
Des. Codes Cryptogr. (2007) 45:335–346
DOI 10.1007/s10623-007-9127-9

On binary self-dual codes of lengths 60, 62, 64 and 66
having an automorphism of order 9

Radka Russeva · Nikolay Yankov

Received: 4 March 2006 / Revised: 9 August 2007 / Accepted: 23 August 2007 /
Published online: 26 September 2007
© Springer Science+Business Media, LLC 2007

Abstract A method for constructing binary self-dual codes having an automorphism of
order p2 for an odd prime p is presented in (S. Bouyuklieva et al. IEEE. Trans. Inform. The-
ory, 51, 3678–3686, 2005). Using this method, we investigate the optimal self-dual codes of
lengths 60 ≤ n ≤ 66 having an automorphism of order 9 with six 9-cycles, t cycles of length 3
and f fixed points. We classify all self-dual [60,30,12] and [62,31,12] codes possessing such
an automorphism, and we construct many doubly-even [64,32,12] and singly-even [66,33,12]
codes. Some of the constructed codes of lengths 62 and 66 are with weight enumerators for
which the existence of codes was not known until now.
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1 Introduction

A linear [n, k] code C is a k-dimensional subspace of the vector space F
n
q , where Fq is the

finite field of q elements. The elements of C are called codewords, and the (Hamming) weight
of a codeword is the number of its non-zero coordinates. The minimum weight d of C is the
smallest weight among all non-zero codewords of C , and C is called an [n, k, d] code. A
matrix whose rows form a basis of C is called a generator matrix of this code. The weight
enumerator W (y) of a code C is given by W (y) = ∑n

i=0 Ai yi where Ai is the number of
codewords of weight i in C . Unless otherwise stated, the inner product we use will be the
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ordinary inner product given by (u, v) = ∑n
i=1 uivi computed in Fq , where u, v ∈ F

n
q . The

dual code of C is C⊥ = {u ∈ F
n
q : (u, v) = 0 for all v ∈ C}. C⊥ is a linear [n, n − k] code.

If C ⊆ C⊥, C is termed self-orthogonal, and if C = C⊥, C is self-dual. If C is self-dual,
then k = 1

2 n.
A doubly-even code is a binary code for which all weights are divisible by four. A self-

dual code with some codeword of weight not divisible by four is called singly-even. Self-dual
doubly-even codes exist if and only if n is a multiple of eight. The codes with the largest
minimum weight among all self-dual codes of given length are named optimal self-dual
codes.

Two binary codes are equivalent if one can be obtained from the other by a permutation of
coordinates. The permutation σ ∈ Sn is an automorphism of the binary code C if C = σ(C).
The set of all automorphisms of C forms the automorphism group Aut (C) of C .

Two codes over Fq are (monomially) equivalent if one can be obtained from the other by
a coordinate permutation followed by multiplying some (or no) coordinates by a nonzero
element of Fq .

Huffman and Yorgov (cf. [13,19,20]) developed a method for constructing binary self-dual
codes with an automorphism of odd prime order. Dontcheva, van Zanten and Dodunekov
extended the method for automorphisms of odd composite order [6]. A method for con-
structing binary self-dual codes having an automorphism of order p2 for an odd prime p
is presented in [3], and all self-dual optimal codes possessing an automorphism of order 9
with six 9-cycles without cycles of length 3 are obtained there. In this work we continue the
investigations for binary optimal self-dual codes with an automorphism of order 9 with six
9-cycles and cycles of length 3. We classify all self-dual [60,30,12] and [62,32,12] codes
possessing such an automorphism. We construct many doubly-even [64,32,12] and singly-
even [66,33,12] codes. Some of the constructed codes of lengths 62 and 66 have weight
enumerators for which the existence of codes was not known before. We give the description
of the method used in Sect. 2. The authors suggest the reader consult [3] for more details.

2 Construction method

We will use the notations from [3]. Let C be a binary self-dual code of length n, and σ be
an automorphism of C of type 9 − (c, t, f ), i.e. σ has c independent 9-cycles, t independent
cycles of length 3 and f fixed points. Obviously, n = 9c + 3t + f . Then σ 3 is an automor-
phism of type 3 − (3c, 3t + f ), and the parameter c must be even. Without loss of generality
we can assume that

σ = �1 . . . �c�c+1 . . . �c+t�c+t+1 . . . �c+t+ f (1)

where �i = (9i − 8, . . . , 9i), i = 1, . . . , c are the cycles of length 9, �c+i = (9c + 3(i −
1)+1, . . . , 9c+3i), i = 1, . . . , t are the cycles of length 3, and �c+t+i = (9c+3t + i), i =
1, . . . , f are the fixed points.

Let Fσ (C) = {v ∈ C : vσ = v} and Eσ (C) = {v ∈ C : wt (v|�i ) ≡ 0(mod 2), i =
1, . . . , c + t + f }, where v|�i is the restriction of v on �i . Then C = Fσ (C) ⊕ Eσ (C).

