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Abstract It is well known that associated with a translation plane π there is a family
of equivalent spreads. In this paper, we prove that if one of these spreads is symplectic
and π is finite, then all the associated spreads are symplectic. Also, using the geo-
metric intepretation of the Knuth’s cubical array, we prove that a symplectic semifield
spread of dimension n over its left nucleus is associated via a Knuth operation to a
commutative semifield of dimension n over its middle nucleus.
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1 Introduction

Many new interesting results on symplectic spreads of PG(2n−1, q) have been recently
found. In [13], an internal criterion for a translation plane to be symplectic has been
proved when q is even. New examples of symplectic spreads have been constructed in
[3,8]. The geometric interpretation of Knuth’s cubical array explained [2] and in [7]
produces a bijection between planes associated with a symplectic spread and planes
coordinatized by a commutative semifield. Using such a bijection, a new family of
commutative semifields of even order has been constructed in [7].

Nevertheless some questions about symplectic spreads seem not to have been
studied.

The first one is the following.
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Associated with a translation plane π there is a family of equivalent spreads. If S
is symplectic, is any spread equivalent to S still symplectic? The question arises in a
natural way for deciding how many spreads of a hyperbolic quadric Q+(4t−1, 2e) have
a slice isomorphic to a symplectic spread equivalent to S, and seems not to have been
studied. The characterization of the translation planes of even order associated with
symplectic spreads given in [13] suggested to the author that the property of a spread
to be symplectic should be invariant under equivalence of spreads. In this paper we
give a positive answer to the above question proving that all spreads equivalent to a
symplectic one are symplectic.

A second question concerns the nuclei of the semifields produced by a cubical
array. We know that the collineation groups of the six semifield planes obtained in
such a way have the same order. As any nucleus of a semifield defines a particular
group of homologies, it is natural asking if the six semifield planes have groups of
homologies of the same order and this question too seems not to have been studied.
Using the geometric interpretation of the cubical array given in [2,7] we prove that
the orders of the nuclei are permuted with given rules. Applying these rules, we are
able to prove that a symplectic semifield of dimension n over its left nucleus defines
a commutative semifield of the same dimension over its middle nucleus.

2 Preliminary results

We refer to [4] for the standard background concerning translation planes and their
kernels and duals, as well as quasi-fields, semifields, and isotopisms.

A spread of PG(2n − 1, q) is a partition S of the pointset of PG(2n − 1, q) into
(n − 1)-dimensional subspaces. We denote by A(S) the translation plane of order qn

associated with S.
Let π = (P, L) be a finite translation plane and let O be a fixed point of π . Let T

be the translation group of π . For each line l of π incident with O, denote by Tl the
stabilizer of l in T and denote by P the family of all the subgroups Tl of T. By the
theory of affine planes, we know that T is elementary abelian, Tl is transitive on the
points of the line l, and T = Tl +Tm whenever l and m are different lines of π incident
with the point O. The kernel K of π is the set of all the endomorphisms α of T such
that Tα

l ⊂ Tl for all Tl ∈ P. It has been proved by André [1] that K is a field. Hence T
is a vector space over K and each element of P is a vector subspace of T. If F � GF(q)

is a subfield of K, then T has rank 2n over F and all the elements of P have rank
n. Denote by PG(T, F) = PG(2n − 1, q) the (2n − 1)-dimensional projective space
associated with T as an F-vector space and by S(P, F) the partition of PG(2n − 1, q)

into (n − 1)-dimensional subspaces defined by P : S(P, F) is a spread of PG(2n − 1, q).
The relationship between translation planes and the planes constructed from (n−1)-

spreads has been given by André [1]: for each subfield F = GF(q) of K, the planes π ,
and A(S(P, F)) are isomorphic.

If S is a spread of PG(2n − 1, q), the kernel of the translation plane A(S) contains
a subfield F isomorphic to GF(q) and the spreads S and S(P, F) are isomorphic (i.e.,
there is a collineation τ of PG(2n−1, q) such that Sτ = S(P, F) see, e.g. [11] Chapt. 1).

The spread S1 of PG(2n − 1, q) and the spread S2 of PG(2m − 1, s) are equivalent if
the planes A(S1) and A(S2) are isomorphic. We note that, when n = m, two spreads
are equivalent if and only if they are isomorphic, i.e., there is a collineation which
maps one spread into the other one.



