 〈y j 〉 are pairwise distinct subgroups. Here
the notation 〈g〉 denotes the subgroup of G generated by element g. Then

Qst (a) =
⎧⎨
⎩

m1, if a = e,
m2, if a ∈ D,

m3, if a ∈ D(−1),

where m1, m2, m3 are some integers depended on s and t. In particular, if h > 1, then∏
g∈D

g = e.

Proof We prove the first statement by induction on s + t . The case that s + t = 1 is trivial,
and let us assume the statement is true for any s + t < n.

For given s, t with s + t = n, we consider the solution (g1, g2, . . . , gn) to the equation

x1 x2 . . . xs y1 y2 . . . yt = a, xi ∈ D, y j ∈ D(−1),

where s + t = n, xi = gi and y j = gs+ j . Let A = {A1, A2, . . . , Am} be a partition

of
m⋃

i=1
Ai = {1, 2, . . . , n}, Ai �= ∅ and Ai ∩ A j = ∅ if i �= j . We call the solution

(g1, g2, . . . , gn) is type A, if 〈gi 〉 = 〈g j 〉 holds if and only if there exists k such that i, j ∈ Ak .
We also denoted by N (A, a) the number of the type A solutions.

Since G is an elementary abelian group of order 3h , 〈g〉 = {e, g, g−1}. Note that |〈g〉 ∩
D| = 1, then we have

f a1−b1
1 f a2−b2

2 . . . f am−bm
m = a,

where fi = D ∩ 〈g j 〉 with j ∈ Ai , ai = |Ai ∩ {1, 2, . . . , s}| and bi = |Ai | − ai . Without
loss of generality, we assume:

ai − bi ≡ 1(mod 3), i = 1, 2, . . . , s1,

ai − bi ≡ 2(mod 3), i = s1 + 1, s1 + 2, . . . , s1 + t1,
ai − bi ≡ 0(mod 3), i = s1 + t1 + 1, s1 + t1 + 2, . . . , m.

Let z1, z2, . . . , zs1+t1 be s1 + t1 different elements in D such that z1z2 . . . zs1 z−1
s1+1z−1

s1+2 . . .

z−1
s1+t1 = a. Then for any m − s1 − t1 different elements in D \ {z1, z2, . . . , zs1+t1}, zs1+t1+1,

zs1+t1+2, . . . , zm , we have a solution (g1, g2, . . . , gn) of type A:

gi =
{

z j , if i ≤ s and i ∈ A j ,
z−1

j , if i > s and i ∈ A j .

Thus N (A, a) = (v−s1−t1)!
(v−m)! Qs1t1(a), where |D| = v.

If m < n, then s1 + t1 < n. By the induction assumption, we have

N (A, a) =
⎧⎨
⎩

N1, if a = e,
N2, if a ∈ D,

N3, if a ∈ D(−1).

If m = n, then N (A, a) = Qst (a). As

Pst (a) =
∑

A

N (A, a),

we complete the proof of first statement by Lemma 4.4.
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In particular, when |G| = 3h > 3, setting s = 3h−1
2 and t = 0, d = ∏

g∈D
g. We have

Qst (a) =
{

s!, if a = d,

0, if a �= d.

Thus we have d = e. ��
By Lemmas 4.2 and 4.3, we can easily check whether a given Hadamard difference set in

the elementary abelian group is equivalent to some SHDS or not.

Theorem 4.6 Let D be a Hadamard difference set in an elementary abelian group G, and
d = ∏

g∈D
g. Then D is equivalent to some SHDS if and only if d2 D is a SHDS.

Proof By Lemma 4.2, if D is equivalent to a SHDS, then there exists an element h ∈ G such
that h D is a SHDS. By Lemma 4.3, we have e = ∏

g∈h D
g = h|D| ∏

g∈D
g. Thus h = d2. ��

Corollary 4.7 Any Hall difference set, which is the union of three cosets of the sextic resi-
dues are inequivalent to any SHDS. (We refer the reader to Baumert [2] and Storer [19] for
the details of Hall difference sets.)

