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Abstract We analyse a probabilistic argument that gives a semi-random construction
for a permutation code on n symbols with distance n− s and size �(s!(log n)1/2), and a
bound on the covering radius for sets of permutations in terms of a certain frequency
parameter.
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1 Introduction

Permutation codes arise naturally in a communication model where it is desirable to
always transmit exactly the same set of symbols, distinguishing different words by the
order of transmission. An example of such a model is that of power line communi-
cations (see [14]), where variations in the delivery of electric power can be used as a
communication channel, but the total power output must remain constant. We work in
the metric space (Sn, d), where Sn is the permutation group on [n] = {1, . . . , n}, and d
is the Hamming distance, defined for two permutations g, h as d(g, h) = n − fix(gh−1),
where fix(g) = |{x : g(x) = x}| is the number of fixed points of g, considered as a
bijection from [n] to itself. A permutation code of distance d is a subset C ⊂ Sn, such
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that any two distinct elements of C are at distance at least d. For recent results on
permutation codes we refer the reader to [5, 15].

Another viewpoint may be obtained by analogy with the theory of set systems
with restricted intersections. Say that a family A of subsets of [n] is L-intersecting if
|A ∩ B| ∈ L for every pair A, B ∈ A, where L is some set of non-negative integers.
The basic question in this theory is determine the maximum size of such a family A,
either as stated above, or with the additional assumption that A is k-uniform, i.e. all of
its sets have size k, for some k. There is a wealth of combinatorial literature on these
questions, to which [2, 10] provide a good introduction. The analogue of intersection
for two permutations g, h is the set of positions at which they agree, and this has size
fix(gh−1). Thus we call C ⊂ Sn L-intersecting if fix(gh−1) ∈ L for any two distinct
elements g, h of C. Note that a permutation code in Sn of distance d is precisely a
≤(n − d)-intersecting subset of Sn. (It will be convenient, whenever ∗ is an relation,
such as ≤, to write ∗s for the set {t : t ∗ s}.)

Let p(n, L) denote the maximum of |C| where C ⊂ Sn is L-intersecting. Deza and
Frankl [6] showed that p(n, ≥1) = (n − 1)!. Cameron and Ku [3] showed that equality
can only hold for the coset of a stabilizer of point, i.e. a set Gxy = {g ∈ Sn : g(x) = y}
for some x, y. This can be viewed as analogous to the case s = 1 of the following
theorem of Erdős et al. [8]: if n > n0(k, s) is sufficiently large then any k-uniform ≥s-
intersecting family A of subsets of [n] has size at most

(n−s
k−s

)
, with equality if and only

if there is some S ⊂ [n] of size s such that S ⊂ A for every A ∈ A. The permutation
analogue is not known for general s, and indeed the main conjecture of Deza and
Frankl in [6] is that p(n, ≥s) should equal (n − s)! for n > n0(s) sufficiently large.

Certain special cases of this conjecture were proved in [6], some by means of the
fundamental inequality p(n, ≥s) · p(n, <s) ≤ n!. This establishes a connection with
permutation codes, as a construction of a <s-intersecting subset of Sn, i.e. a permu-
tation code of distance n − s + 1, provides an upper bound on the function p(n, ≥s).
In general, when s = o(n), their best bounds are obtained by sphere covering consid-
erations, analogous to the Gilbert–Varshamov bound (see, e.g., [13]). They show that
p(n, <s) ≥ n!/B(n, n − s), and so p(n, ≥s) ≤ B(n, n − s), where B(n, r) denotes the
number of permutations in a ball of radius r in (Sn, d). When s → ∞ one can estimate
B(n, n − s) = ∑n−s

i=0 di
(n

i

) ∼ n!/es!, where di ∼ i!/e is the number of derangements of i
elements, i.e. p(n, <s) ≥ (1 + os(1))es!.

This existence result is inherently non-constructive, and for practical purposes one
would hope for a code that can be described algorithmically. Various constructions
are known for specific small values of n and s and sequences of (n, s) satisfying cer-
tain algebraic conditions (typically n being a prime-power): see [5, 7, 11]. With the
following theorem we give a randomized algorithm to find a code for general n and
s, which is roughly comparable in size to that guaranteed by the Deza–Frankl bound.
(It is even better for s = O(log n)1/2, but for s so small there is a larger family that is
{0}-intersecting, namely the set of all n powers of a fixed n-cycle.) The expected run
time of our algorithm is quadratic in the size of the code, multiplied by a polynomial
factor of n.