Des. Codes Cryptogr. (2007) 44:39–48 41

We say that the spread S is symplectic if there is a symplectic polarity ⊥ of PG(2n−
1, q) such that all subspaces of S are totally isotropic with respect to ⊥.

Let Q be a quasi-field of dimension n over a subfield F = GF(q) of its kernel. Then
V = Q×Q is a 2n-dimensional vector space over F and � = PG(V, F) = PG(2n−1, q).
Define

F(∞) = {(0, b) | b ∈ Q},
F(b) = {(a, ab) | a ∈ Q},

S(Q, F) = {F(b) | b ∈ Q} ∪ {F(∞)}
then S(Q, F) is a spread of PG(2n − 1, q).

For any spread S of PG(2n − 1, q), there is a quasi-field Q, whose kernel contains
a subfield F of order q such that S is isomorphic to S(Q, F) (see, e.g. [4] Sect. 5.1).

For each element b of Q, let Lb be the GF(q)-linear map from Q to itself defined
by x �→ xb. The set L = L(Q) = {Lb | b ∈ Q} has the following properties:

(1) |L| = qn,
(2) the zero map 0 = L0 and the identity I = L1 belong to L,
(3) if Lb and Lc are different elements of L, then Lb − Lc is non-singular.

Then each element of L different from 0 is non-singular,
A set C of F-linear maps of Q satisfying Properties (1)–(3) is called a spread set

and L is the spread set associated with Q. We note that Q is a semifield if and only if
L is closed under the sum. The quasi-field Q is a field if and only if L is closed under
the sum and under the multiplication (for more details, see [4] Sect. 5.1).

The spread S(Q, F) is a semifield spread with respect to F(∞) if and only if L is
closed under the sum, i.e., Q is a semifield. The spread S is desarguesian if and only
if L is closed under the sum and under the multiplication (for more details, see [4]
Sect. 5.1).

Let S be a semifield. The subsets

Nl = {a ∈ Q | (ab)c = a(bc), ∀b, c ∈ Q},
Nm = {b ∈ Q | (ab)c = a(bc), ∀a, c ∈ Q},
Nr = {c ∈ Q | (ab)c = a(bc), ∀a, b ∈ Q},
Z = {a ∈ Nl ∩ Nm ∩ Nr | ab = ba, ∀b ∈ Q}

are known, respectively, as the left nucleus, middle nucleus, right nucleus and center of
the semifield S. The nuclei are skewfields, and it is straightforward to prove that S is
a vector space both over each of its nuclei and over its center. A nucleus N is central
if ab = ba for all a ∈ N and b ∈ S.

Let C be a spread set of a vector space Q over GF(q). If e is a fixed non-zero
vector of Q, then for each vector b of Q there is a unique element C(b) of C such
that eC(b) = b. If we define a multiplication on Q by ab = aC(b), then Q = Q(+, ·)
is a quasifield with identity e and F = {λe | λ ∈ GF(q)} is a subfield of order q of the
kernel of Q.

Suppose that C is closed under the sum. Then Q is a semifield whose left nucleus
contains GF(q). An element b of Q belongs to Nm if and only if C(b)C(c) = C(bc) for
all c in Q. Hence Nm = {C(b) | b ∈ Nm} is a field of linear maps and C is a left vector
space over Nm. An element c of Q belongs to Nr if and only if C(b)C(c) = C(bc) for
all b in Q. Hence Nr = {C(c) | c ∈ Nr} is a field of linear maps and C is a right vector
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space over Nr. If Nl = GF(q), then the center of Q is the biggest subfield Z = GF(s)
of Nl = GF(q) such that λX ∈ C for all λ ∈ Z and X ∈ C.

Next we recall Knuth’s cubical array (see [9] or [4]).
A pre-semifield S(+, ·) is a semifield if there is an identity element.
Let e be an element of S different from 0. Define a new multiplication ◦ on S by

ae ◦ eb = ab. Then S(+, ◦) is a semifield whose identity is ee, whose coordinatized
projective plane is isomorphic to that coordinatized by S(+, ·) (see [4] Sect. 5.3).