For the dual sets of SHDS, we have

Theorem 4.8 Let D and E be two SHDS in an abelian group G. Then D and E are equivalent
if and only if D∗ and E∗ are equivalent in Ĝ.

Proof Let σ be an automorphism of G. Note the map

σ̂ : χ �→ χ ◦ σ

is an automorphism of Ĝ, where σ̂ (χ)(g) = χ(σ(g)),∀g ∈ G. Thus if D = σ(E), then
χ(D) = χ(σ(E)) = σ̂ (χ)(E), that is D∗ = σ̂ (E∗). Another direction of the assertion holds
from D∗∗ = D(−1). ��

P , DY (±1), RT (±1), and their dual sets are all known SHDS up to date, below we
discuss the inequivalence among these ten families of SHDS.

Note that any character χa of (Fq ,+) can be written as

χa(x) = ξTr(ax), ∀a ∈ Fq ,

where ξ = e
2π

√−1
p is a pth primitive root of unity in C, p is the characteristic of Fq , q = pm ,

and Tr is the trace map from Fq to Fp defined by

Tr(x) =
m−1∑
i=0

x pi
.

Let η be the quadric character of the multiplicative group of Fq , that is, η maps all squares
of Fq to 1 and maps all non-squares to −1, and convention that η(0) = 0. From

χa(P) = ∑
x∈P

ξTr(ax)

= 1
2

( ∑
x∈Fq

η(x)ξTr(ax) − 1

)

= 1
2

(
η(a)

∑
x∈Fq

η(x)ξTr(x) − 1

)
,
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we have χa(P) depends on only η(a). Hence, the dual set of P is equivalent to P . For other
known SHDS, we generally have not an effective method to discuss their equivalence yet.
With the help of a computer, we classify them in the cases of small parameters.

When q = 35 or 37, we checked the equivalence of the known SHDS by running through
all automorphisms with computer programming. It turns out that RT (1)∗ is equivalent to
RT (−1), and P , RT (±1), DY (±1), and DY (±1)∗ are all pairwise inequivalent. Further-
more, we confirmed the following formula by computer for q = 3h with h = 1, 3, 5, 7, 9, 11:

∑
x∈Fq

η(x)ξTr(a(x2α+3+xα−x)) =
{

(−1)
h+1

2
√−q, if a ∈ RT (−1),

(−1)
h−1

2
√−q, if a /∈ RT (−1).

Thus, RT (1)∗ is equivalent to the dual set of RT (−1) when q = 3h and h = 1, 3, 5, 7, 9, 11.
We conjecture the above formula holds for any odd h, but we have no proof by now yet.

To search the (in) equivalence in the larger case of q , we introduce here an invariant called
rank. For a SHDS D ⊂ Fq , set BD as a q × q matrix over Fq , whose rows and columns are
indexed by elements of Fq , and its entry at row x and column y is BD(x, y) = f (x − y),
where

f (x) =
⎧⎨
⎩

0, x = 0,

1, x ∈ D,

−1, x ∈ D(−1).

If D and E are two equivalent SHDS in an elementary abelian group G, that is, there exists
an automorphism σ , D = σ(E), and D(−1) = σ(E (−1)), then we have

BD = Pσ BE P ′
σ ,

where Pσ is a permutation matrix with entries Pσ (x, y) = 1 if and only if y = σ(x). Hence

matrices BD and BE have the same rank. When D is a Paley difference set and f (x) = x
q−1

2

with q = ph , rank(BD) = (
p+1

2 )h (We refer the reader to Brouwer and van Eijl [3] for this
rank calculation.). When D = DY (±1), then

f (x) = D 1
5
(x,±1)

q−1
2 ,

where D 1
5
(x, a) = D 3q2−2

5

(x, a) is the Dickson polynomial of the first kind. It seems not

easy to get the ranks by an algebraic way.
In Table 1, we list the ranks of the matrices BD for all known SHDS for q = 35, 37,

and 39.

