Roux-type constructions for covering arrays of strengths three and four

Charles J. Colbourn · Sosina S. Martirosyan · Tran Van Trung · Robert A. Walker II

Received: 6 August 2005 / Revised: 23 February 2006 / Accepted: 21 March 2006 © Springer Science+Business Media, LLC 2006

Abstract A *covering array* CA(N;t,k,v) is an $N \times k$ array such that every $N \times t$ sub-array contains all *t*-tuples from *v* symbols *at least* once, where *t* is the *strength* of the array. Covering arrays are used to generate software test suites to cover all *t*-sets of component interactions. Recursive constructions for covering arrays of strengths 3 and 4 are developed, generalizing many "Roux-type" constructions. A numerical comparison with current construction techniques is given through existence tables for covering arrays.

Keywords Covering array · Orthogonal array · Difference matrix

AMS Classification 05B40 · 05B15 · 68N30

Communicated by D. Hachenberger.

C. J. Colbourn (⊠) · R. A. Walker II Computer Science and Engineering, Arizona State University, P.O. Box 878809, Tempe, AZ 85287, USA e-mail: charles.colbourn@asu.edu

S. S. Martirosyan Mathematical Sciences, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX 77058, USA

T. Van Trung Institut für Experimentelle Mathematik, Universität Duisburg-Essen, Ellernstrasse 29, 45326 Essen, Germany e-mail: trung@exp-math.uni-essen.de

R. A. Walker II e-mail: robby.walker@gmail.com

1 Introduction

A covering array CA(N;t,k,v) is an $N \times k$ array such that every $N \times t$ sub-array contains all *t*-tuples from *v* symbols *at least* once, where *t* is the *strength* of the array. When 'at least' is replaced by 'exactly', this defines an *orthogonal array* [18]. We use the notation OA(N;t,k,v). Often we refer to a *t*-covering array to indicate some CA(N;t,k,v). We denote by CAN(t,k,v) the minimum *N* for which a CA(N;t,k,v)exists. The determination of CAN(t,k,v) has been the subject of much research; see [7, 11, 16, 17] for survey material. However, only in the case of CAN(2,k,2) is an exact determination known (see [11]). In part the interest arises from applications in software testing [10], but other applications in which experimental factors interact avail themselves of covering arrays as well [11, 16].

We outline the approaches taken for strength t = 2, but refer to [11] for a more detailed survey. When the number of factors is "small", numerous direct constructions have been developed. Some exploit the known structure of orthogonal arrays arising from the finite field, but most have a computational component. A range of methods have been applied, including greedy methods [10], tabu search [24], simulated annealing [8], and constraint satisfaction [19]. Assuming that the covering array admits an automorphism can reduce the computational difficulty substantially [23].

At the other extreme, when the number of factors k goes to infinity, asymptotic methods have been applied; see [15], for example. In practice, this leaves a wide range of values of k for which no useful information can be deduced. Computational methods become infeasible, and asymptotic analysis does not apply, within this range. Hence there has been substantial interest in recursive ("product") constructions to make large covering arrays from smaller ones. Currently, the most general recursive constructions for strength two appear in [14].

This pattern is repeated for strength t > 2. The larger the strength, the more limited is our ability to obtain computational results for small numbers of factors. For strength three, powerful heuristic search such as simulated annealing [9] and tabu search [24] are still effective, but for larger strengths their current applications are quite restricted. Consequently, imposing larger automorphism groups to accelerate the search has proved effective in some cases [6, 7]. More recently, Sherwood et al. [26] developed a "permutation vector" representation for certain covering arrays. In conjunction with tabu search, Walker and Colbourn submitted for publication produce many coverings arrays for strengths between 3 and 7.

Despite current limitations in producing *t*-covering arrays with a small number of factors, recursive constructions have proved to be effective in making arrays for larger numbers of factors. Roux [25] pioneered a conceptually simple recursive construction for strength t = 3 that has been substantially generalized for strength 3 [7, 9], strength 4 [16, 17, 22], and strength *t* in general [21, 22]. In this paper, we improve the recursion for strength 3, and we generalize and unify the Roux-type recursions for strength 4. We then recall related recursions using Turán families and perfect hash families in Sect. 5, and using this current census of known constructions we present current existence tables for covering arrays of strengths 3 and 4.

2 Definitions and preliminaries

Let Γ be a group of order v, with \odot as its binary operation. A $(v, k; \lambda)$ -difference matrix $D = (d_{ij})$ over Γ is a $v\lambda \times k$ matrix $D = (d_{\ell,i})$ with entries from Γ , so that for each $\widehat{\odot}$ Springer

 $1 \le i < j \le k$, the set $\{d_{\ell,i} \odot d_{\ell,j}^{-1} : 1 \le \ell \le \nu\lambda\}$ contains every element of $\Gamma \lambda$ times. When Γ is abelian, additive notation is used, so that difference $d_{\ell,i} - d_{\ell,j}$ is employed. (Often in the literature the transpose of this definition is used.)

A *t*-difference covering array $D = (d_{ij})$ over Γ , denoted by $DCA(N, \Gamma; t, k, v)$, is an $N \times k$ array with entries from Γ having the property that for any *t* distinct columns j_1, j_2, \ldots, j_t , the set $\{(d_{i,j_1} \odot d_{i,j_2}^{-1}, d_{i,j_1} \odot d_{i,j_3}^{-1}, \ldots, d_{i,j_1} \odot d_{i,j_t}^{-1}) : 1 \le i \le N\}$ contains every non-zero (t-1)-tuple over Γ at least once. When $\Gamma = \mathbb{Z}_v$ we omit it from the notation. We denote by DCAN(t, k, v) the minimum *N* for which a DCA(N; t, k, v) exists.

A covering ordered design COD(N;t,k,v) is an $N \times k$ array such that every $N \times t$ sub-array contains all non-constant *t*-tuples from *v* symbols *at least* once. We denote by CODN(t,k,v) the minimum N for which a COD(N;t,k,v) exists. As an example, CODN(2,3,3) = 6; take the six rows $(i,j,2 \cdot (i+j) \mod 3)$ for $i,j \in \{0,1,2\}$ with $i \neq j$.

A QCA($N; k, \ell, v$) is an $N \times k\ell$ array with columns indexed by ordered pairs from $\{1, \ldots, k\} \times \{1, \ldots, \ell\}$, in which whenever $1 \le i < j \le k$ and $1 \le a < b \le \ell$, the $N \times 4$ subarray indexed by the four columns (i, a), (i, b), (j, b), (j, a) contains every 4-tuple (x, y, z, t) with $x - t \ne y - z \pmod{v}$ at least once. QCAN(k, ℓ, v) denotes the minimum number of rows in such an array.

We recall two general results.

Theorem 2.1 [18] When $v \ge 2$ is a prime power then an $OA(v^t; t, v+1, v)$ exists whenever $v \ge t - 1 \ge 0$.

Theorem 2.2 [13] *The multiplication table for the finite field* \mathbb{F}_v *is a* (v, v; 1)*-difference matrix over* EA(v).

In order to simplify the presentation later, we establish a basic result:

Theorem 2.3 $CAN(2, k, vw) \le min \begin{cases} CAN(2, k, v)CAN(2, v, w) + vCODN(2, k, w) \\ CODN(2, k, v)CAN(2, v, w) + vCAN(2, k, w) \end{cases}$

Proof We prove the first statement; the second is similar. Suppose that there exist A a $CA(N_A; 2, k, v)$, B a $CA(N_B; 2, v, w)$, and C a $COD(N_C; 2, k, w)$.

We produce a CA(N'; 2, k, vw) D where $N' = N_A N_B + v N_C$. D is formed by vertically juxtaposing arrays E of size $N_A N_B$ and $F^0, \ldots, F^{\nu-1}$ each of size N_C .

We refer to elements of D as ordered pairs (a, b) where $0 \le a < v$ and $0 \le b < w$. There are *vw* such elements.

Define array E as follows. Replace each element *i* from A with a column of length N_B whose *j*th entry is (i, σ) where σ is the *j*th entry of the *i*th column of B.

Define array F^{ℓ} to be the result of replacing every entry σ of array C by (ℓ, σ) . Then D has N' rows. We now verify that it is a $\mathsf{CA}(N'; 2, k, vw)$.

Consider columns *i* and *j* of D to verify the presence of the pair (r, x) in column *i* and (s, y) in column *j*.

If $r \neq s$, look in E. There is a row in A that covers the pair (r, s) in columns (i, j). We look at the expansion of this pair from A into E. Since there is also a row in B that covers the pair (x, y), say in row n, and since the rth and sth columns of B are distinct, the nth row of the expansion contains the required pair. Similarly if r = s and x = y, there is a row in A that covers the pair (r, r) and all pairs are covered in the expansion into E provided that x = y.

It remains to treat the case when r = s but $x \neq y$, i.e. the pairs sought are of the form (r, x) and (r, y). For these we consider F^r . Since $x \neq y$, the pair (x, y) is covered in C. So, the pair (r, x), (r, y) is covered in F^r .

Corollary 2.4 For v a prime power,

 $\mathsf{CAN}(2,k,v^2) \le \min\left\{ \begin{array}{l} v^2\mathsf{CAN}(2,k,v) + v\mathsf{CODN}(2,k,v) \\ v^2\mathsf{CODN}(2,k,v) + v\mathsf{CAN}(2,k,v) \end{array} \right\} \le (v^2 + v)\mathsf{CAN}(2,k,v) - v^2.$

Proof $\text{CODN}(2, k, v) \leq \text{CAN}(2, k, v) - 1.$

Theorem 2.5 CODN(2, k, vw) \leq CODN(2, k, v)CODN(2, v, w) + vCODN(2, k, w).

Proof This parallels the proof of Theorem 2.3 closely.

For large k, these improve upon the simple "composition" of covering arrays that establishes that $CAN(2, k, vw) \leq CAN(2, k, v)CAN(2, k, w)$.

3 Strength three

In [27], a theorem from Roux's Ph.D. dissertation [25] is presented.

Theorem 3.1 $CAN(3, 2k, 2) \le CAN(3, k, 2) + CAN(2, k, 2).$

Proof To construct a CA(3,2*k*,2), we begin by placing two CA(N_3 , 3, *k*, 2)s side by side. We now have a $N_3 \times 2k$ array. If one chooses any three columns whose indices are distinct modulo *k*, then all triples are covered. The remaining selection consists of a column *x* from among the first *k*, its copy among the second *k*, and a further column *y*. When the two columns whose indices agree modulo *k* share the same value, such a triple is also covered. The remaining triples are handled by appending two CA(N_2 , 2, *k*, 2)s side by side, the second being the bit complement of the first. Therefore if we choose two distinct columns from one half, we choose the bit complement of one of these, thereby handling all remaining triples. This gives a covering array of size $N_2 + N_3$.

Chateauneuf and Kreher [7] prove a generalization:

Theorem 3.2 $CAN(3, 2k, v) \le CAN(3, k, v) + (v - 1)CAN(2, k, v).$

Cohen et al. [9] generalize to permit the number of factors to be multiplied by $\ell \ge 2$ rather than two.

Theorem 3.3 [9] $CAN(3, k\ell, v) \le CAN(3, k, v) + CAN(3, \ell, v) + CAN(2, \ell, v) \times DCAN$ (2, k, v).

Here we establish a different generalization of the Roux construction for strength three.

