Roux-type constructions for covering arrays of strengths three and four

Charles J. Colbourn · Sosina S. Martirosyan · Tran Van Trung · Robert A. Walker II

Received: 6 August 2005 / Revised: 23 February 2006 / Accepted: 21 March 2006 © Springer Science+Business Media, LLC 2006

Abstract A *covering array CA(N;t,k,v)* is an $N \times k$ array such that every $N \times t$ sub-array contains all *t*-tuples from *v* symbols *at least* once, where *t* is the *strength* of the array. Covering arrays are used to generate software test suites to cover all *t*-sets of component interactions. Recursive constructions for covering arrays of strengths 3 and 4 are developed, generalizing many "Roux-type" constructions. A numerical comparison with current construction techniques is given through existence tables for covering arrays.

Keywords Covering array · Orthogonal array · Difference matrix

AMS Classification 05B40 · 05B15 · 68N30

Communicated by D. Hachenberger.

C. J. Colbourn $(\boxtimes) \cdot R$. A. Walker II

Computer Science and Engineering, Arizona State University, P.O. Box 878809, Tempe, AZ 85287, **IISA**

e-mail: charles.colbourn@asu.edu

S. S. Martirosyan Mathematical Sciences, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX 77058, USA

T. Van Trung Institut für Experimentelle Mathematik, Universität Duisburg-Essen, Ellernstrasse 29, 45326 Essen, Germany e-mail: trung@exp-math.uni-essen.de

R. A. Walker II e-mail: robby.walker@gmail.com

1 Introduction

A *covering array* $CA(N; t, k, v)$ is an $N \times k$ array such that every $N \times t$ sub-array contains all *t*-tuples from *v* symbols *at least* once, where *t* is the *strength* of the array. When 'at least' is replaced by 'exactly', this defines an *orthogonal array* [18]. We use the notation $OA(N; t, k, v)$. Often we refer to a *t*-covering array to indicate some $CA(N; t, k, v)$. We denote by $CAN(t, k, v)$ the minimum N for which a $CA(N; t, k, v)$ exists. The determination of $CAN(t, k, v)$ has been the subject of much research; see [7, 11, 16, 17] for survey material. However, only in the case of $CAN(2, k, 2)$ is an exact determination known (see [11]). In part the interest arises from applications in software testing [10], but other applications in which experimental factors interact avail themselves of covering arrays as well [11, 16].

We outline the approaches taken for strength $t = 2$, but refer to [11] for a more detailed survey. When the number of factors is "small", numerous direct constructions have been developed. Some exploit the known structure of orthogonal arrays arising from the finite field, but most have a computational component. A range of methods have been applied, including greedy methods [10], tabu search [24], simulated annealing [8], and constraint satisfaction [19]. Assuming that the covering array admits an automorphism can reduce the computational difficulty substantially [23].

At the other extreme, when the number of factors *k* goes to infinity, asymptotic methods have been applied; see [15], for example. In practice, this leaves a wide range of values of *k* for which no useful information can be deduced. Computational methods become infeasible, and asymptotic analysis does not apply, within this range. Hence there has been substantial interest in recursive ("product") constructions to make large covering arrays from smaller ones. Currently, the most general recursive constructions for strength two appear in [14].

This pattern is repeated for strength $t > 2$. The larger the strength, the more limited is our ability to obtain computational results for small numbers of factors. For strength three, powerful heuristic search such as simulated annealing [9] and tabu search [24] are still effective, but for larger strengths their current applications are quite restricted. Consequently, imposing larger automorphism groups to accelerate the search has proved effective in some cases [6, 7]. More recently, Sherwood et al. [26] developed a "permutation vector" representation for certain covering arrays. In conjunction with tabu search, Walker and Colbourn submitted for publication produce many coverings arrays for strengths between 3 and 7.

Despite current limitations in producing *t*-covering arrays with a small number of factors, recursive constructions have proved to be effective in making arrays for larger numbers of factors. Roux [25] pioneered a conceptually simple recursive construction for strength $t = 3$ that has been substantially generalized for strength 3 [7, 9], strength 4 [16, 17, 22], and strength *t* in general [21, 22]. In this paper, we improve the recursion for strength 3, and we generalize and unify the Roux-type recursions for strength 4. We then recall related recursions using Turán families and perfect hash families in Sect. [5,](#page-15-0) and using this current census of known constructions we present current existence tables for covering arrays of strengths 3 and 4.

2 Definitions and preliminaries

Let Γ be a group of order *v*, with \odot as its binary operation. A $(v, k; \lambda)$ -difference matrix $D = (d_{ij})$ over Γ is a $v\lambda \times k$ matrix $D = (d_{\ell,i})$ with entries from Γ , so that for each

 $1 \le i < j \le k$, the set { $d_{\ell,i} \odot d_{\ell,j}^{-1}$: 1 ≤ $\ell \le \nu\lambda$ } contains every element of Γ λ times. When Γ is abelian, additive notation is used, so that difference $d_{\ell,i} - d_{\ell,i}$ is employed. (Often in the literature the transpose of this definition is used.)

A *t-difference covering array* $D = (d_{ij})$ over Γ , denoted by $DCA(N, \Gamma; t, k, v)$, is an $N \times k$ array with entries from Γ having the property that for any *t* distinct columns $j_1, j_2, \ldots, j_t,$ the set $\{(d_{i,j_1} \odot d_{i,j_2}^{-1}, d_{i,j_1} \odot d_{i,j_3}^{-1}, \ldots, d_{i,j_1} \odot d_{i,j_t}^{-1}): 1 \leq i \leq N\}$ contains every non-zero (*t* − 1)-tuple over Γ at least once. When $\Gamma = \mathbb{Z}_{\nu}$ we omit it from the notation. We denote by $DCAN(t, k, v)$ the minimum N for which a $DCA(N; t, k, v)$ exists.

A *covering ordered design* COD $(N; t, k, v)$ is an $N \times k$ array such that every $N \times t$ sub-array contains all non-constant *t*-tuples from *v* symbols *at least* once. We denote by CODN(t, k, v) the minimum N for which a COD(N ; t, k, v) exists. As an example, CODN(2, 3, 3) = 6; take the six rows $(i, j, 2 \cdot (i + j) \mod 3)$ for $i, j \in \{0, 1, 2\}$ with $i \neq j$.

A QCA(N ; k , ℓ , ν) is an $N \times k\ell$ array with columns indexed by ordered pairs from $\{1, \ldots, k\} \times \{1, \ldots, \ell\}$, in which whenever $1 \leq i < j \leq k$ and $1 \leq a < b \leq \ell$, the $N \times 4$ subarray indexed by the four columns (i, a) , (i, b) , (j, b) , (j, a) contains every 4-tuple (x, y, z, t) with $x - t \neq y - z$ (mod *v*) at least once. QCAN (k, ℓ, v) denotes the minimum number of rows in such an array.

We recall two general results.

Theorem 2.1 [18] When $v \geq 2$ is a prime power then an $OA(v^t; t, v+1, v)$ exists whenever *v* ≥ *t* − 1 ≥ 0.

Theorem 2.2 [13] *The multiplication table for the finite field* \mathbb{F}_v *is a* $(v, v; 1)$ *-difference matrix over* EA(*v*)*.*

In order to simplify the presentation later, we establish a basic result:

Theorem 2.3 CAN(2, k, vw) $\leq min$ \begin{cases} CAN(2, k, v)CAN(2, v, w) + vCODN(2, k, w)
CODN(2, k, v)CAN(2, v, w) + vCAN(2, k, w)

Proof We prove the first statement; the second is similar. Suppose that there exist A a $CA(N_A; 2, k, v)$, B a $CA(N_B; 2, v, w)$, and C a $COD(N_C; 2, k, w)$.

We produce a $CA(N'; 2, k, vw)$ D where $N' = N_A N_B + vN_C$. D is formed by vertically juxtaposing arrays **E** of size $N_A N_B$ and $F^0, \ldots, F^{\nu-1}$ each of size N_C .

We refer to elements of D as ordered pairs (a, b) where $0 \le a < v$ and $0 \le b < w$. There are *vw* such elements.

Define array E as follows. Replace each element *i* from A with a column of length *N_B* whose *j*th entry is (i, σ) where σ is the *j*th entry of the *i*th column of B.

Define array F^{ℓ} to be the result of replacing every entry σ of array C by (ℓ, σ) . Then D has N' rows. We now verify that it is a $CA(N'; 2, k, vw)$.

Consider columns *i* and *j* of D to verify the presence of the pair (r, x) in column *i* and (*s*, *y*) in column *j*.

If $r \neq s$, look in E. There is a row in A that covers the pair (r, s) in columns (i, j) . We look at the expansion of this pair from A into E. Since there is also a row in B that covers the pair (*x*, *y*), say in row *n*, and since the *r*th and *s*th columns of B are distinct, the *n*th row of the expansion contains the required pair. Similarly if $r = s$ and $x = y$, there is a row in A that covers the pair (r, r) and all pairs are covered in the expansion into E provided that $x = y$.

It remains to treat the case when $r = s$ but $x \neq y$, i.e. the pairs sought are of the form (r, x) and (r, y) . For these we consider F^r . Since $x \neq y$, the pair (x, y) is covered in C. So, the pair (r, x) , (r, y) is covered in F^r . . В последните последните последните последните последните последните последните последните последните последн
В последните последните последните последните последните последните последните последните последните последнит

Corollary 2.4 *For v a prime power,*

 $\text{CAN}(2, k, v^2) \leq \min \left\{ \frac{v^2 \text{CAN}(2, k, v) + v \text{COMP}(2, k, v)}{v^2 \text{COND}(2, k, v) + v \text{COND}(2, k, v)} \right\}$ v^2 CODN(2, k , v) + v CAN(2, k , v) $\left\{ \leq (v^2 + v) \text{CAN}(2, k, v) - v^2. \right\}$

 $Proof$ CODN(2, k , v) \leq CAN(2, k , v) -1 .

Theorem 2.5 CODN(2, *k*, *vw*) < CODN(2, *k*, *v*)CODN(2, *v*, *w*) + *v*CODN(2, *k*, *w*).

Proof This parallels the proof of Theorem [2.3](#page-2-0) closely.

For large *k*, these improve upon the simple "composition" of covering arrays that establishes that $CAN(2, k, vw) \leq CAN(2, k, v) CAN(2, k, w)$.

3 Strength three

In [27], a theorem from Roux's Ph.D. dissertation [25] is presented.

Theorem 3.1 CAN(3, 2 k , 2) \le CAN(3, k , 2) + CAN(2, k , 2).

Proof To construct a $CA(3, 2k, 2)$, we begin by placing two $CA(N_3, 3, k, 2)$ s side by side. We now have a $N_3 \times 2k$ array. If one chooses any three columns whose indices are distinct modulo *k*, then all triples are covered. The remaining selection consists of a column *x* from among the first *k*, its copy among the second *k*, and a further column *y*. When the two columns whose indices agree modulo *k* share the same value, such a triple is also covered. The remaining triples are handled by appending two $CA(N_2, 2, k, 2)$ s side by side, the second being the bit complement of the first. Therefore if we choose two distinct columns from one half, we choose the bit complement of one of these, thereby handling all remaining triples. This gives a covering array of $size N_2 + N_3.$

Chateauneuf and Kreher [7] prove a generalization:

Theorem 3.2 CAN(3, 2k, *v*) \le CAN(3, k, *v*) + (*v* − 1)CAN(2, k, *v*).

