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Abstract In this paper, we introduce a new combinatorial invariant called q-binomial
moment for q-ary constant weight codes. We derive a lower bound on the q-binomial moments
and introduce a new combinatorial structure called generalized (s, t)-designs which could
achieve the lower bounds. Moreover, we employ the q-binomial moments to study the unde-
tected error probability of q-ary constant weight codes. A lower bound on the undetected
error probability for q-ary constant weight codes is obtained. This lower bound extends
and unifies the related results of Abdel-Ghaffar for q-ary codes and Xia-Fu-Ling for binary
constant weight codes. Finally, some q-ary constant weight codes which achieve the lower
bounds are found.
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1 Introduction

Let Vq = {0, v1, . . . , vq−1} be a finite set with q elements, where q ≥ 2. For x, y in V n
q ,

the (Hamming) distance dH (x, y) between x and y is defined as the number of coordinates
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in which they differ. For x in V n
q , its support supp(x) is defined as the set of nonzero coor-

dinates in x; its (Hamming) weight wH (x) is defined as the number of nonzero coordinates
in x, i.e., wH (x) = |supp(x)|. A nonempty subset C of V n

q with cardinality M is called a
q-ary (n, M) code. The minimum distance d of C is the minimum distance between any two
distinct codewords in C . The distance distribution of C is defined as

A′
i = 1

M
|{(a, b) : a, b ∈ C, dH (a, b) = i}| , i = 0, 1, . . . , n. (1)

Abdel-Ghaffar [1] defined the following combinatorial invariant F ′
j of C :

F ′
j =

j∑

i=1

A′
i

(
n − i
n − j

)
, j = 1, 2, . . . , n, (2)

and showed that

A′
i =

i∑

j=1

F ′
j

(
n − j
n − i

)
(−1)i− j , i = 1, 2, . . . , n. (3)

If the code C is used for error detection on a q-ary symmetric channel with symbol error
probability p, 0 ≤ p ≤ (q − 1)/q , the undetected error probability is given by (see [13])

Pue(C, p) =
n∑

i=1

A′
i

(
p

q − 1

)i

(1 − p)n−i . (4)

When a q-ary code is used for pure error detection, its error performance is characterized
by the undetected error probability of this code. For a general introduction to the theory of
error-detecting codes, we refer the reader to [13] and its references. Abdel-Ghaffar [1] found
that the undetected error probability Pue(C, p) can be expressed by F ′

j as follows:

Pue(C, p) =
n∑

j=1

F ′
j

(
p

q − 1

) j (
1 − qp

q − 1

)n− j

. (5)

Using combinatorial arguments, Abdel-Ghaffar [1] obtained a lower bound on F ′
j and then

derived a lower bound on the undetected error probability Pue(C, p). Ashikhmin and Barg
[2,3] called F ′

j the binomial moments of the distance function and developed further bounds
on the undetected error probability based on these. Dodunekova [6] also used the binomial
moments to study the undetected error probability of linear codes.

Denote by V n,w
q the set of q-ary vectors of length n and weight w. A nonempty subset C

of V n,w
q with cardinality M is called a q-ary (constant weight) (n, M, w) code. Note that a

q-ary (n, M) code can be considered as a (q + 1)-ary (n, M, n) code. Hence, the problem of
studying the undetected error probability for q-ary constant weight codes extends and unifies
the problems of studying ones for q-ary codes and binary constant weight codes.

Let C be a binary (n, M, w) code. Since the distance between any two codewords in C is
an even number, it is more convenient to define the distance distribution of C as

Ai = 1

M
|{(a, b) : a, b ∈ C, dH (a, b) = 2i}| , i = 0, 1, . . . , w. (6)

When C is used for error detection, its undetected error probability can be written as

Pue(C, p) =
w∑

i=1

Ai p2i (1 − p)n−2i . (7)
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Binary constant weight codes have many applications in computer and communication sys-
tems (see [4,5,16,18]). The error detection capability of binary constant weight codes has
been studied in [8–11] and [18–20]. Xia, Fu and Ling [20] introduced the following binomial
moments for binary constant weight codes with distance distribution Ai :

Fj =
j∑

i=1

Ai

(
w − i
w − j

)
, j = 1, 2, . . . , w (8)

and showed that

Ai =
i∑

j=1

Fj

(
w − j
w − i

)
(−1)i− j , i = 1, 2, . . . , w, (9)

Pue(C, p) = (1 − p)n−2w
w∑

j=1

Fj p2 j (1 − 2p)w− j . (10)

By employing Q-transform quantities of the distance distribution Ai and their properties,
Xia, Fu and Ling [20] obtained a lower bound on the binomial moments Fj and then derived
a lower bound on the undetected error probability Pue(C, p) for the binary constant weight
code C .

In this paper, we introduce a new combinatorial invariant for q-ary constant weight codes,
which is called q-binomial moment. We derive a lower bound on the q-binomial moments
and introduce a new combinatorial structure called generalized (s, t)-designs which could
achieve the lower bounds. Moreover, we employ the q-binomial moments to study the unde-
tected error probability of q-ary constant weight codes. A lower bound on the undetected error
probability for q-ary constant weight codes is obtained. This lower bound extends and uni-
fies the related results of Abdel-Ghaffar [1] for q-ary codes and Xia-Fu-Ling [20] for binary
constant weight codes. Finally, some q-ary constant weight codes formed by generalized
t-designs are found to achieve the lower bounds. The rest of this paper is organized as fol-
lows. In Sect. 2, we briefly review the distance distribution of q-ary constant weight codes
and generalized t-designs. In Sect. 3, q-binomial moments and generalized (s, t)-designs are
discussed. The applications of q-binomial moments to error detection are given in Sect. 4.
Finally, we end with some concluding remarks in Sect. 5.

