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Abstract The concepts of a tight set of points and an m-ovoid of a generalised quad-
rangle were unified recently by Bamberg, Law and Penttila under the title of intriguing
sets. This unification was subsequently extended to polar spaces of arbitrary rank. The
first part of this paper deals with a method of constructing intriguing sets of one polar
space from those of another via field reduction. In the second part of this paper, we
generalise an ovoid derivation of Payne and Thas to a derivation of intriguing sets.
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1 Introduction

Tight sets and m-ovoids of generalised quadrangles have been given much attention
(see [2] and the references within) and there are close connections between these
two objects and projective two-weight codes and strongly regular graphs (described
in [3] and more recently in J. Bamberg et al., Submitted data). The concept of an
m-ovoid of a generalised quadrangle was extended to polar spaces of arbitrary rank
in [7] where it was defined to be a set of points such that each maximal meets it in
m-points. The concept of a tight set of points of a generalised quadrangle was extended
to polar spaces of arbitrary rank in Drudge’s Ph.D. thesis [4]. A set of points I of a
finite polar space S is tight if the average number of points of I collinear with a given
point of S equals the maximum possible value. Both tight sets and m-ovoids have
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two intersection numbers with respect to degenerate hyperplanes P⊥ depending on
whether P is in the set or not and this leads to a unification of the two concepts under
that of an intriguing set.

We say that a set of points I of a polar space is intriguing if

|P⊥ ∩ I| =
{

h1 if P ∈ I,
h2 if P /∈ I (1)

for some integers h1 and h2. It is shown in (J. Bamberg et al. (submitted data,
Theorem 6) that an intriguing set is an m-ovoid if h1 < h2, and is a tight set if
h1 > h2 (equality never occurs). If the set is tight, its size is i times the number of
points on a maximal. In this case, the set is said to be i-tight. This paper describes two
methods of constructing new intriguing sets from known ones.

The first method reworks the idea of field reduction in a similar manner to the way
it is used to define the fifth Aschbacher class C5 of maximal subgroups of the finite
classical groups [1] (see also [5] for more detail). This involves taking the formed
space (V, κ) defining a polar geometry S and constructing a new form κ ′ from κ on V
considered as a vector space over a subfield of the field of V, thus defining a new polar
space S ′ with higher rank over a smaller field. The subspaces I of S then canonically
define a subset R(I) of the subspaces of S ′ (more formally described in Sect. 3) and
using this correspondence, structures in S sometimes give rise to structures in S ′. The
main result of Sect. 3 is the following theorem.

Theorem 1.1 Let I be an intriguing set of a polar space S and let n = |P⊥ ∩ I| be the
number of points of I collinear with an arbitrary point P of S outside I (where ⊥ is the
polarity associated with S). If |Q⊥ ∩ I| = n for every point Q of the ambient projective
space outside S then the set I ′ = R(I) (defined in Sect. 3) is an intriguing set of S ′.
Furthermore, if I is i-tight then I ′ is i-tight and if I is an m-ovoid of S then I ′ is an
m|R(P)|-ovoid of S ′, where |R(P)| is the number of S ′-points in the image R(P) of P
under R.

A summary of the polar space mappings and the induced intriguing sets (given an
initial intriguing set of the initial polar space) is given in Table 1.

The second method is a generalisation of the derivation of a non-classical ovoid of
H(3, q2) (the unitary geometry over GF(q2)4) from a classical one described by Thas
and Payne in [8]. We remind the reader here of Payne and Thas derivation. Let O be
a classical ovoid of H(3, q2), that is, the set of totally singular points in a non-degen-
erate hyperplane P⊥, where P is a point that is not totally singular. The unique line
� through any two points of O will be secant to H(3, q2), that is, intersect it in q + 1
points. Removing these points from O and adding the totally singular points of �⊥
(the polar line to �) results in a new ovoid

O′ = (O\�) ∪ (�⊥ ∩ H(3, q2))

that is not contained in a hyperplane and hence, not classical.
We generalise this method in Sect. 4 to a derivation of one m-ovoid from an-

other in certain polar spaces of arbitrary rank. As well as providing a method of

constructing m-ovoids this construction allows us to show that there exist q2(r−1)−1
q2−1