Theorem 3.4 *For any prime power* $v \ge 3$

$$CAN(3, vk, v) \le CAN(3, k, v) + (v - 1)CAN(2, k, v) + v^3 - v^2$$

Proof Suppose that C₃ is a CA(N_3 ; 3, k, v) and C₂ is a CA(N_2 ; 2, k, v). Suppose that D is the (v - 1) × v array obtained by removing the first row from the difference matrix in Theorem 2.2. Then $d_{i,j} = i \times j$ for i = 1, ..., v - 1 and j = 0, ..., v - 1. D is a DCA(v - 1; 2, v, v).

We first construct an OA(v^3 ; v, v, 3) A by using Bush's construction (see the proof of Theorem 3.1 in [18]). The columns of A are labelled with the elements of \mathbb{F}_v and rows are labelled by v^3 polynomials over \mathbb{F}_v of degree at most 2. Then, in A, the entry in the column γ_i and the row labelled by the polynomial with coefficients β_0 , β_1 and β_2 is $\beta_0 + \beta_1 \times \gamma_i + \beta_2 \times \gamma_i^2$.

Let B be the sub-array of A containing the rows of A which are labelled by the polynomials of degree 2 ($\beta_2 \neq 0$). Then B is a ($v^3 - v^2$) × v array. We label each column of B with the same element of \mathbb{F}_v as its corresponding column in A. Denote the *i*th column of B by B_i , for i = 0, ..., v - 1.

We produce a covering array CA(N'; 3, vk, v) G where $N' = N_3 + (v-1)N_2 + v^3 - v^2$. G is formed by vertically juxtaposing arrays G_1 of size $N_3 \times vk$, G_2 of size $(v-1)N_2 \times vk$, G_3 of size $(v^3 - v^2) \times vk$.

We describe the construction of each array in turn. We index *vk* columns by ordered pairs from $\{0, \ldots, k-1\} \times \{0, \ldots, v-1\}$.

- G_1 : In row *r* and column (f, h) place the entry in cell (r, f) of C_3 . Thus G_1 consists of *v* copies of C_3 placed side by side.
- G₂: Index the $(v 1)N_2$ rows by ordered pairs from $\{1, ..., N_2\} \times \{1, ..., v 1\}$. In row (r, s) and column (f, h) place $c_{r,f} + d_{s,h}$, where $c_{r,f}$ is the entry in cell (r, f) of C₂ and $d_{s,h}$ is the entry in cell (s, h) of D.
- G₃: In row *r* and column (f, h) place the entry in cell (r, h) of B. Thus G₃ consists of *k* copies of B₀, the first column of B, then *k* copies of B₁, the second column, and so on.

We show that G is a 3-covering array. Consider three columns of G:

$$(f_1, h_1), (f_2, h_2), (f_3, h_3)$$

If f_1, f_2, f_3 are all distinct, then these columns restricted to G_1 arise from three distinct columns of C_3 . Hence, all 3-tuples are covered.

If $f_1 = f_2 \neq f_3$ then all tuples of the form (x, x, y) are covered in G₁. All tuples of the form $(x + d_{y,h_1}, x + d_{y,h_2}, z + d_{y,h_3})$ for any $x, z \in \{0, 1, ..., v - 1\}$ and $y \in \{1, ..., v - 1\}$ are covered in G₂. Therefore, since $h_1 \neq h_2$ and D is a 2-difference covering array, it follows that all 3-tuples (x, x + i, y) where $i \in \{1, ..., v\}$ and $x, y \in \{0, 1, ..., v - 1\}$ are covered in G₂.

If $f_1 = f_2 = f_3$ then $h_1 \neq h_2 \neq h_3$. All tuples of the form (x, x, x) are covered in G_1 . All 3-tuples of the form $(x + d_{y,h_1}, x + d_{y,h_2}, x + d_{y,h_3})$, for any $x \in \{0, ..., v - 1\}$ and $y \in \{1, ..., v - 1\}$ are covered in G_2 . Hence, for any $x, y \in \mathbb{F}_v$, all 3-tuples of the form $(x + y \times h_1, x + y \times h_2, x + y \times h_3)$ are covered in G_1 and G_2 . The remaining 3-tuples of the form $(x + y \times h_1 + z \times h_1^2, x + y \times h_2 + z \times h_2^2, x + y \times h_3 + z \times h_3^2)$, where $x, y \in \{0, ..., v - 1\}$ and $z \in \{1, ..., v - 1\}$, are covered in G_3 . Hence all 3-tuples are covered.

4 Strength four

In this section, we first establish general Roux-type constructions for strength four and then specialize them by restricting parameter values, and by employing specific ingredient arrays. 4.1 General constructions

Theorem 4.1 For $max(k, \ell) \ge 4$,

$$\mathsf{CAN}(4, k\ell, v) \le \mathsf{CAN}(4, k, v) + \mathsf{CAN}(4, \ell, v) + \mathsf{DCAN}(2, \ell, v)\mathsf{CAN}(3, k, v)$$
$$+ \mathsf{DCAN}(2, k, v)\mathsf{CAN}(3, \ell, v) + \mathsf{QCAN}(k, \ell, v).$$

Indeed when $k \ge 4$ and $\ell \ge 4$,

$$\begin{aligned} \mathsf{CAN}(4, k\ell, v) &\leq \mathsf{CAN}(4, k, v) + \mathsf{CAN}(4, \ell, v) + \mathsf{DCAN}(2, \ell, v)\mathsf{CODN}(3, k, v) \\ &+ \mathsf{DCAN}(2, k, v)\mathsf{CODN}(3, \ell, v) + \mathsf{QCAN}(k, \ell, v). \end{aligned}$$

Proof We prove the second statement, the first being a slight variation. Suppose that the following exist:

- $CA(N_4; 4, k, v) C_4$,
- $CA(R_4; 4, \ell, v) B_4$,
- $\mathsf{DCA}(S_1; 2, \ell, \nu) \mathsf{D}_1$,
- $COD(N_3; 3, k, v) C_3$,
- $\mathsf{DCA}(S_2; 2, k, v) \mathsf{D}_2,$
- $COD(R_3; 3, \ell, \nu) B_3$,
- $\mathsf{QCA}(M; k, \ell, v) \mathsf{G}_5.$

We produce a covering array $CA(N'; 4, k\ell, v)$ G where $N' = N_4 + R_4 + N_3S_1 + R_3S_2 + M$. G is formed by vertically juxtaposing arrays G_1 of size $N_4 \times k\ell$, G_2 of size $R_4 \times k\ell$, G_3 of size $N_3S_1 \times k\ell$, G_4 of size $R_3S_2 \times k\ell$ and G_5 of size $M \times k\ell$. We describe the construction of G_1, G_2, G_3 , and G_4 in turn. We index $k\ell$ columns by ordered pairs from $\{1, \ldots, k\} \times \{1, \ldots, \ell\}$.

- G₁: In row *r* and column (f, h) place the entry in cell (r, f) of C₄. Thus G₁ consists of ℓ copies of C₄ placed side by side.
- G₂: In row *r* and column (f, h) place the entry in cell (r, h) of B₄. Thus G₂ consists of *k* copies of the first column of B₄, then *k* copies of the second column, and so on.
- **G**₃: Index the N_3S_1 rows by ordered pairs from $\{1, \ldots, N_3\} \times \{1, \ldots, S_1\}$. In row (r, s) and column (f, h) place $c_{r,f} + d_{s,h}$, where $c_{r,f}$ is the entry in cell (r, f) of **C**₃ and $d_{s,h}$ is the entry in cell (s,h) of **D**₁.
- G₄: Index the S_2R_3 rows by ordered pairs from $\{1, \ldots, S_2\} \times \{1, \ldots, R_3\}$. In row (s, r) and column (f, h) place $b_{r,h} + d_{s,f}$, where $b_{r,h}$ is the entry in cell (r, h) of B₃ and $d_{s,f}$ is the entry in cell (s, f) of D₂.

We show that G is a 4-covering array. Consider four columns

$$(f_1, h_1), (f_2, h_2), (f_3, h_3), (f_4, h_4)$$

of G. If f_1, f_2, f_3, f_4 are all distinct, then these columns restricted to G_1 arise from four distinct columns of C_4 . Hence, all 4-tuples are covered. Similarly, if h_1, h_2, h_3, h_4 are all distinct, then these four columns restricted to G_2 arise from distinct columns of B_4 and hence all 4-tuples are covered.

Further, we treat the following cases:

• $f_1 = f_2 \neq f_3 \neq f_4 \neq f_2$ In this case $h_1 \neq h_2$. All 4-tuples (x, x, y, z) are covered in G_1 , for any $x, y, z \in \{0, \dots, v-1\}$. Now, suppose that $h_2 = h_3 = h_4$. Then G₃ covers all tuples of the form (x, x + i, y + i, z + i) except where x = y = z: i.e. (x, w, w, w). These are exactly the tuples covered in G₂.

Similarly, suppose that $h_1 = h_3 = h_4$. Then G₃ covers tuples of the form (x, x + i, y, z) except for (x, w, x, x). These are covered in G₂.

Suppose then that $h_1 = h_3$ and $h_2 = h_4$. G₃ covers tuples of the form (x, x+i, y, z+i) except for x = y = z: i.e. (x, w, x, w). G₂ covers precisely tuples of this form. The argument is nearly identical if $h_1 = h_4$ and $h_2 = h_3$.

Furthermore, suppose that $h_1 = h_3$, but $h_1 \neq h_2 \neq h_4 \neq h_1$. Then, G₃ covers tuples of the form (x, x + i, y, z + j) except for x = y = z: i.e. (x, w, x, u). Again, G₂ covers all tuples of this form. Without loss of generality, cases with three distinct *h* values and $f_1 = f_2$ are treated in this manner.

Finally, assume that h_1, h_2, h_3, h_4 are distinct. This case has already been discussed. Hence all 4-tuples are covered for all possible sub-cases.

•
$$f_1 = f_2 = f_3 \neq f_4$$

In this case $h_1 \neq h_2 \neq h_3 \neq h_1$. The case where h_1 , h_2 , h_3 and h_4 are all distinct is discussed above. Suppose that $h_3 = h_4$, then 4-tuples (x, y, z, z) for any $x, y, z \in \{0, ..., v - 1\}$ are covered in G₂. The 4-tuples (x, y, z, z + i), for any $i \in \{1, ..., v - 1\}$ and any $x, y, z \in \{0, ..., v - 1\}$, are covered in G₄, except where x = y = z: i.e. (x, x, x, w). However, all tuples of this form are covered in G₁. Hence all 4-tuples are covered.

• $f_1 = f_2 \neq f_3 = f_4$

In this case $h_1 \neq h_2$ and $h_3 \neq h_4$. Firstly, suppose that $h_2 = h_3$ but $h_1 \neq h_4$. Then 4-tuples (x, y, y, z) are covered in G₂ for any $x, y, z \in \{0, ..., v - 1\}$. The 4-tuples (x, y, y + i, z + i), for any $i, j \in \{1, ..., v - 1\}$ and for any $x, y, z \in \{0, ..., v - 1\}$, are covered in G₄ except where x = y = z: i.e. (x, x, w, w). These remaining tuples are covered in G₁. Hence all 4-tuples are covered.

Now suppose that $h_2 = h_3$ and $h_1 = h_4$. Fix a 4-tuple (x, y, z, t) where x, y, z and t are any symbols from $\{0, \ldots, v-1\}$. If $x - t \equiv y - z \pmod{v}$, the 4-tuple is covered in G₁, G₂, G₃ and G₄; by the definition of the QCA, the remaining 4-tuples are covered by G₅.