Theorem 1.1 For any θ > 0, n > e30/θ2
and s < n1−θ there is a randomized algorithm

to construct a set of m = 1
60 (θ log n)1/2(s − 1)! permutations in Sn that is <s-intersecting

(i.e. a permutation code of distance n−s+1) in expected time O((θ(n/s)3/ log n)1/θ m2).

Our methods also apply to certain questions on the covering radius of sets of
permutations, which are motivated by two important conjectures on Latin squares:
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Ryser’s conjecture that every Latin square of odd order has a transversal, and Brualdi’s
conjecture that every Latin square of order n has a partial transversal of size n − 1.1

Given a subset G of Sn, the covering radius of G is cr(G) = maxh∈Sn ming∈G d(g, h),
i.e. the smallest r such that the balls of radius r with centres at the elements of G cover
the whole space. Let f (n, s) denote the smallest size of a set G with cr(G) ≤ n − s. A
result obtained independently by Cameron and Ku [3] and Kézdy and Snevily [12] is
that f (n, 1) = 
n/2� + 1. For the next case, s = 2, Kézdy and Snevily [12] conjecture
that f (n, 2) is equal to n if n is even, but is larger than n if n is odd. They observed that
this conjecture would imply the conjectures of Ryser and Brualdi mentioned above.
This is encapsulated in a result of Cameron and Wanless [4], that if G ⊂ Sn consists
of the rows of a Latin square, then cr(G) is equal to n − 1 if G has a transversal, and
equal to n − 2 if G does not have a transversal.

Our next result gives a bound for the covering radius in terms of the following fre-
quency parameter. For G ⊂ Sn and 1 ≤ a, b ≤ n let NG(a, b) = |{g ∈ G : g(a) = b}|.
Note that if G is the set of rows of a Latin square then NG(a, b) = 1 for all a, b.

Theorem 1.2 Let G ⊂ Sn be a set of permutations such that NG(a, b) ≤ k for any a, b

in [n]. If k ≤ (s−1)!
s · n

2n−s ·
(

1
e − (n−s)!

n!
)

for some positive integer s, then there exists a

permutation g which agrees with each permutation of G in at most s − 1 positions, i.e.
cr(G) ≥ n − s + 1.

An immediate consequence is the following corollary:

Corollary 1.3 Let G be the set of rows of k Latin squares L1, . . . , Lk. Then cr(G) ≥ n−s

where s is the smallest positive integer such that k ≤ s!
s+1 · n

2n−s−1 ·
(

1
e − (n−s−1)!

n!
)

.

This can be compared with a lower bound of Cameron and Wanless [4] obtained
by covering arguments, namely, if k is the largest integer such that |G|B(n, k) < n!
then cr(G) ≥ k + 1. Consider, for example, three Latin squares L1, L2, L3 of order
n = 1, 000 such that their rows are pairwise distinct and let G be the set of rows of
L1, L2 and L3, so that |G| = 3, 000. Then, a simple calculation shows that the covering
bound gives cr(G) ≥ 994, whereas Corollary 1.3 gives cr(G) ≥ 995.

The rest of this paper is organized as follows. In the next section we describe our
main probabilistic tool, which is the local lemma, in a more general form than is often
used. The proofs of Theorems 1.2 and 1.1 appear in Sections 3 and 4, respectively. We
conclude with a remark about covering radius in more general groups.

2 The local lemma

We start by citing a rather general form of the local lemma, in which the usual
independence assumption is replaced by an inequality on conditional probabilities
(see [1], Section 5.1 for a proof.)

Theorem 2.1 Suppose we have events A1, . . . , An, subsets D1, . . . , Dn of [n] and reals
x1, . . . , xn so that for any S ⊂ [n] \ Di we have P(Ai | ∩j∈S Aj) ≤ xi

∏
j∈Di

(1 − xj). Then

P(∩n
i=1Ai) ≥ ∏n

i=1(1 − xi).

1 A Latin square is an n by n table in which there are n distinct symbols, each appearing exactly once
in each row and once in each column. A transversal is a choice of n cells, in which all n symbols appear
exactly once, and exactly one cell is chosen from each row and each column.
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We will use the following two special cases, restated in a manner that makes them
easier to apply.