-

ovoids of H(2r − 1, q2) and Q+(2r − 1, q2) (the unitary and hyperbolic quadric polar
spaces over GF(q2)2r) that are not classical. That is, that are not the intersection of a
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Table 1 Polar space mappings and induced intriguing sets

Mapping S → S ′ Intriguing set of S Intriguing set of S ′

H(2r, q2e) → H(e(2r + 1) − 1, q2), e odd m-ovoid m q2e−1−1
q2−1

-ovoid

H(2r, q2e) → W(2e(r + 1) − 1, q) m-ovoid m q2e−1
q−1 -ovoid

H(2r, q2e) → Q−(2e(r + 1) − 1, q) m-ovoid m q2e−1
q−1 -ovoid

H(2r − 1, q2e) → H(2er − 1, q2), e odd i-tight i-tight

H(2r, q2e) → W(4er − 1, q) i-tight i-tight

H(2r, q2e) → Q+(4er − 1, q) i-tight i-tight

W(2r − 1, qe) → W(2er − 1, q) m-ovoid m qe−1
q−1 -ovoid

W(2r − 1, qe) → W(2er − 1, q) i-tight i-tight

Q+(2r − 1, qe) → Q+(2er − 1, q) i-tight i-tight

Q−(2r + 1, qe) → Q−(e(2r + 2) − 1, q) m-ovoid m qe−1
q−1 -ovoid

non-degenerate hyperplane with the polar space. The main result of Sect. 4 is the
following theorem.

Theorem 1.2 Let O be an m-ovoid of a polar space S of rank r in PG(2r − 1, q).

(1) Given a dimension (r − 1) subspace � of PG(2r − 1, q2) that satisfies �⊥ ∩ O ⊆ �,

O′ = (O\�) ∪ (�⊥ ∩ S)

is also an m-ovoid of S.

(2) If S is H(2r−1, q2) or Q+(2r−1, q2) and O is a classical q2(r−1)−1
q2−1

-ovoid then there

exists a dimension (r − 1) subspace � of PG(2r − 1, q2) that satisfies �⊥ ∩ O ⊆ �.

Furthermore, O′ is not a classical q2(r−1)−1
q2−1

-ovoid.

2 Notation

In this section, we outline the notation used in this paper.
By PG(d, q) we denote the projective geometry consisting of the subspaces of

GF(q)d+1 the (d + 1)-dimensional vector space over the finite field with q elements.
The polar geometries consisting of the totally isotropic subspaces of an alternating
non-degenerate bilinear form on GF(q)d+1 will be denoted W(d, q). The geome-
try consisting of the totally singular subspaces of a non-degenerate quadratic form
on GF(q)d+1 will be denoted Q−(d, q), Q(d, q), Q+(d, q) depending on whether the
Witt index is d−1

2 , d
2 or d+1

2 , respectively. Sometimes Qε(d, q) may be used to refer
to Q+(d, q), Q(d, q) and Q−(d, q) concurrently. The polar geometries consisting of
the totally isotropic subspaces of an Hermitian non-degenerate bilinear form on
GF(q2)d+1 will be denoted H(d, q2). The term polar space will always refer to a polar
geometry of one of the kinds mentioned here. The term rank will refer to the Witt
index of the formed space. We will use the unqualified term dimension to refer to the
projective dimension of a subspace and algebraic dimension otherwise.
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3 Constructing intriguing sets via field reduction

The construction is based on a method of embedding various classical groups into
others via field reduction. We describe the method briefly here to set notation for this
section.

Let (V, κ) be a non-degenerate formed space with associated polar space S where
V = GF(qe)d+1 and κ is a sesquilinear (quadratic) form. The set V can be consid-
ered as an e(d + 1)-dimensional vector space V′ ∼= GF(q)e(d+1) via the inclusion
GF(q) ⊂ GF(qe). Composition of κ with the trace map T : GF(qe) → GF(q) which
sends z to

∑e
i=1 zqi

provides a new form Tκ on V′ mapping into GF(q) and so we
obtain a new formed space (V′, Tκ). This is not always non-degenerate but can be
made non-degenerate in some cases by multiplying κ by a suitable choice of scalar
λ ∈ GF(qe) resulting in the form κ ′ = Tλκ . If our new formed space (V′, κ ′) is
non-degenerate, then it has an associated polar space S ′. The isomorphism types and
various conditions are presented in Table 3 which is a modified form of the table
appearing in Ref. [6].

