
Des Codes Crypt (2006) 41:33–57
DOI 10.1007/s10623-006-0020-8

Roux-type constructions for covering arrays of strengths
three and four

Charles J. Colbourn · Sosina S. Martirosyan ·
Tran Van Trung · Robert A. Walker II

Received: 6 August 2005 / Revised: 23 February 2006 /
Accepted: 21 March 2006
© Springer Science+Business Media, LLC 2006

Abstract A covering array CA(N; t, k, v) is an N × k array such that every N × t
sub-array contains all t-tuples from v symbols at least once, where t is the strength of
the array. Covering arrays are used to generate software test suites to cover all t-sets
of component interactions. Recursive constructions for covering arrays of strengths
3 and 4 are developed, generalizing many “Roux-type” constructions. A numerical
comparison with current construction techniques is given through existence tables for
covering arrays.

Keywords Covering array · Orthogonal array · Difference matrix

AMS Classification 05B40 · 05B15 · 68N30

Communicated by D. Hachenberger.

C. J. Colbourn (B) · R. A. Walker II
Computer Science and Engineering, Arizona State University, P.O. Box 878809, Tempe, AZ 85287,
USA
e-mail: charles.colbourn@asu.edu

S. S. Martirosyan
Mathematical Sciences, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston,
TX 77058, USA

T. Van Trung
Institut für Experimentelle Mathematik, Universität Duisburg-Essen, Ellernstrasse 29,
45326 Essen, Germany
e-mail: trung@exp-math.uni-essen.de

R. A. Walker II
e-mail: robby.walker@gmail.com

34 Des Codes Crypt (2006) 41:33–57

1 Introduction

A covering array CA(N; t, k, v) is an N × k array such that every N × t sub-array
contains all t-tuples from v symbols at least once, where t is the strength of the array.
When ‘at least’ is replaced by ‘exactly’, this defines an orthogonal array [18]. We
use the notation OA(N; t, k, v). Often we refer to a t-covering array to indicate some
CA(N; t, k, v). We denote by CAN(t, k, v) the minimum N for which a CA(N; t, k, v)

exists. The determination of CAN(t, k, v) has been the subject of much research; see
[7, 11, 16, 17] for survey material. However, only in the case of CAN(2, k, 2) is an
exact determination known (see [11]). In part the interest arises from applications
in software testing [10], but other applications in which experimental factors interact
avail themselves of covering arrays as well [11, 16].

We outline the approaches taken for strength t = 2, but refer to [11] for a more
detailed survey. When the number of factors is “small”, numerous direct constructions
have been developed. Some exploit the known structure of orthogonal arrays arising
from the finite field, but most have a computational component. A range of methods
have been applied, including greedy methods [10], tabu search [24], simulated anneal-
ing [8], and constraint satisfaction [19]. Assuming that the covering array admits an
automorphism can reduce the computational difficulty substantially [23].

At the other extreme, when the number of factors k goes to infinity, asymptotic
methods have been applied; see [15], for example. In practice, this leaves a wide
range of values of k for which no useful information can be deduced. Computational
methods become infeasible, and asymptotic analysis does not apply, within this range.
Hence there has been substantial interest in recursive (“product”) constructions to
make large covering arrays from smaller ones. Currently, the most general recursive
constructions for strength two appear in [14].

This pattern is repeated for strength t > 2. The larger the strength, the more lim-
ited is our ability to obtain computational results for small numbers of factors. For
strength three, powerful heuristic search such as simulated annealing [9] and tabu
search [24] are still effective, but for larger strengths their current applications are
quite restricted. Consequently, imposing larger automorphism groups to accelerate
the search has proved effective in some cases [6, 7]. More recently, Sherwood et al. [26]
developed a “permutation vector” representation for certain covering arrays. In con-
junction with tabu search, Walker and Colbourn submitted for publication produce
many coverings arrays for strengths between 3 and 7.

Despite current limitations in producing t-covering arrays with a small number of
factors, recursive constructions have proved to be effective in making arrays for larger
numbers of factors. Roux [25] pioneered a conceptually simple recursive construction
for strength t = 3 that has been substantially generalized for strength 3 [7, 9], strength
4 [16, 17, 22], and strength t in general [21, 22]. In this paper, we improve the recursion
for strength 3, and we generalize and unify the Roux-type recursions for strength
4. We then recall related recursions using Turán families and perfect hash families
in Sect. 5, and using this current census of known constructions we present current
existence tables for covering arrays of strengths 3 and 4.

2 Definitions and preliminaries

Let � be a group of order v, with � as its binary operation. A (v, k; λ)-difference matrix
D = (dij) over � is a vλ × k matrix D = (d�,i) with entries from �, so that for each

Des Codes Crypt (2006) 41:33–57 35

1 ≤ i < j ≤ k, the set {d�,i � d−1
�,j : 1 ≤ � ≤ vλ} contains every element of � λ times.

When � is abelian, additive notation is used, so that difference d�,i − d�,j is employed.
(Often in the literature the transpose of this definition is used.)

A t-difference covering array D = (dij) over �, denoted by DCA(N, �; t, k, v), is an
N × k array with entries from � having the property that for any t distinct columns
j1, j2, . . . , jt, the set {(di,j1 � d−1

i,j2
, di,j1 � d−1

i,j3
, . . . , di,j1 � d−1

i,jt
) : 1 ≤ i ≤ N} contains every

non-zero (t−1)-tuple over � at least once. When � = Zv we omit it from the notation.
We denote by DCAN(t, k, v) the minimum N for which a DCA(N; t, k, v) exists.

A covering ordered design COD(N; t, k, v) is an N × k array such that every N × t
sub-array contains all non-constant t-tuples from v symbols at least once. We denote
by CODN(t, k, v) the minimum N for which a COD(N; t, k, v) exists. As an example,
CODN(2, 3, 3) = 6; take the six rows (i, j, 2 · (i + j) mod 3) for i, j ∈ {0, 1, 2} with i �= j.

A QCA(N; k, �, v) is an N × k� array with columns indexed by ordered pairs from
{1, . . . , k} × {1, . . . , �}, in which whenever 1 ≤ i < j ≤ k and 1 ≤ a < b ≤ �, the N × 4
subarray indexed by the four columns (i, a), (i, b), (j, b), (j, a) contains every 4-tuple
(x, y, z, t) with x− t �≡ y−z (mod v) at least once. QCAN(k, �, v) denotes the minimum
number of rows in such an array.

We recall two general results.

Theorem 2.1 [18] When v ≥ 2 is a prime power then an OA(vt; t, v+1, v) exists whenever
v ≥ t − 1 ≥ 0.

Theorem 2.2 [13] The multiplication table for the finite field Fv is a (v, v; 1)-difference
matrix over EA(v).

In order to simplify the presentation later, we establish a basic result:

Theorem 2.3 CAN(2, k, vw) ≤ min
{

CAN(2, k, v)CAN(2, v, w) + vCODN(2, k, w)

CODN(2, k, v)CAN(2, v, w) + vCAN(2, k, w)
.

Proof We prove the first statement; the second is similar. Suppose that there exist A
a CA(NA; 2, k, v), B a CA(NB; 2, v, w), and C a COD(NC; 2, k, w).

We produce a CA(N′; 2, k, vw) D where N′ = NANB+vNC. D is formed by vertically
juxtaposing arrays E of size NANB and F0, . . . , Fv−1 each of size NC.

We refer to elements of D as ordered pairs (a, b) where 0 ≤ a < v and 0 ≤ b < w.
There are vw such elements.

Define array E as follows. Replace each element i from A with a column of length
NB whose jth entry is (i, σ) where σ is the jth entry of the ith column of B.

Define array F� to be the result of replacing every entry σ of array C by (�, σ).
Then D has N′ rows. We now verify that it is a CA(N′; 2, k, vw).

Consider columns i and j of D to verify the presence of the pair (r, x) in column i
and (s, y) in column j.