Each vector v ∈ Fσ (C) is constant on any cycle of σ . Let π : Fσ (C) → F
c+t+ f
2 be the

projection map where if v ∈ Fσ (C), (vπ)i = v j for some j ∈ �i , i = 1, 2, . . . , c + t + f .
It is known that the “contracted” code Cπ = π(Fσ (C)) is a binary self-dual code of length
c + t + f . The code Fσ (C) is uniquely determined by the code Cπ .
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Binary self-dual codes having an automorphism of order 9 337

Denote by Eσ (C)∗ the code Eσ (C) with the last f coordinates deleted. So Eσ (C)∗
is a binary self-orthogonal [9c + 3t, 4c + t] code. For v ∈ Eσ (C)∗ we identify v|�i =
(v0, v1, · · · , v8) with the polynomial v0 + v1x + · · · + v8x8 from T for i = 1, . . . , c, and
v|�i = (v0, v1, v2) with the polynomial v0 + v1x + v2x2 from P for i = c + 1, . . . , c + t ,
where T and P are the sets of even-weight polynomials in F2[x]/(x9−1) and F2[x]/(x3−1),
respectively. Thus we obtain the map φ : Eσ (C)∗ → T c × P t .

Definition 1 [3] A linear code C ⊂ T c × P t is a subset of T c × P t such that v + w ∈
C,∀ v,w ∈ C and xv ∈ C,∀ v ∈ C.

Then Cφ = φ(Eσ (C)∗) is a linear code in T c ×P t . Following [15] we define Hermitian inner
products over T and P as 〈v,w〉 = ∑c

i=1 vi (x)wi (x−1) = ∑c
i=1 vi (x)wi (x8), v,w ∈ T c

and 〈v′, w′〉 = ∑t
i=1 v′

i (x)w′
i (x−1) = ∑t

i=1 v′
i (x)w′

i (x8), v′, w′ ∈ P t . Using these two
inner products we can define the inner product in T c × P t in the following way:

〈(v1, v2), (w1, w2)〉 = 〈v1, w1〉 + (x6 + x3 + 1)〈v2, w2〉 (2)

for all vectors v1, w1 ∈ T c and v2, w2 ∈ P t . If C is a linear code in T c × P t we define its
dual code as the set C⊥ of all vectors w ∈ T c ×P t such that 〈v,w〉 = 0 for all vectors v ∈ C.
It is easy to prove that the dual of a linear code in T c × P t is linear, too. If C coincides with
its dual code, it is called self-dual. The next theorem is the main tool in our investigation,
and it is a direct consequence of Theorem 1 in [3].

Theorem 1 The binary code C having an automorphism σ defined in (1) is self-dual iff Cπ

is a binary self-dual code and Cφ = φ(Eσ (C)∗) is a self-dual code in T c × P t with respect
to the inner product (2).

As 2 is a primitive root modulo 9, the factorization of the polynomial x9 − 1 into irreducible
factors over F2 is given by x9 − 1 = (x − 1)(x2 + x + 1)(x6 + x3 + 1). Then P is a field
with four elements, and T = I1 ⊕ I2, where I1 and I2 are the cyclic codes with parity check
polynomials x2 + x +1 and x6 + x3 +1, respectively. Hence I1 ∼= G F(4) and I2 ∼= G F(26),
and for every element a(x) ∈ T , we have a = a1(x) + a2(x) where a1 ∈ I1, a2 ∈ I2.

Let A be the largest subcode of Eσ (C)∗ which is zero on the last 3t coordinates corre-
sponding to the cycles of length 3, and let B be the largest subcode of Eσ (C)∗ which is
zero on the first 9c coordinates corresponding to the 9-cycles. Denote by A∗ the code A with
the last 3t coordinates deleted, and by B∗ the code B with the first 9c coordinates deleted.
Then A∗ is a binary linear code of length 9c having an automorphism of order 9 with c inde-
pendent 9-cycles. Then M = φ(A∗) = M1 ⊕ M2, where M j = {u ∈ φ(A∗)|ui ∈ I j , i =
1, . . . , c}, j = 1, 2 is a linear code over I j . The code Bφ = φ(B∗) is a linear code over
P of length t and dimension kt . So we can consider a generator matrix for Cφ in the form

Gφ =

⎛

⎜
⎜
⎝

genI1 M1 0
genI2 M2 0

0 genP Bφ

Dc Dt

⎞

⎟
⎟
⎠ and by [3] the following theorem holds:

Theorem 2 If C is a binary self-dual [n, n
2 , d] code with automorphism of type 9− (c, t, f ).

Then:

(1) M2 is a self-dual [c, c
2 ] code over I2.

(2) dim I1 M1 = c−t
2 + kt and rank(Dc) = rank(Dt ) = t − 2kt .

(3) The rows of genI1 M1 and Dc generate the code M⊥
1 and the rows of gen P Bφ and Dt

generate the code B⊥
φ .
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As c is even, so are the parameters t and f = n − 9c − 3t . All optimal self-dual codes with
an automorphism of type 9 − (c, t, f ) for c = 2, 4 and for c = 6, t = 0 are constructed in
[2] and [3]. In this work we continue the investigations for c = 6 and t �= 0.

The following theorem is a particular case of the results in [[3], Theorem 5]; here n(k, d)

is the minimum length n for which a binary linear [n, k, d] code exists.

Theorem 3 If C is a binary self-dual [n, n
2 , d] code with automorphism of type 9 − (6, t, f )

then we have the following inequalities:

(1) 54 ≥ n(18, d).
(2) If 3t + f > 18, the following inequality holds: 3t + f ≥ n(

3t+ f
2 − 9, d).