Now each point in PG(d, qe) corresponds to a 1-space in V which in turn corre-
sponds to an e-space in V′, an (e − 1)-subspace of PG(e(d + 1) − 1, q) and hence, a
set of points of PG(e(d + 1) − 1, q). Extending this map from points of PG(d, qe) to
subsets of points of S we obtain a map

R : 2PG(d,qe) → 2PG(e(d+1)−1,q)

from subsets of points of PG(d, qe) to the subsets of points of PG(e(d+1)−1, q) where
a set of points I in PG(d, qe) is sent to the set of points I ′ = R(I) in PG(e(d+1)−1, q)

consisting of all the points in (e − 1)-subspaces of PG(e(d + 1) − 1, q) corresponding
to points of I. One immediate consequence of the definitions is that the image of the
pointset of the original polar space S is contained in the new polar space S ′ (but is
not necassarily equal to it).

The focus of this section is to consider the question: Given an intriguing set I of S,
when is I ′ = R(I) an intriguing set of S ′? This question is answered in Theorem 1.1,
whose proof will be delayed to the end of this section as it relies on the following two
lemmas.

We denote by ⊥ the polarities associated with both S and S ′, with context making
clear which is intended. The GF(qe)-span of v ∈ V is denoted by 〈v〉qe and the GF(q)-
span of v ∈ V′ by 〈v〉q. Furthermore, if κ is a quadratic form then β will denote the
associated bilinear form. If κ is bilinear then β = κ .

Table 2 Isomorphism types
and conditions for field
reduction

S S ′ κ ′ Conditions/notes

H(n − 1, q2e) H(en − 1, q2) Tκ e odd
H(n − 1, q2) W(2n − 1, q) Tλκ λ �= 0, Tλ = 0
H( n−2

2 , q2) Q−(n − 1, q) Tκ n
2 is odd

H( n−2
2 , q2) Q+(n − 1, q) Tκ n

2 is even
W(n − 1, qe) W(en − 1, q) Tκ

Qε(n − 1, qe) Qε(en − 1, q) Tκ

Qε( n−2
2 , q2) Qε(n − 1, q) Tκ

qn
2 odd
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Lemma 3.1 Let P ∈ PG(d, qe) and Q ∈ S such that β(u, v) �= 0 for all non-zero vectors

u ∈ Q, v ∈ P. Then each P′ ∈ R(P) is collinear with exactly qe−1−1
q−1 points of R(Q).

Proof The restriction of the map w 
→ β(w, v) to Q is a bijection onto GF(qe). The
GF(q)-linear map L:GF(qe) → GF(q) defined by z 
→ Tλz has full rank (for suitable
λ as in Table 3) so there are qe−1 vectors in the kernel and so there are exactly qe−1

vectors w ∈ Q that satisfy Tλβ(w, v) = 0. By GF(q)-linearity of Tλβ, these vectors
form a GF(q)-subspace W and since there are qe−1 of them, the rank of W over GF(q)

is e − 1. Hence, W contains qe−1−1
q−1 points of S ′. ��

Lemma 3.2 Let P ∈ PG(d, qe), P′ ∈ R(P) ∩ S ′ and let A ⊆ S be a set of points. Set
n = |P⊥ ∩ A| and let m = |A|. Then

|P′⊥ ∩ R(A)| = nqe−1 + m
qe−1 − 1

q − 1
.

Proof If a point Q is in P⊥ then all points of R(Q) are in P′⊥ by definition of κ ′. Since
the set R(Q) forms a totally isotropic subspace of S ′ there are qe−1

q−1 points of S ′ in

R(Q) ∩ S ′ = R(Q). If a point Q is not in P⊥, then by Lemma 3.1, there are qe−1−1
q−1

points of R(Q) in P′⊥. Since there are n points of A in P⊥ and m − n points of A not

in P⊥ this gives n qe−1
q−1 + (m − n)

qe−1−1
q−1 = nqe−1 + m qe−1−1

q−1 , the number of S ′ points
in R(A) collinear with P′. ��

We now proceed with the proof of Theorem 1.1.

