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Abstract In 2003 and 2004, Kasahara and Sakai suggested the two schemes RSE(2)PKC
and RSSE(2)PKC, respectively. Both are examples of public key schemes based on Multi-
variate Quadratic equations. In this article, we first introduce Step-wise Triangular Schemes
(STS) as a new class of Multivariate Quadratic public key schemes. These schemes have m
equations, n variables, L steps or layers, r the number of equations and new variables per
step and q the size of the underlying finite field F. Then, we derive two very efficient cryptan-
alytic attacks. The first attack is an inversion attack which computes the message/signature
for given ciphertext/message in O(mn3Lqr + n2 Lrqr ), the second is a structural attack
which recovers an equivalent version of the secret key in O(mn3Lqr + mn4) operations.
As the legitimate user also has a workload growing with qr to recover a message/compute
a signature, qr has to be small for efficient schemes and the attacks presented in this article
are therefore efficient. After developing our theory, we demonstrate that both RSE(2)PKC
and RSSE(2)PKC are special instances of STS and hence, fall to the attacks developed in
our article. In particular, we give the solution for the crypto challenge proposed by Kasahara
and Sakai. Finally, we demonstrate that STS cannot be the basis for a secure Multivariate
Quadratic public key scheme by discussing all possible variations and pointing out their
vulnerabilities.
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1 Introduction

Public key cryptography is used in e-commerce systems for authentication (electronic sig-
natures) and secure communication (encryption). Both applications proved to be a vital
backbone for today’s information society: buying a book at Amazon, doing online-banking,
or casting a vote secured through TLS, . . . An Internet user is constantly using public key
techniques to ensure the authenticity of data and also its confidentiality. The security of the
public key schemes currently centres on the difficulty of solving certain classes of problems:
RSA relies on the difficulty of factoring large integers, while the difficulty of solving discrete
logarithms provide the basis for Elliptic Curve Cryptography (ECC) [1]. Hence, all systems
used in practice rely on the difficulty of two problems only. We want to point out that these
problems are only believed to be hard but that no proof is known which establishes, e.g.,
NP-completeness or even NP-hardness for these two problems. In addition, important
results on the potential weaknesses of these public key schemes are emerging as techniques
for factorisation and solving discrete logarithm continually improve. For example, polyno-
mial time quantum algorithms [2] are able to solve both problems and therefore, the existence
of quantum computers in the range of 1,000 bits would be a real-world threat to systems based
on factoring or the discrete log problem; the effects on our Internet-driven economy would
be disastrous. This points to the importance of research into new algorithms for asymmetric
cryptography. We want to stress at this point that there are not many results known about the
vulnerability of cryptographic hard problems against quantum algorithms. We are only aware
of shor [2] at this point. Hence, more research effort in this direction seems to be imperative
if we assume the existence of quantum computers within the next decades.

1.1 PKC schemes based on multivariate quadratic MQ equations

One important alternative to schemes based on factoring or elliptic curves are public key pro-
tocols based on the intractability of the problem of solving a simultaneous system of Multi-
variate Quadratic polynomial equations over a finite field F. This is called the MQ-problem.
In the last 15 years, several such public key cryptoschemes (PKC) have been proposed, see
[3] for an up-to-date overview. Generally speaking, a multivariate PKC public key P has
the structure S ◦ P ′ ◦ T where ◦ denotes the composition of functions. Here, S ∈ GLn(F)

and T ∈ GLm(F) represent two linear transformations over the finite field F. The central
map P ′ consists of m central equations in n variables each. For an MQ-scheme, the degree
of these equations is 2. Moreover, the central map P ′ must be easy to invert to allow the
decryption or signing of messages. So the secret key of the MQ-system is composed of the
triple (S,P ′, T ). We want to point out that the different proposals only differ in the structure
of their central equations P ′. Hence, depending on this structure, we are able to identify
several classes: e.g., the initial polynomial substitution scheme from Fell and Diffie [4], C∗
schemes [5], HFE-like schemes [6, 7] or Unbalanced Oil Vinegar schemes [8]. All of them
rely on the fact that the MQ-problem, i.e., finding a solution x ∈ F

n for a given system P
is computationally difficult, namely NP-complete (cf. [9 p. 251, and 10, Appendix] for a
detailed proof). In addition, factoring P into its components T,P ′, S is considered to be a
hard problem if S,P ′, T do not have a special structure. This problem has previously been
studied under the name Isomorphism of Polynomials Problem [11–13].