(3) If f > 6 + t , the following inequality holds: f ≥ n(
f −t
2 − 3, d).

3 Self-dual codes with an automorphism of order 9 with c = 6

As described in Sect. 2, T = I1 ⊕ I2. I1 = {0, xse1|s = 0, 1, 2} is a field of four elements
with identity e1 = x8 + x7 + x5 + x4 + x2 + x , and I2 is a field of 26 elements with
identity e2 = x6 + x3. The element α = (x + 1)e2 is a primitive element of I2. The element
δ = α9 = x2 + x4 + x5 + x7 has multiplicative order 7 in I2 and I2 = {0, xsδk | for 0 ≤ s ≤ 8
and 0 ≤ k ≤ 6}.

Let C be a binary optimal self-dual [n, k, d] code having an automorphism σ of order 9
defined in (1) with six independent 9-cycles, t �= 0 independent 3-cycles and f fixed points.
Hence n ≥ 60 and so d ≥ 12. Then Cφ = M1 ⊕ M2 where M2 is a Hermitian self-dual [6, 3]
code over the field I2.

To actually construct a generator matrix of the code C we use four matrices: gen Cπ ,
genI2 M2, S = (

genI1 M1/D6
)

and Dt . To narrow our calculations we use the following
transformations which preserve the decomposition and send the code C to an equivalent one:

(i) a permutation of the last f fixed coordinates.
(ii) a permutation of the t 3-cycles coordinates.

(iii) a permutation of the six 9-cycles coordinates.
(iv) a substitution x → x2 in Cφ .
(v) a cyclic shift to each 9-cycle independently. This action preserves genCπ , and it is equiv-

alent to multiplication of the coordinates of genI2 M2 and S by xk for k = 0, 1, . . . , 8
and by xk for k = 0, 1, 2, respectively.

(vi) a cyclic shift to each 3-cycle independently. This action also preserves gen Cπ .

There exist four monomially nonequivalent possibilities for M2 with generator matrices

L1 =
⎛

⎝
e2 0 0 δ δ3 0
0 e2 0 δ2 e2 δ2

0 0 e2 δ5 δ3 δ6

⎞

⎠ , L2 =
⎛

⎝
e2 0 0 e2 δ δ

0 e2 0 δ2 α2 α10

0 0 e2 δ2 α14 α39

⎞

⎠ ,

L3 =
⎛

⎝
e2 0 0 e2 δ δ

0 e2 0 δ3 α12 α38

0 0 e2 δ3 α50 α46

⎞

⎠ and L4 =
⎛

⎝
e2 0 0 e2 δ δ

0 e2 0 δ5 e2 δ5

0 0 e2 δ5 δ δ2

⎞

⎠ .

The code φ−1(M2) is a linear [54, 18, 12] code at each one of these possibilities. Hence the
minimum weight of the code is 12 and 60 ≤ n ≤ 68. So the following lemma holds:

Lemma 1 The minimum weight of a binary self-dual optimal [n, n
2 ] code having an auto-

morphism of type 9 − (6, t, f ) is 12 and 60 ≤ n ≤ 68. The possibilities for the parameters
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Binary self-dual codes having an automorphism of order 9 339

t and f are either: (1) t = 2, f = 0 or (2) t = 2, f = 2 or (3) t = 2, f = 4 or (4)

t = 4, f = 0 or (5) t = 4, f = 2.

In this work we investigate optimal self-dual codes of lengths 60 ≤ n ≤ 66 i.e. all cases in
Lemma 1 except case 5). As the parameter t is at most 4, kt = dim Bφ = 0, and we can take
Dt to be the identity matrix over the field P .

We can fix genI2 M2 = Li , for i = 1, . . . , 4 and Dt . First we determine all possibilites

for the matrix H =
(

gen Cπ

genI2 M2 0

)

. After that we add the matrices S and Dt and check the

constructed codes for equivalence, using the program Q-extension [1].

3.1 t = 2

In our construction, D2 =
(

e3 0
0 e3

)

where e3 = x +x2 is the identity element of P . Since the

minimum weight of C is 12, M1 is a [4, 2, 4] self-orthogonal code over the field I1. Applying
the orthogonal condition (2) and row reducing, we obtain a unique possibility for the matrix
S up to a permutation of the coordinates followed by multiplying the coordinates by xk for
k = 0, 1, 2, and it is

S =

⎛

⎜
⎜
⎜
⎝

e1 0 e1 e1 e1 0
0 e1 0 xe1 xe1 e1

0 0 e1 e1 0 x2e1

0 0 e1 0 e1 x2e1

⎞

⎟
⎟
⎟
⎠

. (3)

3.1.1 f = 0, [60, 30, 12] codes

The possible weight enumerators were derived in [4] and [8]:

W60,1 = 1 + (2555 + 64β)y12 + (33600 − 384β)y14 + · · ·
and

W60,2 = 1 + 3451y12 + 24128y14 + 336081y16 + · · · ,

where β is an integer with 0 ≤ β ≤ 10. An optimal self-dual code with weight enumerator
W60,2 was constructed in [4]. For weight enumerators of type W60,1, self-dual codes were
constructed with β = 0, 1, 7 and 10 (see [3,5,11,16]).