2 Preliminary

2.1 Distance distribution of q-ary constant weight codes

For x, y ∈ V n,w
q , we denote (see [17])

f (x, y) = |{i : xi �= 0, yi �= 0}|, e(x, y) = |{i : xi = yi �= 0}|. (11)

Then

dH (x, y) = wH (x) + wH (y) − f (x, y) − e(x, y). (12)

Let C be a q-ary (n, M, w) code. For a pair of integers (i, j), where 0 ≤ j ≤ i ≤ w, and
c ∈ C , define

Ai j (c) = |{c′ ∈ C : e(c, c′) = w − i, f (c, c′) = w − j}|
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and Ai j = 1
M

∑
c∈C Ai j (c). Then, we have

Ai j = 1

M
|{(x, y) ∈ C × C : e(x, y) = w − i, f (x, y) = w − j}| (13)

and

A00 = 1,

w∑

i=0

i∑

j=0

Ai j = M. (14)

It follows from (12) that the relation between the distance distribution {A′
l} and {Ai j } is

given by

A′
l =

∑

0≤ j≤i≤w, i+ j=l

Ai j . (15)

2.2 Generalized t-designs, H -designs, and generalized Steiner systems

Let X be a finite set of n elements called points, and let B be a finite family of w-subsets of X
called blocks. Then the pair (X, B) is called a t-(n, w, λ)-design, or briefly a t-design, if any
t-subset of X is contained in exactly λ blocks. A Steiner system is a t-(n, w, 1)-design, and
is usually denoted by S(t, w, n). It is known [14, p. 63] that a binary constant weight code
of length n, weight w, and minimum distance at least 2(w − t + 1) can be obtained from
an S(t, w, n). Below we give the definition of a generalized t-design over Vq introduced by
Etzion [7].

Definition 1 Let X be a set of points whose cardinality is nk where k = q − 1, and let
G = {G1, G2, . . . , Gn} be a partition of X into n sets of cardinality k. The members of G
are called groups. A transverse of G is a subset of X that meets each group in at most one
point. Let B be a finite family of w-element transverses of G called blocks. Then the triple
(X, G, B) is called a generalized t-(n, w, λ, k)-design, or briefly a generalized t-design, if
any t-element transverse of G is contained in exactly λ blocks.

Clearly, a generalized t-(n, w, λ, k)-design has λ(q − 1)t
(n

t

)
/
(
w
t

)
blocks. When λ = 1 the

generalized t-design is the H(n, k, w, t)-design introduced by Hanani [12] (the notation of
H -design is due to Mills [15]). Etzion [7] presented a method to construct a q-ary constant
weight code from a generalized t-design.

Proposition 1 [7] A q-ary constant weight code C ⊆ V n,w
q can be obtained from a gener-

alized t-design (X, G, B) as follows:
Let Gi = {α1i , α2i , . . . , αki }, i = 1, 2, . . . , n. The code C has a codeword for each block. Let
{α j1i1 , α j2i2 , . . . , α jw iw } or {[i1, j1], [i2, j2], . . . , [iw, jw]} be a block in B. By the definition of
w-transverse, i1, i2, . . . , iw are pairwise different. Recall that Vq = {0, v1, . . . , vq−1}. The
corresponding codeword is given by c = (c1, c2, . . . , cn), where ci1 = v j1 , ci2 = v j2 , . . . ,

ciw = v jw and all other components are zero.

It is known that an H -design can give a q-ary constant weight code with minimum distance
between w− t +1 and 2(w− t)+1 [7]. An H -design H(n, k, w, t) which forms a q-ary con-
stant weight code with minimum distance at least 2(w− t)+1 is called a generalized Steiner
system GS(t, w, n, k) by Etzion [7]. Clearly, a generalized t-design is still a generalized
t ′-design for any t ′ ≤ t .
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Undetected error probability of q-ary constant weight codes 129

3 Q-binomial moments and generalized (s, t)-designs

Let (u, v) be a pair of integers, where 0 ≤ v ≤ u ≤ w. Let J (w−v) = ∅ if v = w and
J (w−v) = { j1, j2, . . . , jw−v} be an ordered set of positions if v < w, where 1 ≤ j1 < j2 <

· · · < jw−v ≤ n. Let I (w−u) = ∅ if u = w and I (w−u) = {i1, i2, . . . , iw−u} be an ordered
subset of J (w−v) if u < w, i.e., I (w−u) ⊆ J (w−v) and i1 < i2 < · · · < iw−u . Let E (w−u) = ∅
if u = w and E (w−u) = {e1, e2, . . . , ew−u} ⊆ Vq \ {0} if u < w. Let C be a q-ary (n, M, w)

code. Define a subset C(·, ·, ·) of C as follows:

C(∅; ∅; ∅) = C if u = v = w, (16)

and

C(J (w−v); ∅; ∅) = {(c1, . . . , cn) ∈ C : c j1 �= 0, . . . , c jw−v �= 0} if v < u = w, (17)

and otherwise, i.e., if v ≤ u < w,

C(J (w−v); I (w−u); E (w−u)) = C( j1, . . . , jw−v; i1, . . . , iw−u; e1, . . . , ew−u)