Cohen et al. [9] generalize to permit the number of factors to be multiplied by $\ell \geq 2$ rather than two.

Theorem 3.3 [9] CAN(3, $k\ell, v$) \leq CAN(3, k, v) + CAN(3, ℓ, v) + CAN(2, ℓ, v) \times DCAN $(2, k, v)$.

Here we establish a different generalization of the Roux construction for strength three.

Theorem 3.4 *For any prime power* $v \geq 3$

$$
CAN(3, vk, v) \leq CAN(3, k, v) + (v - 1) CAN(2, k, v) + v3 - v2
$$

Proof Suppose that C_3 is a $CA(N_3; 3, k, v)$ and C_2 is a $CA(N_2; 2, k, v)$. Suppose that D is the $(v - 1) \times v$ array obtained by removing the first row from the difference matrix in Theorem [2.2.](#page-2-1) Then $d_{i,j} = i \times j$ for $i = 1, ..., \nu - 1$ and $j = 0, ..., \nu - 1$. D is a $DCA(v - 1; 2, v, v).$

$$
\Box
$$

We first construct an $OA(v^3; v, v, 3)$ A by using Bush's construction (see the proof of Theorem 3.1 in [18]). The columns of A are labelled with the elements of \mathbb{F}_v and rows are labelled by v^3 polynomials over \mathbb{F}_v of degree at most 2. Then, in A, the entry in the column γ_i and the row labelled by the polynomial with coefficients β_0 , β_1 and β_2 is $\beta_0 + \beta_1 \times \gamma_i + \beta_2 \times {\gamma_i}^2$.

Let B be the sub-array of A containing the rows of A which are labelled by the polynomials of degree 2 ($\beta_2 \neq 0$). Then B is a ($v^3 - v^2$) × *v* array. We label each column of B with the same element of \mathbb{F}_v as its corresponding column in A. Denote the *i*th column of B by B_i , for $i = 0, \ldots, \nu - 1$.

We produce a covering array $CA(N'; 3, vk, v)$ G where $N' = N_3 + (v-1)N_2 + v^3 - v^2$. G is formed by vertically juxtaposing arrays G₁ of size $N_3 \times vk$, G₂ of size $(v-1)N_2 \times vk$, G₃ of size $(v^3 - v^2) \times vk$.

We describe the construction of each array in turn. We index *vk* columns by ordered pairs from $\{0, \ldots, k-1\} \times \{0, \ldots, v-1\}.$

- G_1 : In row *r* and column (*f*, *h*) place the entry in cell (*r*, *f*) of C_3 . Thus G_1 consists of ν copies of C_3 placed side by side.
- G₂: Index the $(v 1)N_2$ rows by ordered pairs from $\{1, \ldots, N_2\} \times \{1, \ldots, v 1\}$. In row (r, s) and column (f, h) place $c_{r,f} + d_{s,h}$, where $c_{r,f}$ is the entry in cell (r, f) of C_2 and $d_{s,h}$ is the entry in cell (s,h) of D.
- G₃: In row *r* and column (f, h) place the entry in cell (r, h) of B. Thus G₃ consists of *k* copies of B_0 , the first column of B, then *k* copies of B_1 , the second column, and so on.

We show that G is a 3-covering array. Consider three columns of G:

$$
(f_1,h_1), (f_2,h_2), (f_3,h_3)
$$

If f_1 , f_2 , f_3 are all distinct, then these columns restricted to G_1 arise from three distinct columns of C_3 . Hence, all 3-tuples are covered.

If $f_1 = f_2 \neq f_3$ then all tuples of the form (x, x, y) are covered in G_1 . All tuples of the form $(x + d_{y,h_1}, x + d_{y,h_2}, z + d_{y,h_3})$ for any $x, z \in \{0, 1, ..., v-1\}$ and $y \in \{1, ..., v-1\}$ are covered in G_2 . Therefore, since $h_1 \neq h_2$ and D is a 2-difference covering array, it follows that all 3-tuples $(x, x + i, y)$ where $i \in \{1, \ldots, v\}$ and $x, y \in \{0, 1, \ldots, v - 1\}$ are covered in G_2 .

If $f_1 = f_2 = f_3$ then $h_1 \neq h_2 \neq h_3$. All tuples of the form (x, x, x) are covered in G_1 . All 3-tuples of the form $(x + d_{y,h_1}, x + d_{y,h_2}, x + d_{y,h_3})$, for any $x \in \{0, ..., v - 1\}$ and $y \in \{1, \ldots, \nu - 1\}$ are covered in G_2 . Hence, for any $x, y \in \mathbb{F}_{\nu}$, all 3-tuples of the form $(x + y \times h_1, x + y \times h_2, x + y \times h_3)$ are covered in G_1 and G_2 . The remaining 3-tuples of the form $(x + y \times h_1 + z \times h_1^2, x + y \times h_2 + z \times h_2^2, x + y \times h_3 + z \times h_3^2)$, where $x, y \in \{0, \ldots, \nu - 1\}$ and $z \in \{1, \ldots, \nu - 1\}$, are covered in G_3 . Hence all 3-tuples are \Box covered.

4 Strength four

In this section, we first establish general Roux-type constructions for strength four and then specialize them by restricting parameter values, and by employing specific ingredient arrays.

4.1 General constructions

Theorem 4.1 *For max*(k, l) > 4*,*

$$
CAN(4, k\ell, \nu) \leq CAN(4, k, \nu) + CAN(4, \ell, \nu) + DCAN(2, \ell, \nu) CAN(3, k, \nu) + DCAN(2, k, \nu) CAN(3, \ell, \nu) + QCAN(k, \ell, \nu).
$$

Indeed when $k \geq 4$ *and* $\ell \geq 4$ *,*

$$
CAN(4, k\ell, v) \leq CAN(4, k, v) + CAN(4, \ell, v) + DCAN(2, \ell, v) CODN(3, k, v) + DCAN(2, k, v) CODN(3, \ell, v) + QCAN(k, \ell, v).
$$

Proof We prove the second statement, the first being a slight variation. Suppose that the following exist:

- $CA(N_4; 4, k, v) C_4$
- $CA(R_4; 4, \ell, \nu) B_4$
- DCA(S_1 ; 2, ℓ , ν) D₁,
- COD $(N_3; 3, k, v)$ C₃,
- DCA $(S_2; 2, k, v)$ D₂,
- COD(R_3 ; 3, ℓ , ν) B₃,
- $QCA(M; k, \ell, \nu) G_5$.

We produce a covering array $CA(N'; 4, k\ell, v)$ G where $N' = N_4 + R_4 + N_3S_1 +$ $R_3S_2 + M$. G is formed by vertically juxtaposing arrays G_1 of size $N_4 \times k\ell$, G_2 of size $R_4 \times k\ell$, G₃ of size $N_3S_1 \times k\ell$, G₄ of size $R_3S_2 \times k\ell$ and G₅ of size $M \times k\ell$. We describe the construction of G_1 , G_2 , G_3 , and G_4 in turn. We index $k\ell$ columns by ordered pairs from $\{1, ..., k\} \times \{1, ..., \ell\}.$

- G_1 : In row *r* and column (f, h) place the entry in cell (r, f) of C_4 . Thus G_1 consists of ℓ copies of C_4 placed side by side.
- G_2 : In row *r* and column (*f*, *h*) place the entry in cell (*r*, *h*) of B_4 . Thus G_2 consists of *k* copies of the first column of B4, then *k* copies of the second column, and so on.
- G₃: Index the N_3S_1 rows by ordered pairs from $\{1, \ldots, N_3\} \times \{1, \ldots, S_1\}$. In row (r, s) and column (f, h) place $c_{r,f} + d_{s,h}$, where $c_{r,f}$ is the entry in cell (r, f) of C_3 and $d_{s,h}$ is the entry in cell (s,h) of D_1 .
- G₄: Index the S_2R_3 rows by ordered pairs from $\{1, \ldots, S_2\} \times \{1, \ldots, R_3\}$. In row (s, r) and column (f, h) place $b_{r,h} + d_{sf}$, where $b_{r,h}$ is the entry in cell (r, h) of B₃ and $d_{s,f}$ is the entry in cell (s,f) of D_2 .

We show that G is a 4-covering array. Consider four columns

$$
(f_1,h_1), (f_2,h_2), (f_3,h_3), (f_4,h_4)
$$

of G. If f_1, f_2, f_3, f_4 are all distinct, then these columns restricted to G_1 arise from four distinct columns of C_4 . Hence, all 4-tuples are covered. Similarly, if h_1, h_2, h_3, h_4 are all distinct, then these four columns restricted to G_2 arise from distinct columns of B_4 and hence all 4-tuples are covered.

Further, we treat the following cases:

• $f_1 = f_2 \neq f_3 \neq f_4 \neq f_2$ In this case $h_1 \neq h_2$. All 4-tuples (x, x, y, z) are covered in G_1 , for any $x, y, z \in$ $\{0, \ldots, \nu - 1\}.$

Now, suppose that $h_2 = h_3 = h_4$. Then G_3 covers all tuples of the form $(x, x +$ $i, y + i, z + i$ except where $x = y = z$: i.e. (x, w, w, w) . These are exactly the tuples covered in G_2 .

Similarly, suppose that $h_1 = h_3 = h_4$. Then G_3 covers tuples of the form $(x, x +$ i, y, z except for (x, w, x, x) . These are covered in G_2 .

Suppose then that $h_1 = h_3$ and $h_2 = h_4$. G₃ covers tuples of the form $(x, x+i, y, z+i)$ except for $x = y = z$: i.e. (x, w, x, w) . G₂ covers precisely tuples of this form. The argument is nearly identical if $h_1 = h_4$ and $h_2 = h_3$.

Furthermore, suppose that $h_1 = h_3$, but $h_1 \neq h_2 \neq h_4 \neq h_1$. Then, G₃ covers tuples of the form $(x, x + i, y, z + j)$ except for $x = y = z$: i.e. (x, w, x, u) . Again, G₂ covers all tuples of this form. Without loss of generality, cases with three distinct *h* values and $f_1 = f_2$ are treated in this manner.

Finally, assume that h_1 , h_2 , h_3 , h_4 are distinct. This case has already been discussed. Hence all 4-tuples are covered for all possible sub-cases.

$$
\bullet \quad f_1 = f_2 = f_3 \neq f_4
$$

In this case $h_1 \neq h_2 \neq h_3 \neq h_1$. The case where h_1, h_2, h_3 and h_4 are all distinct is discussed above. Suppose that $h_3 = h_4$, then 4-tuples (x, y, z, z) for any $x, y, z \in \{0, \ldots, v-1\}$ are covered in G₂. The 4-tuples $(x, y, z, z + i)$, for any $i \in \{1, \ldots, \nu - 1\}$ and any $x, y, z \in \{0, \ldots, \nu - 1\}$, are covered in G₄, except where $x = y = z$: i.e. (x, x, x, w) . However, all tuples of this form are covered in G_1 . Hence all 4-tuples are covered.