In this case Cπ is a binary [8,4] self-dual code, equivalent either to C4
2 or to the

extended Hamming code H8. When Cπ ≈ C4
2 , we obtain exactly five nonequivalent self-dual

[60, 30, 12] codes with weight enumerators W60,1 for β = 0. All of them have automorphism
group of order 18. When Cπ ≈ H8, we construct exactly three nonequivalent self-dual
[60, 30, 12] codes with weight enumerators W60,1 for β = 1 and 8 codes for β = 10.
These codes have automorphism groups of orders either 9, 18 or 54. The following theorem
summarizes these results:

Theorem 4 There exist exactly 16 nonequivalent binary self-dual [60, 30, 12] codes having
an automorphism of order 9 with 6 9-cycles and 2 3-cycles. All of them have weight enumer-
ator W60,1 for β = 0, 1, and 10.

The first known self-dual [60, 30, 12] code with weight enumerator W60,1 for β = 1 has
been constructed in [3] via an automorphism of type 9-(6,0,6), and it is equivalent to one of
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Table 1 New self-dual [60, 30, 12] codes with weight enumerators W60,1 for β = 1

genM2 S Cπ |Aut |

L2

⎛

⎜
⎜
⎝

e1 0 0 x2e1 xe1 xe1
0 e1 xe1 e1 x2e1 0
0 0 e1 x2e1 0 xe1
0 0 e1 0 xe1 xe1

⎞

⎟
⎟
⎠

⎛

⎜
⎝

1 1 0 1 1 0| 0 0
1 0 1 1 0 1| 0 0
1 1 1 0 0 0| 1 0
0 0 0 1 1 1| 0 1

⎞

⎟
⎠ 18

L4

⎛

⎜
⎜
⎝

e1 0 e1 xe1 x2e1 0
0 xe1 xe1 x2e1 0 e1
0 0 e1 0 x2e1 x2e1
0 0 0 xe1 x2e1 x2e1

⎞

⎟
⎟
⎠

⎛

⎜
⎝

1 1 1 0 1 0 | 0 0
1 0 1 1 0 1 | 0 0
1 1 0 1 0 0 | 1 0
0 0 1 0 1 1 | 0 1

⎞

⎟
⎠ 9

our codes. Thus we conclude that there exist at least three self-dual [60, 30, 12] codes with
weight enumerators W60,1 for β = 1.

The new self-dual [60, 30, 12] codes with β = 1 are presented in Table 1 with the order
of their automorphism groups |Aut |.

3.1.2 f = 2, [62, 31, 12] codes

There are two possible forms for the weight enumerator of an optimal self-dual code of length
62 [5]:

W62,1 = 1 + 2308y12 + 23767y14 + 279405y16 + · · ·
and

W62,2 = 1 + (1860 + 32β)y12 + (28055 − 160β)y14 + (255533 + 96β)y16 + · · · ,

where β is an integer with 0 ≤ β ≤ 93. Only codes with weight enumerator W62,2 where β =
0, 10, 15 are known until now (see [5,10]). In this work we construct self-dual [62, 32, 12]
codes with weight enumerator W62,1 and codes with weight enumerator W62,2 for β = 0, 9.

All obtained optimal codes of length 62 have automorphism groups of order 9.
The code Cπ in this case is a binary [10,5,2] self-dual code. Up to equivalence there

are two such codes – C5
2 and C2 ⊕ H8. We obtain self-dual [62, 32, 12] codes only when

Cπ ≈ C2 ⊕ H8. There are two possibilities for its generator matrix

Gπ,1 =

⎛

⎜
⎜
⎜
⎜
⎝

110000|00|00
001000|01|11
000100|10|11
000010|11|01
000001|11|10

⎞

⎟
⎟
⎟
⎟
⎠

and Gπ,2 =

⎛

⎜
⎜
⎜
⎜
⎝

111100|00|00
000001|10|00
110010|01|00
011010|00|10
101010|00|01

⎞

⎟
⎟
⎟
⎟
⎠

up to a permutation of the 9-cycles coordinates and a permutation of the last four coordinates
corresponding to the 3-cycles and the fixed points.

(1) Let Cπ ≈ <Gπ,1>. We did not obtain optimal codes when M2 is generated by L1. In the
other cases for M2 we found exactly 3 nonequivalent [62, 32, 12] codes with weight enu-
merators W62,2. We have one code for β = 0 and two codes for β = 9. The constructed
codes with W62,2 for β = 9 are the first known codes with this weight enumerator. They
are generated by the matrices G62,1 and G62,2.
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Binary self-dual codes having an automorphism of order 9 341

(2) Let Cπ ≈ <Gπ,2>. In this case we obtain exactly 67 nonequivalent self-dual [62, 32, 12]
codes with weight enumerator W62,1. These codes are the first known codes with this
weight enumerator.

We summarize the results in the following theorems:

Theorem 5 There exist exactly 70 nonequivalent binary self-dual [62,31,12] codes having
an automorphism of order 9 with 6 9-cycles and 2 3-cycles. One of them has weight enumer-
ator W62,2 with β = 0, two codes have weight enumerator W62,2 with β = 9 and 67 codes
have weight enumerator W62,1.