Proof of Theorem 3.2 The points in S ′ are of three kinds, those in R(I), those in
R(S)\R(I) and those in S ′\R(S). By definition every point in I ′ is of the first kind
and so by Lemma 3.2 each point in I ′ is collinear with the same number of other points
in I ′. The points not in I ′ are of the latter two kinds and so, again by Lemma 3.2,
every point not in I ′ is collinear with the same number of points of I ′ if and only if
|P⊥ ∩ I| = |Q⊥ ∩ I| for any two points P ∈ PG\S and Q ∈ S\I. Note that |P⊥ ∩ I|
and |Q⊥ ∩ I| correspond to n in the statement of Lemma 3.2. Thus, each point in I ′ is
collinear with the same number h′

1 of points of I ′ and each point not in I ′ is collinear
with the same number h′

2 of points of I ′. Now let h1 = |P⊥ ∩ I| for a point P ∈ I and
h2 = |P⊥ ∩ I| for any point P ∈ S\I. By Lemma 3.2, h1 < h2 if and only if h′

1 < h′
2 so

by J. Bamberg et al. (Sumbitted data, Theorem 6) m-ovoids correspond to m′-ovoids
and i-tight sets correspond to i′-tight sets.

To see that i = i′ in the case where I is i-tight we can either obtain i′ from the size of
I ′ or calculate the size of P⊥∩I ′ using Lemma 3.2. We see similarly that m′ = m|R(P)|
where P is any point of S and |R(P)| the number of S ′-points in its image R(P) under
R. ��

We now apply Theorem 1.1 to each case individually. As all the proofs follow the
same lines, only the first case will be proved.

Corollary 3.3 If H(2r, q2e) admits an m-ovoid O then

H(e(2r + 1) − 1, q2) admits an m q2e−1
q2−1

-ovoid (if e is odd),

W(2e(2r + 1) − 1, q) admits an m q2e−1
q−1 -ovoid, and

Q−(2e(2r + 1) − 1, q) admits an m q2e−1
q−1 -ovoid.
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Proof In all cases we use field reduction to obtain a set O′ = R(O) in the listed polar
space (see Table 3). For a point P ∈ PG(2r, q2e)\H(2r, q2e) we have |P⊥ ∩ O| = m(1 +
qe(2r−1)) by the mi-intersection result (J. Bamberg et al., Submitted data, Corollary 5)
since P⊥ ∩ H(2r, q2e) is (1 + qe(2r−1))-tight. For a point Q ∈ H(2r, q2e)\O we have
|Q⊥ ∩ O| = m(1 + qe(2r−1)). Hence, we can apply Theorem 1.1. ��
Corollary 3.4

(1) If H(2r − 1, q2e) admits an i-tight set then

H(2er − 1, q2) admits an i-tight set (if e odd),
W(4er − 1, q) admits an i-tight set, and
Q+(4er − 1, q) admits an i-tight set.

(2) If W(2r − 1, qe) admits an m-ovoid (resp. i-tight set) then W(2re − 1, q) admits an
m qe−1

q−1 -ovoid (resp. i-tight set).

(3) If Q+(2r − 1, qe) admits an i-tight set then Q+(2er − 1, q) admits an i-tight set.
(4) If Q−(2r+1, qe) admits an m-ovoid then Q−(e(2r + 2) − 1, q) admits a qe−1

q−1 -ovoid.

It is perhaps interesting to note that the image R(S) of S under R only covers S ′
if S is symplectic. If S is not symplectic then the improper intriguing set consisting of
the whole polar space S is mapped by R to a proper intriguing set.

4 A generalised derivation

We now present the construction that generalises the Payne and Thas construction [8]
of an ovoid of H(3, q2). Recall that given a classical ovoid O of H(3, q2) and a secant
line � through two points of O the set

O′ = (O\�) ∪ (�⊥ ∩ H(3, q2))

is a non-classical ovoid.
Now let V be a totally isotropic (r − 3)-space in H(2r − 1, q2). Then V⊥ is a

(r + 1)-space of PG(2r − 1, q2) which meets H(2r − 1, q2) in a cone H with vertex
V. Furthermore, H subtends an H(3, q2). The basic idea is to perform the Payne and
Thas derivation on the H(3, q2) subtended by H. As it turns out, we can weaken the
conditions in this more general setting as well. We begin by proving the first part of
Theorem 1.2 which is restated as Proposition 4.1.