• $f_1 = f_2 \neq f_3 = f_4$

In this case $h_1 \neq h_2$ and $h_3 \neq h_4$. Firstly, suppose that $h_2 = h_3$ but $h_1 \neq h_4$. Then 4-tuples (x, y, y, z) are covered in G_2 for any $x, y, z \in \{0, \ldots, v-1\}$. The 4-tuples $(x, y, y + i, z + i)$, for any $i, j \in \{1, ..., v - 1\}$ and for any $x, y, z \in \{0, ..., v - 1\}$, are covered in G₄ except where $x = y = z$: i.e. (x, x, w, w) . These remaining tuples are covered in G1. Hence all 4-tuples are covered.

Now suppose that $h_2 = h_3$ and $h_1 = h_4$. Fix a 4-tuple (x, y, z, t) where x, y, z and t are any symbols from $\{0, \ldots, \nu-1\}$. If $x-t \equiv y-z \pmod{\nu}$, the 4-tuple is covered in G_1 , G_2 , G_3 and G_4 ; by the definition of the QCA, the remaining 4-tuples are covered by G_5 .

Lemma 4.2 QCAN $(k, \ell, v) \le$ CODN $(2, k, \text{CAN}(2, \ell, v))$.

Proof Suppose that a $CA(N; 2, \ell, \nu)$ C and a $COD(R; 2, k, N)$ B both exist. A $QCA(R; k, \nu)$ ℓ, ν) G is produced by replacing the symbol *g* in B by the *g*th row of C for all $g \in$ ${0, \ldots, N-1}$. Columns of the resulting array are indexed by (a, b) where *b* indicates the column of B inflated, and *a* indexes the column of C within the row used in the inflation. Since C is a 2-covering array, it has a row *i* such that the entry in cell (i, f_1) is *x* and in cell (i, f_3) is *t*. C also contains a row *j* such that the entry in cell (j, f_1) is *y* and in the cell (j, f_3) is z. Furthermore, since B is a 2-COD on N symbols, it has a row *m* where the entry in cell (m, h_1) is the symbol *i* and in cell (m, h_2) is the symbol *j*. Thus, from the construction of G it follows that the tuple (x, y, z, t) with $x - t \neq y - z$ (mod *v*) occurs in the row *m* and the columns $(f_1, h_1), (f_1, h_2), (f_3, h_2)$ and (f_3, h_1) of G.

Corollary 4.3 *For* $k, \ell \geq 4$ *,*

 $CAN(4, k\ell, v) \leq CAN(4, k, v) + CAN(4, \ell, v) + DCAN(2, \ell, v)$ CODN(3, k, v) $+DCAN(2, k, v) CODN(3, \ell, v) + CODN(2, k, CAN(2, \ell, v)).$ *Proof* This follows from Theorem [4.1](#page-5-0) and Lemma [4.2.](#page-6-0) □

Lemma 4.4 $QCAN(k, \ell, \nu) \leq \lceil \log_2 \ell \rceil QCAN(k, 2, \nu)$.

Proof Suppose that a QCA(N ; k , 2 , ν) C exists with columns indexed by $\{1 \dots, k\}$ × $\{0, 1\}$. The QCA(k, ℓ, ν) G is constructed as follows. We index $k\ell$ columns by $\{1, \ldots, k\} \times$ $\{1, \ldots, \ell\}$. Construct a binary array A with $\lceil \log_2 \ell \rceil$ rows and ℓ distinct columns. For each row $(\rho_1, \ldots, \rho_\ell)$ of A in turn, form an $N \times k\ell$ array by replacing (in this row) the symbol $\rho_i \in \{0,1\}$ by the $N \times k$ subarray of C whose columns are indexed by $\{1, \ldots, k\} \times \{\rho_i\}$. Vertically juxtaposing the $\lceil \log_2 \ell \rceil$ arrays so obtained produces G. \Box

Lemma 4.5 QCAN $(k, 2, v) \le$ CODN $(2, k, v^2)$.

Proof Let C be a COD(N ; 2, k , v^2). Let ϕ be a one-to-one mapping from the symbols of C to $\{1, \ldots, v\} \times \{1, \ldots, v\}$. Construct two $N \times k$ arrays, E and F as follows. Let *i* be the entry in the cell (r, s) of C and $\phi(i) = (x, y)$. Then the entry in cell (r, s) of array E is *x* and the entry in cell (*r*,*s*) of array F is *y*. The QCA is produced by placing E and F side-by-side, indexing E by $\{1, \ldots, k\} \times \{1\}$ and F by $\{1, \ldots, k\} \times \{2\}$.

Corollary 4.6 *For* $k, \ell \geq 4$ *,*

$$
CAN(4, k\ell, v) \leq CAN(4, k, v) + CAN(4, \ell, v) + DCAN(2, \ell, v) CODN(3, k, v) + DCAN(2, k, v) CODN(3, \ell, v) + [log_2 \ell] CODN(2, k, v2).
$$

Proof This follows from Theorem [4.1](#page-5-0) using Lemmas [4.4](#page-7-0) and [4.5.](#page-7-1) □

4.2 Specializations when $\ell = 2$

Hartman [16, 17] showed:

Theorem 4.7 CAN(4, 2*k*, *v*) < CAN(4, *k*, *v*) + (*v* − 1)CAN(3, *k*, *v*) + CAN(2, *k*, *v*²).

We derive a small improvement here.

Lemma 4.8 *For* $k > 4$,

$$
CAN(4, 2k, v) \leq CAN(4, k, v) + (v - 1)CAN(3, k, v) + CODN(2, k, v) CODN(2, v, v) + v CODN(2, k, v)
$$

Proof Apply Theorem [4.1](#page-5-0) with $\ell = 2$, using Lemma [4.5](#page-7-1) and Theorem [2.5.](#page-3-0)

Corollary 4.9 *For v a prime power and* $k > 4$ *,*

 $CAN(4, 2k, v) < CAN(4, k, v) + (v - 1)CAN(3, k, v) + v^2CAN(2, k, v) - v^2$

Proof Use CODN(2, v, v) < $v^2 - v$ from Bush's orthogonal array construction, removing the *v* constant rows. Hence CAN(4, 2 k , v) \le CAN(4, k , v) + (v − 1)CAN(3, k , v) + v^2 CODN(2, k, v).

In addition, without loss of generality every $CA(N; 2, k, v)$ can have symbols renamed so that the resulting covering array has a constant row, whose deletion y ields a COD($N - 1$; 2, k , v). □

4.3 Specializations when $v = 2$

We also provide a tripling specialization for binary arrays.

Theorem 4.10 CAN(4, 3k, 2) \le CAN(4, k, 2) + 6DCAN(2, k, 2) + CAN(3, k, 2) + CAN $(3, k + 1, 2) + 4$ CODN $(2, k, 2)$

Proof Suppose that the following exist:

- $CA(N_4; 4, k, 2) C_4$
- $DCA(S_2; 2, k, 2) D_2$
- $CA(N_3; 3, k, 2) C_3$
- $CA(M_3; 3, k+1, 2)$ F₃,
- $COD(N_2; 2, k, 2) C_2$.

Also, by removing the constant rows from Bush's orthogonal array, we can produce a

• COD $(6; 3, 3, 2)$ B₃.

We produce a covering array $CA(N'; 4, 3k, 2)$ G where $N' = N_4 + 6S_2 + N_3 + M_3 +$ $4N_2$. G is formed by vertically juxtaposing arrays G₁ of size $N_4 \times 3k$, G₄ of size $6S_2 \times 3k$, E₁ of size $N_3 \times 3k$, E₂ of size $M_3 \times 3k$, and K₁ through K₄ each of size $N_2 \times 3k$.

We describe the construction of each array in turn. We index 3*k* columns by ordered pairs from $\{0, \ldots, k-1\} \times \{0, 1, 2\}.$

The constructions of G_1 and G_4 are the same as those in Theorem [4.1.](#page-5-0) To produce the other ingredients, proceed as follows:

- E_1 : In row *r* and column (*f*, 0) and (*f*, 1) place the entry in cell (*r*, *f*) of C_3 . In row *r* and column $(f, 2)$, place the bitwise complement of the entry in cell (r, f) of C_3 .
- E₂: Remove any column from F₃ to form a covering array of size $M_3 \times k$, F₃. In row *r* and column (*f*, 0) place the entry in cell (*r*, *f*) of F'_3 . In row *r* and column (*f*, 1) place the bitwise complement of the entry in cell (r, f) of F'_3 . In row *r* and column $(f, 2)$ place the *r*th element of the column removed from F_3 .
- K₁: In row *r* and column (*f*, 0) and (*f*, 2) place the entry in cell (*r*, *f*) of C_2 . In row *r* and column $(f, 1)$, place a 0.
- K₂: In row *r* and column (*f*, 1) and (*f*, 2) place the entry in cell (*r*, *f*) of C_2 . In row *r* and column $(f, 0)$, place a 0.
- K_3 : In row *r* and column (*f*, 0) and (*f*, 2) place the entry in cell (*r*, *f*) of C_2 . In row *r* and column $(f, 1)$, place a 1.
- K_4 : In row *r* and column (*f*, 1) and (*f*, 2) place the entry in cell (*r*, *f*) of C_2 . In row *r* and column $(f, 0)$, place a 1.

We show that G is a 4-covering array. Consider four columns

$$
(f_1,h_1), (f_2,h_2), (f_3,h_3), (f_4,h_4)
$$

of G. If f_1, f_2, f_3, f_4 are all distinct, then these columns restricted to G_1 arise from four distinct columns of C_4 . Hence, all 4-tuples are covered. When $f_1 = f_2 = f_3 = f_4$, the values h_1 , h_2 , h_3 and h_4 must all be distinct, but this cannot occur as the h 's are restricted to {0, 1, 2}.

Further, we need to consider the following cases:

• $f_1 = f_2 \neq f_3 \neq f_4 \neq f_2$

In this case $h_1 \neq h_2$. Hence, the tuples (x, x, y, z) are covered in G_1 . If no $h_i = 2$ then the tuples (x, x', y, z) for $x, y, z \in \{0, 1\}$ are covered in E_2 . If h_1 or h_2 is 2, tuples (x, x', y, z) are covered in E_1 .

Without loss of generality, the remaining cases have $h_1 = 0$, $h_2 = 1$, $h_3 = 2$. Assume that $h_4 \neq 2$. Then the tuples (x, x^7, y, z) are covered in E_2 . Finally, assume that $h_4 = 2$. Then, the tuples (x, x', y, y) are covered in E_2 , leaving us to cover tuples of the form (x, x', y, y') . G₄ covers tuples of the form $(a+i, b+i, c, c')$ except for the case $a = b = c$, which is covered by G_1 . Taking $a + i = x$, $b + i = x'$, and $c = y$, and hence $a \neq b$, we cover the remaining tuples in G_4 .