Theorem 2.2 Suppose A is a collection of events, and for any A ∈ A there is a subset
DA ⊂ A of size at most d, such that for any subset S ⊂ A\DA we have P(A| ⋂S∈S S) ≤ p.
If ep(d + 1) ≤ 1 then P(

⋂
A∈A A) > 0.

Proof Label A = {A1, . . . , An} and apply Theorem 2.1 with xi = 1/(d + 1) for all i
(using the inequality (1 − 1/(d + 1))d > 1/e). �

Theorem 2.3 Suppose A = A1 ∪ A2 is a collection of two types of events, such that, for
i = 1, 2, any A ∈ Ai has probability pi, and for each A ∈ A there are subsets Di

A ⊂ Ai of
size at most di, so that, for any subsets Si ⊂ Ai \Di

A, we have P(A | ∩S∈S1∪S2 S) ≤ P(A).
If 8pidi ≤ 1 for i = 1, 2 then P(∩A∈A A) ≥ (1 − 4p1)

|A1|(1 − 4p2)
|A2|.

Proof Label A = {A1, . . . , An} and apply Theorem 2.1 with xj = 4pi if Aj ∈ Ai for
i = 1, 2. This is valid, as for any A ∈ Ai we have

∏
Aj∈D1

A∪D2
A
(1 − xj) ≥ (1 − 4p1)

d1

(1 − 4p2)
d2 ≥ (1/2)2 so that P(A) ≤ xi

∏
Aj∈D1

A∪D2
A
(1 − xj). �

3 Covering radius for permutations

As a prelude to Theorem 1.2, we first give a lower bound for covering radius using
the most basic of probabilistic methods: the counting sieve, which says that if the sum
of the probabilities of events A1, . . . , An is less than 1, then with positive probability
none of them occur. This is just for illustrative purposes, as the bound obtained is
weaker than the covering bound of Cameron and Wanless mentioned above.

Proposition 3.1 Let G ⊂ Sn such that |G| < s!. Then cr(G) ≥ n − s + 1.

Proof Let G = {g1, . . . , gm}. Pick a permutation g uniformly at random. Given an
index i ∈ {1, · · · , m} and a set S ⊂ [n] of size s, we define Ai,S to be the event that
g and gi agree on S, that is g(x) = gi(x) for all x ∈ S. Clearly, P(Ai,S) = (n−s)!

n! . It
follows that

∑
i,S P(Ai,S) = m

(n
s

)
(n−s)!

n! < 1. So, with positive probability, there exists a
permutation which agrees with every element of G in at most s − 1 positions, that is
cr(G) ≥ n − s + 1. �

Proof of Theorem 1.2 Let g be a permutation, chosen uniformly at random. We shall
prove that with positive probability g agrees with each permutation of G in at most
s − 1 positions.

Let G = {g1, . . . , gm}. Given an index i and a subset S ⊂ [n] of size s, we define Ai,S
as before to be the event that g and gi have the same restriction to S, i.e. g(x) = gi(x)

for all x ∈ S. Set p = P(Ai,S) = (n − s)!/n!. Let A denote the set of all the events Ai,S.
We also let Xi,S be the collection of all pairs (i′, S′) such that at least one of S ∩ S′ and
gi(S) ∩ gi′(S′) is non-empty.2

Let Di,S consist of the events Ai′,S′ such that (i′, S′) ∈ Xi,S. Let us now count the
number of events Ai′,S′ ∈ Di,S. First, we choose two elements x, y of [n] so that at least

2 For a function f and a subset S of its domain we are using the notation f (S) = {f (s) : s ∈ S}.
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one of x ∈ S or y ∈ gi(S) holds: there are 2sn − s2 choices. Next, we choose i′ such that
gi′(x) = y, for which we have at most k choices (using the assumption NG(a, b) ≤ k for
any a, b in [n]). Finally, we can choose the rest of S′ in at most

(n−1
s−1

)
ways. Therefore

|Di,S| ≤ d = ks(2n − s)
(n−1

s−1

)
.