Theorem 6 There exist at least 67 self-dual [62, 31, 12] codes with weight enumerators
W62,1 and at least two codes with weight enumerators W62,2 for β = 9.

In Table 2 we give examples for generator matrices of the self-dual [62,31,12] codes with
weight enumerators W62,1. These codes are determined by Cπ = <τ(Gπ,2)>, µ(xi1 ,

xi2 , xi3 , xi4 , xi5 , xi6)(S) and the matrix genM2 where τ and µ are permutations from the sym-
metric groups S8 and S6, respectively. The notation µ(xi1 , xi2 , xi3 , xi4 , xi5 , xi6)(S) means
that first we permute the columns of the matrix S, defined in (3), by µ, and then we multiply
the columns by xi j , i j = 0, 1, 2, for j = 1, . . . , 6.

G62,1=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

111111111111111111000000000000000000000000000000000000 000000 00
000000000000000000111111111000000000000000000000000000 000111 11
000000000000000000000000000111111111000000000000000000 111000 11
000000000000000000000000000000000000111111111000000000 111111 01
000000000000000000000000000000000000000000000111111111 111111 10
000100100000000000000000000000100100001011010001011010 000000 00
000010010000000000000000000000010010000101101000101101 000000 00
000001001000000000000000000000001001100010110100010110 000000 00
100000100000000000000000000100000100010001011010001011 000000 00
010000010000000000000000000010000010101000101101000101 000000 00
001000001000000000000000000001000001110100010110100010 000000 00
000000000000100100000000000011100111000100100011100111 000000 00
000000000000010010000000000101110011000010010101110011 000000 00
000000000000001001000000000110111001000001001110111001 000000 00
000000000100000100000000000111011100100000100111011100 000000 00
000000000010000010000000000011101110010000010011101110 000000 00
000000000001000001000000000001110111001000001001110111 000000 00
000000000000000000000100100011100111001011010010011001 000000 00
000000000000000000000010010101110011000101101101001100 000000 00
000000000000000000000001001110111001100010110010100110 000000 00
000000000000000000100000100111011100010001011001010011 000000 00
000000000000000000010000010011101110101000101100101001 000000 00
000000000000000000001000001001110111110100010110010100 000000 00
011011011000000000011011011000000000110110110101101101 000000 00
101101101000000000101101101000000000011011011110110110 000000 00
000000000101101101000000000011011011011011011110110110 000000 00
000000000110110110000000000101101101101101101011011011 000000 00
000000000000000000011011011110110110110110110000000000 011000 00
000000000000000000101101101011011011011011011000000000 101000 00
000000000000000000011011011110110110000000000101101101 000011 00
000000000000000000101101101011011011000000000110110110 000101 00

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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G62,2=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

111111111000000000000000000000000000111111111000000000 000000 00
000000000111111111000000000000000000000000000000000000 111111 01
000000000000000000111111111000000000000000000000000000 000111 11
000000000000000000000000000111111111000000000000000000 111000 11
000000000000000000000000000000000000000000000111111111 111111 10
000100100000000000000000000000100100001011010001011010 000000 00
000010010000000000000000000000010010000101101000101101 000000 00
000001001000000000000000000000001001100010110100010110 000000 00
100000100000000000000000000100000100010001011010001011 000000 00
010000010000000000000000000010000010101000101101000101 000000 00
001000001000000000000000000001000001110100010110100010 000000 00
000000000000100100000000000010011001000101101001110111 000000 00
000000000000010010000000000101001100100010110100111011 000000 00
000000000000001001000000000010100110010001011110011101 000000 00
000000000100000100000000000001010011101000101111001110 000000 00
000000000010000010000000000100101001110100010011100111 000000 00
000000000001000001000000000110010100011010001101110011 000000 00
000000000000000000000100100010011001010010000011001010 000000 00
000000000000000000000010010101001100001001000001100101 000000 00
000000000000000000000001001010100110000100100100110010 000000 00
000000000000000000100000100001010011000010010010011001 000000 00
000000000000000000010000010100101001000001001101001100 000000 00
000000000000000000001000001110010100100000100010100110 000000 00
011011011000000000011011011110110110110110110000000000 000000 00
101101101000000000101101101011011011011011011000000000 000000 00
000000000101101101000000000011011011011011011110110110 000000 00
000000000110110110000000000101101101101101101011011011 000000 00
000000000000000000011011011110110110000000000101101101 011000 00
000000000000000000101101101011011011000000000110110110 101000 00
000000000000000000011011011000000000110110110101101101 000011 00
000000000000000000101101101000000000011011011110110110 000101 00

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

3.1.3 f = 4, [64, 32, 12] codes

There exist singly-even [64, 32, 12] codes and more than 3,250 doubly-even self-dual codes
with these parameters constructed from 2-designs and double circulant matrices (see [14] and
the references given therein). Cπ is a binary self-dual [12, 6, d ≥ 2] code equivalent either
to C2