= {(c1, . . . , cn)∈ C : c j1 �= 0, . . . , c jw−v �= 0; ci1 = e1, . . . , ciw−u = ew−u}. (18)

For a codeword c = (c1, . . . , cn)∈ C , we say that c covers (I (w−u); E (w−u)) if ci1 = e1, ci2 =
e2, . . . , ciw−u = ew−u . By Definition 1 and Proposition 1, it is easy to see that C is formed
by a generalized t-(n, w, λ, q − 1)-design if and only if there are exactly λ codewords in C
such that each of which covers (I (t); E (t)) for any (I (t); E (t)). Define

ξuv =
(q − 1)w−u

(
n

w − v

)

(
w

w − v

) =
(q − 1)w−u

(
n
w

)

(
n − w + v

v

) . (19)

Clearly, J (w−v) ⊆ {1, 2, . . . , n} has

(
n

w − v

)
choices, I (w−u) ⊆ J (w−v) has

(
w − v

w − u

)

choices for fixed J (w−v), and E (w−u) has (q −1)w−u choices. Since

(
w

w − v

) (
w − v

w − u

)
=

(
w

u

) (
u
v

)
, there is a total of

(
n

w − v

)(
w − v

w − u

)
(q − 1)w−u =

(
w

u

) (
u
v

)
ξuv (20)

different ways of choosing J (w−v), I (w−u) ⊆ J (w−v), and E (w−u).

Lemma 1 For a pair of integers (u, v), where 0 ≤ v ≤ u ≤ w,

∑

J (w−v)

∑

I (w−u)⊆J (w−v)

∑

E (w−u)

|C(J (w−v); I (w−u); E (w−u))| =
(

w

u

) (
u
v

)
M. (21)

Proof When u = v = w, the left-hand side of (21) becomes |C | and the conclusion foll-
ows. When v < u = w, the left-hand side of (21) becomes

∑
J (w−v) |C(J (w−v); ∅; ∅)| and

the conclusion follows by the fact that each codeword is counted

(
w

w − v

)
times. When
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v ≤ u < w, noting that

(
w

w − v

) (
w − v

w − u

)
=

(
w

u

) (
u
v

)
, the conclusion follows by the

fact that each codeword is counted

(
w

w − v

) (
w − v

w − u

)
times. �

Definition 2 For u = 1, 2, . . . , w and v = 0, 1, . . . , u, the quantities

Fuv = 1

M

∑

J (w−v)

∑

I (w−u)⊆J (w−v)

∑

E (w−u)

|C(J (w−v); I (w−u); E (w−u))|

· (|C(J (w−v); I (w−u); E (w−u))| − 1) (22)

are called q-binomial moments of a q-ary (n, M, w) code C .

By convention, let 00 = 1,

(
0
0

)
= 1;

(
n
j

)
= 0 for j < 0 or n < j ;

∑ j
k=i ak = 0 if i > j ;

Ai j = Fi j = 0 if i < j , and F00 = 0. In Definition 2 we call Fuv the q-binomial moments
of C since we have the following lemma.

Lemma 2

Fuv =
u∑

i=1

v∑

j=0

Ai j

(
w − i
w − u

) (
u − j
u − v

)
, 1 ≤ u ≤ w, 0 ≤ v ≤ u. (23)

In particular,

Fww = M − 1. (24)

Proof For a given codeword c = (c1, . . . , cn) ∈ C , form an (M −1)×
(

w

w − v

) (
w − v

w − u

)

matrix as follows. The rows are labelled by codewords different from c and the columns are
labelled by J (w−v) ⊆ supp(c) and I (w−u) ⊆ J (w−v). The entry in the row labelled by c′ and
the column labelled by (J (w−v); I (w−u)) is equal to one if

c′ ∈ C(J (w−v); I (w−u); ci1 , . . . , ciw−u )

and zero otherwise. There are exactly

|C(J (w−v); I (w−u); ci1 , . . . , ciw−u )| − 1

codewords in C(J (w−v); I (w−u); ci1 , . . . , ciw−u ) different from c. Hence, the column labelled
by (J (w−v); I (w−u)) has exactly that many ones.

On the other hand, for a codeword c′ ∈ C \ {c} such that e(c′, c) = w − i and f (c′, c) =
w − j , it is easy to see that the row labelled by c′ has exactly

(
w − i
w − u

)(
u − j
u − v

)
ones.

Summing the total number of ones in the matrix in two different ways depending on
whether rows or columns are considered first, we get

u∑

i=1

v∑

j=0

Ai j (c)
(

w − i
w − u

) (
u − j
u − v

)

=
∑

J (w−v)⊆supp(c)

∑

I (w−u)⊆J (w−v)

(|C(J (w−v); I (w−u); ci1 , . . . , ciw−u )| − 1).
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Averaging over all codewords c in C , the left-hand side is equal to

u∑

i=1

v∑

j=0

Ai j

(
w − i
w − u

) (
u − j
u − v

)
,

and the right-hand-side is equal to

1

M

∑

c∈C

∑

J (w−v)⊆supp(c)

∑

I (w−u)⊆J (w−v)

(|C(J (w−v); I (w−u); ci1 , . . . , ciw−u )| − 1)

= 1

M

∑

J (w−v)

∑

I (w−u)⊆J (w−v)

∑

E (w−u)

∑

c∈C(J (w−v);I (w−u);E (w−u))

(|C(J (w−v); I (w−u); ci1 , . . . , ciw−u )| − 1),

which equals Fuv by (22). In particular, when u = v = w, by (23) and (14),

Fww =
w∑

i=1

i∑

j=0

Ai j =
w∑

i=0

i∑

j=0

Ai j − A00 = M − 1.