• $f_1 = f_2 = f_3 \neq f_4$

In this case $h_1 \neq h_2 \neq h_3 \neq h_1$. There are only three values for h_i , $i \in \{1, 2, 3, 4\}$; hence, without lost of generality, we suppose that $h_4 = h_1$.

The tuples (x, x, x, y) are covered in G_1 for any $x, y \in \{0, 1\}$. The 4-tuples (x, y, z, x') , for any $x, y, z \in \{0, 1\}$ except $x = y = z$ are covered in G_4 .

This leaves six tuples: $(0, 0, 1, 0), (1, 1, 0, 1), (0, 1, 0, 0), (1, 0, 0, 1), (0, 1, 1, 0),$ and $(1, 0, 1, 1)$. We consider several cases for (h_1, h_2, h_3, h_4) . When in one of these cases, all tuples are covered, any permutation of these indices also covers all tuples.

If $h_1 = h_4 = 0, h_2 = 1$, and $h_3 = 2$, we cover tuples of the form (x, x, x', y) in E_1 , treating (0, 0, 1, 0) and (1, 1, 0, 1). We cover tuples of the form (x, x', z, y) in E_2 . This relies on the fact that F_3 can be split into two disjoint 2-covering arrays with *k* columns, one where the value in the column removed is 0 and one where the value in the column removed is 1. This treats the remaining cases.

If $h_1 = h_4 = 1, h_2 = 0$, and $h_3 = 2$, we cover tuples of the form (x, x, x', y) in E_1 , treating $(0, 0, 1, 0)$ and $(1, 1, 0, 1)$. We cover tuples of the form (x', x, z, y) in E_2 . This eliminates the remaining cases.

Finally, if $h_1 = h_4 = 2$, $h_2 = 0$ and $h_3 = 1$, we cover tuples of the form (x', x, x, y) in E_1 , treating (0, 1, 1, 0) and (1, 0, 0, 1). We cover tuples of the form (x, y, y', x) in E_2 , treating $(1, 1, 0, 1), (1, 0, 1, 1), (0, 0, 1, 0),$ and $(0, 1, 0, 0)$.

• $f_1 = f_2 \neq f_3 = f_4$

In this case, $h_1 \neq h_2$ and $h_3 \neq h_4$. First, suppose that $h_2 = h_3$ but $h_1 \neq h_4$. Then 4-tuples (x, x, y, y) are covered in G₁. Tuples of the form (x, y, y', z') are covered in G_4 , except when $x = y = z$, i.e. (x, x, x', x') . However these are exactly what G_1 covers. This leaves the six tuples of the form (x, y, y, z) with $x \neq z$ or $x \neq y$. We again consider specific cases for (h_1, h_2, h_3, h_4) .

If $h_1 = 0, h_2 = h_3 = 1, h_4 = 2$, tuples of the form (x, x, y, y') are covered in E_1 , which effectively covers tuples of the form (x, x, x, x') . In E_2 , tuples of the form (x, x', y, z) are covered, which handles the remaining cases (x', x, x, z) .

If $h_1 = 1, h_2 = h_3 = 0, h_4 = 2$, tuples of the form (x, x, y, y') are covered in E_1 , which effectively covers tuples of the form (x, x, x, x') . In E_2 , tuples of the form (x', x, y, z) are covered, which handles the remaining cases (x', x, x, z) .

If $h_1 = 0$, $h_2 = h_3 = 2$, $h_4 = 1$, we cover tuples of the form (x, z, z, y) in E_2 , which covers all required tuples.

Now suppose that $h_2 = h_3$ and $h_1 = h_4$. Tuples of the form (x, x, y, y) in G_1 and (x, y, y', x') are covered in G₄. The remaining tuples are $(0, 1, 1, 0)$, $(1, 0, 0, 1)$, $(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1),$ and $(1, 1,$ 1, 0).

If no $h_i = 2$, we cover (x, x', y, y') in E_2 , treating $(0, 1, 1, 0)$ and $(1, 0, 0, 1)$, leaving us with all tuples comprised with an odd number of 0's. We cover $(x, 0, 0, x')$ and $(0, x, x', 0)$ in K_1 and K_2 , and $(x, 1, 1, x')$ and $(1, x, x', 1)$ in K_3 and K_4 . These are all the required cases.

Finally, without loss of generality, assume that $h_1 = h_4 = 2$. Then $h_2 = h_3 \in \{0, 1\}$. We cover (x, x', y, y') in E_1 , again leaving us with the tuples having an odd number of 0's. We cover (x, y, z, x) in E₂. Here we again split F₃ into two 2-covering halves. This leaves only (x, y, y, x') , which are covered in K_2 and K_4 if $h_2 = 0$ or K_1 and K_3 if $h_2 = 1$.

Since all tuples are covered in all sets of four columns, G is the required covering array. \Box

4.4 Specializations when $\ell = \nu = 3$

When $\ell = \nu = 3$ we have the following results:

Theorem 4.11

 $CAN(4, 3k, 3) \leq CAN(4, k, 3) + 2CAN(3, k, 3) + 18DCAN(2, k, 3) + CODN(2, k, 9) +18.$

Proof Suppose that the following exist:

- $CA(N_4; 4, k, 3) C_4$
- $CA(N_3; 3, k, 3) C_3$
- $DCA(S; 2, k, 3) D$,
- $CODN(N_2; 2, k, 9) C_2$

Suppose that D' is the 2 \times 3 array obtained by removing the first row from the (3, 3; 1)-difference matrix in Theorem [2.2.](#page-2-1) Then $d'_{i,j} = i \times j$ for $i = 1, 2$ and $j = 0, 1, 2$. The array D' is a DCA $(2; 2, 3, 3)$.

Let A be an $OA(27; 3, 3, 3)$ constructed by using Bush's construction.

The columns of A are labelled with the elements of \mathbb{F}_3 and rows are labelled by 27 polynomials over \mathbb{F}_3 of degree at most 2. Then the entry in A in the column labelled γ_i and the row labelled by the polynomial with coefficients β_0 , β_1 and β_2 is $\beta_0 + \beta_1 \times \gamma_i + \beta_2 \times \gamma_i^2$.

Let A' be an OA(9; 2, 3, 3) which is also a CA(9; 2, 3, 3).

Let B be the sub-array of A containing the rows of A which are labelled by polynomials of degree 2 ($\beta_2 \neq 0$). Then B is a 18 \times 3 array whose each column is labelled with the same element of \mathbb{F}_3 as its corresponding column in A. Denote the *i*th column of **B** by B_i , for $i = 0, 1, 2$.

We produce a covering array $CA(N'; 4, 3k, 3)$ G where $N' = N_4 + 2N_3 + 18S + N_2 + 18$. G is formed by vertically juxtaposing arrays G_1 of size $N_4 \times 3k$, G_2 of size $2N_3 \times 3k$, G₃ of size $18S \times 3k$, G₄ of size $N_2 \times 3k$ and G₅ of size $18 \times 3k$.

We describe the construction of each array in turn. We index 3*k* columns by ordered pairs from $\{0, \ldots, k-1\} \times \{0, 1, 2\}.$

- G_1 : In row *r* and column (*f*, *h*) place the entry in cell (*r*, *f*) of C_4 . Thus G_1 consists of three copies of C_4 placed side by side.
- G₂: Index the 2*N*₃ rows of G₂ by ordered pairs from $\{1, \ldots, N_3\} \times \{1, 2\}$. In row (r, s) and column (f, h) place $c_{r,f} + d'_{s,h}$, where $c_{r,f}$ is the entry in cell (r, f) of C_3 and $d'_{s,h}$ is the entry in cell (s,h) of D' .
- G₃: Index the 18*S* rows of G₃ by ordered pairs from $\{1, \ldots, S\} \times \{1, \ldots, 18\}$. In row (s, r) and column (f, h) place $b_{r,h} + d_{s,f}$, where $b_{r,h}$ is the entry in cell (r, h) of B and $d_{s,f}$ is the entry in cell (s,f) of D.
- G₄: Define a mapping ϕ that maps the symbol *i* in C₂ to the 3-tuple in the *i*th row of A', for $i \in \{0, \ldots, 8\}$. Suppose that *i* is the symbol in cell (r, f) of C_2 and $\phi(i) = (x, y, z)$, for some $x, y, z \in \{0, 1, 2\}$. Then in row *r* and column (*f*, 0) place the symbol *x*; in row *r* and column $(f, 1)$ place the symbol *y*; and in row *r* and column $(f, 2)$ place the symbol z .
- G_5 : In row *r* and column (f, h) place the entry in cell (r, h) of B. Thus G_5 consists of *k* copies of B_0 , followed by *k* copies of B_1 and then *k* copies of B_2 .

We show that G is a 4-covering array. Consider four columns

$$
(f_1,h_1), (f_2,h_2), (f_3,h_3), (f_4,h_4)
$$

of G. If f_1 , f_2 , f_3 , f_4 are all distinct, then these columns restricted to G_1 arise from four distinct columns of C_4 . Hence, all 4-tuples are covered. It cannot happen that $f_1 = f_2 = f_3 = f_4$ since then h_1, h_2, h_3 and h_4 are all distinct.

Further, we consider the following cases:

- $f_1 = f_2 \neq f_3 \neq f_4 \neq f_2$ In this case $h_1 \neq h_2$. Hence, the tuples (x, x, y, z) are covered in G_1 and the tuples $(x, x + i, y, z)$ are covered in G₂ for any $x, y, z \in \{0, 1, 2\}$ and for any $i \in \{1, 2\}$.
- $f_1 = f_2 = f_3 \neq f_4$ In this case $h_1 \neq h_2 \neq h_3 \neq h_1$. There are only three values for h_i , $i = 1, 2, 3, 4$, hence, without loss of generality, we suppose that $h_4 = h_1$.

The tuples (x, x, x, y) are covered in G₁ for any $x, y \in \{0, 1, 2\}$. The tuples $(x +$ d'_{y,h_1} , $x + d'_{y,h_2}$, $x + d'_{y,h_3}$, $t + d'_{y,h_1}$ are covered in G₂ for any $x, t \in \{0, 1, 2\}$ and any $y \in \{1, 2\}$. Thus, all tuples $(x + yh_1, x + yh_2, x + yh_3, t)$ are covered in G_1 and in G_2 for any $x, y, t \in \{0, 1, 2\}.$

Further, the tuples $(x + yh_1 + zh_1^2, x + yh_2 + zh_2^2, x + yh_3 + zh_3^2, x + yh_1 + zh_1^2 + i)$, for any $x, y \in \{0, 1, 2\}$ and for $i, z \in \{1, 2\}$, are covered in G_3 .

Finally, the tuples $(x + yh_1 + zh_1^2, x + yh_2 + zh_2^2, x + yh_3 + zh_3^2, x + yh_1 + zh_1^2$, where $x, y \in \{0, 1, 2\}$ and $z \in \{1, 2\}$, are covered in G_5 . Hence, all 4-tuples are covered.

• $f_1 = f_2 \neq f_3 = f_4$ In this case, $h_1 \neq h_2$ and $h_3 \neq h_4$. First, suppose that $h_2 = h_3$ but $h_1 \neq h_4$.