If r �= s, look in E. There is a row in A that covers the pair (r, s) in columns (i, j).
We look at the expansion of this pair from A into E. Since there is also a row in B that
covers the pair (x, y), say in row n, and since the rth and sth columns of B are distinct,
the nth row of the expansion contains the required pair. Similarly if r = s and x = y,
there is a row in A that covers the pair (r, r) and all pairs are covered in the expansion
into E provided that x = y.

It remains to treat the case when r = s but x �= y, i.e. the pairs sought are of the
form (r, x) and (r, y). For these we consider Fr. Since x �= y, the pair (x, y) is covered
in C. So, the pair (r, x), (r, y) is covered in Fr. �

36 Des Codes Crypt (2006) 41:33–57

Corollary 2.4 For v a prime power,

CAN(2, k, v2) ≤ min
{

v2CAN(2, k, v) + vCODN(2, k, v)

v2CODN(2, k, v) + vCAN(2, k, v)

}
≤ (v2 + v)CAN(2, k, v) − v2.

Proof CODN(2, k, v) ≤ CAN(2, k, v) − 1. �

Theorem 2.5 CODN(2, k, vw) ≤ CODN(2, k, v)CODN(2, v, w) + vCODN(2, k, w).

Proof This parallels the proof of Theorem 2.3 closely. �

For large k, these improve upon the simple “composition” of covering arrays that
establishes that CAN(2, k, vw) ≤ CAN(2, k, v)CAN(2, k, w).

3 Strength three

In [27], a theorem from Roux’s Ph.D. dissertation [25] is presented.

Theorem 3.1 CAN(3, 2k, 2) ≤ CAN(3, k, 2) + CAN(2, k, 2).

Proof To construct a CA(3, 2k, 2), we begin by placing two CA(N3, 3, k, 2)s side by
side. We now have a N3 × 2k array. If one chooses any three columns whose indices
are distinct modulo k, then all triples are covered. The remaining selection consists
of a column x from among the first k, its copy among the second k, and a further
column y. When the two columns whose indices agree modulo k share the same value,
such a triple is also covered. The remaining triples are handled by appending two
CA(N2, 2, k, 2)s side by side, the second being the bit complement of the first. There-
fore if we choose two distinct columns from one half, we choose the bit complement
of one of these, thereby handling all remaining triples. This gives a covering array of
size N2 + N3. �

Chateauneuf and Kreher [7] prove a generalization:

Theorem 3.2 CAN(3, 2k, v) ≤ CAN(3, k, v) + (v − 1)CAN(2, k, v).

Cohen et al. [9] generalize to permit the number of factors to be multiplied by � ≥ 2
rather than two.

Theorem 3.3 [9] CAN(3, k�, v) ≤ CAN(3, k, v) + CAN(3, �, v) + CAN(2, �, v) × DCAN
(2, k, v).

Here we establish a different generalization of the Roux construction for strength
three.

Theorem 3.4 For any prime power v ≥ 3

CAN(3, vk, v) ≤ CAN(3, k, v) + (v − 1)CAN(2, k, v) + v3 − v2

Proof Suppose that C3 is a CA(N3; 3, k, v) and C2 is a CA(N2; 2, k, v). Suppose that D
is the (v − 1) × v array obtained by removing the first row from the difference matrix
in Theorem 2.2. Then di,j = i × j for i = 1, . . . , v − 1 and j = 0, . . . , v − 1. D is a
DCA(v − 1; 2, v, v).

Des Codes Crypt (2006) 41:33–57 37

We first construct an OA(v3; v, v, 3) A by using Bush’s construction (see the proof
of Theorem 3.1 in [18]). The columns of A are labelled with the elements of Fv and
rows are labelled by v3 polynomials over Fv of degree at most 2. Then, in A, the entry
in the column γi and the row labelled by the polynomial with coefficients β0, β1 and
β2 is β0 + β1 × γi + β2 × γi

2.
Let B be the sub-array of A containing the rows of A which are labelled by the

polynomials of degree 2 (β2 �= 0). Then B is a (v3 − v2) × v array. We label each
column of B with the same element of Fv as its corresponding column in A. Denote
the ith column of B by Bi, for i = 0, . . . , v − 1.

We produce a covering array CA(N′; 3, vk, v) G where N′ = N3+(v−1)N2+v3−v2.
G is formed by vertically juxtaposing arrays G1 of size N3×vk, G2 of size (v−1)N2×vk,
G3 of size (v3 − v2) × vk.

We describe the construction of each array in turn. We index vk columns by ordered
pairs from {0, . . . , k − 1} × {0, . . . , v − 1}.
G1: In row r and column (f , h) place the entry in cell (r, f) of C3. Thus G1 consists of

v copies of C3 placed side by side.
G2: Index the (v − 1)N2 rows by ordered pairs from {1, . . . , N2} × {1, . . . , v − 1}. In

row (r, s) and column (f , h) place cr,f + ds,h, where cr,f is the entry in cell (r, f) of
C2 and ds,h is the entry in cell (s, h) of D.

G3: In row r and column (f , h) place the entry in cell (r, h) of B. Thus G3 consists of k
copies of B0, the first column of B, then k copies of B1, the second column, and
so on.

We show that G is a 3-covering array. Consider three columns of G:

(f1, h1), (f2, h2), (f3, h3)

If f1, f2, f3 are all distinct, then these columns restricted to G1 arise from three
distinct columns of C3. Hence, all 3-tuples are covered.

If f1 = f2 �= f3 then all tuples of the form (x, x, y) are covered in G1. All tuples of the
form (x + dy,h1 , x + dy,h2 , z + dy,h3) for any x, z ∈ {0, 1, . . . , v − 1} and y ∈ {1, . . . , v − 1}
are covered in G2. Therefore, since h1 �= h2 and D is a 2-difference covering array, it
follows that all 3-tuples (x, x + i, y) where i ∈ {1, . . . , v} and x, y ∈ {0, 1, . . . , v − 1} are
covered in G2.

If f1 = f2 = f3 then h1 �= h2 �= h3. All tuples of the form (x, x, x) are covered in G1.
All 3-tuples of the form (x + dy,h1 , x + dy,h2 , x + dy,h3), for any x ∈ {0, . . . , v − 1} and
y ∈ {1, . . . , v − 1} are covered in G2. Hence, for any x, y ∈ Fv, all 3-tuples of the form
(x + y × h1, x + y × h2, x + y × h3) are covered in G1 and G2. The remaining 3-tuples
of the form (x + y × h1 + z × h1

2, x + y × h2 + z × h2
2, x + y × h3 + z × h3

2), where
x, y ∈ {0, . . . , v − 1} and z ∈ {1, . . . , v − 1}, are covered in G3. Hence all 3-tuples are
covered. �

4 Strength four

In this section, we first establish general Roux-type constructions for strength four
and then specialize them by restricting parameter values, and by employing specific
ingredient arrays.

38 Des Codes Crypt (2006) 41:33–57

4.1 General constructions

Theorem 4.1 For max(k, �) ≥ 4,

CAN(4, k�, v) ≤ CAN(4, k, v) + CAN(4, �, v) + DCAN(2, �, v)CAN(3, k, v)

+DCAN(2, k, v)CAN(3, �, v) + QCAN(k, �, v).

Indeed when k ≥ 4 and � ≥ 4,

CAN(4, k�, v) ≤ CAN(4, k, v) + CAN(4, �, v) + DCAN(2, �, v)CODN(3, k, v)

+DCAN(2, k, v)CODN(3, �, v) + QCAN(k, �, v).

Proof We prove the second statement, the first being a slight variation. Suppose that
the following exist:

• CA(N4; 4, k, v) C4,
• CA(R4; 4, �, v) B4,
• DCA(S1; 2, �, v) D1,
• COD(N3; 3, k, v) C3,
• DCA(S2; 2, k, v) D2,
• COD(R3; 3, �, v) B3,
• QCA(M; k, �, v) G5.