�

Remark 1 For any 1 ≤ u ≤ w and 0 ≤ v ≤ u, it follows from Lemma 2 that Fuv = 0 if and
only if Ai j = 0 for any 1 ≤ i ≤ u and 0 ≤ j ≤ v. This is equivalent to the fact that Fu′v′ = 0
for any 1 ≤ u′ ≤ u and 0 ≤ v′ ≤ v. Moreover, d > u + v implies Fuv = 0, where d is the
minimum distance of C .

Remark 2 (i) For the case of w = n, C can be considered as a (q − 1)-ary code. By (11)
and (13), Ai j = 0 if j > 0. Hence, by Lemma 2 and (2), when w = n,

Fuv =
(

u
v

)
F ′

u, (25)

where F ′
u are the binomial moments of the (q − 1)-ary code C defined in (2).

(ii) For the case of q = 2, C is a binary constant weight code. By (11) and (13), Ai j = 0 if
j < i . Hence, by Lemma 2 and (8), when q = 2,

Fuv =
(

w − v

w − u

)
Fv, (26)

where Fv are the binomial moments of the binary constant weight code C defined in (8).

Lemma 3 For any 1 ≤ i ≤ w and 0 ≤ j ≤ i ,

Ai j =
i∑

u=1

j∑

v=0

Fuv

(
w − u
w − i

)(
u − v

u − j

)
(−1)i+ j−u−v. (27)
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Proof For any 1 ≤ i ′ ≤ w and 0 ≤ j ′ ≤ i ′,
i∑

u=i ′

j∑

v= j ′

(
w − i ′
w − i

) (
i − i ′
u − i ′

) (
u − j ′
u − j

) (
j − j ′
v − j ′

)
(−1)i+ j−u−v

=
i∑

u=i ′

(
w − i ′
w − i

) (
i − i ′
u − i ′

)
(−1)i−u ·

(
u − j ′
u − j

) j∑

v= j ′

(
j − j ′
v − j ′

)
(−1) j−v

=
i∑

u=i ′

(
w − i ′
w − i

) (
i − i ′
u − i ′

)
(−1)i−u · δ j j ′ = δi i ′δ j j ′ ,

where δxy = 1 if x = y and δxy = 0 otherwise. Hence, by Lemma 2,

i∑

u=1

j∑

v=0

Fuv

(
w − u
w − i

)(
u − v

u − j

)
(−1)i+ j−u−v

=
i∑

u=1

j∑

v=0

u∑

i ′=1

v∑

j ′=0

Ai ′ j ′
(

w − i ′
w − u

)(
u − j ′
u − v

) (
w − u
w − i

) (
u − v

u − j

)
(−1)i+ j−u−v

=
i∑

i ′=1

j∑

j ′=0

Ai ′ j ′
i∑

u=i ′

i ′∑

v= j ′

(
w − i ′
w − i

) (
i − i ′
u − i ′

) (
u − j ′
u − j

) (
j − j ′
v − j ′

)
(−1)i+ j−u−v

=
i∑

i ′=1

j∑

j ′=0

Ai ′ j ′δi i ′δ j j ′ = Ai j .

�
We need the following lemma [1] to establish our results.

Lemma 4 [1] Given t nonnegative integers T1, . . . , Tt that sum to T , then

t∑

l=1

Tl(Tl − 1) ≥ (�T/t	 − 1)(2T − t�T/t	), (28)

where equality holds if and only if 
T/t� ≤ Tl ≤ �T/t	 for all l = 1, 2, . . . , t .

Now we give a lower bound on the q-binomial moments of q-ary constant weight codes.

Theorem 1 Let C be a q-ary (n, M, w) code. Let (u, v) be a pair of integers, where 1 ≤
u ≤ w and 0 ≤ v ≤ u. Let Fuv be the q-binomial moments of C defined in (22) and (23).
Then

Fuv ≥ αuv �

(
w

u

) (
u
v

)

M

(⌈
M

ξuv

⌉
− 1

)(
2M − ξuv

⌈
M

ξuv

⌉)
, (29)

where ξuv is defined in (19). In a slightly weaker version,

Fuv ≥ βuv � max

{(
w

u

)(
u
v

) (
M

ξuv

− 1

)
, 0

}
. (30)

Moreover,
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(i) when M ≤ ξuv , Fuv = βuv if and only if Fuv = 0;

(ii) when M > ξuv , Fuv = βuv if and only if M/ξuv is an integer and |C(J (w−v); I (w−u);
E (w−u))| = M/ξuv for any J (w−v), I (w−u) ⊆ J (w−v), and E (w−u).