Fix any tuple (x, y, z, t) where $y \neq z$. Since A' is a 2-covering array, it has a row (x, y, m) for some $m \in \{0, 1, 2\}$, let it be *i*th row. A' also has a row (s, z, t) for some $s \in \{0, 1, 2\}$, let it be *j*th row. Since $y \neq z$ it follows that $i \neq j$. So $\phi(i) = (x, y, m)$ for the fixed *x*, *y* and for some *m*, and $\phi(j) = (s, z, t)$ for the fixed *z*, *t* and for some *s*. Since C_2 is a 2-COD and since $i \neq j$, C_2 has a row *r* such that in cell (r, f_1) is the symbol *i* and in cell (r, f_3) is the symbol *j*. Thus, the symbol *x* is in cell $(r, (f_1, h_1))$ of G₄, the symbol *y* is in cell $(r, (f_1, h_2))$ of G₄, the symbol *z* is in the cell $(r, (f_3, h_2))$ of G₄, and the symbol *t* is in the cell $(r, (f_3, h_4))$ of G₄. Hence, the fixed tuple (x, y, z, t) where $y \neq z$ is covered in G₄.

Further, for $x \in \{0, 1, 2\}$, the tuple (x, x, x, x) is covered in G_1 . The tuples $(x+yh_1, x+)$ *yh*₂, *x* + *yh*₂, *x* + *yh*₄) are covered in G₂, for any *x* ∈ {0, 1, 2} and any *y* ∈ {1, 2}. Tuples of the form $(x + yh_1 + zh_1^2, x + yh_2 + zh_2^2, x + yh_2 + zh_2^2, x + yh_4 + zh_4^2)$ are covered in G_5 , for any $x, y \in \{0, 1, 2\}$ and any $z \in \{1, 2\}$. Hence all 4-tuples are covered.

Now suppose that $h_2 = h_3$ and $h_1 = h_4$.

Fix a tuple (x, y, z, t) such that if $x = t$ then $y \neq z$, for any $x, y, z, t \in \{0, 1, 2\}$. Since A' is a 2-covering array, it has a row (x, y, m) for some $m \in \{0, 1, 2\}$, let it be *i*th row. A' also has a row (t, z, s) for some $s \in \{0, 1, 2\}$, let it be *j*th row. Since $x \neq t$ or $y \neq z$ it follow that $i \neq j$. So $\phi(i) = (x, y, m)$ for the fixed *x*, *y* and for some *m*, and $\phi(j) = (t, z, s)$ for the fixed *z*, *t* and for some *s*. Since C₂ is a 2-COD and $i \neq j$, C₂ has a row *r* such that in cell (r, f_1) is the symbol *i* and in cell (r, f_3) is the symbol *j*. Thus, the symbol *x* is in cell $(r, (f_1, h_1))$ of G₄, the symbol *y* is in cell $(r, (f_1, h_2))$ of G_4 , the symbol *z* is in the cell $(r, (f_3, h_2))$ of G_4 , and the symbol *t* is in the cell $(r, (f_3, h_1))$ of G₄. Hence, the fixed tuple (x, y, z, t) , where if $x = t$ then $y \neq z$, is covered.

The tuples (x, x, x, x) are covered in G₁ for any $x \in \{0, 1, 2\}$. The tuples $(x + y)$ $h_1, x + y \times h_2, x + y \times h_2, x + y \times h_1$ are covered in G₂ for any $x \in \{0, 1, 2\}$ and any $y \in \{1, 2\}$. So all tuples of the form (x, y, y, x) are covered in G_1 and in G_2 .

Corollary 4.12

$$
CAN(4,3k,3) \leq CAN(4,k,3) + 2CAN(3,k,3)
$$

+18DCAN(2,k,3) + CAN(2,k,9) - 1 + 18.

Proof Without loss of generality every CA(*N*; 2, *k*, 9) can have symbols renamed so that the resulting covering array has a constant row, whose deletion yields a $\text{COD}(N 1; 2, k, 9$.

4.5 Specializations when $\ell = \nu > 3$

Theorem 4.13 *For any prime power* $v \geq 4$ *,*

$$
CAN(4, vk, v) \leq CAN(4, k, v) + (v - 1)CAN(3, k, v) + (v3 - v2)DCAN(2, k, v) + CODN(2, k, v2) + v4 - v2.
$$

Proof Suppose that the following exist:

- $CA(N_4; 4, k, v) C_4$
- $CA(N_3; 3, k, v) C_3$
- DCA $(S; 2, k, v)$ D,
- **COD** $(N_2; 2, k, v^2)$ **C**₂,

Suppose that D' is a $(\nu - 1) \times \nu$ array obtained by removing the first row from the (*v*, *v*; 1)-difference matrix in Theorem [2.2.](#page-2-1) Then $d'_{i,j} = i \times j$ for $i = 1, ..., v - 1$ and $j = 0, \ldots, \nu - 1$. The array D' is a DCA($\nu - 1$; 2, ν, ν).

Let $A^{(3)}$ be an $OA(v^3; 3, v, v)$, constructed by using Bush's construction (see the proof of Theorem 3.1 in [18]). The columns of $A^{(3)}$ are labelled with the elements of \mathbb{F}_v and rows are labelled by \tilde{v}^3 polynomials over \mathbb{F}_v of degree at most 2. Then, in A⁽³⁾, the entry in the column γ_i and the row labelled by the polynomial with coefficients β_0 , β_1 and β_2 is $\beta_0 + \beta_1 \times \gamma_i + \beta_2 \times \gamma_i^2$.

Let $B^{(3)}$ be the sub-array of $A^{(3)}$ containing the rows of $A^{(3)}$ which are labelled by polynomials of degree exactly 2 ($\beta_2 \neq 0$). Then B⁽³⁾ is a ($v^3 - v^2$) × *v* array. Label each column of $B^{(3)}$ with the same element of \mathbb{F}_v as its corresponding column in A. Denote the *i*th column of $B^{(3)}$ by $B_i^{(3)}$, for $i = 0, ..., \nu - 1$.

Let $A^{(4)}$ be an $OA(v^4; 4, v, v)$ constructed by using Bush's construction. The columns of $A^{(4)}$ are labelled with the elements of \mathbb{F}_v and rows are labelled by v^4 polynomials over \mathbb{F}_v of degree at most 3. Then, in $A^{(4)}$, the entry in the column γ_i and the row labelled by the polynomial with coefficients β_0 , β_1 , β_2 and β_3 is $\beta_0 + \beta_1 \times \gamma_i + \beta_2 \times \gamma_j$ $\gamma_i^2 + \beta_3 \times \gamma_i^3$.

Let $B^{(4)}$ be the sub-array of $A^{(4)}$ that contains the rows of $A^{(4)}$ which are labelled by polynomials of degree 2 or $3(\beta_2 \neq 0$ or $\beta_3 \neq 0$). Then B⁽⁴⁾ is a $(\nu^4 - \nu^2) \times \nu$ array whose each column is labelled with the same element of \mathbb{F}_v as its corresponding column in A. Denote the *i*th column of $B^{(4)}$ by $B_i^{(4)}$, for $i = 0, \ldots, \nu - 1$.

Let $A^{(2)}$ be an $OA(v^2; 2, v, v)$ which is also a $CA(v^2; 2, v, v)$. Such an array exists by Theorem [2.1.](#page-2-2)

We produce a covering array $CA(N'; 4, vk, v)$ G where $N' = N_4 + (v - 1)N_3 + (v^3 - 1)N_4$ v^2)*S* + *N*₂ + *v*⁴ − *v*². G is formed by vertically juxtaposing arrays G₁ of size *N*₄ × *vk*, G₂ of size $(v - 1)N_3 \times vk$, G₃ of size $(v^3 - v^2)S \times vk$, G₄ of size $N_2 \times vk$ and G₅ of size $(v^4 - v^2) \times vk$.

We describe the construction of each array in turn. We index *vk* columns by ordered pairs from $\{0, \ldots, k-1\} \times \{0, \ldots, v-1\}.$

- G_1 : In row *r* and column (*f*, *h*) place the entry in cell (*r*, *f*) of C_4 . Thus G_1 consists of ν copies of C_4 placed side by side.
- G₂: Index the $(v 1)N_3$ rows by ordered pairs from $\{1, \ldots, N_3\} \times \{1, \ldots, v 1\}$. In row (r, s) and column (f, h) place $c_{r, f} + d'_{s, h}$, where $c_{r, f}$ is the entry in cell (r, f) of C_3 and $d'_{s,h}$ is the entry in cell (s,h) of D' .
- G₃: Index the $(v^3 v^2)$ *S* rows by ordered pairs from $\{1, \ldots, S\} \times \{1, \ldots, (v^3 v^2)\}$. In row (s, r) and column (f, h) place $b_{r, h} + d_{s, f}$, where $b_{r, h}$ is the entry in cell (r, h) of $B^{(3)}$ and $d_{s,f}$ is the entry in cell (s,f) of D.
- G₄: Let ϕ be a mapping that maps the symbol *i* of C₂ to the *v*-tuple on the *i*th row of $A^{(2)}$, for any $i = \{0, ..., v^2 - 1\}$. Let *i* be the symbol in cell (r, f) in C_2 . Suppose that $\phi(i) = (x_0, x_1, \ldots, x_{\nu-1})$ for some $x_0, x_1, \ldots, x_{\nu-1} \in \mathbb{F}_{\nu}$. Then, in row *r* and column (*f*, *m*) place the symbol x_m , for $m = 0, \ldots, \nu - 1$.
- G_5 : In row *r* and column (f, h) place the entry in cell (r, h) of $B^{(4)}$. Thus G_5 consists of *k* copies of the first column of $B^{(4)}$, followed by *k* copies of the second column of $B^{(4)}$, and so on.

We show that G is a 4-covering array. Consider four columns

$$
(f_1,h_1), (f_2,h_2), (f_3,h_3), (f_4,h_4)
$$

of G. If f_1, f_2, f_3, f_4 are all distinct, then these columns restricted to G_1 arise from four distinct columns of C4. Hence, all 4-tuples are covered.

Further, we consider the following cases:

• $f_1 = f_2 \neq f_3 \neq f_4 \neq f_2$

All 4-tuples (x, x, y, z) are covered in G_1 , for any $x, y, z \in \{0, \ldots, v-1\}$. All 4-tuples $(x, x + i, y, z)$, for any $i \in \{1, \ldots, v - 1\}$ and any $x, y, z \in \{0, \ldots, v - 1\}$, are covered in G2. Hence all 4-tuples are covered.

• $f_1 = f_2 = f_3 \neq f_4$ In this case $h_1 \neq h_2 \neq h_3 \neq h_1$. The case where h_1, h_2, h_3 and h_4 are all distinct is discussed separately. Now suppose that $h_4 = h_1$.

The tuples (x, x, x, y) , for any $x, y \in \{0, \ldots, v - 1\}$, are covered in G_1 . The tuples $(x + d'_{y,h_1}, x + d'_{y,h_2}, x + d'_{y,h_3}, t + d'_{y,h_1})$, for any $x, t \in \{0, ..., v-1\}$ and for $y \in$ $\{1, \ldots, \nu-1\}$, are covered in G_2 .