Lemma 4.2 $QCAN(k, \ell, v) \leq CODN(2, k, CAN(2, \ell, v)).$

Proof Suppose that a CA(*N*; 2, *l*, *v*) C and a COD(*R*; 2, *k*, *N*) B both exist. A QCA(*R*; *k*, *l*, *v*) G is produced by replacing the symbol *g* in B by the *g*th row of C for all $g \in \{0, ..., N - 1\}$. Columns of the resulting array are indexed by (a, b) where *b* indicates the column of B inflated, and *a* indexes the column of C within the row used in the inflation. Since C is a 2-covering array, it has a row *i* such that the entry in cell (i, f_1) is *x* and in cell (i, f_3) is *t*. C also contains a row *j* such that the entry in cell (j, f_1) is *y* and in the cell (j, f_3) is *z*. Furthermore, since B is a 2-COD on *N* symbols, it has a row *m* where the entry in cell (m, h_1) is the symbol *i* and in cell (m, h_2) is the symbol *j*. Thus, from the construction of G it follows that the tuple (x, y, z, t) with $x - t \neq y - z$ (mod *v*) occurs in the row *m* and the columns $(f_1, h_1), (f_1, h_2), (f_3, h_2)$ and (f_3, h_1) of G.

Corollary 4.3 For $k, \ell \geq 4$,

 $CAN(4, k\ell, v) \le CAN(4, k, v) + CAN(4, \ell, v) + DCAN(2, \ell, v)CODN(3, k, v)$ $+ DCAN(2, k, v)CODN(3, \ell, v) + CODN(2, k, CAN(2, \ell, v)).$ *Proof* This follows from Theorem 4.1 and Lemma 4.2.

Lemma 4.4 $\operatorname{QCAN}(k, \ell, v) \leq \lceil \log_2 \ell \rceil \operatorname{QCAN}(k, 2, v).$

Proof Suppose that a QCA($N; k, 2, \nu$) C exists with columns indexed by $\{1, ..., k\} \times \{0, 1\}$. The QCA(k, ℓ, ν) G is constructed as follows. We index $k\ell$ columns by $\{1, ..., k\} \times \{1, ..., \ell\}$. Construct a binary array A with $\lceil \log_2 \ell \rceil$ rows and ℓ distinct columns. For each row ($\rho_1, ..., \rho_\ell$) of A in turn, form an $N \times k\ell$ array by replacing (in this row) the symbol $\rho_i \in \{0, 1\}$ by the $N \times k$ subarray of C whose columns are indexed by $\{1, ..., k\} \times \{\rho_i\}$. Vertically juxtaposing the $\lceil \log_2 \ell \rceil$ arrays so obtained produces G.

Lemma 4.5 $QCAN(k, 2, v) \le CODN(2, k, v^2).$

Proof Let C be a COD(N; 2, k, v^2). Let ϕ be a one-to-one mapping from the symbols of C to $\{1, \ldots, v\} \times \{1, \ldots, v\}$. Construct two $N \times k$ arrays, E and F as follows. Let i be the entry in the cell (r, s) of C and $\phi(i) = (x, y)$. Then the entry in cell (r, s) of array E is x and the entry in cell (r, s) of array F is y. The QCA is produced by placing E and F side-by-side, indexing E by $\{1, \ldots, k\} \times \{1\}$ and F by $\{1, \ldots, k\} \times \{2\}$.

Corollary 4.6 For $k, \ell \geq 4$,

$$CAN(4, k\ell, v) \le CAN(4, k, v) + CAN(4, \ell, v) + DCAN(2, \ell, v)CODN(3, k, v) + DCAN(2, k, v)CODN(3, \ell, v) + \lceil \log_2 \ell \rceil CODN(2, k, v^2).$$

Proof This follows from Theorem 4.1 using Lemmas 4.4 and 4.5.

4.2 Specializations when $\ell = 2$

Hartman [16, 17] showed:

Theorem 4.7 $CAN(4, 2k, v) \le CAN(4, k, v) + (v - 1)CAN(3, k, v) + CAN(2, k, v^2).$

We derive a small improvement here.

Lemma 4.8 *For* $k \ge 4$,

$$\begin{aligned} \mathsf{CAN}(4,2k,v) &\leq \mathsf{CAN}(4,k,v) + (v-1)\mathsf{CAN}(3,k,v) \\ &+ \mathsf{CODN}(2,k,v)\mathsf{CODN}(2,v,v) + v\mathsf{CODN}(2,k,v) \end{aligned}$$

Proof Apply Theorem 4.1 with $\ell = 2$, using Lemma 4.5 and Theorem 2.5.

Corollary 4.9 For v a prime power and $k \ge 4$,

$$CAN(4, 2k, v) \le CAN(4, k, v) + (v - 1)CAN(3, k, v) + v^2CAN(2, k, v) - v^2$$

Proof Use CODN(2, v, v) $\leq v^2 - v$ from Bush's orthogonal array construction, removing the v constant rows. Hence CAN(4, 2k, v) \leq CAN(4, k, v) + (v - 1)CAN(3, k, v) + v^2 CODN(2, k, v).

In addition, without loss of generality every CA(N; 2, k, v) can have symbols renamed so that the resulting covering array has a constant row, whose deletion yields a COD(N - 1; 2, k, v).

4.3 Specializations when v = 2

We also provide a tripling specialization for binary arrays.

Theorem 4.10 $CAN(4, 3k, 2) \le CAN(4, k, 2) + 6DCAN(2, k, 2) + CAN(3, k, 2) + C$

Proof Suppose that the following exist:

- $CA(N_4; 4, k, 2) C_4$,
- $\mathsf{DCA}(S_2; 2, k, 2) \mathsf{D}_2,$
- $CA(N_3; 3, k, 2) C_3$,
- $CA(M_3; 3, k+1, 2) F_3$,
- $COD(N_2; 2, k, 2) C_2.$

Also, by removing the constant rows from Bush's orthogonal array, we can produce a

• COD(6; 3, 3, 2) B₃.

We produce a covering array CA(N'; 4, 3k, 2) G where $N' = N_4 + 6S_2 + N_3 + M_3 + 4N_2$. G is formed by vertically juxtaposing arrays G_1 of size $N_4 \times 3k$, G_4 of size $6S_2 \times 3k$, E_1 of size $N_3 \times 3k$, E_2 of size $M_3 \times 3k$, and K_1 through K_4 each of size $N_2 \times 3k$.

We describe the construction of each array in turn. We index 3k columns by ordered pairs from $\{0, \ldots, k-1\} \times \{0, 1, 2\}$.

The constructions of G_1 and G_4 are the same as those in Theorem 4.1. To produce the other ingredients, proceed as follows:

- E_1 : In row *r* and column (*f*, 0) and (*f*, 1) place the entry in cell (*r*, *f*) of C_3 . In row *r* and column (*f*, 2), place the bitwise complement of the entry in cell (*r*, *f*) of C_3 .
- E₂: Remove any column from F₃ to form a covering array of size $M_3 \times k$, F'₃. In row r and column (f, 0) place the entry in cell (r, f) of F'₃. In row r and column (f, 1) place the bitwise complement of the entry in cell (r, f) of F'₃. In row r and column (f, 2) place the rth element of the column removed from F₃.
- K₁: In row r and column (f, 0) and (f, 2) place the entry in cell (r, f) of C₂. In row r and column (f, 1), place a 0.
- K₂: In row r and column (f, 1) and (f, 2) place the entry in cell (r, f) of C₂. In row r and column (f, 0), place a 0.
- K₃: In row *r* and column (f, 0) and (f, 2) place the entry in cell (r, f) of C₂. In row *r* and column (f, 1), place a 1.
- K₄: In row *r* and column (f, 1) and (f, 2) place the entry in cell (r, f) of C₂. In row *r* and column (f, 0), place a 1.

We show that G is a 4-covering array. Consider four columns

$$(f_1, h_1), (f_2, h_2), (f_3, h_3), (f_4, h_4)$$

of G. If f_1, f_2, f_3, f_4 are all distinct, then these columns restricted to G₁ arise from four distinct columns of C₄. Hence, all 4-tuples are covered. When $f_1 = f_2 = f_3 = f_4$, the values h_1, h_2, h_3 and h_4 must all be distinct, but this cannot occur as the h's are restricted to {0, 1, 2}.

Further, we need to consider the following cases:

• $f_1 = f_2 \neq f_3 \neq f_4 \neq f_2$

In this case $h_1 \neq h_2$. Hence, the tuples (x, x, y, z) are covered in G₁. If no $h_i = 2$ then the tuples (x, x', y, z) for $x, y, z \in \{0, 1\}$ are covered in E₂. If h_1 or h_2 is 2, tuples (x, x', y, z) are covered in E₁.

Without loss of generality, the remaining cases have $h_1 = 0$, $h_2 = 1$, $h_3 = 2$. Assume that $h_4 \neq 2$. Then the tuples (x, x', y, z) are covered in E₂. Finally, assume that $h_4 = 2$. Then, the tuples (x, x', y, y) are covered in E₂, leaving us to cover tuples of the form (x, x', y, y'). G₄ covers tuples of the form (a+i, b+i, c, c') except for the case a = b = c, which is covered by G₁. Taking a + i = x, b + i = x', and c = y, and hence $a \neq b$, we cover the remaining tuples in G₄.

• $f_1 = f_2 = f_3 \neq f_4$

In this case $h_1 \neq h_2 \neq h_3 \neq h_1$. There are only three values for h_i , $i \in \{1, 2, 3, 4\}$; hence, without lost of generality, we suppose that $h_4 = h_1$.

The tuples (x, x, x, y) are covered in G_1 for any $x, y \in \{0, 1\}$. The 4-tuples (x, y, z, x'), for any $x, y, z \in \{0, 1\}$ except x = y = z are covered in G_4 .

This leaves six tuples: (0,0,1,0), (1,1,0,1), (0,1,0,0), (1,0,0,1), (0,1,1,0), and (1,0,1,1). We consider several cases for (h_1, h_2, h_3, h_4) . When in one of these cases, all tuples are covered, any permutation of these indices also covers all tuples.

If $h_1 = h_4 = 0$, $h_2 = 1$, and $h_3 = 2$, we cover tuples of the form (x, x, x', y) in E_1 , treating (0, 0, 1, 0) and (1, 1, 0, 1). We cover tuples of the form (x, x', z, y) in E_2 . This relies on the fact that F_3 can be split into two disjoint 2-covering arrays with k columns, one where the value in the column removed is 0 and one where the value in the column removed is 0.

If $h_1 = h_4 = 1$, $h_2 = 0$, and $h_3 = 2$, we cover tuples of the form (x, x, x', y) in E_1 , treating (0, 0, 1, 0) and (1, 1, 0, 1). We cover tuples of the form (x', x, z, y) in E_2 . This eliminates the remaining cases.

Finally, if $h_1 = h_4 = 2$, $h_2 = 0$ and $h_3 = 1$, we cover tuples of the form (x', x, x, y) in E_1 , treating (0, 1, 1, 0) and (1, 0, 0, 1). We cover tuples of the form (x, y, y', x) in E_2 , treating (1, 1, 0, 1), (1, 0, 1, 1), (0, 0, 1, 0), and (0, 1, 0, 0).

• $f_1 = f_2 \neq f_3 = f_4$

In this case, $h_1 \neq h_2$ and $h_3 \neq h_4$. First, suppose that $h_2 = h_3$ but $h_1 \neq h_4$. Then 4-tuples (x, x, y, y) are covered in G_1 . Tuples of the form (x, y, y', z') are covered in G_4 , except when x = y = z, i.e. (x, x, x', x'). However these are exactly what G_1 covers. This leaves the six tuples of the form (x, y, y, z) with $x \neq z$ or $x \neq y$. We again consider specific cases for (h_1, h_2, h_3, h_4) .