2 ⊕ H8 or B12. In the first case we proved that the code Fσ (C) is a doubly-even subcode.
As the subcode Eσ (C)∗ is also doubly-even, so are the obtained codes C . We constructed
10,637 nonequivalent doubly-even [64, 32, 12] codes, and we stopped our calculations. All
obtained codes have automorphism groups of order either 9 or 18. When Cπ ≈ B12, there
does not exist optimal codes of length 64. Hence all the [64,32,12] self-dual codes with an
automorphism of order 9 with 6 9-cycles and 2 3-cycles are doubly-even.
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Table 2 New self-dual [62, 32, 12] codes with weight enumerators W62,1

τ µ(i1, i2, i3, i4, i5, i6) genM2 τ µ(i1, i2, i3, i4, i5, i6) genM2

(1,6)(8,9) (2,3)(5,6)(0,0,1,1,2,1) L1 (1,6)(8,9) (2,3)(5,6)(0,1,1,2,2,1) L1

(1,6)(7,8,9) (3,6)(0,0,2,0,1,2) L1 (1,6)(8,10) (3,4)(5,6)(0,0,1,1,0,2) L1

(1,6)(7,8,10) (3,6,4)(0,1,1,0,1,2) L1 (1,6,4) (4,5,6)(0,0,1,2,2,2) L1

(1,6,4)(7,8,9) (3,6,4)(0,0,2,2,1,1) L1 (1,6,4)(7,8,10) (3,4)(5,6)(0,0,0,0,1,1) L1

(1,6,3,4) (3,4,5,6)(0,0,2,0,0,1) L1 (1,6,3,4)(7,8) (3,4)(5,6)(0,0,2,0,0,0) L1

(1,6,3,4)(8,9) (3,5,6,4)(0,1,0,0,0,0) L1 (1,6,2)(3,4)(8,9) (3,5,6,4)(0,1,0,0,0,0) L1

(1,6,2)(3,4)(7,8,9) (2,3)(0,0,1,0,0,0) L1 (1,6,2)(3,4)(7,8,9) (2,3)(0,1,1,2,2,1) L1

(7,8,10) id(0,2,2,0,0,1) L2 (1,6)(8,10) (4,5,6)(0,0,0,2,1,1) L2

(1,6,4)(8,10) (3,5,6,4)(0,1,2,1,2,0) L2 (1,6,4)(8,10) (23)(56)(0,1,1,1,0,2) L2

(1,6,4)(8,10) (2,3)(4,5,6)(0,2,1,0,0,2) L2 (1,6,4)(8,10) (2,3)(4,5,6)(0,2,2,0,0,2) L2

(1,6,3,4)(8,9) (3,6)(0,1,2,2,1,0) L2 (1,6,3,4)(7,8,9) (4,5,6)(0,1,2,0,2,1) L2

id (3,5,4)(0,0,1,2,0,1) L3 id (3,6,5,4)(0,2,2,1,0,1) L3

id (23)(56)(0,1,0,0,0,0) L3 (7,8) (2,3)(5,6)(0,2,1,0,2,0) L3

(8,9) (3,4)(5,6)(0,0,0,2,2,1) L3 (8,10) (3,6,4)(0,0,1,2,2,2) L3

(8,10) (3,6,4)(0,1,1,0,1,0) L3 (7,8,10) (3,4)(5,6)(0,1,1,2,2,1) L3

(7,8,10) (3,5,6,4)(0,0,2,0,0,0) L3 (1,6) id(0,1,2,2,1,1) L3

(1,6)(8,9) (23)(56)(0,1,0,1,1,1) L3 (1,6)(7,8,9) (3,4,5,6)(0,2,2,0,1,2) L3

(1,6)(8,10) (4,5,6)(0,0,2,1,1,2) L3 (1,6)(8,10) (4,5,6)(0,0,2,2,1,0) L3

(1,6)(8,10) (2,3)(0,1,2,2,2,1) L3 (1,6)(7,8,10) (4,5,6)(0,0,2,2,2,2) L3

(1,6)(7,8,10) (3,4)(5,6)(0,0,0,1,2,0) L3 (1,6,4) (5,6)(0,0,2,1,2,0) L3

(1,6,4) (4,5,6)(0,0,2,1,1,2) L3 (1,6,4) (3,4)(0,1,0,2,2,1) L3

(1,6,4) (3,4)(0,1,1,1,1,1) L3 (1,6,4)(7,8) (4,5,6)(0,1,0,0,1,0) L3

(1,6,4)(8,9) (3,5,6)(0,1,1,2,1,2) L3 (1,6,4)(7,8,9) (3,5,6)(0,2,2,2,2,2) L3

(1,6,4)(7,8,9) (3,6,4)(0,1,0,1,1,0) L3 (1,6,4)(8,10) (3,5,6,4)(0,1,0,2,1,2) L3

(1,6,4)(8,10) (3,5,6,4)(0,2,1,0,2,0) L3 (1,6,4)(7,8,10) (2,3)(5,6)(0,2,1,1,2,2) L3

(1,6,4)(7,8,10) (2,3)(4,5,6)(0,0,1,2,0,1) L3 (1,6,4)(7,8,10) (2,3)(4,5,6)(0,2,2,0,1,2) L3

(1,6,3,4)(7,8,9) (3,5,6,4)(0,0,2,0,1,1) L3 (1,6,3,4)(7,8,9) (3,5,6,4)(0,0,2,2,0,0) L3

(1,6,3,4)(7,8,9) (3,6)(0,1,0,2,1,1) L3 (1,6,3,4)(8,10) (5,6)(0,0,0,2,2,0) L3

(1,6,3,4)(8,10) (2,3)(0,1,2,0,1,0) L3 (1,6,3,4)(8,10) (2,3)(4,5,6)(0,2,1,2,2,1) L3

(1,6,3,4)(7,8,10) (2,3)(0,0,1,1,2,2) L3 (1,6,2)(3,4) (3,6)(0,0,1,2,1,2) L3

(1,6,2)(3,4)(7,8) (3,6,4)(0,0,1,2,2,1) L3 (1,6,2)(3,4)(7,8) (3,6,4)(0,1,1,1,1,0) L3

(1,6,2)(3,4)(7,8) (3,6,4)(0,1,2,0,2,0) L3 (1,6,2)(3,4)(7,8) (3,6)(0,2,0,2,1,1) L3

(1,6,2)(3,4)(7,8,9) (3,5,6,4)(0,2,2,2,2,2) L3 (1,6,2)(3,4)(8,10) (23)(56)(0,0,0,2,1,2) L3

(1,6,2)(3,4)(7,8,10) (4,5,6)(0,0,2,1,0,2) L3

3.2 t = 4, f = 0

There exist three possible forms for the weight enumerator of an optimal self-dual code of
length 66 [7]:

W66,1 = 1 + 1690y12 + 7990y14 + · · · ,

W66,2 = 1 + (858 + 8β)y12 + (18678 − 24β)y14 + · · · ,
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where 0 ≤ β ≤ 778 and

W66,3 = 1 + (858 + 8β)y12 + (18166 − 24β)y14 + (255533 + 96β)y16 + · · · ,

where 14 ≤ β ≤ 756.