In this article, we turn to a sub-class of MQ-schemes, i.e., to schemes which use a tri-
angular structure for their central equations P ′. We call them triangular schemes for short.
This idea can be found in [14] and was used to develop birational permutation schemes over
large finite rings. To guard these schemes against special types of attacks, the author of [14]
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removed some equations of the public key. The approach from [14] has been specialised by
Goubin et al. to the case of small finite fields. This construction is denoted Triangle Plus
Minus (TPM [15]). Apart from changing the focus from large rings to small fields, they add
to the construction of [14] some equations in the last step (“Plus” modification). Due to the
specialisation to fields, TPM falls in the same class as the scheme described in this article
(cf. Fig. 2). Actually, step-wise triangular schemes (STS) can be viewed as a generalisation
of TPM (cf. Section 2.3 for further details).

In our construction STS, we allow steps of more than only one variable but keep the trian-
gular structure of TPM (cf. Fig. 1 for regular STS). As shown in this figure, the step-width,
i.e., the number of new variables and the step-height, i.e., the number of new equations, is
controlled by the parameter r . For comparison: in Birational Permutations and TPM, the
parameter r is fixed to 1.

1.2 Organisation and outline

In the main part of this article, we will describe two very efficient attacks on STS schemes.
They defeat STS in O(mn3Lqr + mn4) and O(mn3Lqr + n2 Lrqr ) operations—for m the
number of equations, n the number of variables, L the number of layers, q the size of the
ground field F and r the step-width/step-height. All constructions of STS known so far need a
workload proportional to qr for the legitimate user to decrypt messages/compute signatures.
Therefore, the number qr has to be rather small to allow efficient and therefore practical
constructions. Consequently, the attacks described in this article are efficient in practice. The
main observation for our attacks is the fact that the kernels of the private central polynomials
p′

i form a descending chain of subspaces (cf. Section 3.1). As we can demonstrate that the
recently proposed schemes RSE(2)PKC and RSSE(2)PKC by Kasahara and Sakai belong to
the STS family (cf. Section 4), it follows that they are covered by these attacks. We therefore
conclude that they are highly insecure. As an application of the attacks described in this arti-
cle, we computed the solution for the RSE(2)PKC challenge (cf. Section 4.2). This challenge
was proposed in [16].

The remainder of this article is organised as follows: after this introduction, we describe
Step-wise Triangular Systems in Section 2. Then, we move on to a cryptanalysis of regular
STS schemes, showing both an inversion and a structural attack in Section 3. In Section 4
deals with special instances like RSE(2)PKC and RSSE(2)PKC. In Section 5, we study some
generalisations of STS schemes. This article concludes with Section 6.

Fig. 1 Central equations p′
i in a regular STS scheme
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2 Step-wise triangular systems

In this section, we will define public key schemes which use Multivariate Quadratic equa-
tions. We start with the definition and properties of their public keys.

2.1 Encryption and public key size

As explained earlier, all schemes based on the MQ-problem have the same structure for the
public key. This observation leads to the following

Definition 2.1 Let F be a finite field and n,m ∈ N the number of variables and equations,
respectively. Moreover, let for 1 ≤ i ≤ m and 1 ≤ j ≤ k ≤ n: αi , βi, j , γi, j,k ∈ F. We call
them constant, linear and quadratic coefficients, respectively. Then we have the public key
polynomials

pi (x1, . . . , xn) :=
∑

1≤ j≤k≤n

γi, j,k x j xk +
∑

1≤ j≤n

βi, j x j + αi . (1)

Based on these polynomials, we define the polynomial vector P := (p1, . . . , pm) and denote
the class of all such polynomial vectors by MQm(F

n). Note that the m entries p1, . . . , pm

of P are multivariate quadratic polynomials in n input variables each. We call P the “public
key” of an MQ-system.