If $h_1 = 0$, $h_2 = h_3 = 1$, $h_4 = 2$, tuples of the form (x, x, y, y') are covered in E_1 , which effectively covers tuples of the form (x, x, x, x'). In E_2 , tuples of the form (x, x', y, z) are covered, which handles the remaining cases (x', x, x, z).

If $h_1 = 1$, $h_2 = h_3 = 0$, $h_4 = 2$, tuples of the form (x, x, y, y') are covered in E_1 , which effectively covers tuples of the form (x, x, x, x'). In E_2 , tuples of the form (x', x, y, z) are covered, which handles the remaining cases (x', x, x, z).

If $h_1 = 0$, $h_2 = h_3 = 2$, $h_4 = 1$, we cover tuples of the form (x, z, z, y) in E₂, which covers all required tuples.

Now suppose that $h_2 = h_3$ and $h_1 = h_4$. Tuples of the form (x, x, y, y) in G_1 and (x, y, y', x') are covered in G_4 . The remaining tuples are (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), and (1, 1, 1, 0).

If no $h_i = 2$, we cover (x, x', y, y') in E_2 , treating (0, 1, 1, 0) and (1, 0, 0, 1), leaving us with all tuples comprised with an odd number of 0's. We cover (x, 0, 0, x') and (0, x, x', 0) in K_1 and K_2 , and (x, 1, 1, x') and (1, x, x', 1) in K_3 and K_4 . These are all the required cases.

Finally, without loss of generality, assume that $h_1 = h_4 = 2$. Then $h_2 = h_3 \in \{0, 1\}$. We cover (x, x', y, y') in E_1 , again leaving us with the tuples having an odd number of 0's. We cover (x, y, z, x) in E_2 . Here we again split F_3 into two 2-covering halves. This leaves only (x, y, y, x'), which are covered in K_2 and K_4 if $h_2 = 0$ or K_1 and K_3 if $h_2 = 1$.

Since all tuples are covered in all sets of four columns, G is the required covering array. $\hfill \Box$

4.4 Specializations when $\ell = v = 3$

When $\ell = v = 3$ we have the following results:

Theorem 4.11

 $CAN(4, 3k, 3) \le CAN(4, k, 3) + 2CAN(3, k, 3) + 18DCAN(2, k, 3) + CODN(2, k, 9) + 18.$

Proof Suppose that the following exist:

- $CA(N_4; 4, k, 3) C_4$,
- $CA(N_3; 3, k, 3) C_3$,
- DCA(S; 2, k, 3) D,
- $CODN(N_2; 2, k, 9) C_2,$

Suppose that D' is the 2 × 3 array obtained by removing the first row from the (3,3;1)-difference matrix in Theorem 2.2. Then $d'_{i,j} = i \times j$ for i = 1, 2 and j = 0, 1, 2. The array D' is a DCA(2;2,3,3).

Let A be an OA(27; 3, 3, 3) constructed by using Bush's construction.

The columns of A are labelled with the elements of \mathbb{F}_3 and rows are labelled by 27 polynomials over \mathbb{F}_3 of degree at most 2. Then the entry in A in the column labelled γ_i and the row labelled by the polynomial with coefficients β_0 , β_1 and β_2 is $\beta_0 + \beta_1 \times \gamma_i + \beta_2 \times \gamma_i^2$.

Let A' be an OA(9;2,3,3) which is also a CA(9;2,3,3).

Let B be the sub-array of A containing the rows of A which are labelled by polynomials of degree 2 ($\beta_2 \neq 0$). Then B is a 18 × 3 array whose each column is labelled with the same element of \mathbb{F}_3 as its corresponding column in A. Denote the *i*th column of B by B_i, for i = 0, 1, 2.

We produce a covering array CA(N'; 4, 3k, 3) G where $N' = N_4 + 2N_3 + 18S + N_2 + 18$. G is formed by vertically juxtaposing arrays G₁ of size $N_4 \times 3k$, G₂ of size $2N_3 \times 3k$, G₃ of size $18S \times 3k$, G₄ of size $N_2 \times 3k$ and G₅ of size $18 \times 3k$.

We describe the construction of each array in turn. We index 3k columns by ordered pairs from $\{0, \ldots, k-1\} \times \{0, 1, 2\}$.

- G₁: In row *r* and column (f, h) place the entry in cell (r, f) of C₄. Thus G₁ consists of three copies of C₄ placed side by side.
- G₂: Index the 2N₃ rows of G₂ by ordered pairs from $\{1, ..., N_3\} \times \{1, 2\}$. In row (r, s) and column (f, h) place $c_{r,f} + d'_{s,h}$, where $c_{r,f}$ is the entry in cell (r, f) of C₃ and $d'_{s,h}$ is the entry in cell (s, h) of D'.

- G₃: Index the 18S rows of G₃ by ordered pairs from $\{1, \ldots, S\} \times \{1, \ldots, 18\}$. In row (s, r) and column (f, h) place $b_{r,h} + d_{s,f}$, where $b_{r,h}$ is the entry in cell (r, h) of B and $d_{s,f}$ is the entry in cell (s, f) of D.
- G₄: Define a mapping ϕ that maps the symbol *i* in C₂ to the 3-tuple in the *i*th row of A', for $i \in \{0, ..., 8\}$. Suppose that *i* is the symbol in cell (r, f) of C₂ and $\phi(i) = (x, y, z)$, for some $x, y, z \in \{0, 1, 2\}$. Then in row *r* and column (f, 0) place the symbol *x*; in row *r* and column (f, 1) place the symbol *y*; and in row *r* and column (f, 2) place the symbol *z*.
- G₅: In row *r* and column (f, h) place the entry in cell (r, h) of B. Thus G₅ consists of *k* copies of B₀, followed by *k* copies of B₁ and then *k* copies of B₂.

We show that G is a 4-covering array. Consider four columns

$$(f_1, h_1), (f_2, h_2), (f_3, h_3), (f_4, h_4)$$

of G. If f_1, f_2, f_3, f_4 are all distinct, then these columns restricted to G₁ arise from four distinct columns of C₄. Hence, all 4-tuples are covered. It cannot happen that $f_1 = f_2 = f_3 = f_4$ since then h_1, h_2, h_3 and h_4 are all distinct.

Further, we consider the following cases:

- $f_1 = f_2 \neq f_3 \neq f_4 \neq f_2$ In this case $h_1 \neq h_2$. Hence, the tuples (x, x, y, z) are covered in G_1 and the tuples (x, x + i, y, z) are covered in G_2 for any $x, y, z \in \{0, 1, 2\}$ and for any $i \in \{1, 2\}$.
- f₁ = f₂ = f₃ ≠ f₄
 In this case h₁ ≠ h₂ ≠ h₃ ≠ h₁. There are only three values for h_i, i = 1,2,3,4, hence, without loss of generality, we suppose that h₄ = h₁.
 The tuples (x,x,x,y) are covered in G₁ for any x, y ∈ {0,1,2}. The tuples (x + 1)

The tuples (x, x, x, y) are covered in G_1 for any $x, y \in \{0, 1, 2\}$. The tuples $(x + d'_{y,h_1}, x + d'_{y,h_2}, x + d'_{y,h_3}, t + d'_{y,h_1})$ are covered in G_2 for any $x, t \in \{0, 1, 2\}$ and any $y \in \{1, 2\}$. Thus, all tuples $(x + yh_1, x + yh_2, x + yh_3, t)$ are covered in G_1 and in G_2 for any $x, y, t \in \{0, 1, 2\}$.

Further, the tuples $(x + yh_1 + zh_1^2, x + yh_2 + zh_2^2, x + yh_3 + zh_3^2, x + yh_1 + zh_1^2 + i)$, for any $x, y \in \{0, 1, 2\}$ and for $i, z \in \{1, 2\}$, are covered in **G**₃.

Finally, the tuples $(x + yh_1 + zh_1^2, x + yh_2 + zh_2^2, x + yh_3 + zh_3^2, x + yh_1 + zh_1^2)$, where $x, y \in \{0, 1, 2\}$ and $z \in \{1, 2\}$, are covered in G₅. Hence, all 4-tuples are covered.

• $f_1 = f_2 \neq f_3 = f_4$ In this case, $h_1 \neq h_2$ and $h_3 \neq h_4$. First, suppose that $h_2 = h_3$ but $h_1 \neq h_4$.

Fix any tuple (x, y, z, t) where $y \neq z$. Since A' is a 2-covering array, it has a row (x, y, m) for some $m \in \{0, 1, 2\}$, let it be *i*th row. A' also has a row (s, z, t) for some $s \in \{0, 1, 2\}$, let it be *j*th row. Since $y \neq z$ it follows that $i \neq j$. So $\phi(i) = (x, y, m)$ for the fixed x, y and for some m, and $\phi(j) = (s, z, t)$ for the fixed z, t and for some s. Since C₂ is a 2-COD and since $i \neq j$, C₂ has a row r such that in cell (r, f_1) is the symbol *i* and in cell (r, f_3) is the symbol *j*. Thus, the symbol x is in cell $(r, (f_1, h_1))$ of G₄, the symbol y is in cell $(r, (f_1, h_2))$ of G₄. Hence, the fixed tuple (x, y, z, t) where $y \neq z$ is covered in G₄.

Further, for $x \in \{0, 1, 2\}$, the tuple (x, x, x, x) is covered in G₁. The tuples $(x+yh_1, x+yh_2, x+yh_2, x+yh_4)$ are covered in G₂, for any $x \in \{0, 1, 2\}$ and any $y \in \{1, 2\}$. Tuples of the form $(x + yh_1 + zh_1^2, x + yh_2 + zh_2^2, x + yh_2 + zh_2^2, x + yh_4 + zh_4^2)$ are covered in G₅, for any $x, y \in \{0, 1, 2\}$ and any $z \in \{1, 2\}$. Hence all 4-tuples are covered.

Now suppose that $h_2 = h_3$ and $h_1 = h_4$.

Fix a tuple (x, y, z, t) such that if x = t then $y \neq z$, for any $x, y, z, t \in \{0, 1, 2\}$. Since A' is a 2-covering array, it has a row (x, y, m) for some $m \in \{0, 1, 2\}$, let it be *i*th row. A' also has a row (t, z, s) for some $s \in \{0, 1, 2\}$, let it be *j*th row. Since $x \neq t$ or $y \neq z$ it follow that $i \neq j$. So $\phi(i) = (x, y, m)$ for the fixed x, y and for some m, and $\phi(j) = (t, z, s)$ for the fixed z, t and for some s. Since C₂ is a 2-COD and $i \neq j$, C₂ has a row r such that in cell (r, f_1) is the symbol i and in cell (r, f_3) is the symbol j. Thus, the symbol x is in cell $(r, (f_1, h_1))$ of G₄, the symbol z is in the cell $(r, (f_3, h_2))$ of G₄, and the symbol t is in the cell $(r, (f_3, h_1))$ of G₄. Hence, the fixed tuple (x, y, z, t), where if x = t then $y \neq z$, is covered.

The tuples (x, x, x, x) are covered in G_1 for any $x \in \{0, 1, 2\}$. The tuples $(x + y \times h_1, x + y \times h_2, x + y \times h_2, x + y \times h_1)$ are covered in G_2 for any $x \in \{0, 1, 2\}$ and any $y \in \{1, 2\}$. So all tuples of the form (x, y, y, x) are covered in G_1 and in G_2 .

Corollary 4.12

$$CAN(4, 3k, 3) \le CAN(4, k, 3) + 2CAN(3, k, 3)$$

+18DCAN(2, k, 3) + CAN(2, k, 9) - 1 + 18.

Proof Without loss of generality every CA(N; 2, k, 9) can have symbols renamed so that the resulting covering array has a constant row, whose deletion yields a COD(N - 1; 2, k, 9).