So all the tuples $(x + yh_1, x + yh_2, x + yh_3, t)$, for any $x, y, t \in \{0, ..., v - 1\}$, are covered in G_1 and in G_2 .

The tuples $(x + yh_1 + zh_1^2, x + yh_2 + zh_2^2, x + yh_3 + zh_3^2, x + yh_1 + zh_1^2 + i$, where $i, z \in \{1, \ldots, \nu - 1\}$ and $x, y \in \{0, \ldots, \nu - 1\}$, are covered in G₃. Finally, the tuples $(x + yh_1 + zh_1^2 + th_1^3, x + yh_2 + zh_2^2 + th_2^3, x + yh_3 + zh_3^2 + th_3^3, x + yh_1 + zh_1^2 + th_1^3),$ where if $z = 0$ then $t \neq 0$ for any $x, y, z, t \in \{0, \ldots, v-1\}$, is covered in G_5 . Hence, all 4-tuples are covered.

• $f_1 = f_2 \neq f_3 = f_4$ and $h_2 = h_3$ but $h_1 \neq h_4$. In this case $h_1 \neq h_2$ and $h_3 \neq h_4$.

Fix any tuple (x, y, z, t) where $y \neq z$. Since $A^{(2)}$ is a 2-covering array, it has row with the tuple $(m_0, \ldots, m_{\nu-1})$, where $m_{h_1} = x$ and $m_{h_2} = y$, let it be *i*th row of $\mathsf{A}^{(2)}$. $\mathsf{A}^{(2)}$ also has a row with the tuple (m'_0, \ldots, m'_{v-1}) , where $m'_{h_2} = z$ and $m'_{h_4} = t$, let it be row *j*th row of $A^{(2)}$. Since $y \neq z$ it follows that $i \neq j$. So $\phi(i) = (m_0, \ldots, m_{\nu-1})$ and $\phi(j) = (m'_0, \dots, m'_{\nu-1})$. Since C₂ is a 2-COD and $i \neq j$, C₂ has a row *r* such that in cell (r, f_1) is the symbol *i* and in cell (r, f_3) is the symbol *j*. Thus, in G₄, the symbol *x* is in cell $(r, (f_1, h_1))$, the symbol *y* is in cell $(r, (f_1, h_2))$, the symbol *z* is in cell $(r, (f_3, h_2))$ and the symbol *t* is in cell $(r, (f_3, h_4))$. Hence, the fixed tuple (x, y, z, t) is covered when $y \neq z$.

Further, the tuple (x, x, x, x) , for any $x \in \{0, \ldots, v-1\}$, is covered in G_1 . The tuple $(x + yh_1, x + yh_2, x + yh_2, x + yh_4)$, for any $x \in \{0, ..., v-1\}$ and any $y \in \{1, ..., v-1\}$, is covered in G_2 .

Finally, the tuples $(x + yh_1 + zh_1^2 + th_1^3, x + yh_2 + zh_2^2 + th_2^3, x + yh_2 + zh_2^2 + th_2^3, x +$ $yh_4 + zh_4^2 + th_4^3$, such that if $z = 0$ then $t \neq 0$, for any $x, y, z, t \in \{0, ..., v - 1\}$, are covered in G₅.

• $f_1 = f_2 \neq f_3 = f_4, h_2 = h_3$ and $h_1 = h_4$.

Fix any tuple (x, y, z, t) such that if $x = t$ then $y \neq z$. Since $A^{(2)}$ is a 2-covering array, it has row with the tuple $(m_0, \ldots, m_{\nu-1})$, where $m_{h_1} = x$ and $m_{h_2} = y$, let it be *i*th row of $A^{(2)}$. $A^{(2)}$ also has a row with the tuple (m'_0, \ldots, m'_{v-1}) , where $m'_{h_1} = t$ and $m'_{h_2} = z$, let it be *j*th row $A^{(2)}$. Since either $x \neq t$ or $y \neq z$ it follows that $i \neq j$. Now $\phi(i) = (m_0, \dots, m_{\nu-1})$ and $\phi(j) = (m'_0, \dots, m'_{\nu-1})$.

Since C_2 is a 2-COD and $i \neq j$, it has a row r such that in cell (r, f_1) is the symbol i and in cell (r, f_3) is the symbol *j*. Thus, in G_4 , the symbol *x* is in cell $(r, (f_1, h_1))$ the symbol *y* is in cell $(r, (f_1, h_2))$ the symbol *z* is in the cell $(r, (f_3, h_2))$ and the symbol *t* is in the cell $(r, (f_3, h_1))$. Hence, any fixed tuple (x, y, z, t) , such that if $x = t$ then $y \neq z$, for any $x, y, z, t \in \{0, \ldots, v-1\}$, is covered in G₄.

Further, the tuples of the form (x, x, x, x) are covered in G_1 . The tuples of the form $(x + yh_1, x + yh_2, x + yh_2, x + yh_1)$ are covered in G₂ for $x \in \{0, ..., v - 1\}$ and *y* ∈ $\{1, \ldots, \nu - 1\}.$

These are all the tuples of the form (x, y, y, x) for any $x, y \in \{0, \ldots, v-1\}$. Hence all 4-tuples are covered.

In the remaining cases which are not discussed above h_1 , h_2 , h_3 and h_4 are all distinct.

The tuple (x, x, x, x) is covered in G₁ for any $x \in \{0, \ldots, v-1\}$. The tuple

 $(x + yh_1, x + yh_2, x + yh_3, x + yh_4)$ is covered in G₂ for any $x \in \{0, ..., v - 1\}$ and any $y \in \{1, ..., v - 1\}$. Finally, the tuple $(x + yh_1 + zh_1^2 + th_1^3, x + yh_2 + zh_2^2 +$ $t h_2^3$, $x + y h_3 + z h_3^2 + t h_3^3$, $x + y h_4 + z h_4^2 + t h_4^3$ such that if $z = 0$ then $t \neq 0$, for any $x, y, z, t \in \{0, \ldots, v - 1\}$, is covered in G₅.

Corollary 4.14 *For any prime power* $v \geq 4$ *,*

$$
CAN(4, vk, v) \leq CAN(4, k, v) + (v - 1)CAN(3, k, v) + (v3 - v2)DCAN(2, k, v) + CAN(2, k, v2) - 1 + v4 - v2.
$$

Proof Without loss of generality every $CA(N; 2, k, v^2)$ can have symbols renamed so that the resulting covering array has a constant row, whose deletion yields a COD $(N-1; 2, k, v^2)$.

Corollary 4.15 *For any prime power* $v > 4$ *,*

$$
CAN(4, vk, v) \leq CAN(4, k, v) + (v - 1)CAN(3, k, v) + (v3 - v2)DCAN(2, k, v) + (v2 + v)CAN(2, k, v) - 1 + v4 - 2v2.
$$

Proof Apply Corollary [2.4](#page-3-1) to bound $CAN(2, k, v^2)$.

5 Numerical consequences

To assess the effectiveness of the recursions developed, it is necessary to determine their impact on our knowledge of covering array numbers. We have outlined computational methods in the introduction; in preparation for a comparison we therefore

Table 1 Bounds for $t = 3$, $v = 2$

introduce related recursive methods that do not (at present) fall into the "Roux-type" framework.

The *Turán number* $T(t, n)$ is the largest number of edges in a *t*-vertex simple graph having no $(n + 1)$ -clique. Turán [31] showed that a graph with the $T(t, n)$ edges is constructed by setting $a = \lfloor t/n \rfloor$ and $b = t - na$, and forming a complete multipartite graph with *b* classes of size $a + 1$ and $n - b$ classes of size a. Using these, Hartman generalizes the constructions in [5, 6, 29].

Theorem 5.1 [16] *If a* $CA(N; t, k, v)$ *and a* $CA(k^2; 2, T(t, v) + 1, k)$ *both exist, then a* $CA(N \cdot (T(t, v) + 1); t, k^2, v)$ *exists.*

 27^o 33^n $\overline{7}$ 40^f 3-CAs with 3 symbols $\overline{4}$ 6 51^v 45^{ℓ} 50^s $10\,$ 8 9 57^ℓ 13 12 62^s 64^{ℓ} 14 400 15 68^s 69^s 17 73^s 16 18 74^s 22 75^v 23 82^s 300 87^s 25 85^s 27 29 91^s Size 30 93^s 32 95^s 34 98^s 200 37 102^s 99^v 38 39 104^s 40 105^{ℓ} 41 106^s 42 107^s 100 109^s 116^{ℓ} 43 108^s 44 46 117^m 121^m 122^m 48 51 54 $\mathbf{0}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ i 60 123^m 66 127^m 69 134^m Log(Number of Factors) 72 137^{ℓ} 75 139^m 81 141^m 87 145^m 90 147^m 96 151^m 155^m 163^m 102 154^m 108 157^m 114 160^m 117 162^m 120 111 171^v 123 164^m 126 165^m 129 166^m 132 169^m 142 144 177^m 182^m 160 180^ℓ 162 180 183^m 198 187^m $207 \quad 194^m$ 216 197^m 222 199^m $225\,$ 203^m 243 205^m 261 209^m $270 \t211^m$ 282 215^m 288 217^m 306 220^m 324 221^m 333 223^m 342 226^m 351 228^m 237^m 360 229^m 369 230^m 378 231^m 387 232^m 396 235^m 402 239^m 240^ℓ 247^{ℓ} 248^m 250^ℓ 251^m 426 440 460 480 500 522 252^{ℓ} 257^m 259^m 266^m $648, 269^m$ 271^m 540 582 594 621 666 675 275^m 729 277^m 783 281^m 810 283^m 846 287^m 864 289^m 295^m $918\,$ 292^m 972 293^m 298^m $1053 \t300^m$ 301^m 999 1026 1080 313^m 1107 302^m 1134 303^m 1161 304^m 1182 307^m $1188 \t311^m$ 1206 315^m 1320 316^m 323^m 1422 324^m 326^m 328^m 1278 1380 1440 1500 1863 1566 329^m 1620 330^m 1746 335^m 1782 337^m 346^m 1944 349^m 1998 351^m $2025\,$ 355^m 2142 357^m 2187 359^m 2349 363^m 2430 365^m 377^m 2538 369^m 2562 371^m 2592 373^m 2754 376^m 2916 2997 379^m 384^m 386^m 387^m 388^m 3078 382^m 3159 3240 385^m 3321 3402 3483 395^m 400^m 407^m 3546 391^m 3564 3618 397^m 3834 399^m 3960 4140 410^m 417^m 4266 408^m 4320 4422 412^m 4500 416^m 4698 4860 418^m 425^m 439^m 441^m 5238 423^m 5346 5388 434^m 5589 436^m 5832 5994 6075 445^m 6426 447^m 6561 449^m 7047 453^m 7092 455^m 7290 457^m 461^m 467^{ℓ} 7326 460^{ℓ} 7614 7686 463^m 7776 465^m 7920 466^ℓ 8118 469^m 471^m 474^m 477^ℓ 8316 468^{ℓ} 8748 8991 9090 9234 475^{ℓ} 9477 9720 478^{ℓ} 9963 479^ℓ 10000 480^ℓ

Table 2 Bounds for $t = 3$, $v = 3$

Perfect hash families are well studied combinatorial objects. A *t*-*perfect hash family H*, denoted PHF(*n*; *k*, *q*, *t*), is a family of *n* functions *h*: $A \mapsto B$, where $k = |A| \ge |B|$ *q*, such that for any subset $X \subseteq A$ with $|X| = t$, there is at least one function $h \in H$ that is injective on *X*. Thus a PHF $(n; k, q, t)$ can be viewed as an $n \times k$ -array H with entries from a set of *q* symbols such that for any set of *t* columns there is at least one row having distinct entries in this set of columns.