The kernel K of the pre-semifield S is

K = {λ ∈ S | (λb)c = λ(bc), ∀b, c ∈ S}.
It is easy to prove that K is a field and S is a left vector space over K. Note that when
S is a semifield, then K is its left nucleus. Let GF(s) be the maximum subfield of K
such that the maps a �→ ba of S into itself are GF(s)-linear, i.e., b(λa) = λ(ba) for
all a, b ∈ S and for all λ ∈ GF(s). Note that, when S is a semifield, then GF(s) is its
center. Suppose that S has dimension t over GF(s). Let {e1 = 1, e2, . . . , et} be a basis
of S over GF(s), and define aijk ∈ GF(s) by

eiej =
t∑

k=1

aijkek, i, j = 1, 2, . . . , t.

It follows that the cubical array A of the t3 elements aijk ∈ GF(s) uniquely determines
the multiplication in S because:

(∗)

(
t∑

i=1

xiei

) ⎛

⎝
t∑

j=1

yjej

⎞

⎠ =
t∑

i,j,k=1

xiyjaijkek.

As S is a semifield, A = (aijk) is non-singular in the sense that
if Ci = (cjk) i = 1, 2, . . . , t, is the matrix defined by cjk = aijk with j, k = 1, 2, . . . , t, then

the matrix
∑t

i=1 yiCi with y1, y2, . . . , yt ∈ GF(s) is singular if and only if (y1, y2, . . . , yt) =
0, i.e., C = {∑t

i=1 yiCi | y1, y2, . . . , yt ∈ GF(s)} is a spread set.
The converse is also true

Result 1 ([9] Theorem 4.4.1)) Let A = (aijk), i, j, k = 1, 2, . . . , t be a cubical array of
elements aijk ∈ GF(s), and define a multiplication in the vector space S = GF(s)t by
(∗). This turns S into a presemifield if and only if A is non-singular.

3 Equivalent spreads

Let � = PG(V, GF(q)) = PG(n−1, q) and let �∗ = PG(V∗, GF(qt)) = PG(n−1, qt).
We say that � is a canonical subgeometry of �∗ when V∗ = GF(qt) ⊗ V.

Let � be a canonical subgeometry of �∗. For each subspace S∗ of �∗, the set
S = S∗ ∩ � is a subspace of � whose rank is at most equal to the rank of S∗. We say
that a subspace S∗ of �∗ is a subspace of � whenever S and S∗ have the same rank. If
σ is a semilinear collineation of �∗ of order t having as fixed points exactly the points
of �, then S∗ is a subspace of � if and only if S∗ is fixed by σ (see, e.g. [10])

The notion of spread is generalized in the following way. An (n − 1)-spread F of
a projective space PG(rn − 1, q) is a family of mutually disjoint (n − 1)-subspaces
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such that each point of PG(rn − 1, q) belongs to an element of F . We note that for
r = 2, (n − 1)-spreads of PG(2n − 1, q) are spreads of PG(2n − 1, q).

Let r > 2. An (n − 1)-spread F is normal if it induces a spread in any subspace
generated by two of its elements (i.e., if A, B ∈ F , then an element of F either is
disjoint from T = 〈A, B〉 or is contained in T). Such a spread is called geometric in
Ref. [14].

Let � = PG(mt −1, q) be a canonical subgeometry of �∗ = PG(mt −1, qt), and let
σ be a semilinear collineation of �∗ of order t which fixes � pointwise. There is a sub-
space � = PG(m − 1, qt) disjoint from � such that �∗ is spanned by �, �σ , . . . , �σ t−1

and, for each point x of �, L(x) = 〈xσ i | i = 0, 1, 2, . . . , t−1〉∩� is the unique subspace
of � of rank t who spans a(t − 1)-dimensional subspace of �∗ containing x. Then it
is easy to prove that F = {L(x) | x ∈ �} is a (t − 1)-spread of PG(mt − 1, q) (see,
e.g. [10]). If r is a line of �, then Fr = {L(x) | x ∈ r} is a spread of the subspace
Lr = 〈r, rσ , . . . , rσ t−1〉∩ � of dimension 2t − 1 (see, e.g. [10]). The (t − 1)-spread F has
the following property: if a (2t − 1)-dimensional subspace T of PG(mt − 1, q) contains
two elements of F , then there is a line r of � such that T = Lr. Therefore, when m > 2,
F is a normal spread of �, and by [14] all normal spreads of � can be constructed in
this way.