To apply Theorem 2.2 we need to verify that P(Ai,S|E) ≤ p, with an event
E = ⋂

Ai′ ,S′ ∈S Ai′,S′ for any subset S ⊂ A\Di,S. Our method mirrors that used by

Erdős and Spencer [9] to find Latin transversals (see also [1], Section 5.6).
For any injection f : S → [n] let Bf be the event that g restricts to f on S. We claim

that P(Ai,S|E) ≤ P(Bf |E). To see this, we exhibit an injective map, from the set of
permutations g such that E ∩ Ai,S holds, to the set of permutations such that E ∩ Bf
holds. This map is to replace the permutation g by gf , which is defined as follows. Let
T = {x ∈ [n]\S : g(x) ∈ f (S)}. Define gf (x) = f (x) for x ∈ S, gf (x) = g(f −1(g(x)))

for x ∈ T, and gf (x) = g(x) otherwise. It is not hard to see that the map g �→ gf is
injective, and that E ∩ Bf holds for gf (using the definition of Xi,S to see that none of
the events in E is affected by the map).

We deduce that P(Ai,S|E) ≤ (n−s)!
n!

∑
f P(Bf |E) = (n−s)!/n! = p. Now, our assump-

tion k ≤ (s−1)!
s · n

2n−s ·
(

1
e − (n−s)!

n!
)

implies that ep(d + 1) ≤ 1, so by Theorem 2.2 there

is a permutation g for which no event Ai,S occurs, as required. �

4 A semi-random construction of a permutation code

In this section we prove Theorem 1.1, which states that for any θ > 0, n > e30/θ2
and

s < n1−θ there is a randomized algorithm to construct a set of m = 1
60 (θ log n)1/2(s−1)!

permutations in Sn that is <s-intersecting in expected time O((θ(n/s)3/ log n)1/θ m2).
We apply the following semi-random algorithm. Set r = 3/θ and m0 = θ−1/2s

(log n)1/2. Suppose at time t we have a set of <s-intersecting permutations g1, . . . , gtm0

in Sn such that for every a, b ∈ [n] we have

Nt
a,b = |{i : gi(a) = b, 1 ≤ i ≤ tm0}| ≤ tr.

Now we pick m0 random permutations gtm0+1, . . . , g(t+1)m0 and show that with positive
probability the set g1, . . . , g(t+1)m0 is <s-intersecting and satisfies Nt+1

a,b ≤ r(t+1). Then
we fix such a set and continue the algorithm. We will show that the algorithm can
proceed while t < t∗ = (s − 1)!/20rs, so at the end we have a <s-intersecting set of
size t∗m0 = m, as required.

To verify the claim for probabilities we consider the following events. Let B be the
event that Nt+1

a,b > r(t + 1) for some a, b. Note that Nt+1
a,b = Nt

a,b + Xt+1
a,b where Xt+1

a,b is
a binomial random variable B(m0, 1/n), so P(B) ≤ (n

2

)
P(B(m0, 1/n) > r). Now

P(B(m0, 1/n) > r) =
∑

i≥r+1

(
m0

i

)
(1/n)i(1 − 1/n)m0−i

≤ (m0/n)r+1 1
(r + 1)!

∑

i≥0

(m0/n)i

< (m0/n)r+1.
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Here we have used the inequality m0 < (θ−1 log n)1/2n1−θ < n/2, which follows from
the calculation (log n)−1/2nθ > (30/θ2)−1/2e30/θ > (30/θ2)−1/2 · 1

2 (30/θ)2 > 2θ−1/2.
We deduce that

P(B) < mr+1
0 /2nr−1. (1)

Given indices i, j, a set S ⊂ [n] of size s and an injection f : S → [n] we define
Ai,j,S,f to be the event that gi and gj both restrict to f on S. We divide these A-events
into two types: A1 consists of those events with i ≤ tm0 and tm0 + 1 ≤ j ≤ (t + 1)m0,
A2 is those with tm0 + 1 ≤ i < j ≤ (t + 1)m0. Let A = A1 ∪ A2. If A ∈ A1 then
P(A) = p = (n − s)!/n! and if A ∈ A2 then P(A) = p2 = ((n − s)!/n!)2. There are
n1 = tm2

0

(n
s

)
events of type 1 and n2 = (m0

2

)(n
s

)
n!/(n − s)! events of type 2.