Lemma 2.2 Let P be a public key as in Definition 2.1, n the number of variables, m the
number of equations, F the ground field and q := |F| the number of its elements. Then
the following formula can be used to compute the number of coefficients for an individual
polynomial pi : 1 ≤ i ≤ m :

τ(n) :=
{

1 + n + n(n−1)
2 = 1 + n(n+1)

2 , if F = G F(2),
1 + n + n(n+1)

2 = 1 + n(n+3)
2 , otherwise.

Proof The first row in the above expression comes from the fact that we have x2
i = xi for

F = GF(2) and 1 ≤ i ≤ n, i.e., quadratic terms of the form x2
i over GF(2) reduce to linear

terms. The rest of the formula follows from a simple combinatoric count. �

Corollary 2.3 Using the formula from Lemma 2.2, we obtain mτ(n) = O(mn2) for the
number of coefficients and hence a memory requirement of log256(q)mτ(n) byte for the
public key.

Remark For a secure MQ-system, the public key polynomials should behave similar to
random equations. Therefore, we do not expect to find efficient compression techniques for
these keys. The size requirement from Corollary 2.3 are therefore tight.

2.2 Private key and decryption

After defining the public key of general MQ-systems, we now move on to the special class
of general Stepwise Triangular Systems:

Definition 2.4 Let F be a finite field, n,m two integers and S ∈ GLn(F), T ∈ GLm(F) two
linear transformations. Moreover, let r1, . . . , rL be L integers such that r1 + · · · + rL = n,
the number of variables, and m1, . . . ,mL ∈ N such that m1 + · · · + mL = m, the number
of equations. Here, L ∈ N denotes the number of layers or steps in the scheme, rl represents
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Fig. 2 MQ-trapdoor (S,P ′, T )
in STS

input x

x = (x1, . . . , xn)

private:S

x′

private:P ′

y′

private:T

output y

public:
P = (p1, . . . , pn)

the number of variables (step-width) and ml the number of equations (step-height), both in
step l for 1 ≤ l ≤ L . Now define P ′ ∈ MQm(F

n) as the system of m multivariate quadratic
equations in n variables where the ml private quadratic polynomials of each layer l, contain
only the variables x ′

k with k ≤ ∑l
j=1 r j , i.e., only the variables defined in all previous steps

plus rl new ones. Then we call the triple (S,P ′, T ) ∈ GLn(F)× MQm(F
n)× GLm(F) the

private key of a general STS system (gSTS).
The overall shape of the private polynomials leads to the name STS. We define its public

key as P := T ◦P ′ ◦ S where ◦ denotes the composition of functions, cf. Fig. 2 for the overall
structure of STS schemes.

The structure of an STS can be seen in Fig. 2, and the form of its central map is outlined
in Fig. 1. In addition, we want to point out that the two linear transformations S and T can be
expressed as invertible matrices, i.e., we can write S ∈ F

n×n and T ∈ F
m×m , respectively.

Remark In this article, we always use a prime (′) for denoting the secret central part of the
system, e.g., the variables x ′

1, . . . , x ′
n , the output y′

1, . . . , y′
m of the polynomials p′

1, . . . , p′
m

over F, and hence their coefficients α′
i , β

′
i, j , γ

′
i, j,k ∈ F for 1 ≤ i ≤ m and 1 ≤ j ≤ k ≤ n.

By convention, we have j < k in the case of F = GF(2) (cf. Lemma 2.2).

To simplify the explanations, we concentrate on regular STS schemes (rSTS or STS for
short) in this article. For regular STS schemes we set r1 = · · · = rN = m1 = · · · = mL ,
which we denote by r . Moreover, m = Lr and m = n. Note that the attacks we propose are
also valid for the gSTS schemes (cf. Sect. 5.1). The structure of a STS has been outlined in
Figs. 1 and 2.

Lemma 2.5 Let (S,P ′, T ) ∈ GLn(F)× MQm(F
n)× GLm(F) be the private key of a rSTS

scheme and P the corresponding public key. If there is no additional trapdoor embedded into
the different layers 1 ≤ l ≤ L , the legitimate user has a workload proportional to Lqr to
invert the equation P(x) = y for y ∈ F

m and given private key (S,P ′, T ).