Table 3 New self-dual [66, 33, 12] codes with weight enumerators W66,2

β τ Gπ,i µ (i1, i2, i3, i4, i5, i6) S j genM2

2 (2, 3)(8, 9, 10) Gπ,3 (2, 5) (0, 2, 0, 1, 2, 2) S3 L2

5 (9, 10) Gπ,5 (1, 2, 3) (0, 2, 1, 0, 2, 2) S3 L2

6 id Gπ,4 (2, 4, 6, 5) (0, 0, 1, 2, 1, 0) S3 L1

9 id Gπ,4 (2, 5)(4, 6) (0, 0, 1, 0, 0, 2) S3 L1

11 (9, 10) Gπ,6 (2, 6, 5, 4, 3) (0, 0, 0, 0, 1, 1) S1 L4

18 id Gπ,4 (2, 5, 3)(4, 6) (0, 2, 2, 0, 0, 0) S3 L1

20 id Gπ,3 (2, 5)(4, 6) (0, 2, 1, 2, 2, 0) S3 L1

23 id Gπ,5 id (0, 1, 2, 0, 0, 1) S3 L1

27 id Gπ,4 (2, 5)(4, 6) (0, 1, 1, 0, 0, 0) S3 L1

29 id Gπ,5 (2, 5, 4, 3) (0, 0, 2, 0, 1, 1) S1 L3

32 id Gπ,5 id (0, 1, 2, 0, 0, 2) S3 L1

33 id Gπ,4 (2, 3)(4, 6, 5) (0, 1, 0, 0, 0, 0) S3 L1

35 id Gπ,6 (2, 3, 4, 5) (0, 0, 0, 0, 1, 2) S2 L1

42 id Gπ,4 (2, 3)(4, 5) (0, 2, 2, 1, 1, 2) S3 L1

44 id Gπ,6 (2, 3, 4, 5) (0, 1, 2, 0, 1, 0) S2 L1

47 id Gπ,3 (2, 5)(3, 4, 6) (0, 0, 0, 1, 0, 0) S2 L1

50 id Gπ,5 (3, 5, 4) (0, 1, 0, 1, 1, 2) S3 L1

51 id Gπ,4 (2, 4, 5, 3) (0, 0, 1, 0, 0, 1) S3 L1

53 id Gπ,6 (2, 4, 6, 5) (0, 0, 1, 1, 1, 1) S2 L1

54 id Gπ,4 (1, 2, 6, 4, 5, 3) (0, 1, 2, 0, 1, 1) S3 L1

56 id Gπ,3 (2, 6, 3, 4, 5) (0, 1, 0, 0, 2, 1) S2 L1

59 (8, 9) Gπ,5 (3, 5, 4) (0, 2, 1, 0, 2, 0) S3 L1

60 id Gπ,4 (2, 4, 5, 3) (0, 1, 1, 0, 2, 1) S3 L1

62 id Gπ,6 (2, 4, 6, 5) (0, 2, 0, 0, 1, 1) S2 L1

63 (8, 9, 10) Gπ,4 (2, 4, 5t) (0, 2, 1, 2, 0, 2) S3 L1

65 id Gπ,3 (2, 5)(3, 4, 6) (0, 0, 0, 0, 0, 0) S2 L1

68 (8, 9) Gπ,5 (3, 4) (0, 1, 0, 0, 1, 2) S3 L1

69 id Gπ,4 (2, 3, 5, 4) (0, 2, 0, 0, 0, 0) S3 L1

71 id Gπ,6 (1, 2, 3, 4, 5) (0, 1, 2, 2, 2, 1) S2 L1

72 (8, 9, 10) Gπ,4 (2, 4, 5, 3) (0, 0, 1, 2, 0, 0) S3 L1

77 (1, 6) Gπ,5 (1, 2, 6, 5, 4, 3) (0, 2, 2, 2, 2, 2) S3 L1

83 (8, 9, 10) Gπ,3 (2, 4, 6, 3, 5) (0, 1, 0, 1, 2, 2) S2 L1

86 (1, 6) Gπ,5 (1, 2, 3)(4, 6, 5) (0, 1, 1, 2, 2, 1) S3 L1

87 (8, 9) Gπ,4 (1, 2, 6, 5, 4, 3) (0, 2, 2, 1, 1, 2) S3 L1

92 (7, 8, 10, 9) Gπ,3 (2, 4, 6, 5) (0, 0, 1, 1, 1, 1) S2 L1
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Codes exist with weight enumerator W66,1 [17] and W66,2 whenβ = 0, 3, 8, 10, 14, . . . , 17,
22, 24, 26, 31, 36, 38, 41, 43, 45, 46, 52, 59, 66, 73, 74, 76, 78 and 80 ([4,9,12,14]). In this
work we construct a number of optimal self-dual [66,33,12] codes with weight enumerators
W66,2 for 35 new values of the parameter as follows: β = 2, 5, 6, 9, 11, 18, 20, 23, 27, 29,