4.5 Specializations when $\ell = v > 3$

Theorem 4.13 For any prime power $v \ge 4$,

$$\begin{aligned} \mathsf{CAN}(4, vk, v) &\leq \mathsf{CAN}(4, k, v) + (v - 1)\mathsf{CAN}(3, k, v) \\ &+ (v^3 - v^2)\mathsf{DCAN}(2, k, v) + \mathsf{CODN}(2, k, v^2) + v^4 - v^2 \end{aligned}$$

Proof Suppose that the following exist:

- $CA(N_4; 4, k, v) C_4$,
- $CA(N_3; 3, k, v) C_3$,
- $\mathsf{DCA}(S; 2, k, v) \mathsf{D},$
- $COD(N_2; 2, k, v^2) C_2,$

Suppose that D' is a $(v - 1) \times v$ array obtained by removing the first row from the (v, v; 1)-difference matrix in Theorem 2.2. Then $d'_{i,j} = i \times j$ for i = 1, ..., v - 1 and j = 0, ..., v - 1. The array D' is a DCA(v - 1; 2, v, v).

Let $A^{(3)}$ be an $OA(v^3; 3, v, v)$, constructed by using Bush's construction (see the proof of Theorem 3.1 in [18]). The columns of $A^{(3)}$ are labelled with the elements of \mathbb{F}_v and rows are labelled by v^3 polynomials over \mathbb{F}_v of degree at most 2. Then, in $A^{(3)}$, the entry in the column γ_i and the row labelled by the polynomial with coefficients β_0 , β_1 and β_2 is $\beta_0 + \beta_1 \times \gamma_i + \beta_2 \times \gamma_i^2$.

Let B⁽³⁾ be the sub-array of A⁽³⁾ containing the rows of A⁽³⁾ which are labelled by polynomials of degree exactly 2 ($\beta_2 \neq 0$). Then B⁽³⁾ is a ($v^3 - v^2$) × v array. Label each column of B⁽³⁾ with the same element of \mathbb{F}_v as its corresponding column in A. Denote the *i*th column of B⁽³⁾ by B⁽³⁾_i, for i = 0, ..., v - 1.

Let $A^{(4)}$ be an $OA(v^4; 4, v, v)$ constructed by using Bush's construction. The columns of $A^{(4)}$ are labelled with the elements of \mathbb{F}_v and rows are labelled by v^4 polynomials over \mathbb{F}_v of degree at most 3. Then, in $A^{(4)}$, the entry in the column γ_i and the row labelled by the polynomial with coefficients $\beta_0, \beta_1, \beta_2$ and β_3 is $\beta_0 + \beta_1 \times \gamma_i + \beta_2 \times \gamma_i^2 + \beta_3 \times \gamma_i^3$.

Let $B^{(4)}$ be the sub-array of $A^{(4)}$ that contains the rows of $A^{(4)}$ which are labelled by polynomials of degree 2 or $3(\beta_2 \neq 0 \text{ or } \beta_3 \neq 0)$. Then $B^{(4)}$ is a $(v^4 - v^2) \times v$ array whose each column is labelled with the same element of \mathbb{F}_v as its corresponding column in A. Denote the *i*th column of $B^{(4)}$ by $B_i^{(4)}$, for $i = 0, \dots, v - 1$.

Let $A^{(2)}$ be an $OA(v^2; 2, v, v)$ which is also a $CA(v^2; 2, v, v)$. Such an array exists by Theorem 2.1.

We produce a covering array CA(N'; 4, vk, v) G where $N' = N_4 + (v-1)N_3 + (v^3 - v^2)S + N_2 + v^4 - v^2$. G is formed by vertically juxtaposing arrays G_1 of size $N_4 \times vk$, G_2 of size $(v-1)N_3 \times vk$, G_3 of size $(v^3 - v^2)S \times vk$, G_4 of size $N_2 \times vk$ and G_5 of size $(v^4 - v^2) \times vk$.

We describe the construction of each array in turn. We index vk columns by ordered pairs from $\{0, \ldots, k-1\} \times \{0, \ldots, v-1\}$.

- G₁: In row r and column (f, h) place the entry in cell (r, f) of C₄. Thus G₁ consists of v copies of C₄ placed side by side.
- G₂: Index the $(v 1)N_3$ rows by ordered pairs from $\{1, ..., N_3\} \times \{1, ..., v 1\}$. In row (r, s) and column (f, h) place $c_{r,f} + d'_{s,h}$, where $c_{r,f}$ is the entry in cell (r, f) of C₃ and $d'_{s,h}$ is the entry in cell (s, h) of D'.
- G₃: Index the $(v^3 v^2)S$ rows by ordered pairs from $\{1, \ldots, S\} \times \{1, \ldots, (v^3 v^2)\}$. In row (s, r) and column (f, h) place $b_{r,h} + d_{s,f}$, where $b_{r,h}$ is the entry in cell (r, h) of B⁽³⁾ and $d_{s,f}$ is the entry in cell (s, f) of D.
- G₄: Let ϕ be a mapping that maps the symbol *i* of C₂ to the *v*-tuple on the *i*th row of A⁽²⁾, for any $i = \{0, ..., v^2 1\}$. Let *i* be the symbol in cell (r, f) in C₂. Suppose that $\phi(i) = (x_0, x_1, ..., x_{v-1})$ for some $x_0, x_1, ..., x_{v-1} \in \mathbb{F}_v$. Then, in row *r* and column (f, m) place the symbol x_m , for m = 0, ..., v 1.
- G₅: In row *r* and column (f, h) place the entry in cell (r, h) of B⁽⁴⁾. Thus G₅ consists of *k* copies of the first column of B⁽⁴⁾, followed by *k* copies of the second column of B⁽⁴⁾, and so on.

We show that G is a 4-covering array. Consider four columns

$$(f_1, h_1), (f_2, h_2), (f_3, h_3), (f_4, h_4)$$

of G. If f_1, f_2, f_3, f_4 are all distinct, then these columns restricted to G₁ arise from four distinct columns of C₄. Hence, all 4-tuples are covered.

Further, we consider the following cases:

• $f_1 = f_2 \neq f_3 \neq f_4 \neq f_2$

All 4-tuples (x, x, y, z) are covered in G₁, for any $x, y, z \in \{0, ..., v-1\}$. All 4-tuples (x, x + i, y, z), for any $i \in \{1, ..., v-1\}$ and any $x, y, z \in \{0, ..., v-1\}$, are covered in G₂. Hence all 4-tuples are covered.

• $f_1 = f_2 = f_3 \neq f_4$ In this case $h_1 \neq h_2 \neq h_3 \neq h_1$. The case where h_1, h_2, h_3 and h_4 are all distinct is discussed separately. Now suppose that $h_4 = h_1$. The tuples (x, x, x, y), for any $x, y \in \{0, ..., v - 1\}$, are covered in G₁. The tuples $(x + d'_{y,h_1}, x + d'_{y,h_2}, x + d'_{y,h_3}, t + d'_{y,h_1})$, for any $x, t \in \{0, ..., v - 1\}$ and for $y \in \{1, ..., v - 1\}$, are covered in G₂.

So all the tuples $(x + yh_1, x + yh_2, x + yh_3, t)$, for any $x, y, t \in \{0, \dots, v - 1\}$, are covered in G_1 and in G_2 .

The tuples $(x + yh_1 + zh_1^2, x + yh_2 + zh_2^2, x + yh_3 + zh_3^2, x + yh_1 + zh_1^2 + i)$, where $i, z \in \{1, ..., v - 1\}$ and $x, y \in \{0, ..., v - 1\}$, are covered in G₃. Finally, the tuples $(x + yh_1 + zh_1^2 + th_1^3, x + yh_2 + zh_2^2 + th_3^2, x + yh_3 + zh_3^2 + th_3^3, x + yh_1 + zh_1^2 + th_1^3)$, where if z = 0 then $t \neq 0$ for any $x, y, z, t \in \{0, ..., v - 1\}$, is covered in G₅. Hence, all 4-tuples are covered.

• $f_1 = f_2 \neq f_3 = f_4$ and $h_2 = h_3$ but $h_1 \neq h_4$. In this case $h_1 \neq h_2$ and $h_3 \neq h_4$.

Fix any tuple (x, y, z, t) where $y \neq z$. Since $A^{(2)}$ is a 2-covering array, it has row with the tuple $(m_0, \ldots, m_{\nu-1})$, where $m_{h_1} = x$ and $m_{h_2} = y$, let it be *i*th row of $A^{(2)}$. $A^{(2)}$ also has a row with the tuple $(m'_0, \ldots, m'_{\nu-1})$, where $m'_{h_2} = z$ and $m'_{h_4} = t$, let it be row *j*th row of $A^{(2)}$. Since $y \neq z$ it follows that $i \neq j$. So $\phi(i) = (m_0, \ldots, m_{\nu-1})$ and $\phi(j) = (m'_0, \ldots, m'_{\nu-1})$. Since C_2 is a 2-COD and $i \neq j$, C_2 has a row *r* such that in cell (r, f_1) is the symbol *i* and in cell (r, f_3) is the symbol *j*. Thus, in G_4 , the symbol *x* is in cell $(r, (f_1, h_1))$, the symbol *y* is in cell $(r, (f_1, h_2))$, the symbol *z* is in cell $(r, (f_3, h_2))$ and the symbol *t* is in cell $(r, (f_3, h_4))$. Hence, the fixed tuple (x, y, z, t) is covered when $y \neq z$.

Further, the tuple (x, x, x, x), for any $x \in \{0, \dots, v-1\}$, is covered in G_1 . The tuple $(x+yh_1, x+yh_2, x+yh_2, x+yh_4)$, for any $x \in \{0, \dots, v-1\}$ and any $y \in \{1, \dots, v-1\}$, is covered in G_2 .

Finally, the tuples $(x + yh_1 + zh_1^2 + th_1^3, x + yh_2 + zh_2^2 + th_2^3, x + yh_2 + zh_2^2 + th_2^3, x + yh_4 + zh_4^2 + th_4^3)$, such that if z = 0 then $t \neq 0$, for any $x, y, z, t \in \{0, \dots, v-1\}$, are covered in G_5 .

• $f_1 = f_2 \neq f_3 = f_4, h_2 = h_3$ and $h_1 = h_4$.

Fix any tuple (x, y, z, t) such that if x = t then $y \neq z$. Since $A^{(2)}$ is a 2-covering array, it has row with the tuple (m_0, \ldots, m_{v-1}) , where $m_{h_1} = x$ and $m_{h_2} = y$, let it be *i*th row of $A^{(2)}$. $A^{(2)}$ also has a row with the tuple (m'_0, \ldots, m'_{v-1}) , where $m'_{h_1} = t$ and $m'_{h_2} = z$, let it be *j*th row $A^{(2)}$. Since either $x \neq t$ or $y \neq z$ it follows that $i \neq j$. Now $\phi(i) = (m_0, \ldots, m_{v-1})$ and $\phi(j) = (m'_0, \ldots, m'_{v-1})$.

Since C₂ is a 2-COD and $i \neq j$, it has a row *r* such that in cell (r, f_1) is the symbol *i* and in cell (r, f_3) is the symbol *j*. Thus, in G₄, the symbol *x* is in cell $(r, (f_1, h_1))$ the symbol *y* is in cell $(r, (f_1, h_2))$ the symbol *z* is in the cell $(r, (f_3, h_2))$ and the symbol *t* is in the cell $(r, (f_3, h_1))$. Hence, any fixed tuple (x, y, z, t), such that if x = t then $y \neq z$, for any $x, y, z, t \in \{0, \dots, v - 1\}$, is covered in G₄.