Proof In order to decrypt a given ciphertext y, we need to invert x
S→ x′ P ′→ y′ T→ y. Both

S, T are bijections and the legitimate user needs O(n3) steps for inversion (or O(n2) if S−1

and T −1 have been precomputed). However, the central equations do not have any trapdoor
embedded in their equations. Hence, the legitimate user can only use brute force, i.e., try qr

different possibilities for each of the L layers. This establishes the lemma. ��
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General STS schemes are no bijections. Hence, in order to recover the correct message for
a given ciphertext, we need to either add redundancy to the original message x or transmitting
some additional redundancy, e.g., in form of its hash-value h := H(x) where H(·) denotes a
cryptographically secure hash function (e.g., see [1]). This allows to pick the correct message
x for a given input y. For a signature scheme, we do not need this redundancy as it is enough
to obtain one x ∈ F

n such that P(x) = y for a given y; in most cases, this will be the hash
of a longer message. As this point is not important for our attack, we refer to [7, 17] for a
broader discussion of this problem.

2.3 Comparison with other schemes

As already pointed out in the introduction, the Birational Permutation Schemes of Shamir
are STS schemes with r = 1. However, they are not defined over a (small) finite field but
over a (large) finite ring. The TPM class of Goubin and Courtois coincides with STS for the
parameters r1 = u, mL = v, m1 = · · · = mL−1 = r2 = · · · = rL = 1, i.e., we remove u ∈ N

initial layers, add v ∈ N polynomials in the last step, and have exactly one new variable at
all intermediate levels. As STS, this class is not defined over a ring but over a field.

Shamir’s scheme was broken shortly after its publication in [18–20]. The TPM scheme
of Goubin and Courtois has been broken in the very article that proposed it [15]. In fact,
the aim of their construction was to show that Moh’s TTM construction is weak. While we
dwell on the basic ideas of the above attacks, it is necessary to extend them as they are not
directly applicable to STS. In particular, Kasahara and Sakai conclude (cf. [16, Sect. 4.3.III]
and [17, Sect. 4.1.III) that their constructions are secure against all known attacks—in par-
ticular, mentioning [15]. Although this observation is true, we will show in Sect. 3 that it
is possible to generalise these attacks in a way that STS and consequently RSE(2)PKC and
RSSE(2)PKC are broken.

3 Cryptanalysis

We now present two different types of attacks on STS. In the inversion attack (cf. Section
3.3), we recover for given ciphertext y the corresponding message x. In the structural attack
(cf. Section 3.4), we build a linear equivalent version of the private key, denoted (S̃, P̃ ′, T̃ ).
Using (S̃, P̃ ′, T̃ ), the attacker is in the same position as the legitimate user for deciphering
a given message y or for forging a signature on it. For both attacks, we first need some
observations on kernels.

3.1 Chain of kernels

Let pi be a public key polynomial as defined in (1). In order to uniquely express its homo-
geneous quadratic parts in a symmetric matrix Pi ∈ F

n×n , we need to distinguish odd and
even characteristic.

• For characteristic 	= 2, the matrix elements (Pi )a,b on row a and column b of the sym-
metric matrix Pi are determined by

{
(Pi )a,b = γa,b

2 for 1 ≤ a < b ≤ n,
(Pi )a,a = γa,a for 1 ≤ a ≤ n .
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Fig. 3 Matrix representation of the private key p′
i for layer l

So, instead of evaluating the quadratic parts of pi by the vector x, we may also perform
x Pi xT as matrix-vector multiplications (here T denotes transposition), cf. Fig. 3 for a
graphical representation of this idea.

• For even characteristic, division by 2 is not defined. Therefore, the form Pi := Li + LT
i

for lower triangular matrices Li is used. This way, we loose the quadratic coefficients γi,i

of the public polynomials. However, in characteristic 2, these quadratic terms are linear
and we can therefore ignore them. To the knowledge of the authors, the above obser-
vation has been initially reported in [8] and is there credited to Coppersmith (private
communication).

The private key polynomials p′
i may also be represented in the above matrix form. Follow-

ing the notation outlined in the previous section, we denote the corresponding matrices P ′
i .