Let K = GF(qt) be the kernel of a given translation plane π . If F = GF(q), is the
subfield of K of order q, then S = S(P, K) is a spread of PG(2n − 1, qt) equivalent
to the spread S ′ = S(P, F) of PG(2nt − 1, q). Identify � with PG(2n − 1, qt). Let
� = PG(2nt − 1, q) be the canonical subgeometry of �∗ = PG(2nt − 1, qt) and let F
be the normal (t − 1)-spread of PG(2nt − 1, q) defined above by �.

Let S be an (n − 1)-spread of �. For each (n − 1)-dimensional subspace � of �,
the subspace L� = 〈�, �σ , . . . , �σ t−1〉 is a (tn − 1)-dimensional subspace of �. Then
LS = {L� | � ∈ S} is a (nt − 1)-spread of � = PG(2nt − 1, q), which is equivalent to
S and all spreads equivalent to S can be constructed in this way (see [12]).

We conclude this section with a property of spreads.

Lemma 1 Let � = PG(2t − 1, q), �∗ = PG(2t − 1, qt), and let F be the (t − 1)-spread
of � = PG(2t − 1, q) defined by � � PG(1, qt). Let ⊥ be a symplectic polarity of
� = PG(2t − 1, q) such that F is a symplectic spread with respect to ⊥. If ⊥∗ is the
unique symplectic polarity of �∗ = PG(2t − 1, qt) defined by ⊥, then � is non-singular
with respect to ⊥∗.

Proof We notice that the spread F arises from the groups embedding PSP2(q
t) <

PSP2t (q) and since the form fixed by PSP2(q
t) is non-degenerate, � must be non-

isotropic. ��

4 Symplectic spreads

With the notation of Sect. 2, denote by b the non-singular alternating bilinear form
associated with ⊥. If S = S(P, F) is symplectic, then for each subfield GF(s) of
F = GF(q), the alternating bilinear form < x, y >= trGF(s)b(x, y) defines a symplectic
polarity ω of PG(T, GF(s)) and S(P, GF(s)) is symplectic with respect to ω (see [6]).

Conversely if F ⊂ K, where K is the kernel of π , and S(P, F) is symplectic, is S(P, K)

still symplectic? We give a positive answer to this question proving the following:

Theorem 1 All spreads equivalent to a symplectic spread are symplectic.
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Proof Let S ′ be a symplectic (nt − 1)-spread of � = PG(2nt − 1, q) with respect to
the polarity ⊥.

Suppose that the kernel K of A(S ′) has order qt. Let S = S(P, K) be the (n − 1)-
spread of � = PG(2n − 1, qt) associated with the plane A(S ′). Hence S and S ′ are
equivalent spreads. By the abovementioned construction of equivalent spreads, we
can suppose that there is a normal (t − 1)-spread F of � = PG(2nt − 1, q), defined
by the subspace � of �∗ = PG(2nt − 1, qt), such that S = S(P, K) is a spread of
� = PG(2n − 1, qt), S ′ = LS , and F induces a (t − 1)-spread on each element of S ′.

To prove Theorem 1 it is enough to show that if LS is symplectic with respect to
some symplectic polarity ⊥, then S = S(P, K) is symplectic.

Denote by ⊥∗ the unique polarity of �∗ defined by ⊥. We note that the elements
of LS are maximal totally isotropic subspaces with respect to the polarity ⊥∗. Hence
each subspace � of S is totally singular with respect to ⊥∗ because � = L� ∩ � is a
subspace of L�.

We are proving Theorem 1 in four steps.

Step 1 � is either totally isotropic or non-singular.

Proof Let R be the radical of � and let U be a subspace disjoint from R such that
� = 〈R, U〉. As U is non-singular and � has odd dimension, R has dimension 2h − 1
with 0 ≤ h ≤ n and the maximal totally isotropic subspaces of � have dimension
n + h − 1.

Suppose that an element � of S contains R and let 
 be an element of S different
from �. Since 
 is contained in some maximal totally isotropic subspace L
, the sub-
space 
 is totally isotropic and 〈R, 
〉 is a totally isotropic (n + 2h − 1)-dimensional
subspace of �. Then n + 2h − 1 ≤ n + h − 1, hence h = 0, i.e., � is non-singular.