Table 1 Ranks of known SHDS
for q = 35, 37, and 39 q = 35 q = 37 q = 39

P 32 128 512

DY (1) 42 226 1232

DY (−1) 42 226 1232

RT (1) 42 226 1178

RT (−1) 42 226 1178

DY (1)∗ 42 226 1214

DY (−1)∗ 42 226 1214
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From Table 1, there are at least four pairwisely inequivalent SHDS when q = 39. We
conjectured that P, DY (±1), DY (±1)∗, RT (±1) are pairwisely inequivalent SHDS when
q ≥ 35.

Acknowledgments The authors would like to thank Prof. Q. Xiang and C. Ding for their helpful comments.
The first author would like to thank Prof. W. Qiu for his guidance and encouragement.

References

1. Arasu K.T., Jungnickel D., Ma S.L., Pott A.: Strongly regular Cayley graphs with λ−µ = −1. J. Combin.
Theory (A) 67, 116–125 (1994).

2. Baumert L.D.: Cyclic Difference Sets. Springer Lecture Notes, vol. 182. Springer, Berlin (1971).
3. Brouwer A.E., van Eijl C.A.: On the p-rank of the adjacency matrices of strongly regular graphs.

J. Algebraic Combin. 1, 329–346 (1992).
4. Camion P., Mann H.B.: Antisymmetric difference sets. J. Number Theory 4, 266–268 (1972).
5. Chen Y.Q., Xiang Q., Sehgal S.: An exponent bound on skew Hadamard abelian difference sets. Des.

Codes Cryptogr. 4, 313–317 (1994).
6. Delsarte P.: An algebraic approach to the association schemes of coding theory. Philips Research Report.

Suppl. No. 10 (1973).
7. Ding C., Yuan J.: A family of skew Hadamard difference sets. J. Combin. Theory (A) 113, 1526–1535

(2006).
8. Ding C., Wang Z., Xiang Q.: Skew Hadamard difference sets from Ree-Tits slice symplectic spreads in

PG(3, 32h+1). J. Combin. Theory Ser. A 114, 867–887 (2007).
9. Hughes D.R., van Lint J.H., Wilson R.M.: Announcement at the Seventh British Combinatorial Confer-

ence, Cambridge (1979), Unpublished.
10. Johnsen E.C.: Skew-Hadamard abelian group difference sets. J. Algebra 4, 388–402 (1966).
11. Jungnickel D.: On λ-ovals and difference sets. In: Contemporary Methods in Graph Theory, pp. 429–448.

Bibliographisches Inst., Mannheim (1990).
12. Kibler R.E.: A summary of noncyclic difference sets, k < 20. J. Combin. Theory Ser. A 25, 62–67 (1978).
13. Leifman Y.I., Muzychuk M.E.: Strongly regular Cayley graphs over the group Zpn ⊕Zpn . Discrete Math.

305, 219–239 (2005).
14. Leung K.H., Ma S.L.: Partial difference sets with Paley parameters. Bull. London Math. Soc. 27, 553–564

(1995).
15. Ma S.L.: Partial difference sets. Discrete Math. 52, 75–89 (1984).
16. Ma S.L.: Polynomial addition sets and symmetric difference sets. In: Ray-Chaudhuri D. (ed.) Coding

Theory and Design Theory, part 2, pp. 273–279. Springer, New York (1990).
17. Menon P.K.: On difference sets whose parameters satisfy a certain relation. Proc. Amer. Math. Soc. 13,

739–745 (1962).
18. Peisert W.: All self-complementary symmetric graphs. J. Algebra 240, 209–229 (2001).
19. Storer T.: Cyclotomy and Difference Sets. Markham Publishing Comp., Chicago (1967).
20. Weng G., Qiu W., Wang Z., Xiang Q.: Pseudo-Paley graphs and skew Hadamard difference sets from

commutative semifields. Des. Codes Cryptogr. 44, 49–62 (2007).
21. Xiang Q.: Note on Paley partial difference sets. In: Group, Difference Sets, and the Monster (Columbus,

OH 1993), pp. 239–244. Ohio State Univ. Math. Res. Inst. Publ., 4, de Gruyter, Berlin (1996).

123


	Some results on skew Hadamard difference sets
	Abstract
	1 Introduction
	2 Preliminaries
	3 Divisible difference sets from skew Hadamard difference sets
	4 Skew Hadamard difference sets in elementary abelian groups
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