Theorem 5.2 (see [3, 22]) If a PHF(s ; k , m , t) and a CA(N ; t , m , v) both exist then a $CA(sN; t, k, v)$ *exists.*

Table 3 Bounds for $t = 3$, $v = 4$

Table 4 Bounds for $t = 3$, $v = 5$

 1493^m

 1638^m

 1722^m

 1686^{ℓ}

6000

 $7025\,$

8280

10000

 1597^m

 1654^m

 1690^m

6125

7080

8520

 1601^m

 1658^m

 1698^{ℓ}

6250

7175

9120

6336

7320

9225

 1603^{ℓ}

 1662^{ℓ}

 1702^m

6744

 1619^{ℓ}

 $7800 \quad 1666^m$

9240 1706^m

6912

 1635^{ℓ}

8225 1682^m

9960 1714^m

Table 5 Bounds for $t = 3$, $v = 6$

4 210°			O	260°	ŏ	342*					3-CAs with 6 symbols			
9	423 ^s		10	455^{ℓ}	12	465^{ℓ}		4000						
13	546 ^s		16	552^{ℓ}	17	638^s								
18	653^ℓ		19	677^s	32	678^\downarrow		3000					ser o concession	
36	814^{ℓ}		42	848^m	48	896^{ℓ}								
56	930 ¹		81	1014^{\downarrow}	84	1197^m		$\frac{8}{10}$ 2000						
96	1286^ℓ	100		1325^{ℓ}	112	1330^ℓ								
150	1350^\downarrow	160		1444^{ℓ}	162	1454^{ℓ}					SERIES AND RESIDENCE			
192	1484^{ℓ}	224		1518^{\downarrow}	256	1608^{ℓ}		1000			$\mathfrak{g}^{\mathfrak{g}^{\mathfrak{g}^{\mathfrak{g}}}}$			
294	1688^m	336		1736^m	392	1770 ¹								
441	1854^\downarrow	448		1890 ¹	474	1892^{ℓ}		$^{\circ}$			$\dot{2}$	$\dot{3}$		
480	1904^{ℓ}	553		1926^{\downarrow}	560	$1938\downarrow$					Log(Number of Factors)			
567	1962^{\downarrow}		588	2145^m		609	2234^m	648	2238^{ℓ}	672	2270^m	693	2309^m	
700	2321^m		721	2344^m		763	2350^m	784	2360^{ℓ}	810	2384^{ℓ}	833	2394^{\downarrow}	
858	2396^{ℓ}		889		2406^{\downarrow}	900	2408^{ℓ}	945	2418^{\downarrow}	1001	2430 ¹	1050	2442 ¹	
1106	2526^{ℓ}		1120	2536^m		1152	2542^{ℓ}	1200	2574^{ℓ}	1344	2576^m	1568	2610 ¹	
1792	2700^m		2058	2780^m		2352	2828^m	2744	2862^\downarrow	3087	2946 ¹	3136	$2982\downarrow$	
3318	2984^m		3360	2996^m		3479	$3018\downarrow$	3528	3054^{\downarrow}	3871	3090 ¹	3920	$3102\downarrow$	
3969	3126^{\downarrow}		4116	3309^m		4263	3398^m	4361	3402^m	4480	3414^m	4536	3438^m	
4704	3470^m		4802	3509^m		4851	3545^m	4900	3557^m	5047	3580^m	5341	3586^m	
5467	3596^m		5488	3608^m		5600	3632^m	5670	3650^m	5684	3660 ¹	5831	3666^{\downarrow}	
6006	3668^m		6020		3678^{\downarrow}	6174	$3690\downarrow$	6223	$3702\downarrow$	6300	3704^m	6566	3714^{\downarrow}	
6615	3720^{\downarrow}		7007	3738^\downarrow		7350	3762^{\downarrow}	7448	3846^m	7742	3858^m	7840	3868^m	
7889	3874^m		8192		3882^{ℓ}	8400	3918^m	9408	3920^m	10000	3954^\downarrow			

Table 6 Bounds for $t = 3$, $v = 7$

 $\overline{4}$

 $\overline{3}$

 $\overline{512^c}$ 960^{ℓ} 1016^{v} $10\,$ 18 40 3-CAs with 8 symbols $72, 1408^m$ 80 1506^m 1520^v 91 5000 96 2003^m 200 2024^{v} 320 2304^m 2424^{ℓ} 2620^{ℓ} 2696^m 360 400 576 4000 640 2794^m 2857^m 648 720 2906^m 856 3459 m $728 \t2920^m$ 819 3376^{ℓ} 3000 $size$ 928 3508 m 968 3522^m 3557^m 1000 2000 $1056 \quad 3571^m$ 1144 3606^m 1208 3641^m 3669^m $1240\quad 3655^m$ 3683^m 1280 1360 1000 $1600 \quad 3704^m$ 1800 3880^ℓ 2560 3984^m 2880 4104^m 4202^{ℓ} 3200 3240 4280^{ℓ} $\mathbf{0}$ $\overline{4}$ $\frac{1}{2}$ $\overline{3}$ 4608 4376^m $5120 \quad 4474^m$ 5184 4537^m Log(Number of Factors) $5696 \quad 4586^m$ $5760 \quad 4635^m$ 5824 4698^m 6464 5154^m $6552 \quad 5168^m$ 6848 5251^m 7128 5300 m $7424\quad 5335^m$ $7616 \quad 5349^m$ $7744 \quad 5398^m$ 8000 5433^m $8256\quad 5447^m$ 8448 5461^m $8712 \quad 5496^m$ 8896 5531^m 9152 5545^m 9504 5580^m 9664 5615^m 9920 5629^m $10000 \quad 5643^m$

Table 7 Bounds for $t = 3$, $v = 8$

Table 8 Bounds for $t = 3$, $v = 9$

Table 9 Bounds for $t = 4$, $v = 2$

5		81^o		6 115 ^s		$\overline{7}$	133 ^s					4-CAs with 3 symbols			
8	153 ^s		10	159^v		16	237^v		4000 -						
23	315^v		30	393^v		39	471^v								
51	549v		54	718 ^r		58	726r		3000						
60		730 ^r	66	735 ^r		69	749r								
74	822r		76	828r		78	832 ^r		$\frac{N}{60}$ 2000				\mathcal{E}		
81	837r		87	881 ^r		90	885r								
92	934r		96	936r		102	944r								
111	975r		114	981 ^r		117	985r		1000						
120	1065^r		123	1067^r		126	1069r								
129	1071^{r}		132	1073^{r}		138	1087^{r}		$\overline{0}$	00000		$\overline{2}$	3		4
144	1089r		153	1097^r		154	1221^r					Log(Number of Factors)			
	156	1222^r		161		1260r	162	1268^r	174	1278^r	180	1282^r	198	1295^r	
	207	1323 ^r		216		1402^r	222	1406^r	225	1412 ^r	228	1416^r	234	1420^{r}	
	256	1422^{q}		261		1513^{r}	270	1521^r	276	1586^{r}	288	1588^{r}	297	1602 ^r	
	300	1610 ^r		306		1618r	324	1651^r	333	1655^r	342	1667^r	351	1675^r	
	352	1693 ^r		368		1735^{r}	369	1769^{r}	378	1773^{r}	387	1777^r	396	1793^{r}	
	400	1805r		420		1811 ^r	426	1821^r	432	1833 ^r	447	1847^r	459	1855r	
	484	1877^r		529		1890^h	567	2028^{r}	588	2081^r	594	2083^{r}	621	2125^r	
	648	2210^{r}		666		2218^r	675	2232^r	684	2240^{r}	702	2244^r	729	2246^r	
	768	2290^{r}		900		23589	918	2508^{r}	972	2543^{r}	999	2551^r	1026	2569r	
1053		2581^r		1056	2601^r		1058	2619 ^r	1080	2643^{r}	1104	2645^r	1107	2679r	
1134		2685^{r}		1136	2687r		1161	2691^r	1188	2713^{r}	1200	2729^{r}	1224	2731^r	
1260		2739r		1278	2743^{r}		1296	2763^r	1320	2777^r	1377	2787^{r}	1440	2823^r	
1521		28269		1566	2842^r		1584	2844^r	1587	2852^r	1620	2982^r	1701	2992^r	
1755		3013 ^r		1764	3025^{r}		1782	3051^r	4096	3081^h	4131	3959r	4158	3995r	
4200		4003^{r}		4266		4005^r	4320	4009^r	4428	4016r	4500	4024^{r}	4563	4026^r	
4698		4042^r		4752	4046^{r}		4761	4054^r	10000	4095^h					

Table 10 Bounds for $t = 4$, $v = 3$

For constructions of perfect hash families, see [1, 2, 4, 30, Bierbrauer J and Schellwatt H, unpublished].

To assess the contributions of each of the constructions described, we computed upper bounds for $CAN(t, k, v)$ for $t \in \{2, 3, 4\}, 2 \le v \le 25$, and $t < k \le 10,000$. Previous tables (e.g., [7]) have reported only small numbers of factors ($k < 30$). With the current power of computational search techniques, this fails to explore into the range in which recursions are most powerful. Evidently it is not sensible to report 10,000 results for every *t* and *v*, and fortunately there is no need to do so. Let $\kappa(N; t, v)$ be the largest *k* for which $CAN(t, k, v) \leq N$. As *k* increases, for many consecutive numbers of factors, the covering array number does not change. Therefore reporting those values of $\kappa(N; t, v)$ for which $\kappa(N; t, v) > \kappa(N - 1; t, v)$, along with the corresponding value of *N*, enables one to determine all covering array numbers when *k* is no larger than the largest $\kappa(N; t, v)$ value tabulated. Since the exact values for covering array numbers are unknown in general, we in fact report lower bounds on $\kappa(N; t, v)$.