32, 33, 35, 42, 44, 47, 50, 51, 53, 54, 56, 59, 60, 62, 63, 65, 68, 69, 71, 72, 77, 83, 86, 87, 92.

Remark In the second review the authors have been informed that Tsai, Shih, Su, and Chen
in [18] find the first examples of codes for W66,3 with β = 28, 33, and 34. They also find
codes for W66,2 with β = 40 and 44.

Let C be a binary self-dual [66, 33, 12] code having an automorphism σ of type 9-(6,4,0)
defined in (1). We can fix D4 to be the identity matrix over the field P . In this case the code
M1 is a [6, 1, d1] self-orthogonal code over the field I1. There are many possibilities for
the matrix S. We consider three forms up to a permutation of the coordinates followed by
multiplying the coordinates by xk for k = 0, 1, 2, denoted by S1, S2 and S3. In this case Cπ

is a binary [10,5,2] self-dual code equivalent either to C5
2 or C2 ⊕ H8. We obtain four forms

for gen Cπ , as follows Gπ,3, Gπ,4 and Gπ,5 up to a permutation of the first six coordinates
and a permutation of the last four coordinates corresponding to the 3-cycles.

S1 =

⎛

⎜
⎜
⎜
⎜
⎝

e1 e1 0 0 0 0
0 0 e1 e1 e1 0
0 0 e1 e1 0 e1

0 0 e1 0 e1 e1

0 0 0 e1 e1 e1

⎞

⎟
⎟
⎟
⎟
⎠

Gπ,3 =

⎛

⎜
⎜
⎜
⎜
⎝

110000|0000
001000|1000
000100|0100
000010|0010
000001|0001

⎞

⎟
⎟
⎟
⎟
⎠

Gπ,4 =

⎛

⎜
⎜
⎜
⎜
⎝

110000|0000
001000|0111
000100|1011
000010|1101
000001|1110

⎞

⎟
⎟
⎟
⎟
⎠

S2 =

⎛

⎜
⎜
⎜
⎜
⎝

e1 e1 e1 e1 0 0
0 0 e1 e1 0 e1

e1 e1 0 0 e1 0
0 e1 x2e1 xe1 e1 e1

0 e1 xe1 x2e1 e1 e1

⎞

⎟
⎟
⎟
⎟
⎠

Gπ,5 =

⎛

⎜
⎜
⎜
⎜
⎝

111100|0000
000001|1000
110010|0100
011010|0010
101010|0001

⎞

⎟
⎟
⎟
⎟
⎠

Gπ,6 =

⎛

⎜
⎜
⎜
⎜
⎝

110000|0000
000000|1111
001111|0000
001100|1100
000110|0110

⎞

⎟
⎟
⎟
⎟
⎠

S3 =

⎛

⎜
⎜
⎜
⎜
⎝

e1 e1 e1 e1 e1 e1

0 e1 xe1 x2e1 xe1 xe1

0 e1 x2e1 xe1 x2e1 x2e1

0 0 e1 0 xe1 x2e1

0 0 e1 0 x2e1 xe1

⎞

⎟
⎟
⎟
⎟
⎠

Optimal self-dual [66,33,12] codes do not exist for the matrices Gπ,3 and S1, Gπ,4 and S1,
Gπ,4 and S2, and Gπ,6 and S3. In the other cases we constructed many self-dual [66,32,12]
codes with weight enumerators W66,2 for 49 different values of the parameter β ∈ {0, 2, 5,
6, 8, 9, 11,14,15,17,18,20,23,24,26,27,29,32,33,35,36,38, 41,42, 44,45,47,50,51,53,54,56,
59,60,62,63, 65,68,69,71,72,74,77,78,80,83,86,87,92}. As was mentioned above, for 35 of
them the obtained codes are the first known codes with this weight enumerators.

In Table 3 we present one code for each new value of β we have obtained.
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