Further, the tuples of the form (x, x, x, x) are covered in G₁. The tuples of the form $(x + yh_1, x + yh_2, x + yh_2, x + yh_1)$ are covered in G₂ for $x \in \{0, ..., v - 1\}$ and $y \in \{1, ..., v - 1\}$.

These are all the tuples of the form (x, y, y, x) for any $x, y \in \{0, ..., v - 1\}$. Hence all 4-tuples are covered.

• In the remaining cases which are not discussed above h_1 , h_2 , h_3 and h_4 are all distinct.

The tuple (x, x, x, x) is covered in G_1 for any $x \in \{0, \dots, v-1\}$. The tuple

 $(x + yh_1, x + yh_2, x + yh_3, x + yh_4)$ is covered in G₂ for any $x \in \{0, ..., v - 1\}$ and any $y \in \{1, ..., v - 1\}$. Finally, the tuple $(x + yh_1 + zh_1^2 + th_1^3, x + yh_2 + zh_2^2 + th_2^3, x + yh_3 + zh_3^2 + th_3^3, x + yh_4 + zh_4^2 + th_4^3)$ such that if z = 0 then $t \neq 0$, for any $x, y, z, t \in \{0, ..., v - 1\}$, is covered in G₅.

Corollary 4.14 *For any prime power* $v \ge 4$,

$$CAN(4, vk, v) \le CAN(4, k, v) + (v - 1)CAN(3, k, v) + (v^3 - v^2)DCAN(2, k, v) + CAN(2, k, v^2) - 1 + v^4 - v^2.$$

Proof Without loss of generality every $CA(N; 2, k, v^2)$ can have symbols renamed so that the resulting covering array has a constant row, whose deletion yields a COD $(N - 1; 2, k, v^2)$.

Corollary 4.15 *For any prime power* $v \ge 4$ *,*

$$\begin{aligned} \mathsf{CAN}(4, vk, v) &\leq \mathsf{CAN}(4, k, v) + (v - 1)\mathsf{CAN}(3, k, v) \\ &+ (v^3 - v^2)\mathsf{DCAN}(2, k, v) + (v^2 + v)\mathsf{CAN}(2, k, v) - 1 + v^4 - 2v^2. \end{aligned}$$

Proof Apply Corollary 2.4 to bound $CAN(2, k, v^2)$.

5 Numerical consequences

To assess the effectiveness of the recursions developed, it is necessary to determine their impact on our knowledge of covering array numbers. We have outlined computational methods in the introduction; in preparation for a comparison we therefore

3-CAs with 2 symbols 80 10^n 12^y 4 511 12 15^t 16^{y} 17^y 120 1416, e^{poo}o^{epo}oe^o 20 18^{ℓ} 22 19^{ℓ} 22^{ℓ} 24100 $32 \ 24^{\ell}$ 28 23^{ℓ} 40 25^{ℓ} 27^{ℓ} $48 \ 30^{\ell}$ 31^{ℓ} 445680 32^{ℓ} 70 33^{ℓ} 34^{ℓ} 6480 Size 60 36^{ℓ} 39^{ℓ} 40^{ℓ} 88 96 112 42^ℓ 41^{ℓ} 140 44^{ℓ} 12816040 46^{ℓ} 224176192 49^{ℓ} 50^{ℓ} 20 252 51^{ℓ} 256 52^{ℓ} 280 53^{ℓ} 352320 55^{ℓ} 57^{ℓ} 384 60^{ℓ} 0 ź Ś 4 1 62^{ℓ} 448 61^{ℓ} 504512 64^{ℓ} Log(Number of Factors) 560 65^{ℓ} 67^{ℓ} 72^{ℓ} 73^{ℓ} 640 704 69^{ℓ} 768 896 924 74^{ℓ} 75^{ℓ} 77^{ℓ} 78^{ℓ} 80^{ℓ} 82^{ℓ} 85^{ℓ} 1008 1024 112012801408 1536 86^{ℓ} 87^{ℓ} 91^{ℓ} 17921848 2016 89^{ℓ} 20482240 92^{ℓ} 94^{ℓ} 2560 96^{ℓ} 99^{ℓ} 101^{ℓ} 102^{ℓ} $4032 \quad 104^{\ell}$ 28163072 3432 100^{ℓ} 3696 3584 107^{ℓ} 106^{ℓ} 109^{ℓ} 114^{ℓ} 40964480 51205632 111^{ℓ} 6864 115^{ℓ} 6144 118^{ℓ} 122^{ℓ} 7168 117^{ℓ} 73928064 120^{ℓ} 8192 8960 123^{ℓ} 10000 125^{ℓ}

Table 1 Bounds for t = 3, v = 2

introduce related recursive methods that do not (at present) fall into the "Roux-type" framework.

The *Turán number* T(t, n) is the largest number of edges in a *t*-vertex simple graph having no (n + 1)-clique. Turán [31] showed that a graph with the T(t, n) edges is constructed by setting $a = \lfloor t/n \rfloor$ and b = t - na, and forming a complete multipartite graph with *b* classes of size a + 1 and n - b classes of size *a*. Using these, Hartman generalizes the constructions in [5, 6, 29].

Theorem 5.1 [16] *If a* CA(N;t,k,v) and a CA(k^2 ;2,T(t,v) + 1,k) both exist, then a CA($N \cdot (T(t,v) + 1)$;t, k^2 ,v) exists.

Table 2 Bounds for t = 3, v = 3

4	2	7°	6	33^n	7	40^{f}		L	3-0	CAs with	n 3 symb	ols	
8	4	5^{ℓ}	9	50^s	10	51^v		-					/
12	5	7^{ℓ}	13	62^{s}	14	64^{ℓ}	400)-]					and the second s
15	6	8^s	16	69^{s}	17	73^s		-					Same and the second
18	7	4^s	22	75^v	23	82^s	300)-]				and the second sec	
25	8	5^s	27	87^{s}	29	91^{s}	ize					and a start of the	
30	9	3^s	32	95^{s}	34	98^s	് 200)-]			10 contractor		
37	9	9^v	38	102^{s}	39 3	104^{s}				ء	State State		
40	$40 105^{\ell} 41$		41	106^{s}	42	107^{s}	100)-]		CODDING STOCK			
43	$13 108^s 44$		44	109^{s}	46	116^{ℓ}		-	A O BOOG BOOG	6 00			
48	$8 117^m 51$		121^{m}	54 1	22^{m}	C	+	· · · ·					
60	$50 \ 123^m \ 66 \ 127$		127^{m}	69 1	34^{m}				ı(Numb	∠ er of Fac	ა tors)		
	72	13	37^{ℓ}	75	139^m	81	141^{m}	87	145^{m}	90	147^{m}	96	151^m
	102	15^{2}	4^m	108	155^m	111	157^{m}	114	160^m	117	162^m	120	163^m
	123	16^{-1}	4^m	126	165^m	129	166^m	132	169^{m}	142	171^v	144	177^m
	160	18	30ℓ	162	182^m	180	183^m	198	187^m	207	194^m	216	197^m
	222	199	9^m	225	203^m	243	205^m	261	209^m	270	211^m	282	215^m
	288	21	7^m	306	220^m	324	221^m	- 333	223^m	342	226^m	351	228^m
	360	229	9^m	369	230^m	378	231^m	387	232^m	396	235^m	402	237^m
	426	239	9^m	440	240^{ℓ}	460	247^{ℓ}	480	248^{m}	500	250^{ℓ}	522	251^m
	540	25	52^{ℓ}	582	257^m	594	259^m	621	266^m	648	269^m	666	271^m
	675	275	5^m	729	277^m	783	281^m	810	283^m	846	287^{m}	864	289^m
	918	292	2^m	972	293^m	999	295^m	1026	298^m	1053	300^m	1080	301^m
1	107	302	2^m	1134	303^m	1161	304^m	1182	307^m	1188	311^m	1206	313^m
1	278	313	5^m	1320	316^m	1380	323^m	1422	324^m	1440	326^m	1500	328^m
1	566	329	9^m	1620	330^m	1746	335^m	1782	337^m	1863	346^m	1944	349^m
1	998	35	1^m	2025	355^m	2142	357^m	2187	359^m	2349	363^m	2430	365^m
2	538	369	9^m	2562	371^m	2592	373^m	2754	376^m	2916	377^m	2997	379^m
3	078	382	2^m	3159	384^m	3240	385^m	3321	386^m	3402	387^m	3483	388^m
3	546	393	1^m	3564	395^m	3618	397^m	3834	399^m	3960	400^m	4140	407^m
4	266	408	8^m	4320	410^m	4422	412^m	4500	416^m	4698	417^m	4860	418^m
5	238	423	3^m	5346	425^m	5388	434^m	5589	436^m	5832	439^m	5994	441^m
6	075	44!	5^m	6426	447^m	6561	449^m	7047	453^m	7092	455^m	7290	457^m
7	326	46	50^{ℓ}	7614	461^m	7686	463^m	7776	465^m	7920	466^{ℓ}	8118	467^{ℓ}
8	316	46	58^{ℓ}	8748	469^m	8991	471^{m}	9090	474^m	9234	475^{ℓ}	9477	477^{ℓ}
9	720	47	78^{ℓ}	9963	479^{ℓ}	10000	480^{ℓ}						

Perfect hash families are well studied combinatorial objects. A *t-perfect hash family* \mathcal{H} , denoted PHF(n; k, q, t), is a family of *n* functions $h: A \mapsto B$, where $k = |A| \ge |B| = q$, such that for any subset $X \subseteq A$ with |X| = t, there is at least one function $h \in \mathcal{H}$ that is injective on X. Thus a PHF(n; k, q, t) can be viewed as an $n \times k$ -array \mathcal{H} with entries from a set of q symbols such that for any set of t columns there is at least one row having distinct entries in this set of columns.

Theorem 5.2 (see [3, 22]) If a PHF(s; k, m, t) and a CA(N; t, m, v) both exist then a CA(sN; t, k, v) exists.