Proof Set T =
(

w

u

) (
u
v

)
M . By (20), there are totally t =

(
w

u

) (
u
v

)
ξuv different

ways of choosing J (w−v), I (w−u) ⊆ J (w−v), and E (w−u). We index the corresponding
C(J (w−v); I (w−u); E (w−u)) by l = 1, 2, . . . , t and set Tl = |C(J (w−v); I (w−u); E (w−u))|.
Then T/t = M/ξuv and

∑t
l=1 Tl = T by Lemma 1. Hence, (29) follows from (22) and

Lemma 4.
The case of M ≤ ξuv: It is easy to see that αuv = βuv = 0. Hence, (30) holds and (i) is

obvious.
The case of M > ξuv : Let M = aξuv + b, where a ≥ 1 and 0 ≤ b < ξuv . Clearly,

αuv = βuv if b = 0. On the other hand, if 0 < b < ξuv , then
⌈

M
ξuv

⌉
= a + 1. Since

0 < (ξuv − b)b ≤ ξ2
uv/4, we have

0 < αuv − βuv =
(

w

u

)(
u
v

)
(ξuv − b)b

(aξuv + b)ξuv

≤
(

w

u

) (
u
v

)
ξuv

4M
<

(
w

u

)(
u
v

)
/4.

Hence, αuv ≥ βuv , which implies (30), and αuv = βuv ⇐⇒ M/ξuv is an integer. Fur-
thermore, Fuv = βuv is equivalent to αuv = βuv and Fuv = αuv . Therefore, by Lemma 4,
Fuv = βuv if and only if M/ξuv is an integer and Tl = M/ξuv for all l = 1, 2, . . . , t . �

Remark 3 Let C be a q-ary (n, M) code. Then C can be considered as a (q +1)-ary (n, M, n)

code. Using Theorem 1 for a (q +1)-ary (n, M, n) code, and noting that ξuv = qn−u by (19),
and Fuv = (u

v

)
F ′

u by Remark 2, we have

F ′
u ≥ ηu �

(
w

u

)

M

(⌈
M

qn−u

⌉
− 1

)(
2M − qn−u

⌈
M

qn−u

⌉)
, (31)

F ′
u ≥ θu � max

{(
w

u

) (
M

qn−u
− 1

)
, 0

}
. (32)

These are just the Abdel-Ghaffar bounds (see [1,Lemma 4] and [2,Theorem 9]) on the bino-
mial moments of q-ary codes.

Remark 4 Let C be a binary (n, M, w) code. By Theorem 1, and noting that when q = 2,

ξuv =
(

n
w

) / (
n − w + v

v

)
by (19), and Fuv =

(
w − v

w − u

)
Fv by Remark 2, we have

Fv ≥ ρv�

(
w

v

)

M

⎛

⎜⎜⎝

⎡

⎢⎢⎢⎢⎢

M

(
n−w+v

v

)

(
n
w

)

⎤

⎥⎥⎥⎥⎥
−1

⎞

⎟⎟⎠

⎛

⎜⎜⎝2M−

(
n
w

)

(
n − w + v

v

)

⎡

⎢⎢⎢⎢⎢

M

(
n − w + v

v

)

(
n
w

)

⎤

⎥⎥⎥⎥⎥

⎞

⎟⎟⎠ ,

(33)

Fv ≥ τv � max

⎧
⎪⎪⎨

⎪⎪⎩

(
w

v

)
⎛

⎜⎜⎝

M

(
n − w + v

v

)

(
n
w

) − 1

⎞

⎟⎟⎠ , 0

⎫
⎪⎪⎬

⎪⎪⎭
. (34)
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Bound (34) is just the Xia-Fu-Ling bound (see [20,Proof of Theorem 1]) on the binomial

moments of binary constant weight codes. By the proof of Theorem 1, if M

(
n − w + v

v

)/

(
n
w

)
≤ 1 or M

(
n − w + v

v

)/(
n
w

)
is an integer, ρv = τv ; otherwise, 0 < ρv −

τv <

(
w

v

)
/4. Hence, (33) slightly improves on (34) if M

(
n − w + v

v

)/(
n
w

)
> 1 and

M

(
n − w + v

v

)/(
n
w

)
is not an integer.

In order to further characterize the condition for which the bound (30) in Theorem 1 is
tight, we introduce a new combinatorial structure called generalized (s, t)-design over Vq .
With the same notations as in Sect. 2.2, let X be a set of nk points, where k = q − 1, and
G = {G1, G2, . . . , Gn} a partition of X , where Gi are groups and |Gi | = k, and B a finite
family of blocks which are w-element transverses of G. For a transverse S, the support of
S, say supp(S), is defined as the set of index i ∈ {1, 2, . . . , n} such that S meets Gi in
exactly one point. For two fixed integers s, t where 1 ≤ s ≤ t ≤ w, let S be an s-element
transverse, and L(t) be a t-subset of {1, 2, . . . , n} such that supp(S) ⊆ L(t) ⊆ {1, 2, . . . , n}.
The restriction of B to L(t), say B(L(t)), is defined as the set of blocks such that each block
meets Gi in exactly one point for any i ∈ L(t).

Definition 3 The triple (X, G, B) is called a generalized (s, t)-(n, w, λ, k)-design, or briefly
a generalized (s, t)-design, if any s-element transverse of G, say S, is contained in exactly λ

blocks in B(L(t)) for any t-subset L(t) of {1, 2, . . . , n} such that L(t) ⊇ supp(S).

Clearly, a generalized (s, t)-design has M = λ(q − 1)s
(

n
t

) / (
w

t

)
blocks. Like Prop-

osition 1, we can also form a q-ary (n, M, w) code from the generalized (s, t)-design.