We will apply Theorem 2.3 to show that P(∩i,j,S,f Ai,j,S,f ) > mr+1
0 /nr−1. Then inequal-

ity (1) will imply that with probability at least mr+1
0 /2nr−1 our random choice of

gtm0+1, . . . , g(t+1)m0 is successful, in that neither B nor any of the Ai,j,S,f occur. For
a randomized algorithm we simply repeat the random choice until we are success-
ful. The number of trials is a geometric random variable with expectation less than
2nr−1/mr+1

0 . On each trial it takes time O(m0n2) to check if B occurs and time O(tm2
0n)

to check if any event Ai,j,S,f occurs (for each i, j we only need to find fix(gig
−1
j ) and

compare it to s, and this takes time O(n)). Therefore the expected run time of the
algorithm is O(nrm2/mr+1

0 ) < O((θ(n/s)3/ log n)1/θ m2).
Given a set S ⊂ [n] of size s and an injection f : S → [n] we let XS,f be the collection

of all pairs (S′, f ′) such that S′ ⊂ [n] has size s, f ′ : S′ → [n] is injective, and at least one
of S ∩ S′ and f (S) ∩ f ′(S′) is non-empty. Given indices i, j we let Yi,j be the collection
of all pairs {i′, j′} such that {i, j} ∩ {i′, j′} ∩ {tm0 + 1, . . . , (t + 1)m0} is non-empty. For an
event Ai,j,S,f and k = 1, 2 we let Dk

i,j,S,f consist of those events Ai′,j′,S′,f ′ in Ak such that
(S′, f ′) ∈ XS,f and {i′, j′} ∈ Yi,j.

To estimate |D2
i,j,S,f | we note that |XS,f | ≤ 2sn

(n−1
s−1

)
(n − 1)!/(n − s)! for any S, f .

Also, the number of choices of tm0 + 1 ≤ i′ < j′ ≤ (t + 1)m0 such that {i, j} ∩
{i′, j′} ∩ {tm0 + 1, . . . , (t + 1)m0} is non-empty is at most 2m0. Therefore |D2

i,j,S,f | ≤ d2

= 4snm0
(n−1

s−1

)
(n−1)!/(n− s)!. Next, we count the number of events Ai′,j′,S′,f ′ ∈ D1

i,j,S,f .
First we choose x ∈ S′ and y = f ′(x) so that either x ∈ S or y ∈ f (S), for which
we have at most 2sn choices. Now we choose 1 ≤ i′ ≤ tm0 so that gi′(x) = y, for
which we have at most rt choices. Then we can choose the rest of S′ in at most(n−1

s−1

)
ways. The rest of f ′ is determined by gi′ and j′ is determined by the condition

that {i, j} ∩ {i′, j′} ∩ {tm0 + 1, . . . , (t + 1)m0} is non-empty. Therefore |D2
i,j,S,f | ≤ d1

= 2snrt
(n−1

s−1

)
.

Next we have to verify that P(Ai,j,S,f |E) ≤ P(Ai,j,S,f ), where E = ∩Ai′ ,j′ ,S′ ,f ′ ∈ S1∪S2

Ai′,j′,S′,f ′ for some subsets Sk ⊂ Ak\Dk
i,j,S,f .

When 1 ≤ i ≤ tm0 and tm0 + 1 ≤ j ≤ (t + 1)m0, i.e. Ai,j,S,f ∈ A1, the argument is
rather similar to that given in Theorem 1.2, so we will omit it, and just give the argu-
ment for tm0 + 1 ≤ i < j ≤ (t + 1)m0, i.e. Ai,j,S,f ∈ A2. For any injections fi : S → [n]
and fj : S → [n] we let Ai,j,S,fi,fj be the event that gi restricts to fi and gj restricts to fj
on S. We claim that P(Ai,j,S,f | E) ≤ P(Ai,j,S,fi,fj | E). To see this, we exhibit an injective
map, from the set of permutations gtm0+1, · · · , g(t+1)m0 such that E ∩ Ai,j,S,f holds, to
the set of permutations such that E ∩ Ai,j,S,fi,fk holds. This map is to replace gi by g∗

i
and gj by g∗

j , which are defined in a similar manner to the proof of Theorem 1.2. For
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example, to define g∗
i , let T = {x ∈ [n]\S : gi(x) ∈ fi(S)}, define g∗

i (x) = fi(x) for x ∈ S,
g∗

i (x) = gi(f −1
i (gi(x))) for x ∈ T, and g∗

i (x) = gi(x) otherwise. Now we have a similar

calculation as before: P(Ai,j,S,f | E) ≤
(

(n−s)!
n!