We produce a covering array CA(N′; 4, k�, v) G where N′ = N4 + R4 + N3S1 +
R3S2 + M. G is formed by vertically juxtaposing arrays G1 of size N4 × k�, G2 of size
R4 ×k�, G3 of size N3S1 ×k�, G4 of size R3S2 ×k� and G5 of size M ×k�. We describe
the construction of G1, G2, G3, and G4 in turn. We index k� columns by ordered pairs
from {1, . . . , k} × {1, . . . , �}.
G1: In row r and column (f , h) place the entry in cell (r, f) of C4. Thus G1 consists of

� copies of C4 placed side by side.
G2: In row r and column (f , h) place the entry in cell (r, h) of B4. Thus G2 consists of

k copies of the first column of B4, then k copies of the second column, and so on.
G3: Index the N3S1 rows by ordered pairs from {1, . . . , N3} × {1, . . . , S1}. In row (r, s)

and column (f , h) place cr,f + ds,h, where cr,f is the entry in cell (r, f) of C3 and
ds,h is the entry in cell (s, h) of D1.

G4: Index the S2R3 rows by ordered pairs from {1, . . . , S2} × {1, . . . , R3}. In row (s, r)
and column (f , h) place br,h + ds,f , where br,h is the entry in cell (r, h) of B3 and
ds,f is the entry in cell (s, f) of D2.

We show that G is a 4-covering array. Consider four columns

(f1, h1), (f2, h2), (f3, h3), (f4, h4)

of G. If f1, f2, f3, f4 are all distinct, then these columns restricted to G1 arise from four
distinct columns of C4. Hence, all 4-tuples are covered. Similarly, if h1, h2, h3, h4 are
all distinct, then these four columns restricted to G2 arise from distinct columns of B4
and hence all 4-tuples are covered.

Further, we treat the following cases:

• f1 = f2 �= f3 �= f4 �= f2
In this case h1 �= h2. All 4-tuples (x, x, y, z) are covered in G1, for any x, y, z ∈
{0, . . . , v − 1}.

Des Codes Crypt (2006) 41:33–57 39

Now, suppose that h2 = h3 = h4. Then G3 covers all tuples of the form (x, x +
i, y + i, z + i) except where x = y = z: i.e. (x, w, w, w). These are exactly the tuples
covered in G2.
Similarly, suppose that h1 = h3 = h4. Then G3 covers tuples of the form (x, x +
i, y, z) except for (x, w, x, x). These are covered in G2.
Suppose then that h1 = h3 and h2 = h4. G3 covers tuples of the form (x, x+i, y, z+i)
except for x = y = z: i.e. (x, w, x, w). G2 covers precisely tuples of this form. The
argument is nearly identical if h1 = h4 and h2 = h3.
Furthermore, suppose that h1 = h3, but h1 �= h2 �= h4 �= h1. Then, G3 covers
tuples of the form (x, x + i, y, z + j) except for x = y = z: i.e. (x, w, x, u). Again, G2
covers all tuples of this form. Without loss of generality, cases with three distinct
h values and f1 = f2 are treated in this manner.
Finally, assume that h1, h2, h3, h4 are distinct. This case has already been discussed.
Hence all 4-tuples are covered for all possible sub-cases.

• f1 = f2 = f3 �= f4
In this case h1 �= h2 �= h3 �= h1. The case where h1, h2, h3 and h4 are all dis-
tinct is discussed above. Suppose that h3 = h4, then 4-tuples (x, y, z, z) for any
x, y, z ∈ {0, . . . , v − 1} are covered in G2. The 4-tuples (x, y, z, z + i), for any
i ∈ {1, . . . , v − 1} and any x, y, z ∈ {0, . . . , v − 1}, are covered in G4, except where
x = y = z: i.e. (x, x, x, w). However, all tuples of this form are covered in G1. Hence
all 4-tuples are covered.

• f1 = f2 �= f3 = f4
In this case h1 �= h2 and h3 �= h4. Firstly, suppose that h2 = h3 but h1 �= h4. Then
4-tuples (x, y, y, z) are covered in G2 for any x, y, z ∈ {0, . . . , v − 1}. The 4-tuples
(x, y, y + i, z + i), for any i, j ∈ {1, . . . , v − 1} and for any x, y, z ∈ {0, . . . , v − 1}, are
covered in G4 except where x = y = z: i.e. (x, x, w, w). These remaining tuples are
covered in G1. Hence all 4-tuples are covered.
Now suppose that h2 = h3 and h1 = h4. Fix a 4-tuple (x, y, z, t) where x, y, z and t
are any symbols from {0, . . . , v−1}. If x− t ≡ y−z (mod v), the 4-tuple is covered
in G1, G2, G3 and G4; by the definition of the QCA, the remaining 4-tuples are
covered by G5. �

Lemma 4.2 QCAN(k, �, v) ≤ CODN(2, k, CAN(2, �, v)).

Proof Suppose that a CA(N; 2, �, v) C and a COD(R; 2, k, N) B both exist. A QCA(R; k,
�, v) G is produced by replacing the symbol g in B by the gth row of C for all g ∈
{0, . . . , N − 1}. Columns of the resulting array are indexed by (a, b) where b indicates
the column of B inflated, and a indexes the column of C within the row used in the
inflation. Since C is a 2-covering array, it has a row i such that the entry in cell (i, f1)

is x and in cell (i, f3) is t. C also contains a row j such that the entry in cell (j, f1) is y
and in the cell (j, f3) is z. Furthermore, since B is a 2-COD on N symbols, it has a row
m where the entry in cell (m, h1) is the symbol i and in cell (m, h2) is the symbol j.
Thus, from the construction of G it follows that the tuple (x, y, z, t) with x − t �≡ y − z
(mod v) occurs in the row m and the columns (f1, h1), (f1, h2), (f3, h2) and (f3, h1)

of G. �

Corollary 4.3 For k, � ≥ 4,

CAN(4, k�, v) ≤ CAN(4, k, v) + CAN(4, �, v) + DCAN(2, �, v)CODN(3, k, v)

+DCAN(2, k, v)CODN(3, �, v) + CODN(2, k, CAN(2, �, v)).

40 Des Codes Crypt (2006) 41:33–57

Proof This follows from Theorem 4.1 and Lemma 4.2. �

Lemma 4.4 QCAN(k, �, v) ≤ �log2 �	QCAN(k, 2, v).

Proof Suppose that a QCA(N; k, 2, v) C exists with columns indexed by {1 . . . , k} ×
{0, 1}. The QCA(k, �, v) G is constructed as follows. We index k� columns by {1, . . . , k}×
{1, . . . , �}. Construct a binary array A with �log2 �	 rows and � distinct columns.
For each row (ρ1, . . . , ρ�) of A in turn, form an N × k� array by replacing (in
this row) the symbol ρi ∈ {0, 1} by the N × k subarray of C whose columns are
indexed by {1, . . . , k} × {ρi}. Vertically juxtaposing the �log2 �	 arrays so obtained
produces G. �

Lemma 4.5 QCAN(k, 2, v) ≤ CODN(2, k, v2).

Proof Let C be a COD(N; 2, k, v2). Let φ be a one-to-one mapping from the symbols
of C to {1, . . . , v} × {1, . . . , v}. Construct two N × k arrays, E and F as follows. Let i be
the entry in the cell (r, s) of C and φ(i) = (x, y). Then the entry in cell (r, s) of array E
is x and the entry in cell (r, s) of array F is y. The QCA is produced by placing E and F
side-by-side, indexing E by {1, . . . , k} × {1} and F by {1, . . . , k} × {2}. �

Corollary 4.6 For k, � ≥ 4,

CAN(4, k�, v) ≤ CAN(4, k, v) + CAN(4, �, v) + DCAN(2, �, v)CODN(3, k, v)

+DCAN(2, k, v)CODN(3, �, v) + �log2 �	CODN(2, k, v2).

Proof This follows from Theorem 4.1 using Lemmas 4.4 and 4.5. �

4.2 Specializations when � = 2

Hartman [16, 17] showed:

Theorem 4.7 CAN(4, 2k, v) ≤ CAN(4, k, v) + (v − 1)CAN(3, k, v) + CAN(2, k, v2).

We derive a small improvement here.