Proposition 2 For any two pairs of integers (s, t) and (s′, t ′) such that 1 ≤ s′ ≤ s and
s′ ≤ t ′ ≤ t , a generalized (s, t)-(n, w, λ, k)-design is also a generalized (s′, t ′)-(n, w, λ′, k)-

design with λ′ = λ(q − 1)s−s′
(

n − t ′
t − t ′

) / (
w − t ′
t − t ′

)
.

Proof Suppose (X, G, B) is a generalized (s, t)-(n, w, λ, k)-design. The proof is broken into
two parts.

First, we show that for any s′ where 1 ≤ s′ ≤ s, (X, G, B) is a generalized (s′, t)-design.
Given any s′-element transverse S and any t-subset L(t) of {1, 2, . . . , n} such that L(t) ⊇
supp(S). Since (X, G, B) is a generalized (s, t)-design, it is easy to see that there are λ(q −
1)s−s′

blocks in B(L(t)) which contain S. This implies that (X, G, B) is a generalized (s′, t)-
(n, w, λ1, k)-design with λ1 = λ(q − 1)s−s′

.
Then, we show that for any t ′ where s′ ≤ t ′ ≤ t, (X, G, B) is a generalized (s′, t ′)-

design. Given any s′-element transverse S and any t ′-subset L(t ′) of {1, 2, . . . , n} such that

L(t ′) ⊇ supp(S), there are

(
n − t ′
t − t ′

)
choices of L(t) such that L(t) ⊇ L(t ′). Since (X, G, B)

is a generalized (s′, t)-design, it is easy to see that there are λ1

(
n − t ′
t − t ′

) / (
w − t ′
t − t

)

blocks in B(L(t ′)) which contain S since there are

(
w − t ′
t − t ′

)
repetitions for each desirable
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block. This implies that (X, G, B) is a generalized (s′, t)-(n, w, λ′, k)-design with λ′ =
λ1

(
n − t ′
t − t ′

) / (
w − t ′
t − t ′

)
.

Combining these assertions, the proposition follows. �

By Proposition 2, the next result is obvious.

Proposition 3 A necessary condition for the existence of a generalized (s, t)-design is that

for each pair (s′, t ′) where 1 ≤ s′ ≤ s and s′ ≤ t ′ ≤ t , λ(q − 1)s−s′
(

n − t ′
t − t ′

) / (
w − t ′
t − t ′

)

is an integer.

It is easy to see that a generalized t-design is equivalent to a generalized (t, t)-design.
Hence, Proposition 2 implies the following results.

Proposition 4 For 1 ≤ s ≤ t ≤ w, a generalized (s, t)-design is a generalized s-design and
a generalized t-design is a generalized (s, t)-design.

Combining Theorem 1 and the definition of generalized (s, t)-designs, we have:

Corollary 1 For any 1 ≤ u ≤ w and 0 ≤ v ≤ u, Fuv = βuv if and only if

(i) when M ≤ ξuv , Ai j = 0 for any 1 ≤ i ≤ u, 0 ≤ j ≤ v;

(ii) when M > ξuv , C is formed by a generalized (w − u, w − v)-design.

Proof (i) follows from Theorem 1 (i) and Remark 1.
Below, we assume that M > ξuv . By the construction procedure of a q-ary (n, M, w)

code C from a generalized (w − u, w − v)-design, we know that

(a1) a (w − u)-transverse S corresponds to a pair of sets (I (w−u); E (w−u)) such that supp
(S) = I (w−u);

(a2) L(w−v) = J (w−v) and L(w−v) ⊇ supp(S) ⇔ I (w−u) ⊆ J (w−v);
(a3) the codewords in C(J (w−v); I (w−u); E (w−u)) correspond to the blocks in B(L(w−v))

which contain S.

Suppose that Fuv = βuv . By Theorem 1 (ii), M/ξuv is an integer. For a fixed (w − u)-
transverse S and any (w − v)-subset L(w−v) of {1, 2, . . . , n} such that L(w−v) ⊇ supp(S),
by (a1) and (a2), S and L(w−v) correspond to a triple (J (w−v), I (w−u), E (w−u)), where
I (w−u) ⊆ J (w−v). By (a3) and Theorem 1 (ii), the number of blocks in B(L(w−v)) which
contain S is equal to |C(J (w−v); I (w−u); E (w−u))| = M/ξuv . In other words, C is formed
by a generalized (w − u, w − v)-design with λ = M/ξuv .

On the other hand, suppose C is formed by a generalized (w−u, w−v)-design. It is easy
to check that a generalized (w − u, w − v)-design with M blocks must satisfy λ = M/ξuv ,
which implies that M/ξuv should be an integer. Moreover, for any J (w−v), I (w−u) ⊆ J (w−v),
and E (w−u), by (a1), (a2), and the definition of generalized (w − u, w − v)-designs, the
(w − u)-transverse S which corresponds to (I (w−u); E (w−u)) is contained in exactly λ =
M/ξuv blocks in B(L(w−v)) since L(w−v) = J (w−v) ⊇ I (w−u) = supp(S). Furthermore,
by (a3), we have |C(J (w−v); I (w−u); E (w−u))| = λ = M/ξuv . Hence, by Theorem 1 (ii),
Fuv = βuv . �

By Corollary 1 and Proposition 4, the next corollary follows.
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Corollary 2 Suppose M > ξuv .

(i) If C is formed by a generalized (w − v)-design, then Fuv = βuv .

(ii) If Fuv = βuv , then C is formed by a generalized (w − u)-design.