Obviously, the rank of each such matrix depends on its layer l. The matrices P ′
i have a rank

of rl in each layer l for 1 ≤ l ≤ L and we have

ker′l = {a′ ∈ F
n | a′

1 = · · · = a′
rl = 0}

as common kernels of the matrices P ′
i for (l − 1)r < i ≤ lr , cf. Fig. 3 for the corresponding

matrix. As these kernels are hidden by the linear transformation S, we also mark them with a
prime ′. Moreover, we denote by a′

i ∈ F for 1 ≤ i ≤ n the coefficients of the vectors a′ ∈ F
n .

We now study the effect of the linear transformation S, i.e., the change of variables. As
we have p̂i := p′

i ◦ S and x ′ = S(x), we obtain P̂i := S P ′
i ST in terms of the corresponding

matrices. As the transformation S is invertible, we have Rank(P̂i ) = Rank(P ′
i ) and

kerl = {a′S−1 | a′ ∈ F
n ∧ a′

1 = · · · = a′
rl = 0} (2)

for the kernels of P̂i for (l − 1)r < i ≤ lr and an unknown matrix S. Moreover,

ker′L ⊂ · · · ⊂ ker′1 and consequently kerL ⊂ · · · ⊂ ker1 .

With the notation T = (τi, j )1≤i, j≤m , individual public key matrices Pi can be expressed
by

Pi =
m∑

j=1

τi, j [S P ′
i ST ] =

m∑

j=1

τi, j P̂i .

The problem of finding the transformation T −1 and thus T has therefore been reduced to
finding a linear combination of the public key (in matrix notation) which has a specific rank.
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3.2 Recovering the transformation T

As we saw in the previous section, it is crucial for an attack of STS schemes to recover the
transformation T . In this section, we describe two algorithms which can be used for this
purpose.

3.2.1 Attacking the high-rank side

We start with an attack on the high-rank side (cf. the algorithm in Fig. 4). The overall idea
of this algorithm is to exploit the step-structure of STS. To do so, we observe that a cor-
rect random guess of a row-vector in T −1 will lead to a condition on the rank of the linear
combination of the corresponding public key equations—expressed in matrix notation. More
formally and also to verify the correctness of this algorithm, we consider the following vector
spaces.

Definition 3.1 Define an ascending chain of subspaces Jl of dimension (m − lr) for 1 ≤
l ≤ L as

Jl := {b′T −1 | b′ ∈ F
m ∧ b′

lr+1 = · · · = b′
m = 0} for 1 ≤ l ≤ L . (3)

When picking a random element v ∈R Jl+1, we have a probability of q−r that the expression
v ∈ Jl holds because of the definition of the subspaces Jl , Jl+1. In addition, we have two
efficient methods (matrixCheck or polynomialCheck, respectively) to check whether
v ∈ Jl or v /∈ Jl . First, we concentrate on matrixCheck.

Theorem 3.2 The method matrixCheck will check if v ∈ Jl and is defined by

matrixCheck(P1, . . . , Pm, v, l) returns true iff Rank

(
m∑

i=1

vi Pi

)
≤ lr.

Fig. 4 High-rank algorithm for computing the transformation T̃ for a given system of equations
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Proof For the sake of the argument, we look at the problem in the T −1-space, i.e., after the
linear transformation T −1 has been applied. Using the notation from (3), we consider vectors
b′ instead of v. Hence, we have

M :=
m∑

i=1

b′
i P̂i =

rl∑

i=1

b′
i

(
S P ′

i ST
)

= S

(
rl∑

i=1

b′
i P ′

i

)
ST .

Observing the step-wise structure of the private key polynomials p′
i we conclude that the

Rank(M) ≤ lr . This yields the result. �

The expected running time of the algorithm from Fig. 4 is therefore bounded by O(mn3

Lqr ): by picking at most cmqr vectors for each layer (c being a small constant, e.g., 10), we
can compute the vector spaces J1, . . . , JL with very high probability. Checking the matrix
condition costs an additional factor of n3 as we are processing matrices from F

n×n . In com-
parison, the running time of the other steps of the algorithm are negligible.