Lemma 4.8 For k ≥ 4,

CAN(4, 2k, v) ≤ CAN(4, k, v) + (v − 1)CAN(3, k, v)

+CODN(2, k, v)CODN(2, v, v) + vCODN(2, k, v)

Proof Apply Theorem 4.1 with � = 2, using Lemma 4.5 and Theorem 2.5. �

Corollary 4.9 For v a prime power and k ≥ 4,

CAN(4, 2k, v) ≤ CAN(4, k, v) + (v − 1)CAN(3, k, v) + v2CAN(2, k, v) − v2

Proof Use CODN(2, v, v) ≤ v2−v from Bush’s orthogonal array construction, remov-
ing the v constant rows. Hence CAN(4, 2k, v) ≤ CAN(4, k, v) + (v − 1)CAN(3, k, v) +
v2CODN(2, k, v).

In addition, without loss of generality every CA(N; 2, k, v) can have symbols
renamed so that the resulting covering array has a constant row, whose deletion
yields a COD(N − 1; 2, k, v). �

Des Codes Crypt (2006) 41:33–57 41

4.3 Specializations when v = 2

We also provide a tripling specialization for binary arrays.

Theorem 4.10 CAN(4, 3k, 2) ≤ CAN(4, k, 2) + 6DCAN(2, k, 2) + CAN(3, k, 2) + CAN
(3, k + 1, 2) + 4CODN(2, k, 2)

Proof Suppose that the following exist:

• CA(N4; 4, k, 2) C4,
• DCA(S2; 2, k, 2) D2,
• CA(N3; 3, k, 2) C3,
• CA(M3; 3, k + 1, 2) F3,
• COD(N2; 2, k, 2) C2.

Also, by removing the constant rows from Bush’s orthogonal array, we can produce a

• COD(6; 3, 3, 2) B3.

We produce a covering array CA(N′; 4, 3k, 2) G where N′ = N4 + 6S2 + N3 + M3 +
4N2. G is formed by vertically juxtaposing arrays G1 of size N4×3k, G4 of size 6S2×3k,
E1 of size N3 × 3k, E2 of size M3 × 3k, and K1 through K4 each of size N2 × 3k.

We describe the construction of each array in turn. We index 3k columns by ordered
pairs from {0, . . . , k − 1} × {0, 1, 2}.

The constructions of G1 and G4 are the same as those in Theorem 4.1. To produce
the other ingredients, proceed as follows:

E1: In row r and column (f , 0) and (f , 1) place the entry in cell (r, f) of C3. In row r
and column (f , 2), place the bitwise complement of the entry in cell (r, f) of C3.

E2: Remove any column from F3 to form a covering array of size M3 × k, F′
3. In row

r and column (f , 0) place the entry in cell (r, f) of F′
3. In row r and column (f , 1)

place the bitwise complement of the entry in cell (r, f) of F′
3. In row r and column

(f , 2) place the rth element of the column removed from F3.
K1: In row r and column (f , 0) and (f , 2) place the entry in cell (r, f) of C2. In row r

and column (f , 1), place a 0.
K2: In row r and column (f , 1) and (f , 2) place the entry in cell (r, f) of C2. In row r

and column (f , 0), place a 0.
K3: In row r and column (f , 0) and (f , 2) place the entry in cell (r, f) of C2. In row r

and column (f , 1), place a 1.
K4: In row r and column (f , 1) and (f , 2) place the entry in cell (r, f) of C2. In row r

and column (f , 0), place a 1.

We show that G is a 4-covering array. Consider four columns

(f1, h1), (f2, h2), (f3, h3), (f4, h4)

of G. If f1, f2, f3, f4 are all distinct, then these columns restricted to G1 arise from four
distinct columns of C4. Hence, all 4-tuples are covered. When f1 = f2 = f3 = f4,
the values h1, h2, h3 and h4 must all be distinct, but this cannot occur as the h’s are
restricted to {0, 1, 2}.

42 Des Codes Crypt (2006) 41:33–57

Further, we need to consider the following cases:

• f1 = f2 �= f3 �= f4 �= f2
In this case h1 �= h2. Hence, the tuples (x, x, y, z) are covered in G1. If no hi = 2
then the tuples (x, x′, y, z) for x, y, z ∈ {0, 1} are covered in E2. If h1 or h2 is 2, tuples
(x, x′, y, z) are covered in E1.
Without loss of generality, the remaining cases have h1 = 0, h2 = 1, h3 = 2.
Assume that h4 �= 2. Then the tuples (x, x′, y, z) are covered in E2. Finally, assume
that h4 = 2. Then, the tuples (x, x′, y, y) are covered in E2, leaving us to cover
tuples of the form (x, x′, y, y′). G4 covers tuples of the form (a+ i, b+ i, c, c′) except
for the case a = b = c, which is covered by G1. Taking a + i = x, b + i = x′, and
c = y, and hence a �= b, we cover the remaining tuples in G4.

• f1 = f2 = f3 �= f4
In this case h1 �= h2 �= h3 �= h1. There are only three values for hi, i ∈ {1, 2, 3, 4};
hence, without lost of generality, we suppose that h4 = h1.
The tuples (x, x, x, y) are covered in G1 for any x, y ∈ {0, 1}. The 4-tuples (x, y, z, x′),
for any x, y, z ∈ {0, 1} except x = y = z are covered in G4.
This leaves six tuples: (0, 0, 1, 0), (1, 1, 0, 1), (0, 1, 0, 0), (1, 0, 0, 1), (0, 1, 1, 0), and
(1, 0, 1, 1). We consider several cases for (h1, h2, h3, h4). When in one of these cases,
all tuples are covered, any permutation of these indices also covers all tuples.
If h1 = h4 = 0, h2 = 1, and h3 = 2, we cover tuples of the form (x, x, x′, y) in
E1, treating (0, 0, 1, 0) and (1, 1, 0, 1). We cover tuples of the form (x, x′, z, y) in E2.
This relies on the fact that F3 can be split into two disjoint 2-covering arrays with
k columns, one where the value in the column removed is 0 and one where the
value in the column removed is 1. This treats the remaining cases.
If h1 = h4 = 1, h2 = 0, and h3 = 2, we cover tuples of the form (x, x, x′, y) in E1,
treating (0, 0, 1, 0) and (1, 1, 0, 1). We cover tuples of the form (x′, x, z, y) in E2. This
eliminates the remaining cases.
Finally, if h1 = h4 = 2, h2 = 0 and h3 = 1, we cover tuples of the form (x′, x, x, y)

in E1, treating (0, 1, 1, 0) and (1, 0, 0, 1). We cover tuples of the form (x, y, y′, x) in
E2, treating (1, 1, 0, 1), (1, 0, 1, 1), (0, 0, 1, 0), and (0, 1, 0, 0).

• f1 = f2 �= f3 = f4
In this case, h1 �= h2 and h3 �= h4. First, suppose that h2 = h3 but h1 �= h4. Then
4-tuples (x, x, y, y) are covered in G1. Tuples of the form (x, y, y′, z′) are covered
in G4, except when x = y = z, i.e. (x, x, x′, x′). However these are exactly what G1
covers. This leaves the six tuples of the form (x, y, y, z) with x �= z or x �= y. We
again consider specific cases for (h1, h2, h3, h4).
If h1 = 0, h2 = h3 = 1, h4 = 2, tuples of the form (x, x, y, y′) are covered in E1,
which effectively covers tuples of the form (x, x, x, x′). In E2, tuples of the form
(x, x′, y, z) are covered, which handles the remaining cases (x′, x, x, z).
If h1 = 1, h2 = h3 = 0, h4 = 2, tuples of the form (x, x, y, y′) are covered in E1,
which effectively covers tuples of the form (x, x, x, x′). In E2, tuples of the form
(x′, x, y, z) are covered, which handles the remaining cases (x′, x, x, z).
If h1 = 0, h2 = h3 = 2, h4 = 1, we cover tuples of the form (x, z, z, y) in E2, which
covers all required tuples.
Now suppose that h2 = h3 and h1 = h4. Tuples of the form (x, x, y, y) in G1
and (x, y, y′, x′) are covered in G4. The remaining tuples are (0, 1, 1, 0), (1, 0, 0, 1),
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), and (1, 1,
1, 0).