4 Lower bounds on Pue(C,p)

Applications of q-binomial moments Fuv to error detection are discussed in this section. We
obtain an alternative expression in terms of Fuv for the undetected error probability Pue(C, p)

of a q-ary constant weight code C . Then, we derive two lower bounds on Pue(C, p) by
employing the two lower bounds on Fuv in the last section. These lower bounds on Pue(C, p)

extend and unify the related results of Abdel-Ghaffar for q-ary codes and Xia-Fu-Ling for
binary constant weight codes. Finally, some q-ary constant weight codes formed by gener-
alized t-designs are found to achieve one of the lower bounds.

Clearly, by (4) and (15), we can write Pue(C, p) in terms of Ai j as follows:

Pue(C, p) =
w∑

i=1

i∑

j=0

Ai j

(
p

q − 1

)i+ j

(1 − p)n−i− j . (35)

Note that

Pue(C, 0) = 0, Pue

(
C,

q − 1

q

)
= M − 1

qn
. (36)

The next lemma shows that Pue(C, p) can be alternatively expressed in terms of Fuv .

Lemma 5 Let C be a q-ary (n, M, w) code. Let Fuv be the q-binomial moments of C defined
in (22) and (23). Then

Pue(C, p) =
w∑

u=1

u∑

v=0

Fuv

(
1 − qp

q − 1

)w−v (
p

q − 1

)u+v

(1 − p)n−w−u . (37)

Proof It is easy to see that for 1 ≤ u ≤ w and 0 ≤ v ≤ u,

w∑

i=u

u∑

j=v

(
w − u
w − i

)(
u − v

u − j

)
(−1)i+ j−u−v

(
p

q − 1

)i+ j

(1 − p)n−i− j

=
w∑

i=u

(
w − u
w − i

)
(−1)i−u

u−v∑

j=0

(
u − v

u − v − j

)
(−1) j

(
p

q − 1

)i+v+ j

(1 − p)n−i−v− j

=
w∑

i=u

(
w − u
w − i

)
(−1)i−u

(
p

q − 1

)i+v

(1 − p)n−i−u
(

1 − qp

q − 1

)u−v

=
(

1 − qp

q − 1

)w−v (
p

q − 1

)u+v

(1 − p)n−w−u . (38)

Hence, by (35), (38) and Lemma 3,
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Pue(C, p) =
w∑

i=1

i∑

j=0

Ai j

(
p

q − 1

)i+ j

(1 − p)n−i− j

=
w∑

u=1

u∑

v=0

Fuv

w∑

i=u

u∑

j=v

(
w − u
w − i

) (
u − v

u − j

)
(−1)i+ j−u−v

(
p

q − 1

)i+ j

(1 − p)n−i− j

=
w∑

u=1

u∑

v=0

Fuv

(
1 − qp

q − 1

)w−v (
p

q − 1

)u+v

(1 − p)n−w−u .

�

Remark 5 (i) Let C be a q-ary (n, M) code. Then C can be considered as a (q + 1)-ary
(n, M, n) code. Note that C is used for error detection on a q-ary symmetric channel with
symbol error probability p (not a (q + 1)-ary symmetric channel) since the codewords
of C have no zero components. It is easy to see from Lemma 5 and Remark 2(i) that (5)
follows directly from (37).

(ii) Let C be a binary (n, M, w) code. It is easy to see from Lemma 5 and Remark 2(ii) that
(10) follows directly from (37).

Theorem 2 Let C be a q-ary (n, M, w) code. Then

Pue(C, p)≥
w∑

u=1

u∑

v=0

αuv

(
1 − qp

q − 1

)w−v( p

q − 1

)u+v

(1 − p)n−w−u (39)

≥
w∑

u=1

u∑

v=0

βuv

(
1 − qp

q − 1

)w−v( p

q − 1

)u+v

(1 − p)n−w−u, (40)

where αuv and βuv are defined in Theorem 1. Moreover, (i) equalities in (39) and (40) hold
for p = 0, (q − 1)/q respectively; (ii) equality in (39) holds for a fixed 0 < p < (q − 1)/q
if and only if Fuv = αuv for any 1 ≤ u ≤ w and 0 ≤ v ≤ u; (iii) equality in (40) holds for a
fixed 0 < p < (q − 1)/q if and only if Fuv = βuv for any 1 ≤ u ≤ w and 0 ≤ v ≤ u.

Proof (39) and (40) follow from Theorem 1 and Lemma 5. By (36) and (24), it is easy to see
that equalities in (39) and (40) hold for p = 0, (q − 1)/q . For a fixed 0 < p < (q − 1)/q , it
is obvious that (ii) and (iii) follow from Theorem 1 and Lemma 5. �

Remark 6 Let C be a q-ary (n, M) code used for error detection on a q-ary symmetric chan-
nel with symbol error probability p. From (5), (31) and (32), Abdel-Ghaffar [1,Theorem 2]
obtained the following lower bounds on the undetected error probability Pue(C, p):

Pue(C, p) ≥
n∑

u=1

ηu

(
1 − qp

q − 1

)n−u (
p

q − 1

)u

(41)

≥
n∑

u=1

θu

(
1 − qp

q − 1

)n−u (
p

q − 1

)u

, (42)

where ηu and θu are defined in (31) and (32), respectively. It is easy to see from Remark 5(i),
Remark 3, and Theorem 2 that the lower bounds (41) and (42) follow directly from (39) and
(40), respectively.
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Remark 7 Let C be a binary (n, M, w) code. By Remark 4 and Theorem 2, the lower bounds
(39) and (40) reduce to the following bounds:

Pue(C, p) ≥
w∑

v=1

ρv(1 − 2p)w−v p2v(1 − p)n−2w (43)

≥
w∑

v=1

τv(1 − 2p)w−v p2v(1 − p)n−2w (44)

where ρv and τv are defined in (33) and (34), respectively. The lower bound (44) is just
the Xia-Fu-Ling bound [20,Theorem 1] which was obtained directly from (10) and (34). By
Remark 4, (43) slightly improves on (44). Note that we can also obtain (43) directly from
(10) and (33).