Proposition 4.1 Let O be an m-ovoid of a polar space S of rank r in PG(2r − 1, q) and
let � be a dimension (r − 1) subspace of PG(2r − 1, q) that satisfies �⊥ ∩ O ⊆ �. Then

O′ = (O\�) ∪ (�⊥ ∩ S)

is also an m-ovoid of S.

Proof We show that for an arbitrary maximal M the number of points in M ∩ O′ is
the same as the number in M ∩ O. Since O is an m-ovoid, the result follows. For an
arbitrary maximal M the number of points in M ∩ O′ is

|M ∩ O′| = |M ∩ O| − |M ∩ �| + |M ∩ �⊥| − |M ∩ �⊥ ∩ (O\�)|.
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It follows from properties of ⊥ and M being a maximal that dim M ∩ �⊥ = dim M ∩ �

and so |M ∩ �⊥| − |M ∩ �| = 0. Furthermore, by assumption �⊥ ∩ O ⊆ � and so
�⊥ ∩ (O\�) is empty. Hence |M ∩ O′| = |M ∩ O| for every maximal M and so O′ is an
m-ovoid. ��

We now show the second part of Theorem 1.2 which is restated in the following
proposition.

Proposition 4.2 Let S be either H(2r − 1, q2) or Q+(2r − 1, q), let P be a point in the
ambient projective space not contained in S and let O = P⊥ ∩ S be the corresponding
classical m-ovoid. Then there exists a subspace � ⊆ P⊥ of dimension (r − 1) such
that �⊥ ∩ O ⊆ �. Furthermore, the m-ovoid O′ of Proposition 4.1 is not a classical
m-ovoid.

Proof The set of points P⊥ ∩ S is a rank r − 1 polar space and so has maximals of
(projective) dimension r − 2. Let V be a subspace of dimension r − 3 of a maximal
of P⊥ ∩ S. Now V⊥ has dimension r + 1. Since V is totally isotropic, V ⊂ V⊥ and
so we can decompose V⊥ into V⊥ = V ⊕ U. The form β on U is non-degenerate
and so defines a polar space S ′. Clearly, there is a hyperbolic line �′ in S ′ so set
� = V + �′.

Suppose that there is a totally singular point Q in �⊥ ∩ P⊥ that is not in �. Let R′
be a totally singular point of �′ and let R = V + R′. Note that R is a totally isotropic
subspace of dimension r−2. Now Q ∈ �⊥ ⊂ R⊥, as R ⊂ �, so Q is collinear with every
point in R. Thus, R + Q is a totally isotropic subspace of dimension r − 1, that is, a
maximal of S. But P⊥ ∩ S is a proper m-ovoid and so cannot contain a maximal of S.
Hence, �⊥ ∩ (P⊥ ∩ S) ⊆ �.

The only thing left to show is that the new m-ovoid O′ = (O\�) ∪ (�⊥ ∩ S) (where
O = P⊥ ∩ S) is not contained in a hyperplane. To see this, note that we are removing
a proper subspace � from another subspace P⊥ so the remaining vectors P⊥\� still
span P⊥. So long as there is at least one vector in �⊥ that is not in P⊥ the new m-ovoid
will span the whole space and therefore not be classical. That there is such a vector
follows from the property �⊥ ∩ (P⊥ ∩S) ⊆ � as follows: The sizes of O and O′ must be
the same so there are the same number of totally singular points in � as there are in
�⊥. All the totally singular points in �⊥ that are in P⊥ are contained in �. This cannot
be all of them since that would imply that � = �⊥. So there is at least one totally
singular point of �⊥ not in P⊥ and therefore O′ spans the whole space. Since O′ is not
contained in a hyperplane it is not a classical m-ovoid. ��
Acknowledgments The author thanks John Bamberg and Maska Law as well as his honours supervi-
sors Michael Giudici and Tim Penttila for their encouragement, patience, guidance and proofreading.
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