If � is singular, then no element of S contains R, i.e., for each element � of S the
subspace 〈R, �〉 has dimension at most n + h − 1 because it is totally isotropic. This
implies that � ∩ R has dimension at least h − 1. Hence S induces on R a partition into
subspaces of dimension at least h − 1. As S contains qtn + 1 elements, we have

(qt)2h − 1
qt − 1

= |R| ≥ (qtn + 1)
qht − 1
qt − 1

,

i.e. (qth + 1) ≥ (qtn + 1). Since 0 ≤ h ≤ n, we have n = h and R = �. ��
Step 2 If m is a totally isotropic line of �, then Lm = 〈m, mσ , . . . , mσ t−1〉 is totally
isotropic.

Proof As Fm is a spread of Lm ∩ �, if Lm is non-singular, the polarity ⊥∗ induces a
symplectic polarity on Lm and Fm is symplectic with respect to the induced polarity.
By Lemma 1, m is a non-singular line.

Since m is totally isotropic by hypothesis, Lm is an isotropic subspace of �.
Let Rm �= ∅ be the radical of Lm. Arguing as in Step 1, we conclude that Lm is

totally isotropic. ��
Step 3 � is non-singular.

Proof By way of contradiction, suppose that � is totally isotropic. Then all the lines
of � are totally isotropic. Let U be a subspace of � of dimension m − 1 > n − 1.
The subspace LU = 〈U, Uσ , . . . , Uσ t−1〉 is a (mt − 1)-dimensional subspace of � and
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FU = {L(x) | x ∈ U} is a spread of LU . We note that all the elements of FU are totally
isotropic.

If y and z are elements of � incident with LU , let � (respectively 
) be the ele-
ment of FU incident with y (respectively z). If � �= 
, then 〈�, 
〉 = Lm where m
is a line of �. As � is totally isotropic, both m and Lm are totally isotropic. Hence
z ∈ y⊥ for all points y and z of LU , i.e., LU is a totally isotropic subspace of dimension
mt − 1 > nt − 1. But this is impossible because ⊥ is a polarity of �. ��

Step 4 If θ is the symplectic polarity of � induced by ⊥, then S is symplectic with
respect to θ .

Proof As � is non-singular, ⊥∗ induces a symplectic polarity θ on �, defined by
Uθ = U⊥∗ ∩ � for all subspaces U of �. For each element � of S, �θ = �⊥∗ ∩ �

contains L� ∩ � = � because � ⊂ L� = L⊥∗
� ⊂ �⊥∗

. As � and �θ have the same
dimension n − 1, we have � = �θ . Hence the elements of S are maximal totally
isotropic subspaces with respect to θ . ��

5 Transposed spreads

Let ⊥ be a symplectic polarity of PG(2n − 1, q). If S is a spread of PG(2n − 1, q),
define a new spread Sd = {D⊥ | D ∈ S}. By construction (Sd)d = S.

If ω is any polarity of PG(2n − 1, q), then τ =⊥ ω is a collineation of PG(2n − 1, q)

and (D⊥)τ = Dω. Hence Sd does not depend, up to isomorphisms, from the choosen
polarity and we call Sd the transpose of S.

Theorem 2 Spreads, which are trasposed of equivalent spreads, are equivalent.

Proof Let � = PG(2nt − 1, q) = PG(V, GF(q)), �∗ = PG(2nt − 1, qt) = PG(V∗, GF
(qt)) with V∗ = V ⊗ GF(qt) and let F be the (t − 1)-spread of � defined by � �
PG(2n − 1, qt).

Denote by σ the collineation of �∗ of order t fixing � pointwise defined by the
semilinear map v ⊗ α �→ v ⊗ αq. Let �σ i−1 = PG(Wi, GF(qt)), i = 1, 2, . . . , t, where
Wi is a GF(qt)-vector subspace of V∗ of dimension 2n.

As in Sect. 4, each vector v of V∗ can be written as v = w1 + w2 + · · · + wt with
wi ∈ Wi, (i = 1, 2, . . . , t).

Denote by ω the sympletic polarity of � defined by a non-singular alternating
bilinear form 〈 ; 〉 of W1. The alternating bilinear form 〈 ; 〉∗ on V∗ defined by

〈v1 + vσ
2 · · · + vσ t−1

t ; w1 + wσ
2 + · · · + wσ t−1

t 〉∗ =
t∑

i=1

〈vi; wi〉

(where vi, wi are elements of Wi for all i = 1, 2, . . . , t) is non-singular and defines a
polarity ω∗ of �∗ which induces a symplectic polarity ω on �, because σω∗ = ω∗σ .