Des Codes Crypt (2006) 41:33–57 43

If no hi = 2, we cover (x, x′, y, y′) in E2, treating (0, 1, 1, 0) and (1, 0, 0, 1), leaving
us with all tuples comprised with an odd number of 0’s. We cover (x, 0, 0, x′) and
(0, x, x′, 0) in K1 and K2, and (x, 1, 1, x′) and (1, x, x′, 1) in K3 and K4. These are all
the required cases.
Finally, without loss of generality, assume that h1 = h4 = 2. Then h2 = h3 ∈ {0, 1}.
We cover (x, x′, y, y′) in E1, again leaving us with the tuples having an odd number
of 0’s. We cover (x, y, z, x) in E2. Here we again split F3 into two 2-covering halves.
This leaves only (x, y, y, x′), which are covered in K2 and K4 if h2 = 0 or K1 and K3
if h2 = 1.

Since all tuples are covered in all sets of four columns, G is the required covering
array. �

4.4 Specializations when � = v = 3

When � = v = 3 we have the following results:

Theorem 4.11

CAN(4, 3k, 3)≤CAN(4, k, 3)+ 2CAN(3, k, 3) + 18DCAN(2, k, 3) + CODN(2, k, 9) +18.

Proof Suppose that the following exist:

• CA(N4; 4, k, 3) C4,
• CA(N3; 3, k, 3) C3,
• DCA(S; 2, k, 3) D,
• CODN(N2; 2, k, 9) C2,

Suppose that D′ is the 2 × 3 array obtained by removing the first row from the
(3, 3; 1)-difference matrix in Theorem 2.2. Then d′

i,j = i × j for i = 1, 2 and j = 0, 1, 2.
The array D′ is a DCA(2; 2, 3, 3).

Let A be an OA(27; 3, 3, 3) constructed by using Bush’s construction.
The columns of A are labelled with the elements of F3 and rows are labelled by

27 polynomials over F3 of degree at most 2. Then the entry in A in the column
labelled γi and the row labelled by the polynomial with coefficients β0, β1 and β2 is
β0 + β1 × γi + β2 × γi

2.
Let A′ be an OA(9; 2, 3, 3) which is also a CA(9; 2, 3, 3).
Let B be the sub-array of A containing the rows of A which are labelled by poly-

nomials of degree 2 (β2 �= 0). Then B is a 18 × 3 array whose each column is labelled
with the same element of F3 as its corresponding column in A. Denote the ith column
of B by Bi, for i = 0, 1, 2.

We produce a covering array CA(N′; 4, 3k, 3) G where N′ = N4+2N3+18S+N2+18.
G is formed by vertically juxtaposing arrays G1 of size N4 × 3k, G2 of size 2N3 × 3k,
G3 of size 18S × 3k, G4 of size N2 × 3k and G5 of size 18 × 3k.

We describe the construction of each array in turn. We index 3k columns by ordered
pairs from {0, . . . , k − 1} × {0, 1, 2}.
G1: In row r and column (f , h) place the entry in cell (r, f) of C4. Thus G1 consists of

three copies of C4 placed side by side.
G2: Index the 2N3 rows of G2 by ordered pairs from {1, . . . , N3} × {1, 2}. In row (r, s)

and column (f , h) place cr,f + d′
s,h, where cr,f is the entry in cell (r, f) of C3 and

d′
s,h is the entry in cell (s, h) of D′.

44 Des Codes Crypt (2006) 41:33–57

G3: Index the 18S rows of G3 by ordered pairs from {1, . . . , S} × {1, . . . , 18}. In row
(s, r) and column (f , h) place br,h + ds,f , where br,h is the entry in cell (r, h) of B
and ds,f is the entry in cell (s, f) of D.

G4: Define a mapping φ that maps the symbol i in C2 to the 3-tuple in the ith row
of A′, for i ∈ {0, . . . , 8}. Suppose that i is the symbol in cell (r, f) of C2 and
φ(i) = (x, y, z), for some x, y, z ∈ {0, 1, 2}. Then in row r and column (f , 0) place
the symbol x; in row r and column (f , 1) place the symbol y; and in row r and
column (f , 2) place the symbol z.

G5: In row r and column (f , h) place the entry in cell (r, h) of B. Thus G5 consists of
k copies of B0, followed by k copies of B1 and then k copies of B2.

We show that G is a 4-covering array. Consider four columns

(f1, h1), (f2, h2), (f3, h3), (f4, h4)

of G. If f1, f2, f3, f4 are all distinct, then these columns restricted to G1 arise from
four distinct columns of C4. Hence, all 4-tuples are covered. It cannot happen that
f1 = f2 = f3 = f4 since then h1, h2, h3 and h4 are all distinct.

Further, we consider the following cases:

• f1 = f2 �= f3 �= f4 �= f2
In this case h1 �= h2. Hence, the tuples (x, x, y, z) are covered in G1 and the tuples
(x, x + i, y, z) are covered in G2 for any x, y, z ∈ {0, 1, 2} and for any i ∈ {1, 2}.

• f1 = f2 = f3 �= f4
In this case h1 �= h2 �= h3 �= h1. There are only three values for hi, i = 1, 2, 3, 4,
hence, without loss of generality, we suppose that h4 = h1.
The tuples (x, x, x, y) are covered in G1 for any x, y ∈ {0, 1, 2}. The tuples (x +
d′

y,h1
, x + d′

y,h2
, x + d′

y,h3
, t + d′

y,h1
) are covered in G2 for any x, t ∈ {0, 1, 2} and any

y ∈ {1, 2}. Thus, all tuples (x + yh1, x + yh2, x + yh3, t) are covered in G1 and in G2
for any x, y, t ∈ {0, 1, 2}.
Further, the tuples (x + yh1 + zh2

1, x + yh2 + zh2
2, x + yh3 + zh2

3, x + yh1 + zh2
1 + i),

for any x, y ∈ {0, 1, 2} and for i, z ∈ {1, 2}, are covered in G3.
Finally, the tuples (x+yh1 +zh2

1, x+yh2 +zh2
2, x+yh3 +zh2

3, x+yh1 +zh2
1), where

x, y ∈ {0, 1, 2} and z ∈ {1, 2}, are covered in G5. Hence, all 4-tuples are covered.
• f1 = f2 �= f3 = f4 In this case, h1 �= h2 and h3 �= h4. First, suppose that h2 = h3 but

h1 �= h4.
Fix any tuple (x, y, z, t) where y �= z. Since A′ is a 2-covering array, it has a row
(x, y, m) for some m ∈ {0, 1, 2}, let it be ith row. A′ also has a row (s, z, t) for some
s ∈ {0, 1, 2}, let it be jth row. Since y �= z it follows that i �= j. So φ(i) = (x, y, m)

for the fixed x, y and for some m, and φ(j) = (s, z, t) for the fixed z, t and for some
s. Since C2 is a 2-COD and since i �= j, C2 has a row r such that in cell (r, f1) is the
symbol i and in cell (r, f3) is the symbol j. Thus, the symbol x is in cell (r, (f1, h1)) of
G4, the symbol y is in cell (r, (f1, h2)) of G4, the symbol z is in the cell (r, (f3, h2)) of
G4, and the symbol t is in the cell (r, (f3, h4)) of G4. Hence, the fixed tuple (x, y, z, t)
where y �= z is covered in G4.
Further, for x ∈ {0, 1, 2}, the tuple (x, x, x, x) is covered in G1. The tuples (x+yh1, x+
yh2, x + yh2, x + yh4) are covered in G2, for any x ∈ {0, 1, 2} and any y ∈ {1, 2}.
Tuples of the form (x + yh1 + zh2

1, x + yh2 + zh2
2, x + yh2 + zh2

2, x + yh4 + zh2
4)

are covered in G5, for any x, y ∈ {0, 1, 2} and any z ∈ {1, 2}. Hence all 4-tuples are
covered.
Now suppose that h2 = h3 and h1 = h4.