For each strength in turn, explicit constructions of covering arrays from direct and computational constructions are tabulated. Then each known construction is applied and its consequences tabulated (in the process, results implied by this for fewer factors are suppressed, so that one explanation ("authority") for each entry is

5	256^o	6	375^s	13	508^v						4-CAs with 4 symbols		
20	760^v	31	1012^{v}	42	1264^{v}			12000					\mathbf{r}
48	1639r	52	1648r	60	1878^{r}								
65	1890 ^r	68	2119^{r}	76	2136^{r}			10000					
80	2142^r 2412^r 85		95	2444^r			8000						
96	2489^{r} 100		2514^r	108	2641^r		Size						
112	2656^r	116	2671^r	120	2686^r			6000					
124	2701^r	125	2925^r	128	2933^r			4000					
136	2968^r	140	2988r	145	3003 ^r			2000					
150	3018r	155	3033^r	160	3112^r								
168	3148^{r}	170	3315^r	176	3351^r			$\mathbf{0}$	\circ		$\overline{2}$	3	$\overline{4}$
186	3488^r	200	3507^r	208	3532^r						Log(Number of Factors)		
210	3555^r	240	3762^r		256		3774^r	260	3939r	264	4113^r	300	4169^{r}
320	4181^r	330	4425r		341		4535^{r}	361	4560^h	380	4643 ^r	384	4688r
400	4722^r	432	4849r		448		4864^r	464	4879r	480	4894 ^r	496	4990 ^r
500	5214r	512	5222^r		544		5257^r	560	5376^r	580	5391^r	600	5406^{r}
620	5421^{r}	640	5500 ^r		672		5536^{r}	680	5703^{r}	704	5739^{r}	744	5876^r
800	5895^{r}	832	5920 ^r		840		5943^{r}	961	6072^h	1024	6297r	1040	6492^r
1050	6515 ^r	1110	6722^r		1180		6890^{r}	1200	6902^r	1280	6914 ^r	1292	7280^{r}
1320	7327^r	1332	7411 ^r		1364		7437r	1444	7447r	1472	7568^r	1520	7583 ^r
1681	7584^h	1748	7854^{r}		1792		7900 ^r	1856	7915^{r}	1900	7957r	1920	7972^{r}
1968	8143 ^r	1984	8158^{r}		2000		8382^{r}	2036	8390 ^r	2048	8392^r	2128	8412^r
2176	8442 ^r	2185	8579^{r}		2240		8610 ^r	2320	8625^r	2375	8676r	2400	8691^r
2480	8742^r	2560	8821 ^r		2624		8857r	2688	8866^r	2720	9033^r	2816	9069r
2944	9206r	2976	9215^{r}		3072		9234^r	3200	9243 ^r	3328	9268^{r}	3360	9291^r
3552	9420^{r}	3776	9540^{r}		3840		9558^r	3844	9573^r	4096	9783^r	6859	9880^h
6984	11682 ^r	6992	11697^r		7168		11728^{r}	7424	11743^r	7600	11836^r	7680	11851^r
7872	12097^r	7936	12112^r		8000		12336^r	8140	12344^r	8192	12346^r	8512	12366^r
8704	12396^r	8736	12638^{r}		8740		12648^{r}	8960	12669r	9216	12705^r	9280	12709^{r}
9480	12774^r	9600	12789^{r}		9920		12840^{r}	9988	12919 ^r	10000	12934^r		

Table 11 Bounds for $t = 4$, $v = 4$

maintained). Applications of the recursions is repeated until no entries in the table improve.

The authorities used are:

Composition and symbol identification are standard constructions; see [7], for example. Other constructions, such as derivation of a *t*-covering array from a $(t + 1)$ covering array, and "Construction D" from [7], can yield improvements but do not do so within the ranges of the tables reported; hence they are omitted.

	6	625^o	15		1245^v	24		1865^v				4-CAs with 5 symbols				
	37	2485^{v}	62		3105^v	75		4225^r								
	120	4845^r	144		5571^r	150		6287r	20000							
	170	6557r	185		6675^{r}	190		7295^r								
	200	7357r	240		7565r	250		7837 ^r	15000					$e^{\cos \theta}$		
	8013^{r} 275 9785^r 475 720 11251^r 12537^r 850			8045^{r} 310		375	9165^r		Size							
			600		9945^r	625		10851^r	10000				$^{\circ}$			
			12107^r 750 875 12655^r			800		12377^r			٠ $\sigma^{\theta^{\text{D}^{\text{O}}}}$					
						925	12719^{r}		5000							
	950	13339r	1000	13401^r		1025		13609^r								
	1050	13657^r	1200	13673^r		1250		14249^{r}		$0-$	$\ddot{}$					
	14509^{r} 1320		1375	14573^{r}		1440	14605^r					\overline{a} Log(Number of Factors)		3		
	1470	14697^{r}		1540	14713^r		1550	14737^{r}	1625	15833^{r}	1760	15865^r	1875	15881^{r}		
	1920	16501^r		2070	16517^{r}		2250	16533^r	2375	16549^{r}	2880	16745^r	3000	16885^r		
	3125	17971^r		3721	18630^{h}		3750	19869^{r}	3900	20139^{r}	4000	20265^r	4200	20421^{r}		
	4250	20573^{r}		4350	20667r		4375	20691^r	4500	20731^{r}	4625	20865^r	4650	21461^r		
	4750	21485^r		4800	21523^r		4920	21547^r	4950	21599^r	5000	21623^r	5100	21807^r		
	5125	21909^r		5200	21985^r		5610	22033^r	5760	22057^r	5780	22109^r	6000	22179^{r}		
	6120	23155^r		6125	23179^{r}		6250	23195^r	6460	23515^r	6600	23573^r	6875	23701^r		
	7020	23733^r		7080	23749^{r}		7200	23765^r	7350	23873^{r}	7700	23889r	7750	23913^{r}		
	10000	24245^h														

Table 12 Bounds for $t = 4$, $v = 5$

5.1 Tables for strength three

Tables 1–8 give (lower bounds on) $\kappa(N; 3, \nu)$ for $2 \le \nu \le 9$ only, since they illustrate the main points. The strength two tables used are from [12]. For each ν , we tabulate the entries for *N* and κ (*N*; 3, *v*). We also provide a plot showing the logarithm of the number of factors horizontally and the size of the covering array vertically. Asymptotically one expects this to become a straight line (see, e.g., [15]), and its deviation from the straight line results from non-uniform behaviour when *k* is small, but also from the "errors" compounded in repeated applications of the recursions. The plot simply demonstrates the growth; the explicit points given are definitive.

Exponents indicate the authority for the entry provided, to provide one method for the construction; alternative constructions may produce the same result.

5.2 Tables for strength four

Tables 9–12 similar results for strength four; the only published table of which we are aware appears in [17], and treats only $k < 10$.

6 Concluding remarks

The recursive constructions for strength three developed here provide a useful complement to that in [9]. More importantly, the recursive constructions for strength four provide numerous powerful techniques for the construction of covering arrays. The existence tables demonstrate the utility of computational search for small arrays combined with flexible recursive constructions. The constructions using perfect hash families and Turán graphs provide some of the best bounds as the number of

 $\overline{4}$

columns (factors) increases, but currently do not exhibit the generality of the Rouxtype constructions developed here.

Acknowledgments Research of the first, second, and fourth authors was supported by the Consortium for Embedded and Inter-Networking Technologies.

References

- 1. Alon N (1986) Explicit construction of exponential sized families of k-independent sets. Discrete Math 58:191–193
- 2. Atici M, Magliveras SS, Stinson DR, Wei WD (1996) Some recursive constructions for perfect hash families. J Combin Designs 4:353–363
- 3. Bierbrauer J, Schellwatt H (2000) Almost independent and weakly biased arrays: efficient constructions and cryptologic applications. Adv Cryptol (Crypto 2000), Lecture Notes Comput Sci 1880:533–543
- 4. Blackburn SR (2000) Perfect hash families: probabilistic methods and explicit constructions. J Combin Theory – Ser A 92:54–60
- 5. Boroday SY (1998) Determining essential arguments of Boolean functions (Russian). In: Proc conference on industrial mathematics, Taganrog, pp 59–61
- 6. Chateauneuf MA, Colbourn CJ, Kreher DL, Covering arrays of strength 3. Designs Codes Cryptogr 16:235–242
- 7. Chateauneuf MA, Kreher DL (2002) On the state of strength three covering arrays. J Combin Designs 10(4):217–238
- 8. Cohen MB (2004) Designing test suites for software interaction testing. Ph.D. Thesis, University of Auckland and private communications (2005)
- 9. Cohen MB, Colbourn CJ, Ling ACH (to appear) Constructing strength 3 covering arrays with augmented annealing. Discrete Math
- 10. Cohen DM, Dalal SR, Fredman ML, Patton GC (1997) The AETG system: an approach to testing based on combinatorial design. IEEE Trans Software Eng 23(7):437–444
- 11. Colbourn CJ (2004) Combinatorial aspects of covering arrays. Le Matematiche (Catania) 58:121– 167
- 12. Colbourn CJ (to appear) Strength two covering arrays: existence tables and projection. Discrete Math
- 13. Colbourn CJ, Dinitz JH (eds) (1996) The CRC handbook of combinatorial designs. CRC Press, Boca Raton
- 14. Colbourn CJ, Martirosyan SS, Mullen GL, Shasha D, Sherwood GB, Yucas JL (2006) Products of mixed covering arrays of strength two. J Combin Designs 14:124–138
- 15. Godbole AP, Skipper DE, Sunley RA (1996)*t*-covering arrays: upper bounds and Poisson approximations. Combin Probab Comput 5:105–117
- 16. Hartman A (2005) Software and hardware testing using combinatorial covering suites. In: Graph theory, combinatorics and algorithms: interdisciplinary applications. M.C. Golunbic and I.B.A. Hartman (eds) Springer, Boston, pp. 237–266
- 17. Hartman A, Raskin L (2004) Problems and algorithms for covering arrays. Discrete Math 284 (1–3):149–156
- 18. Hedayat AS, Sloane NJA, Stufken J (1999) Orthogonal arrays, theory and applications. Springer
- 19. Hnich B, Prestwich S, Selensky E (2005) Constraint-based approaches to the covering test problem. Lecture Notes Comput Sci 3419:172–186
- 20. Lidl R, Niederreiter H (eds) Finite fields, 2nd ed Cambridge, England: Cambridge University Press
- 21. Martirosyan SS, Colbourn CJ (2005) Recursive constructions for covering arrays. Bayreuther Math Schriften 74:266–275
- 22. Martirosyan S, Van Trung T (2004) On t-covering arrays. Designs Codes Cryptogr 32:323–339
- 23. Meagher K, Stevens B (2005) Group construction of covering arrays. J Combin Designs 13:70–77
- 24. Nurmela K (2004) Upper bounds for covering arrays by tabu search. Discrete Appl Math 138: 143–152
- 25. Roux G (1987) *k*-Propriétés dans les tableaux de *n* colonnes: cas particulier de la *k*-surjectivité et de la *k*-permutivité. Ph.D. Thesis, Université de Paris
- 26. Sherwood GB, Martirosyan SS, Colbourn CJ (2006) Covering arrays of higher strength from permutation vectors. J Combin Designs 14:202–213

 $\textcircled{2}$ Springer

- 27. Sloane NJA (1993) Covering arrays and intersecting codes. J. Combin Designs 1:51–63
- 28. Stinson DR, Wei R, Zhu L (2000) New constructions for perfect hash families and related structures using combinatorial designs and codes. J Combin Designs 8:189–2000
- 29. Tang DT, Chen CL (1984) Iterative exhaustive pattern generation for logic testing. IBM J Res Develop 28:212–219
- 30. van Trung T, Martirosyan S (2005) New constructions for IPP codes. Designs Codes Cryptogr 35:227–239
- 31. Turán P (1941) On an extremal problem in graph theory (Hungarian). Mat Fiz Lapok 48:436–452