Table 3 Bounds for t = 3, v = 4

Table 4 Bounds for t = 3, v = 5

1250	1145	1320	1100	1405	1182	1410	1180°	1440	1190	1900	1194°
1704	1210^{ℓ}	1848	1218^{ℓ}	1992	1226^{ℓ}	2160	1234^{ℓ}	2280	1242^{ℓ}	2375	1269^m
2425	1278^m	2625	1282^m	2775	1286^m	2880	1290^{m}	3000	1325^m	3456	1335^{ℓ}
3840	1370^{ℓ}	4000	1405^{m}	4200	1410^{m}	4920	1426^{ℓ}	5125	1461^{m}	5760	1474^m
6000	1493^m	6125	1597^m	6250	1601^m	6336	1603^{ℓ}	6744	1619^{ℓ}	6912	1635^{ℓ}
7025	1638^m	7080	1654^m	7175	1658^m	7320	1662^{ℓ}	7800	1666^m	8225	1682^m
8280	1686^{ℓ}	8520	1690^m	9120	1698^{ℓ}	9225	1702^{m}	9240	1706^m	9960	1714^m
10000	1722^m										

Table 5 Bounds for t = 3, v = 6

	4	216°	^o 6 260°		8	34	2+	4000		3-CAs	with 6 syn	nbols			
	9	423^{s}	1	.0 4	455^{ℓ}	12	2 46	5^{ℓ}	4000	-				, and the second s	₽¢ ⁰
	13	546^{s}	1	.6 8	552^{ℓ}	17	63	8^{s}						ŗ	
	18	653^{ℓ}	1	.9 (377 ^s	32	2 67	8↓	3000	-					
;	36	814^{ℓ}	4	12 8	48^{m}	48	8 89	6^{ℓ}		1				₂₀ 40	
Ę	56	930^{\downarrow}	8	81 10	014^{\downarrow}	84	1197	-m	. [©] 2000	-					
9	96	1286^{ℓ}	10	0 13	325^{ℓ}	112	2 133	0^{ℓ}	တ	-			,		
1!	50	1350^{\downarrow}	16	$50 - 1_{-}$	444^{ℓ}	162	2 145	4^{ℓ}	4000	-					
19	92	1484^{ℓ}	22	24 15	518^{\downarrow}	256	6 160	81	1000	-	as °	°			
29	94 :	1688^{m}	33	3 6 17	36^{m}	392	2 177	0↓] 。、	, o ^{on o}				
44	41	1854^{\downarrow}	44	18 18	390↓	474	l 189	2^{ℓ}	0	+ · · · ·	1	2			Ā
48	$180 1904^{\ell} 553$		53 19	926↓	560) 193	8↓			Loa(Nu	mber of Fa	actors)		-	
													,		
Γ	567	7 196	2^{\downarrow}	588	214	5^m	609	2234^{m}	648	2238^{ℓ}	672	2270^{m}	693	2309^{m}	1
	700) 2321	m	721	234	4^m	763	2350^{m}	784	2360^{ℓ}	810	2384^{ℓ}	833	2394^{\downarrow}	
	858	3 239	6^{ℓ}	889	24	06↓	900	2408^{ℓ}	945	2418^{\downarrow}	1001	2430^{\downarrow}	1050	2442^{\downarrow}	
	1106	5 252	6^{ℓ}	1120	253	6^m	1152	2542^{ℓ}	1200	2574^{ℓ}	1344	2576^m	1568	2610^{\downarrow}	
	1792	2 2700	m	2058	278	30^m	2352	2828^m	2744	2862^{\downarrow}	3087	2946^{\downarrow}	3136	2982^{\downarrow}	
	3318	3 2984	m	3360	299	6^m	3479	3018^{\downarrow}	3528	3054^{\downarrow}	3871	3090^{\downarrow}	3920	3102^{\downarrow}	
	3969) 312	6^{\downarrow}	4116	330	9^{m}	4263	3398^m	4361	3402^{m}	4480	3414^m	4536	3438^{m}	
	4704	1 3470	m	4802	350	9^m	4851	3545^{m}	4900	3557^m	5047	3580^m	5341	3586^m	
	5467	7 3596	m	5488	360	8^{m}	5600	3632^{m}	5670	3650^m	5684	3660^{\downarrow}	5831	3666^{\downarrow}	
	6006	5 3668	m	6020	36	78↓	6174	3690^{\downarrow}	6223	3702^{\downarrow}	6300	3704^m	6566	3714^{\downarrow}	
	6615	5 372	0↓	7007	37	38^{\downarrow}	7350	3762^{\downarrow}	7448	3846^m	7742	3858^m	7840	3868^m	
	7889	3874	m	8192	38	82^{ℓ}	8400	3918^m	9408	3920^m	10000	3954^{\downarrow}			

Table 6 Bounds for t = 3, v = 7

 $7350 \ 3763^m$

8192

 3885^{ℓ}

 $8400 \ 3920^m$

 $10000 \ 3955^m$

 512^{o} 960^ℓ 1016^{v} 1018 40 3-CAs with 8 symbols $72 \ 1408^m$ $80 \ 1506^m$ 1520^{v} 915000 $96 \ 2003^m$ 200 2024^{v} 320 2304^{m} 2424^{ℓ} 2620^{ℓ} 2696^{m} 360 4005764000 $640 \ 2794^m$ 2857^{m} 648720 2906^{m} $856 \ 3459^m$ $728 \ 2920^m$ 819 3376^{ℓ} 3000 Size $928 \ 3508^m$ 968 3522^m 3557^{m} 10002000 $1056 \ \ 3571^m$ 1144 3606^{m} 1208 3641^m 3669^{m} $1240 \ \ 3655^m$ 1280 3683^{m} 13601000 $1600 \ 3704^m$ 1800 3880^{ℓ} 2560 3984^{m} 2880 4104^m 4202^{ℓ} 3200 3240 4280^{ℓ} 0 4 1 ż Ś $4608 \quad 4376^m$ $5120 \ 4474^m$ 5184 4537^{m} Log(Number of Factors) $6848 \ 5251^m$ $5696 \ 4586^m$ 5760 4635^m $5824 \ 4698^m$ $6464 \ 5154^m$ $6552 \ 5168^m$ $7128 \ 5300^m$ $7424 \ 5335^m$ $7616 \ 5349^m$ $7744 \ 5398^m$ $8000 \ 5433^m$ $8256 \ 5447^m$ $8448 \ 5461^m$ $8712 \ 5496^m$ $8896 \ 5531^m$ $9152 \ 5545^m$ $9504 \ 5580^m$ $9664 \ 5615^m$ 9920 5629^m $10000 \ 5643^m$

Table 7 Bounds for t = 3, v = 8

Table 8 Bounds for t = 3, v = 9

	5	81	0	6	115^{s}	7	133^{s}				4-CAs v	vith 3 sym	nbols		
	8	153	8]	0	159^{v}	16	237^{v}		4000 -					•	•
	23	315	v = z	30 3	393^v	39	471^{v}		1						
	51	549	v Ę	54	718^{r}	58	726^{r}		3000 -						
	60	730	$r \mid \epsilon$	66	735^{r}	69	749^{r}		-				1	F ^D	
	74	822	$r \mid 7$	76	828^{r}	78	832^{r}	ize	2000						
	81	837	$r \mid \epsilon$	37 3	881^{r}	90	885^{r}	»	2000				and the second se		
	92	934	$r \mid q$	96	936^{r}	102	944^{r}		-			and the second			
1	11	975	r 11	4	981^{r}	117	985^{r}		1000 -			and the second second			
1	20	1065	r 12	$23 \ 1$	067^{r}	126	1069^{r}		-		• *	•			
1	29	1071	r 13	32 1	073^{r}	138	1087^{r}		07		, . 		· · · ·	·····	_
1	44	1089	$r \mid 15$	53 1	097^{r}	154	1221^{r}				og(Nun	∠ nher of F:	ortors)		4
											-09(1101		10(010)		_
	15	$56 \ 1$	222^{r}	16	1 1	260^{r}	162	1268^{r}	174	1278^{r}	180	1282^{r}	198	1295^{r}	
	20	$07 \ 1$	323^{r}	21	6 1	402^{r}	222	1406^{r}	225	1412^{r}	228	1416^{r}	234	1420^{r}	
	25	$56 \ 1$	422^{q}	26	1 1	513^{r}	270	1521^{r}	276	1586^{r}	288	1588^{r}	297	1602^{r}	
	30	$00 \ 1$	610^{r}	30	6 1	618^{r}	324	1651^{r}	333	1655^{r}	342	1667^{r}	351	1675^{r}	
	- 35	$52 \ 1$	693^{r}	36	8 1	735^{r}	369	1769^{r}	378	1773^{r}	387	1777^{r}	396	1793^{r}	
	40	$00 \ 1$	805^{r}	42	10 13	811^{r}	426	1821^{r}	432	1833^{r}	447	1847^{r}	459	1855^{r}	
	48	84 1	877^{r}	52	9 18	390^{h}	567	2028^{r}	588	2081^{r}	594	2083^{r}	621	2125^{r}	
	64	48 2	210^{r}	66	6 2	218^{r}	675	2232^{r}	684	2240^{r}	702	2244^{r}	729	2246^{r}	
	76	58 2	290^{r}	90	0 2	358^{q}	918	2508^{r}	972	2543^{r}	999	2551^{r}	1026	2569^{r}	
	105	$53 \ 2$	581^{r}	105	6 2	601^{r}	1058	2619^{r}	1080	2643^{r}	1104	2645^{r}	1107	2679^{r}	
	113	34 2	685^{r}	113	6 2	687^{r}	1161	2691^{r}	1188	2713^{r}	1200	2729^{r}	1224	2731^{r}	
	126	50 2	739^{r}	127	8 2	743^{r}	1296	2763^{r}	1320	2777^{r}	1377	2787^{r}	1440	2823^{r}	
	152	$21 \ 2$	826^{q}	156	6 23	842^{r}	1584	2844^{r}	1587	2852^{r}	1620	2982^{r}	1701	2992^{r}	
	175	55 - 3	013^{r}	176	4 3	025^{r}	1782	3051^{r}	4096	3081^{h}	4131	3959^{r}	4158	3995^{r}	
	420	00 4	003^{r}	426	6 4	005^{r}	4320	4009^{r}	4428	4016^{r}	4500	4024^{r}	4563	4026^{r}	
	469	98 4	042^{r}	475	2 4	046^{r}	4761	4054^{r}	10000	4095^{h}					

Table 10 Bounds for t = 4, v = 3

For constructions of perfect hash families, see [1, 2, 4, 30, Bierbrauer J and Schellwatt H, unpublished].

To assess the contributions of each of the constructions described, we computed upper bounds for CAN(t, k, v) for $t \in \{2, 3, 4\}, 2 \le v \le 25$, and $t < k \le 10,000$. Previous tables (e.g., [7]) have reported only small numbers of factors ($k \le 30$). With the current power of computational search techniques, this fails to explore into the range in which recursions are most powerful. Evidently it is not sensible to report 10,000 results for every t and v, and fortunately there is no need to do so. Let $\kappa(N; t, v)$ be the largest k for which CAN(t, k, v) $\le N$. As k increases, for many consecutive numbers of factors, the covering array number does not change. Therefore reporting those values of $\kappa(N; t, v)$ for which $\kappa(N; t, v) > \kappa(N - 1; t, v)$, along with the corresponding value of N, enables one to determine all covering array numbers when k is no larger than the largest $\kappa(N; t, v)$ value tabulated. Since the exact values for covering array numbers are unknown in general, we in fact report lower bounds on $\kappa(N; t, v)$.