Des Codes Crypt (2006) 41:33–57 45

Fix a tuple (x, y, z, t) such that if x = t then y �= z, for any x, y, z, t ∈ {0, 1, 2}. Since
A′ is a 2-covering array, it has a row (x, y, m) for some m ∈ {0, 1, 2}, let it be ith
row. A′ also has a row (t, z, s) for some s ∈ {0, 1, 2}, let it be jth row. Since x �= t or
y �= z it follow that i �= j. So φ(i) = (x, y, m) for the fixed x, y and for some m, and
φ(j) = (t, z, s) for the fixed z, t and for some s. Since C2 is a 2-COD and i �= j, C2
has a row r such that in cell (r, f1) is the symbol i and in cell (r, f3) is the symbol
j. Thus, the symbol x is in cell (r, (f1, h1)) of G4, the symbol y is in cell (r, (f1, h2))

of G4, the symbol z is in the cell (r, (f3, h2)) of G4, and the symbol t is in the cell
(r, (f3, h1)) of G4. Hence, the fixed tuple (x, y, z, t), where if x = t then y �= z, is
covered.
The tuples (x, x, x, x) are covered in G1 for any x ∈ {0, 1, 2}. The tuples (x + y ×
h1, x + y × h2, x + y × h2, x + y × h1) are covered in G2 for any x ∈ {0, 1, 2} and any
y ∈ {1, 2}. So all tuples of the form (x, y, y, x) are covered in G1 and in G2. �

Corollary 4.12

CAN(4, 3k, 3) ≤ CAN(4, k, 3) + 2CAN(3, k, 3)

+18DCAN(2, k, 3) + CAN(2, k, 9) − 1 + 18.

Proof Without loss of generality every CA(N; 2, k, 9) can have symbols renamed so
that the resulting covering array has a constant row, whose deletion yields a COD(N −
1; 2, k, 9). �

4.5 Specializations when � = v > 3

Theorem 4.13 For any prime power v ≥ 4,

CAN(4, vk, v) ≤ CAN(4, k, v) + (v − 1)CAN(3, k, v)

+(v3 − v2)DCAN(2, k, v) + CODN(2, k, v2) + v4 − v2.

Proof Suppose that the following exist:

• CA(N4; 4, k, v) C4,
• CA(N3; 3, k, v) C3,
• DCA(S; 2, k, v) D,
• COD(N2; 2, k, v2) C2,

Suppose that D′ is a (v − 1) × v array obtained by removing the first row from the
(v, v; 1)-difference matrix in Theorem 2.2. Then d′

i,j = i × j for i = 1, . . . , v − 1 and
j = 0, . . . , v − 1. The array D′ is a DCA(v − 1; 2, v, v).

Let A(3) be an OA(v3; 3, v, v), constructed by using Bush’s construction (see the
proof of Theorem 3.1 in [18]). The columns of A(3) are labelled with the elements of
Fv and rows are labelled by v3 polynomials over Fv of degree at most 2. Then, in A(3),
the entry in the column γi and the row labelled by the polynomial with coefficients
β0, β1 and β2 is β0 + β1 × γi + β2 × γi

2.
Let B(3) be the sub-array of A(3) containing the rows of A(3) which are labelled by

polynomials of degree exactly 2 (β2 �= 0). Then B(3) is a (v3 −v2)×v array. Label each
column of B(3) with the same element of Fv as its corresponding column in A. Denote
the ith column of B(3) by B(3)

i , for i = 0, . . . , v − 1.

46 Des Codes Crypt (2006) 41:33–57

Let A(4) be an OA(v4; 4, v, v) constructed by using Bush’s construction. The columns
of A(4) are labelled with the elements of Fv and rows are labelled by v4 polynomials
over Fv of degree at most 3. Then, in A(4), the entry in the column γi and the row
labelled by the polynomial with coefficients β0, β1, β2 and β3 is β0 + β1 × γi + β2 ×
γi

2 + β3 × γi
3.

Let B(4) be the sub-array of A(4) that contains the rows of A(4) which are labelled by
polynomials of degree 2 or 3(β2 �= 0 or β3 �= 0). Then B(4) is a (v4 −v2)×v array whose
each column is labelled with the same element of Fv as its corresponding column in
A. Denote the ith column of B(4) by B(4)

i , for i = 0, . . . , v − 1.
Let A(2) be an OA(v2; 2, v, v) which is also a CA(v2; 2, v, v). Such an array exists by

Theorem 2.1.
We produce a covering array CA(N′; 4, vk, v) G where N′ = N4 + (v − 1)N3 + (v3 −

v2)S + N2 + v4 − v2. G is formed by vertically juxtaposing arrays G1 of size N4 × vk,
G2 of size (v − 1)N3 × vk, G3 of size (v3 − v2)S × vk, G4 of size N2 × vk and G5 of size
(v4 − v2) × vk.

We describe the construction of each array in turn. We index vk columns by ordered
pairs from {0, . . . , k − 1} × {0, . . . , v − 1}.
G1: In row r and column (f , h) place the entry in cell (r, f) of C4. Thus G1 consists of

v copies of C4 placed side by side.
G2: Index the (v − 1)N3 rows by ordered pairs from {1, . . . , N3} × {1, . . . , v − 1}. In

row (r, s) and column (f , h) place cr, f + d′
s, h, where cr, f is the entry in cell (r, f)

of C3 and d′
s, h is the entry in cell (s, h) of D′.

G3: Index the (v3 − v2)S rows by ordered pairs from {1, . . . , S}× {1, . . . , (v3 − v2)}. In
row (s, r) and column (f , h) place br, h + ds, f , where br, h is the entry in cell (r, h)

of B(3) and ds, f is the entry in cell (s, f) of D.
G4: Let φ be a mapping that maps the symbol i of C2 to the v-tuple on the ith row of

A(2), for any i = {0, . . . , v2 − 1}. Let i be the symbol in cell (r, f) in C2. Suppose
that φ(i) = (x0, x1, . . . , xv−1) for some x0, x1, . . . , xv−1 ∈ Fv. Then, in row r and
column (f , m) place the symbol xm, for m = 0, . . . , v − 1.

G5: In row r and column (f , h) place the entry in cell (r, h) of B(4). Thus G5 consists
of k copies of the first column of B(4), followed by k copies of the second column
of B(4), and so on.

We show that G is a 4-covering array. Consider four columns

(f1, h1), (f2, h2), (f3, h3), (f4, h4)

of G. If f1, f2, f3, f4 are all distinct, then these columns restricted to G1 arise from four
distinct columns of C4. Hence, all 4-tuples are covered.

Further, we consider the following cases:

• f1 = f2 �= f3 �= f4 �= f2
All 4-tuples (x, x, y, z) are covered in G1, for any x, y, z ∈ {0, . . . , v−1}. All 4-tuples
(x, x + i, y, z), for any i ∈ {1, . . . , v − 1} and any x, y, z ∈ {0, . . . , v − 1}, are covered
in G2. Hence all 4-tuples are covered.

• f1 = f2 = f3 �= f4
In this case h1 �= h2 �= h3 �= h1. The case where h1, h2, h3 and h4 are all distinct is
discussed separately. Now suppose that h4 = h1.

Des Codes Crypt (2006) 41:33–57 47

The tuples (x, x, x, y), for any x, y ∈ {0, . . . , v − 1}, are covered in G1. The tuples
(x + d′

y,h1
, x + d′

y,h2
, x + d′

y,h3
, t + d′

y,h1
), for any x, t ∈ {0, . . . , v − 1} and for y ∈

{1, . . . , v − 1}, are covered in G2.
So all the tuples (x + yh1, x + yh2, x + yh3, t), for any x, y, t ∈ {0, . . . , v − 1}, are
covered in G1 and in G2.
The tuples (x + yh1 + zh2

1, x + yh2 + zh2
2, x + yh3 + zh2

3, x + yh1 + zh2
1 + i), where

i, z ∈ {1, . . . , v − 1} and x, y ∈ {0, . . . , v − 1}, are covered in G3. Finally, the tuples
(x + yh1 + zh2

1 + th3
1, x + yh2 + zh2

2 + th3
2, x + yh3 + zh2

3 + th3
3, x + yh1 + zh2

1 + th3
1),

where if z = 0 then t �= 0 for any x, y, z, t ∈ {0, . . . , v − 1}, is covered in G5. Hence,
all 4-tuples are covered.