In characteristic 2, we may apply Dickson’s theorem instead to check directly for a given
polynomial if it may be reduced to a form with less variables (procedure polynomial-
Check). Unfortunately, the proof is a bit lengthy, we therefore refer to [21, Sect. 15.2,
Theorem 4] for both the theorem and its proof. An algorithmic version of it can be found
in [22, Sect. 3.2]. The time complexity of this algorithm is there estimated to be O(n3).
Therefore, the overall complexity of the above algorithm remains the same: O(mn3Lqr ).

Remark In both cases, we will not be able to recover the original transformation T but
the inverse of a linear equivalent copy of it, denoted T̂ for the inverse and T̃ for the linear
equivalent of T . In fact, we will recover versions of T in which the rows of T̃ are linear
combinations of the rows of T within the same layer.

3.2.2 Attacking the low-rank side

In the previous algorithm, we constructed the linear equivalent copy of T −1 stepwise by
means of the r basis vectors from the subspace J̃ = Jl+1 ∩ Jl . Therefore, we call it an attack
from the low-rank side. We now show how we can also perform an attack from the high-rank
side. For this purpose, we define Jl := {b′T −1 | b′ ∈ F

m and b′
1 = · · · = b′

lr = 0} as
complement of the vector space Jl , 0 ≤ 1 ≤ L .

Theorem 3.3 The subspace J̃ := Jl ∩ Jl−1 where Jl−1 denotes the complement of the vector
space Jl−1, has dimension r and will determine r new linearly independent rows of the matrix
T −1.

Proof The proof is based on two different observations. The first one is that the kernels
keri form a descending chain. Therefore, setting ker0 := F

n , the statement w ∈ kerl is
true with probability q−r for all w ∈R kerl−1 and 1 ≤ l ≤ L . Second, the linear equation∑m

i=1 vi (wPi ) = 0 has qlr solutions for unknown v ∈ F
m if and only if the vector w is in

the kernel kerl . �

The algorithm will therefore terminate with a correct solution T̃ after a total of O(Ln3qr )

steps on average. Thus, it outperforms the algorithm from the previous section by a factor of
m. As for the previous algorithm, we will not recover the original transformation T but an
equally useful variant of it.

Remark Specialised versions of the algorithms from Figs. 4 and 5 can be found in [15] for
the case of schemes with step-width 1 of the intermediate layers.
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Fig. 5 Low-rank algorithm for computing the transformation T̃ for a given system of equations

Fig. 6 Inversion attack for y = P(x) and given T̃

3.3 Inversion attack

In the previous section, we discussed two different approaches to recover a linear transfor-
mation T̃ for given public key equations. In this section, we will use T̃ and the polynomials
p̂i := T̃ −1 ◦ pi to solve the problem y = P(x) for a given vector y ∈ F

m , i.e., for the
MQ-problem. We do so by computing a successive affine approximation of x (cf. Fig. 6).
Define Ki := keri for 1 ≤ i ≤ L . In addition, we write Kl := {a′S−1 | a′ ∈ F

n and a′
rl+1 =

· · · = a′
n = 0} for its complement.

Theorem 3.4 The solutions form a chain of affine subspaces x +〈Kl〉—where Kl has dimen-
sion n − rl in step l.
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Proof Recall that the kernels Ki := keri for 1 ≤ i ≤ L have the form kerl = {a′S−1 | a′ ∈
F

n ∧ a′
1 = · · · = a′

rl = 0}. Setting K0 := F
n we have

K̃l = Kl−1 ∩ Kl = {a′S−1 | a′ ∈ F
n ∧ a′

1 = · · · = a′
(l−1)r = a′

lr+1 = · · · = a′
n = 0}

for 1 ≤ l ≤ L . Using this observation, we can “switch on” groups of r (hidden) variables
x′ and therefore manipulate the output of the polynomials p̂i layer by layer. This is possible
although we do not know the actual value of the secret matrix S. The statement in the theorem
then follows from the fact that the polynomial system P̂ inherits the layer structure of the
original private polynomial system P ′. ��

Therefore, we can conclude that we learn r log2 q bits about the vector x for each level of
recursion.