)2 ∑
fi,fj

P(Ai,j,S,fi,fj | E) = ((n − s)!/n!)2

= p2 = P(Ai,j,S,f ), as required.
The rest of the proof is calculation. We have 8pd1 = 8 · (n − s)!/n! · 2snrt

(n−1
s−1

)

= 16srt/(s − 1)! < 1 provided that t < t∗ = (s − 1)!/20rs, and

8p2d2 = 8 · ((n − s)!/n!)2 · 4snm0

(
n − 1
s − 1

)
(n − 1)!/(n − s)! = 32sm0/n(s − 1)!

< 200θ−1/2(log n)1/2/n < 1,

since n > e30/θ2
, so we can apply Theorem 2.3 to obtain P(∩i,j,S,f Ai,j,S,f ) ≥

(1 − 4p)n1(1 − 4p2)n2 . From the estimate 1 − x ≥ e−2x for 0 < x < 1/2 and noting that
pn1 = tm2

0/s! and p2n2 = (m0
2

)
/s! we have P(∩i,j,S,f Ai,j,S,f ) > e−9tm2

0/s!.
We claim that this is at least mr+1

0 /nr−1, or equivalently, we need to show that
(r + 1) log m0 + 9tm2

0/s! < (r − 1) log n for t < t∗. Recalling that r = 3/θ and m0

= θ−1/2s(log n)1/2 we have 9tm2
0/s! < 1

6 log n and log m0 = log s + 1
2 log log n +

1
2 log θ−1 < (1 − θ) log n + log log n since n > e30/θ2

, so

(r − 1) log n − (r + 1) log m0 − 9tm2
0/s!>

(
3
θ

− 1 −
( 3

θ
+ 1

)
(1 − θ) − 1/6

)

log n−
( 3

θ
+ 1

)
log log n >

1
2

log n −
( 3

θ
+ 1

)
log log n > 0.

For the final estimate we use the inequalities log n
2 log log n > 15θ−2

log 30+2 log θ−1 > 15θ−2

3/2+2θ−1

> 3θ−1 + 1. We deduce that the probability P(∩i,j,S,f Ai,j,S,f ∩ B) of success in a step of
our algorithm is at least mr+1

0 /2nr−1, as required. �

5 Concluding remarks

• We were rather cavalier in our estimates in the proof of Theorem 1.1, preferring
to give a general bound on n for all situations rather than optimize the constants.
The bound n > e30/θ2

can certainly be improved if one tailors the choice of
parameters to a given value of s and tightens up some inequalities in the proof.
For example, one can verify that our argument will work with the parameters
n = 1, 500, s = 10, m0 = 10, r = 2, t∗ = 1, 134, and the resulting code has
size m = t∗m0 = 11, 340. This compares poorly with the Deza–Frankl bound
(which is roughly 107), but the expected number of operations to find it is at most
(2n/m3

0)
(
mn2 + (m

2

)
n
)

< 4×1011, which is feasible on a typical desktop computer.
On the other hand, the number of operations needed to find any code in S1500 by
an exhaustive search method is of order 1, 500! ≈ 104115.

• Our arguments can apply to more general groups, and we will briefly indicate an
example here. For any permutation group G ≤ Sn one can define the covering
radius relative to G of a subset H ⊂ G by crG(H) = maxg∈G minh∈H d(g, h). For
example, if G = An is the alternating group, and we assume a bound on NH(a, b)

very close to that in Theorem 1.2, then we can obtain a bound crG(H) ≥ n − s + 1.
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The only difference in the proof is that, with the same notation as before, we now
show P(Ai,S|E) ≤ P(Bf |E) under the additional assumption that f belongs to the
set Pi ⊂ Sn of permutations f such that {x ∈ S : f (x) �= gi(x)} does not have size
1. Under the assumption f ∈ Pi, we can give an injective map, from the set of
even permutations g such that E ∩ Ai,S holds, to the set of even permutations such
that E ∩ Bf holds: simply map g to gf , as defined earlier, and apply an additional
transposition to the first two elements of g(S) \ f (S) to correct the sign of the
permutation, if necessary. Since |Pi| = n!/(n − s)! − s(n − s + 1) we deduce that
P(Ai,S|E) ≤ (n!/(n−s)!−s(n−s+1))−1 ∑

f∈Pi
P(Bf |E) ≤ (n!/(n−s)!−s(n−s+1))−1.

Now taking this estimate as the parameter p in Theorem 2.2, one can calculate an
estimate for NH(a, b) which is very close to that given in Theorem 1.2.
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