• f1 = f2 �= f3 = f4 and h2 = h3 but h1 �= h4.
In this case h1 �= h2 and h3 �= h4.
Fix any tuple (x, y, z, t) where y �= z. Since A(2) is a 2-covering array, it has row with
the tuple (m0, . . . , mv−1), where mh1 = x and mh2 = y, let it be ith row of A(2). A(2)

also has a row with the tuple (m′
0, . . . , m′

v−1), where m′
h2

= z and m′
h4

= t, let it be

row jth row of A(2). Since y �= z it follows that i �= j. So φ(i) = (m0, . . . , mv−1) and
φ(j) = (m′

0, . . . , m′
v−1). Since C2 is a 2-COD and i �= j, C2 has a row r such that in

cell (r, f1) is the symbol i and in cell (r, f3) is the symbol j. Thus, in G4, the symbol
x is in cell (r, (f1, h1)), the symbol y is in cell (r, (f1, h2)), the symbol z is in cell
(r, (f3, h2)) and the symbol t is in cell (r, (f3, h4)). Hence, the fixed tuple (x, y, z, t) is
covered when y �= z.
Further, the tuple (x, x, x, x), for any x ∈ {0, . . . , v − 1}, is covered in G1. The tuple
(x+yh1, x+yh2, x+yh2, x+yh4), for any x ∈ {0, . . . , v−1} and any y ∈ {1, . . . , v−1},
is covered in G2.
Finally, the tuples (x + yh1 + zh2

1 + th3
1, x + yh2 + zh2

2 + th3
2, x + yh2 + zh2

2 + th3
2, x +

yh4 + zh2
4 + th3

4), such that if z = 0 then t �= 0, for any x, y, z, t ∈ {0, . . . , v − 1}, are
covered in G5.

• f1 = f2 �= f3 = f4, h2 = h3 and h1 = h4.
Fix any tuple (x, y, z, t) such that if x = t then y �= z. Since A(2) is a 2-covering
array, it has row with the tuple (m0, . . . , mv−1), where mh1 = x and mh2 = y, let it
be ith row of A(2). A(2) also has a row with the tuple (m′

0, . . . , m′
v−1), where m′

h1
= t

and m′
h2

= z, let it be jth row A(2). Since either x �= t or y �= z it follows that i �= j.
Now φ(i) = (m0, . . . , mv−1) and φ(j) = (m′

0, . . . , m′
v−1).

Since C2 is a 2-COD and i �= j, it has a row r such that in cell (r, f1) is the symbol i
and in cell (r, f3) is the symbol j. Thus, in G4, the symbol x is in cell (r, (f1, h1)) the
symbol y is in cell (r, (f1, h2)) the symbol z is in the cell (r, (f3, h2)) and the symbol
t is in the cell (r, (f3, h1)). Hence, any fixed tuple (x, y, z, t), such that if x = t then
y �= z, for any x, y, z, t ∈ {0, . . . , v − 1}, is covered in G4.
Further, the tuples of the form (x, x, x, x) are covered in G1. The tuples of the form
(x + yh1, x + yh2, x + yh2, x + yh1) are covered in G2 for x ∈ {0, . . . , v − 1} and
y ∈ {1, . . . , v − 1}.
These are all the tuples of the form (x, y, y, x) for any x, y ∈ {0, . . . , v − 1}. Hence
all 4-tuples are covered.

• In the remaining cases which are not discussed above h1, h2, h3 and h4 are all
distinct.
The tuple (x, x, x, x) is covered in G1 for any x ∈ {0, . . . , v − 1}. The tuple

48 Des Codes Crypt (2006) 41:33–57

(x + yh1, x + yh2, x + yh3, x + yh4) is covered in G2 for any x ∈ {0, . . . , v − 1} and
any y ∈ {1, . . . , v − 1}. Finally, the tuple (x + yh1 + zh2

1 + th3
1, x + yh2 + zh2

2 +
th3

2, x + yh3 + zh2
3 + th3

3, x + yh4 + zh2
4 + th3

4) such that if z = 0 then t �= 0, for any
x, y, z, t ∈ {0, . . . , v − 1}, is covered in G5. �

Corollary 4.14 For any prime power v ≥ 4,

CAN(4, vk, v) ≤ CAN(4, k, v) + (v − 1)CAN(3, k, v)

+(v3 − v2)DCAN(2, k, v) + CAN(2, k, v2) − 1 + v4 − v2.

Proof Without loss of generality every CA(N; 2, k, v2) can have symbols renamed so
that the resulting covering array has a constant row, whose deletion yields a COD
(N − 1; 2, k, v2). �

Corollary 4.15 For any prime power v ≥ 4,

CAN(4, vk, v) ≤ CAN(4, k, v) + (v − 1)CAN(3, k, v)

+(v3 − v2)DCAN(2, k, v) + (v2 + v)CAN(2, k, v) − 1 + v4 − 2v2.

Proof Apply Corollary 2.4 to bound CAN(2, k, v2). �

5 Numerical consequences

To assess the effectiveness of the recursions developed, it is necessary to determine
their impact on our knowledge of covering array numbers. We have outlined compu-
tational methods in the introduction; in preparation for a comparison we therefore

Table 1 Bounds for t = 3, v = 2

Des Codes Crypt (2006) 41:33–57 49

introduce related recursive methods that do not (at present) fall into the “Roux-type”
framework.

The Turán number T(t, n) is the largest number of edges in a t-vertex simple graph
having no (n + 1)-clique. Turán [31] showed that a graph with the T(t, n) edges is
constructed by setting a =
t/n� and b = t − na, and forming a complete multipartite
graph with b classes of size a + 1 and n − b classes of size a. Using these, Hartman
generalizes the constructions in [5, 6, 29].

Theorem 5.1 [16] If a CA(N; t, k, v) and a CA(k2; 2, T(t, v) + 1, k) both exist, then a
CA(N · (T(t, v) + 1); t, k2, v) exists.

Table 2 Bounds for t = 3, v = 3

50 Des Codes Crypt (2006) 41:33–57

Perfect hash families are well studied combinatorial objects. A t-perfect hash family
H, denoted PHF(n; k, q, t), is a family of n functions h: A �→ B, where k = |A| ≥ |B| =
q, such that for any subset X ⊆ A with |X| = t, there is at least one function h ∈ H
that is injective on X. Thus a PHF(n; k, q, t) can be viewed as an n × k-array H with
entries from a set of q symbols such that for any set of t columns there is at least one
row having distinct entries in this set of columns.

Theorem 5.2 (see [3, 22]) If a PHF(s; k, m, t) and a CA(N; t, m, v) both exist then a
CA(sN; t, k, v) exists.

Table 3 Bounds for t = 3, v = 4

Table 4 Bounds for t = 3, v = 5

Des Codes Crypt (2006) 41:33–57 51

Table 5 Bounds for t = 3, v = 6

Table 6 Bounds for t = 3, v = 7

52 Des Codes Crypt (2006) 41:33–57

Table 7 Bounds for t = 3, v = 8

Table 8 Bounds for t = 3, v = 9

Table 9 Bounds for t = 4, v = 2

Des Codes Crypt (2006) 41:33–57 53

Table 10 Bounds for t = 4, v = 3

For constructions of perfect hash families, see [1, 2, 4, 30, Bierbrauer J and
Schellwatt H, unpublished].