By construction, all the elements of F are totally isotropic subspaces with respect
to ω and � is non-singular with respect to ω∗. Moreover, for any subspace U of �, we
have (Uσ i

)ω
∗ ∩ �σ i = (Uω)σ

i
.

Let S be a spread of � = PG(2n − 1, q) and let L(S) be the linear representation
of S in � = PG(2nt − 1, q).
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If S ′ is a spread of � equivalent to S, then S ′ is isomorphic to L(S). As the transpose
does not depend on the choosen polarity, for proving Theorem 2 it is enough to prove
that Sd is equivalent to L(S)d.

If � belongs to S, then L(�) = 〈�, �σ , . . . , �σ t−1〉 belongs to L(S) and

L(�)ω
∗ = �ω∗ ∩ (�σ )ω

∗ ∩ · · · ∩ (�σ t−1
)ω

∗ = 〈�ω, (�ω)σ , . . . , (�ω)σ
t−1〉.

Hence L(S)d = L(Sd). ��
Corollary 1 The planes A(Sd) and A(S) have isomorphic kernels.

Proof By Theorem 2, we can suppose that the kernel of A(S) is GF(q) and S is a
spread of PG(2n−1, q). By construction, GF(q) is a subfield of the kernel K of A(Sd).

If GF(q) �= K = GF(qr), then n = rt and there is a spread S1 of PG(2t − 1, qr)

equivalent to Sd. By Theorem 2, Sd
1 is a spread of PG(2t − 1, qr) equivalent to S.

Hence the kernel of A(S) has order at least qr > q. As this is impossible, we have
proved the corollary. ��

Let S = S(Q, K) where K is the kernel of Q. If 〈 ; 〉 is a non-singular symmetric
bilinear form of Q as a (left) vector space over K, then V = Q × Q is a left vector
space over K and the non-singular alternating form

((x, y); (u, v)) = 〈x, v〉 − 〈y, u〉
defines a symplectic polarity ⊥ of � = PG(V, K) = PG(2n − 1, q). By construction
F(∞) = {(0, y) | y ∈ Q} and F(0) = {(x, 0) | x ∈ Q} are totally isotropic subspaces
with respect to ⊥.

If L is a K-linear map from Q into itself, the adjoint of L with respect to 〈; 〉 is the
K-linear map LT defined by 〈x, yL〉 = 〈xLT , y〉 for all x and y in Q.

We recall that, for each element b of Q, Lb is the GF(q)-linear map of Q into itself
defined by x �→ xb, and L = L(Q) = {Lb | b ∈ Q} is the spread set associated with Q.
Also L

d = {LT
b | b ∈ Q} is a spread set. The transpose Qd of Q is the quasi-field of

unity 1 defined by the spread set L
d.

If S = S(Q, K), then Sd = S(Qd, K).
We note L is closed under the sum if and only if L

d is closed under the sum. Hence
Q is a semifield if and only if Qd is. When there is a non-singular symetric bilinear
form 〈 ; 〉 with respect to which La = LT

a for any element a of Q, the quasi-field Q
is called symplectic. We note that Q is symplectic if and only if S is symplectic with
respect to the symplectic polarity ⊥.

Theorem 3 If S is a symplectic semifield, then Nm = Nr = Z.

Proof If S is symplectic, then for any element Lb ∈ L we have LT
b = Lb with respect

to a given symmetric bilinear form < ; >.
An element b of S belongs to Nm if and only if LbLc = Lbc for all c in S (i.e.,

Nm = {Lb | b ∈ Nm} is a field of linear maps and L is a left vector space over Nm), and
an element d of S belongs to Nr if and only if LcLd = Lcd for all c ∈ S. Hence, for any
element Lb of Nm we have

LcLb = (LbLc)
T = LT

bc = Lbc = LbLc

for all c ∈ S. Hence L is a right vector space over Nm, i.e., Nm is a subfield of Nr.
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In the same way we can prove that Nr is a subfield of Nm. Thus Nm = Nr.
As LbLc = LcLb, we have

bc = cb

for all b ∈ Nr and c ∈ S. Then Nr is central in S.
As Nr = Nm, for any ξ in Nr and all x, y ∈ S we have

ξ(xy) = (xy)ξ = x(yξ) = x(ξy) = (xξ)y = (ξx)y.