It is known [1,2] that the maximum-distance-separable codes achieve the lower bound
(42). It was shown [20] that the lower bound (44) is tight if and only if the binary constant
weight codes are generated from certain t-designs. Now, we discuss the q-ary constant weight
codes which achieve the lower bound (40) in Theorem 2 for the case of w �= n and q > 2.

Proposition 5 Let q ≥ 3 be a power of prime and C be the q-ary constant weight code
formed by all the weight-3 codewords of a q-ary Hamming code with length q + 1. Then C
achieves the lower bound (40) in Theorem 2.

Proof Let H(m, q) denote a [(qm −1)/(q−1), (qm −1)/(q−1)−m, 3] Hamming code over
GF(q). Let m = 2 and C be the set of weight-3 codewords of H(2, q). It is known [7] that
C is formed by GS(2, 3, q + 1, q − 1) and M = (q + 1)q(q − 1)2/6. Since q ≥ 3, it is easy
to check that M ≤ ξuv if and only if (u, v) = (1, 0), (1, 1), (2, 0), or M > ξuv if and only
if (u, v) = (3, 0), (2, 1), (3, 1), (3, 2), (3, 3). Since C is formed by GS(2, 3, q + 1, q − 1),
the minimum distance of C satisfies d = 3, which implies that A10 = A11 = A20 = 0.
Moreover, by Corollary 2 and the fact that C is formed by a generalized 2-design, we have
w − v ≤ 2 and Fuv = βuv for (u, v) = (2, 1), (3, 1), (3, 2), (3, 3). Hence, by Theorem 2
and Corollary 1 (i), it is enough to show F30 = β30, or A30 = q − 2. For a fixed codeword
c ∈ C , it is easy to see that A30 = A30(c) = |{µc : µ ∈ GF(q)\{0, 1}}| = q − 2, which
completes the proof. �

Proposition 6 Let C be the q-ary (n, M, 3) code formed by GS(2, 3, n, q − 1). If n ≥
(q − 1)2 + 2, then C achieves the lower bound (40) in Theorem 2 if and only if A30 = 0, i.e.,
there are no pairs of codewords in C which have the same supports.

Proof Clearly, M = (q − 1)2n(n − 1)/6 and ξ30 = n(n − 1)(n − 2)/6, which implies that
M ≤ ξ30 if and only if n ≥ (q−1)2+2. Hence, for n ≥ (q−1)2+2 and 1 ≤ u ≤ 3, 0 ≤ v ≤ u,
it is easy to check that M ≤ ξuv if and only if (u, v) = (1, 0), (1, 1), (2, 0), (3, 0), or M > ξuv

if and only if (u, v) = (2, 1), (3, 1), (3, 2), (3, 3). Since C is formed by GS(2, 3, n, q − 1),
the minimum distance of C satisfies d = 3, which implies that A10 = A11 = A20 = 0.
Moreover, by Corollary 2 and the fact that C is formed by a generalized 2-design, we have
w − v ≤ 2 and Fuv = βuv for (u, v) = (2, 1), (3, 1), (3, 2), (3, 3). Therefore, by Theorem
2 and Corollary 1 (i), A30 = 0 if and only if C achieves the lower bound (40). �

By Proposition 6, it is easy to check that the ternary constant weight codes formed by
GS(2, 3, 7, 2) and GS(2, 3, 9, 2) in [7,Appendix] achieve the lower bound (40) in Theorem 2.

Using the same arguments in the proof of Proposition 6, we have the following
propositions.
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Proposition 7 Let C be the q-ary (n, M, 4) code formed by GS(2, 4, n, q − 1). If n ≥
2(q − 1)2 + 2, then C achieves the lower bound (40) of Theorem 2 if and only if A41 = 0.

Proposition 8 Let C be the q-ary (n, M, 4) code formed by GS(3, 4, n, q − 1). If n ≥
(q−1)3+3, then C achieves the lower bound (40) of Theorem 2 if and only if A30 = A40 = 0,
i.e., there are no pairs of codewords in C which have the same supports.

5 Conclusions

In this paper, we introduced the q-binomial moments for q-ary constant weight codes. A
lower bound on the q-binomial moments for q-ary constant weight codes was derived. The
generalized (s, t)-designs were introduced to characterize the sufficient and necessary con-
ditions for these bounds to be tight. As applications to error detection, we derived a new
formula for the undetected error probability of q-ary constant weight codes. A lower bound
on the undetected error probability of q-ary constant weight codes was obtained. This bound
unified and extended the Abdel-Ghaffar bound for q-ary codes and the Xia-Fu-Ling bound for
binary constant weight codes. Moreover, we obtained a lower bound on the undetected error
probability of binary constant weight codes which slightly improves on the Xia-Fu-Ling
bound. Finally, we showed that these bounds could be achieved by some q-ary constant
weight codes.
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