To assess the contributions of each of the constructions described, we computed
upper bounds for CAN(t, k, v) for t ∈ {2, 3, 4}, 2 ≤ v ≤ 25, and t < k ≤ 10, 000. Previ-
ous tables (e.g., [7]) have reported only small numbers of factors (k ≤ 30). With the
current power of computational search techniques, this fails to explore into the range
in which recursions are most powerful. Evidently it is not sensible to report 10,000
results for every t and v, and fortunately there is no need to do so. Let κ(N; t, v) be the
largest k for which CAN(t, k, v) ≤ N. As k increases, for many consecutive numbers of
factors, the covering array number does not change. Therefore reporting those values
of κ(N; t, v) for which κ(N; t, v) > κ(N − 1; t, v), along with the corresponding value of
N, enables one to determine all covering array numbers when k is no larger than the
largest κ(N; t, v) value tabulated. Since the exact values for covering array numbers
are unknown in general, we in fact report lower bounds on κ(N; t, v).

For each strength in turn, explicit constructions of covering arrays from direct
and computational constructions are tabulated. Then each known construction is
applied and its consequences tabulated (in the process, results implied by this for
fewer factors are suppressed, so that one explanation (“authority”) for each entry is

54 Des Codes Crypt (2006) 41:33–57

Table 11 Bounds for t = 4, v = 4

maintained). Applications of the recursions is repeated until no entries in the table
improve.

The authorities used are:

f constraint programming [19] h perfect hash family [22]
� Roux-type [9] m Roux-type (this paper)
n nearly resolvable design [7] o orthogonal array [18]
q Turán squaring [16] r Roux-type (this paper)
s simulated annealing [8] t tabu search [24]
u Martirosyan (unpublished) v permutation vector [Walker II RA and

Colbourn CJ, submitted for publication]
y binary construction [27] z composition
↓ symbol identification

Composition and symbol identification are standard constructions; see [7], for
example. Other constructions, such as derivation of a t-covering array from a (t + 1)-
covering array, and “Construction D” from [7], can yield improvements but do not do
so within the ranges of the tables reported; hence they are omitted.

Des Codes Crypt (2006) 41:33–57 55

Table 12 Bounds for t = 4, v = 5

5.1 Tables for strength three

Tables 1–8 give (lower bounds on) κ(N; 3, v) for 2 ≤ v ≤ 9 only, since they illustrate
the main points. The strength two tables used are from [12]. For each v, we tabulate
the entries for N and κ(N; 3, v). We also provide a plot showing the logarithm of the
number of factors horizontally and the size of the covering array vertically. Asymp-
totically one expects this to become a straight line (see, e.g., [15]), and its deviation
from the straight line results from non-uniform behaviour when k is small, but also
from the “errors” compounded in repeated applications of the recursions. The plot
simply demonstrates the growth; the explicit points given are definitive.

Exponents indicate the authority for the entry provided, to provide one method
for the construction; alternative constructions may produce the same result.

5.2 Tables for strength four

Tables 9–12 similar results for strength four; the only published table of which we are
aware appears in [17], and treats only k ≤ 10.

6 Concluding remarks

The recursive constructions for strength three developed here provide a useful com-
plement to that in [9]. More importantly, the recursive constructions for strength
four provide numerous powerful techniques for the construction of covering arrays.
The existence tables demonstrate the utility of computational search for small ar-
rays combined with flexible recursive constructions. The constructions using perfect
hash families and Turán graphs provide some of the best bounds as the number of

56 Des Codes Crypt (2006) 41:33–57

columns (factors) increases, but currently do not exhibit the generality of the Roux-
type constructions developed here.

Acknowledgments Research of the first, second, and fourth authors was supported by the Consor-
tium for Embedded and Inter-Networking Technologies.

References

1. Alon N (1986) Explicit construction of exponential sized families of k-independent sets. Discrete
Math 58:191–193

2. Atici M, Magliveras SS, Stinson DR, Wei WD (1996) Some recursive constructions for perfect
hash families. J Combin Designs 4:353–363

3. Bierbrauer J, Schellwatt H (2000) Almost independent and weakly biased arrays: efficient con-
structions and cryptologic applications. Adv Cryptol (Crypto 2000), Lecture Notes Comput Sci
1880:533–543

4. Blackburn SR (2000) Perfect hash families: probabilistic methods and explicit constructions.
J Combin Theory – Ser A 92:54–60

5. Boroday SY (1998) Determining essential arguments of Boolean functions (Russian). In: Proc
conference on industrial mathematics, Taganrog, pp 59–61

6. Chateauneuf MA, Colbourn CJ, Kreher DL, Covering arrays of strength 3. Designs Codes
Cryptogr 16:235–242

7. Chateauneuf MA, Kreher DL (2002) On the state of strength three covering arrays. J Combin
Designs 10(4):217–238

8. Cohen MB (2004) Designing test suites for software interaction testing. Ph.D. Thesis, University
of Auckland and private communications (2005)

9. Cohen MB, Colbourn CJ, Ling ACH (to appear) Constructing strength 3 covering arrays with
augmented annealing. Discrete Math

10. Cohen DM, Dalal SR, Fredman ML, Patton GC (1997) The AETG system: an approach to testing
based on combinatorial design. IEEE Trans Software Eng 23(7):437–444

11. Colbourn CJ (2004) Combinatorial aspects of covering arrays. Le Matematiche (Catania) 58:121–
167

12. Colbourn CJ (to appear) Strength two covering arrays: existence tables and projection. Discrete
Math

13. Colbourn CJ, Dinitz JH (eds) (1996) The CRC handbook of combinatorial designs. CRC Press,
Boca Raton

14. Colbourn CJ, Martirosyan SS, Mullen GL, Shasha D, Sherwood GB, Yucas JL (2006)
Products of mixed covering arrays of strength two. J Combin Designs 14:124–138

15. Godbole AP, Skipper DE, Sunley RA (1996) t-covering arrays: upper bounds and Poisson approx-
imations. Combin Probab Comput 5:105–117

16. Hartman A (2005) Software and hardware testing using combinatorial covering suites. In: Graph
theory, combinatorics and algorithms: interdisciplinary applications. M.C. Golunbic and I.B.A.
Hartman (eds) Springer, Boston, pp. 237–266

17. Hartman A, Raskin L (2004) Problems and algorithms for covering arrays. Discrete Math 284
(1–3):149–156

18. Hedayat AS, Sloane NJA, Stufken J (1999) Orthogonal arrays, theory and applications. Springer
19. Hnich B, Prestwich S, Selensky E (2005) Constraint-based approaches to the covering test prob-

lem. Lecture Notes Comput Sci 3419:172–186
20. Lidl R, Niederreiter H (eds) Finite fields, 2nd ed Cambridge, England: Cambridge University

Press
21. Martirosyan SS, Colbourn CJ (2005) Recursive constructions for covering arrays. Bayreuther

Math Schriften 74:266–275
22. Martirosyan S, Van Trung T (2004) On t-covering arrays. Designs Codes Cryptogr 32:323–339
23. Meagher K, Stevens B (2005) Group construction of covering arrays. J Combin Designs 13:70–77
24. Nurmela K (2004) Upper bounds for covering arrays by tabu search. Discrete Appl Math 138:

143–152
25. Roux G (1987) k-Propriétés dans les tableaux de n colonnes: cas particulier de la k-surjectivité et

de la k-permutivité. Ph.D. Thesis, Université de Paris
26. Sherwood GB, Martirosyan SS, Colbourn CJ (2006) Covering arrays of higher strength from

permutation vectors. J Combin Designs 14:202–213

Des Codes Crypt (2006) 41:33–57 57

27. Sloane NJA (1993) Covering arrays and intersecting codes. J. Combin Designs 1:51–63
28. Stinson DR, Wei R, Zhu L (2000) New constructions for perfect hash families and related struc-

tures using combinatorial designs and codes. J Combin Designs 8:189–2000
29. Tang DT, Chen CL (1984) Iterative exhaustive pattern generation for logic testing. IBM J Res

Develop 28:212–219
30. van Trung T, Martirosyan S (2005) New constructions for IPP codes. Designs Codes Cryptogr

35:227–239
31. Turán P (1941) On an extremal problem in graph theory (Hungarian). Mat Fiz Lapok 48:436–452

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