Thus Nr = Nm is a subfield of Nl, i.e., Z = Nm = Nr. ��

6 Nuclei of finite semifields

Let S = S(+, ·) be a semifield and denote by Nl, Nm, and Nr the nuclei of S as in
Sect. 2.

Recall that the map La : x �→ xa is a Nl-linear map of S as a left vector space over
Nl and L = {La | a ∈ S} is a spread set. Similarly, if Ra : x �→ ax, then Ra is a Nr-linear
map of S as a right vector space over Nr, and R = {La | a ∈ S} is a spread set.

The dual of S is the semifield S∗ = S(+, ) defined by

x  y = yx.

By construction (S∗)∗ = S.

Theorem 4 If N∗
l , N∗

m, N∗
r , Z∗ are the left, the middle, the right nucleus, and the center,

respectively, of the semifield S∗, then N∗
l = Nr, N∗

m = Nm, N∗
r = Nl, and Z∗ = Z.

Proof It follows directly from the definition of S∗. ��
Theorem 5 If Nd

l , Nd
m, Nd

r are the left, the middle, and the right nucleus, respectively,
of Sd, then Nd

l = Nl, Nd
m � Nr, and Nd

r � Nm.

Proof An element b of S belongs to Nm if and only if LbLc = Lbc for all c in S. Hence
Nm = {Lb | b ∈ Nm} is a field of linear maps and L is a left vector space over Nm.

An element c of S belongs to Nr if and only if LbLc = Lbc for all b in S. Hence
Nr = {Lc | c ∈ Nr} is a field of linear maps and L is a right vector space over Nr. As
(LbLc)

T = LT
c LT

b , then L
d is a left vector space over N

d
m = {LT

c | c ∈ Nr} and a right
vector space over N

d
r = {LT

b | b ∈ Nm}. ��
We note that if S has dimension 2 over Nm = Nr = GF(q), then S∗ has dimension

2 over N∗
l = N∗

m = GF(q) and S∗d has dimension 2 over N∗d
l = N∗d

r = GF(q).
In [7, Sect. 3], it has been proved that the six projective planes obtained from the

Knuth’s cubical array are coordinatized by the six semifields S, S∗, S∗d, S∗d∗, S∗d∗d,
S∗d∗d∗, where S∗d∗d∗d and S are isotopic.

Theorem 6 Let S be a semifield of dimension n over its left nucleus Nl. Then, S is
symplectic if and only if S∗d is isotopic to a commutative semifield of dimension n over
its middle nucleus.

Proof By Proposition 3.8 of [7], S is symplectic if and only if S∗d is isotopic to a
commutative semifield.

By Theorems 4 and 5, S has dimension n over its left nucleus if and only if S∗d has
dimension n over its middle nucleus. ��
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We conclude with a remark on the Kantor commutative semifield constructed in
Ref. [7].

Assume that we are given fields F = F0 ⊃ F1 ⊃ · · · ⊃ Fn = GF(q) of characteristic
2 with [F : Fn] odd and corresponding trace maps Ti : F �→ Fi. Choose any elements
ξi ∈ F∗, 1 ≤ i ≤ n. Define B = F(+, ) by

x  y = xy + (x
n∑

i=1

Ti(ξiy) + y
n∑

i=1

Ti(ξix))2.

If |F| > 8, then B is a commutative semifield whose left nucleus is GF(2) (see Sect. 4
of [7]).

The points of the affine plane A associated with B are the elements of F2. The lines
of A are the subsets of points

[m, b] = {(x, xm + b) | x ∈ F},
[a] = {(a, y) | y ∈ F}.

By definition of B, for any k ∈ F∗
n and any x, y ∈ F, we have

(xk)  (k−1y) = x  y.

For k �= 0, the additive map τk : (x, y) �→ (xk, y) of F2 maps [m, b] to [k−1m, b] and
fixes [0] pointwise, i.e., τk is a homology with axis [0] and center the point at infinity
of the line [0, 0].

Hence the group of homologies with axis [0] and center the point at infinity of the
line [0, 0] of A has order at least q − 1.

If S = F(+, ◦) is the semifield constructed in Sect. 4.4 of [7] isotopic to B (i.e., it
coordinatizes the plane A), then the multiplicative group of the middle nucleus Nm
of S is isomorphic to the group of homologies with axis [0] and center the point at
infinity of the line [0, 0] (see [5] Theorem 8.2). Thus Nm has order at least q.
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