For each strength in turn, explicit constructions of covering arrays from direct and computational constructions are tabulated. Then each known construction is applied and its consequences tabulated (in the process, results implied by this for fewer factors are suppressed, so that one explanation ("authority") for each entry is

5	256^{o}	6	375^{s}	- 13	3 508	3^v			4-CAs w	ith 4 symbol	ols	
20	760^{v}	31 3	1012^{v}	42	2 1264	1^{v}	12000 -					f
48	1639^{r}	52	1648^{r}	60	1878 (8^r	12000					
65	1890^{r}	68 3	2119^{r}	76	5 2136	5^r	10000 -					and the second s
80	2142^{r}	85 2	2412^{r}	95	5 2444	1^r	8000 -					
96	2489^{r}	100 5	2514^{r}	108	3 2641	L^r	Z COOO				,	
112	2656^{r}	116 :	2671^{r}	120	2686	5^r	n 6000 -				and the second	
124	2701^{r}	125 2	2925^{r}	128	3 2933	3^r	4000 -			~****		
136	2968^{r}	140 :	2988^{r}	145	5 3003	3^r	2000 -			Concentration of the second se		
150	3018^{r}	155 :	3033^{r}	160) 3112	2^r	2000		*			
168	3148^{r}	170 :	3315^{r}	176	335	L^r	0	····*	1	2	3	4
186	3488^{r}	200	3507^{r}	208	3 3532	2^r			Log(Num	ber of Fact	ors)	
210	3555^{r}	240) 376	2^r	256	3774'	260	3939^{r}	264	4113^{r}	300	4169^{r}
320	4181^{r}	330) 442	5^r	341	4535'	361	4560^{h}	380	4643^{r}	384	4688^{r}
400	4722^{r}	432	484	9^r	448	4864'	464	4879^{r}	480	4894^{r}	496	4990^{r}
500	5214^{r}	512	522	2^r	544	5257'	560	5376^{r}	580	5391^{r}	600	5406^{r}
620	5421^{r}	640	550	0^r	672	5536'	680	5703^{r}	704	5739^{r}	744	5876^{r}
800	5895^{r}	832	592	0^r	840	5943'	961	6072^{h}	1024	6297^{r}	1040	6492^{r}
1050	6515^{r}	1110	672	2^r	1180	6890'	1200	6902^{r}	1280	6914^{r}	1292	7280^{r}
1320	7327^{r}	1332	2 741	1^r	1364	7437'	1444	7447^{r}	1472	7568^{r}	1520	7583^{r}
1681	7584^{h}	1748	785	4^r	1792	7900^{9}	1856	7915^{r}	1900	7957^{r}	1920	7972^{r}
1968	8143^{r}	1984	815	8^r	2000	8382'	2036	8390^{r}	2048	8392^{r}	2128	8412^{r}
2176	8442^{r}	2185	857	9^r	2240	8610'	2320	8625^{r}	2375	8676^{r}	2400	8691^{r}
2480	8742^{r}	2560	882	$ 1^r $	2624	8857'	2688	8866^{r}	2720	9033^{r}	2816	9069^{r}
2944	9206^{r}	2976	i 921	5^r	3072	9234'	3200	9243^{r}	3328	9268^{r}	3360	9291^{r}
3552	9420^{r}	3776	i 954	0^r	3840	9558'	3844	9573^{r}	4096	9783^{r}	6859	9880^{h}
6984	11682^{r}	6992	2 1169	7^r	7168	11728'	7424	11743^{r}	7600	11836^r	7680	11851^{r}
7872	12097^{r}	7936	5 1211	2^r	8000	12336'	8140	12344^{r}	8192	12346^{r}	8512	12366^{r}
8704	12396^{r}	8736	1263	8^r	8740	12648'	8960	12669^{r}	9216	12705^{r}	9280	12709^{r}
9480	12774^{r}	9600	1278	9^r	9920	12840'	9988	12919^{r}	10000	12934^{r}		

Table 11 Bounds for t = 4, v = 4

maintained). Applications of the recursions is repeated until no entries in the table improve.

The authorities used are:

f	constraint programming [19]	h	perfect hash family [22]
ℓ	Roux-type [9]	т	Roux-type (this paper)
п	nearly resolvable design [7]	0	orthogonal array [18]
q	Turán squaring [16]	r	Roux-type (this paper)
S	simulated annealing [8]	t	tabu search [24]
и	Martirosyan (unpublished)	v	permutation vector [Walker II RA and
			Colbourn CJ, submitted for publication]
у	binary construction [27]	z	composition
\downarrow	symbol identification		

Composition and symbol identification are standard constructions; see [7], for example. Other constructions, such as derivation of a *t*-covering array from a (t + 1)-covering array, and "Construction D" from [7], can yield improvements but do not do so within the ranges of the tables reported; hence they are omitted.

Table 12 Bounds for t = 4, v = 5

6	625^{o}	15	1245^{v}	24	1865^{v}]			4-C/	As with 5 s	ymbols		
37	2485^{v}	62	3105^v	75	4225^{r}			1					•
120	4845^{r}	144	5571^{r}	150	6287^{r}		2000					, <i>f</i>	
170	6557^{r}	185	6675^{r}	190	7295^{r}		2000					•	
200	7357^{r}	240	7565^{r}	250	7837^{r}		1500	n -1					
275	8013^{r}	310	8045^{r}	375	9165^{r}		0 N				ø	<i>*</i>	
475	9785^{r}	600	9945^{r}	625	10851^{r}	i	ன் 1000	0					
720	11251^{r}	750	12107^{r}	800	12377^{r}					_	****		
850	12537^{r}	875	12655^{r}	925	12719^{r}		500	o -			٢		
950	13339^{r}	1000	13401^{r}	1025	13609^{r}					• • •			
1050	13657^{r}	1200	13673^{r}	1250	14249^{r}			0+	• • •				-
1320	14509^{r}	1375	14573^{r}	1440	14605^{r}				l og(Z Number of	Factors	3	4
						,			LOG(i actors		
	10 140		- 1 1 -	107 1	FEO 145	0 = r	1005	150007	1700	150057	1055	150017	ı
14	146	97 1	540 147	13' 1	550 147	37'	1625	15833'	1760	15865'	1875	15881	
11	920 1650	11' 20	J70 165	$17'_{1} 2$	250 165	33'	2375	16549'	2880	16745'	3000	16885'	
3	125 179	$71^r 3'$	721 186	$30^{n} 3'$	750 198	69^{r}	3900	20139^{r}	4000	20265^{r}	4200	20421^{r}	
42	250 205'	$73^r 43$	350 206	$67^r 43$	375 206	91^{r}	4500	20731^{r}	4625	20865^{r}	4650	21461^{r}	
4	750 2148	$85^r 48$	800 215	$23^r 49$	920 215	47^{r}	4950	21599^r	5000	21623^{r}	5100	21807^{r}	
5	125 2190	$09^r 53$	200 219	$85^r 50$	610 220	33^{r}	5760	22057^{r}	5780	22109^{r}	6000	22179^{r}	
6	120 231	$55^r 6$	125 231	$79^r 63$	250 231	95^{r}	6460	23515^{r}	6600	23573^{r}	6875	23701^{r}	
70	020 2373	33^{r} 7	080 237	49^r 7	200 237	65^{r}	7350	23873^{r}	7700	23889^{r}	7750	23913^{r}	
100	000 2424	45^h											

5.1 Tables for strength three

Tables 1–8 give (lower bounds on) $\kappa(N;3, v)$ for $2 \le v \le 9$ only, since they illustrate the main points. The strength two tables used are from [12]. For each v, we tabulate the entries for N and $\kappa(N;3, v)$. We also provide a plot showing the logarithm of the number of factors horizontally and the size of the covering array vertically. Asymptotically one expects this to become a straight line (see, e.g., [15]), and its deviation from the straight line results from non-uniform behaviour when k is small, but also from the "errors" compounded in repeated applications of the recursions. The plot simply demonstrates the growth; the explicit points given are definitive.

Exponents indicate the authority for the entry provided, to provide one method for the construction; alternative constructions may produce the same result.

5.2 Tables for strength four

Tables 9–12 similar results for strength four; the only published table of which we are aware appears in [17], and treats only $k \le 10$.

6 Concluding remarks

The recursive constructions for strength three developed here provide a useful complement to that in [9]. More importantly, the recursive constructions for strength four provide numerous powerful techniques for the construction of covering arrays. The existence tables demonstrate the utility of computational search for small arrays combined with flexible recursive constructions. The constructions using perfect hash families and Turán graphs provide some of the best bounds as the number of columns (factors) increases, but currently do not exhibit the generality of the Rouxtype constructions developed here.

Acknowledgments Research of the first, second, and fourth authors was supported by the Consortium for Embedded and Inter-Networking Technologies.

References

- 1. Alon N (1986) Explicit construction of exponential sized families of k-independent sets. Discrete Math 58:191–193
- 2. Atici M, Magliveras SS, Stinson DR, Wei WD (1996) Some recursive constructions for perfect hash families. J Combin Designs 4:353–363
- Bierbrauer J, Schellwatt H (2000) Almost independent and weakly biased arrays: efficient constructions and cryptologic applications. Adv Cryptol (Crypto 2000), Lecture Notes Comput Sci 1880:533–543
- Blackburn SR (2000) Perfect hash families: probabilistic methods and explicit constructions. J Combin Theory – Ser A 92:54–60
- 5. Boroday SY (1998) Determining essential arguments of Boolean functions (Russian). In: Proc conference on industrial mathematics, Taganrog, pp 59–61
- 6. Chateauneuf MA, Colbourn CJ, Kreher DL, Covering arrays of strength 3. Designs Codes Cryptogr 16:235–242
- Chateauneuf MA, Kreher DL (2002) On the state of strength three covering arrays. J Combin Designs 10(4):217–238
- 8. Cohen MB (2004) Designing test suites for software interaction testing. Ph.D. Thesis, University of Auckland and private communications (2005)
- 9. Cohen MB, Colbourn CJ, Ling ACH (to appear) Constructing strength 3 covering arrays with augmented annealing. Discrete Math
- Cohen DM, Dalal SR, Fredman ML, Patton GC (1997) The AETG system: an approach to testing based on combinatorial design. IEEE Trans Software Eng 23(7):437–444
- Colbourn CJ (2004) Combinatorial aspects of covering arrays. Le Matematiche (Catania) 58:121– 167
- 12. Colbourn CJ (to appear) Strength two covering arrays: existence tables and projection. Discrete Math
- 13. Colbourn CJ, Dinitz JH (eds) (1996) The CRC handbook of combinatorial designs. CRC Press, Boca Raton
- 14. Colbourn CJ, Martirosyan SS, Mullen GL, Shasha D, Sherwood GB, Yucas JL (2006) Products of mixed covering arrays of strength two. J Combin Designs 14:124–138
- Godbole AP, Skipper DE, Sunley RA (1996) t-covering arrays: upper bounds and Poisson approximations. Combin Probab Comput 5:105–117
- Hartman A (2005) Software and hardware testing using combinatorial covering suites. In: Graph theory, combinatorics and algorithms: interdisciplinary applications. M.C. Golunbic and I.B.A. Hartman (eds) Springer, Boston, pp. 237–266
- Hartman A, Raskin L (2004) Problems and algorithms for covering arrays. Discrete Math 284 (1-3):149–156
- 18. Hedayat AS, Sloane NJA, Stufken J (1999) Orthogonal arrays, theory and applications. Springer
- Hnich B, Prestwich S, Selensky E (2005) Constraint-based approaches to the covering test problem. Lecture Notes Comput Sci 3419:172–186
- 20. Lidl R, Niederreiter H (eds) Finite fields, 2nd ed Cambridge, England: Cambridge University Press
- Martirosyan SS, Colbourn CJ (2005) Recursive constructions for covering arrays. Bayreuther Math Schriften 74:266–275
- 22. Martirosyan S, Van Trung T (2004) On t-covering arrays. Designs Codes Cryptogr 32:323-339
- 23. Meagher K, Stevens B (2005) Group construction of covering arrays. J Combin Designs 13:70-77
- 24. Nurmela K (2004) Upper bounds for covering arrays by tabu search. Discrete Appl Math 138: 143–152
- 25. Roux G (1987) *k*-Propriétés dans les tableaux de *n* colonnes: cas particulier de la *k*-surjectivité et de la *k*-permutivité. Ph.D. Thesis, Université de Paris
- Sherwood GB, Martirosyan SS, Colbourn CJ (2006) Covering arrays of higher strength from permutation vectors. J Combin Designs 14:202–213

🖄 Springer

- 27. Sloane NJA (1993) Covering arrays and intersecting codes. J. Combin Designs 1:51-63
- Stinson DR, Wei R, Zhu L (2000) New constructions for perfect hash families and related structures using combinatorial designs and codes. J Combin Designs 8:189–2000
- Tang DT, Chen CL (1984) Iterative exhaustive pattern generation for logic testing. IBM J Res Develop 28:212–219
- van Trung T, Martirosyan S (2005) New constructions for IPP codes. Designs Codes Cryptogr 35:227–239
- 31. Turán P (1941) On an extremal problem in graph theory (Hungarian). Mat Fiz Lapok 48:436-452