With this inversion attack, we are now in a similar position as the legitimate user: at each
level, we have to try cqr possible vectors and to evaluate r polynomials p̂i —each step cost-
ing O(rn2). In case the STS is not a bijection, we may need to branch—but this is the same
situation as for the legitimate user. The only additional overhead is the computation of the
complement of vector spaces and to intersect them. Both can be done in O(n2). Assuming
that P is a bijection, one application of this inversion attack has time-complexity O(n2 Lrqr ).

3.4 Structural attack

The starting point of the structural attack (cf. Fig. 7) is the same as for the inversion attack,
namely ker1 ⊃ · · · ⊃ kerL . As we have computed the transformation T̃ in the previous
step, we are able to compute the system of equations P̂ , the corresponding matrices P̂l and
therefore their kernels for each layer l : 1 ≤ l ≤ L . Due to its internal structure, the vector
space K̃ := Kl−1 ∩ Kl consists of exactly r row-vectors of S̃−1. We recover them in the for
loop. As soon as we have recovered S̃, we apply it to the intermediate system of equations
P̂ , yielding P̃ ′, an equivalent copy of the private key polynomials.

In terms of complexity, the second step of the structural attack is dominant: we need to
evaluate m polynomials with O(n2) quadratic terms each. As each quadratic term has two
variables, this costs O(n2) for each term. The overall time complexity is therefore O(mn4).
So depending on the value qr , either the structural or the inversion attack has a lower asymp-
totic running time as the constants are in the same range.

Fig. 7 Structural attack for a given sequence of kernels ker1, . . . , kerL
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4 Special instances of STS

In this section, we show that the two schemes RSE(2)PKC [16] and RSSE(2)PKC [17],
recently proposed by Kasahara and Sakai, are special instances of STS—and will therefore
fall for the attacks discussed in the previous section. In particular, we were able to break the
challenge proposed in [16, Sect. 6] using an inversion attack (cf. Section 3.3) in both cases.

4.1 RSSE(2)PKC

In RSSE(2)PKC, the private polynomials p′
i for 1 ≤ i ≤ r have a special form, namely

p′
(l−1)r+i (x

′) := φl,i (x
′
(l−1)r+1, . . . , x ′

lr )+ ψl,i (x
′
1, . . . , x ′

(l−1)r ) for 1 ≤ l ≤ L ,

where φl,i and ψl,i are random quadratic polynomials over F in r and (l − 1)r variables,
respectively. In both cases, the constant part is omitted. To simplify programming, the linear
terms βxi are considered to be quadratic terms βx2

i , for all i ∈ {1, . . . , n}. This may be done
as RSSE(2)PKC is defined over GF(2) and we hence have x2 = x for all x ∈ GF(2).

We observe that this special construction of the private key polynomials does not affect our
attacks. In particular, the maximum rank for the corresponding matrices P ′

i stays the same,
namely lr for each layer. Unfortunately, for small values of r (in particular, 2 ≤ r ≤ 4), there
is a high probability that two polynomials φl,i , φl, j for i 	= j have the same coefficients: for
r = 2, there is only one non-linear coefficient, for r = 3, there are only 3, and for r = 4, we
obtain 6. The corresponding probabilities are therefore 2−1, 2−3 and 2−6, respectively, that
the polynomials φl,i , φl, j share the same quadratic coefficients. In a linear combination of
these two polynomials, the rank of the corresponding matrix will therefore drop by r . This
change defeats the lowRank algorithm from Fig. 5 as it only uses the matrix representation
of the public key polynomials pi . That way, it will not only find solutions of the layer l, but
also for such linear combinations. To attack RSSE(2)PKC, it is therefore advisable to use the
highRank algorithm from Fig. 4 in connection with Dickson’s theorem (cf. Section 2.2).

4.2 RSE(2)PKC

The system RSE(2)PKC is a special case of RSSE(2)PKC: the polynomials φl,i are required
to be step-wise bijections, i.e., we have (φl,1, . . . , φl,r ) : F

r
2 → F

r
2 is a bijection for all

l ∈ {1, . . . , N }. This way, the whole system P becomes a bijection and it is possible to
recover the solution x step by step without any ambiguity. As being a bijection is a rather
strong requirement for a system of multivariate polynomials, the problem described in the
previous section becomes more severe as we have far less choices for the coefficients in the
quadratic terms. Still, using the high-rank rather than the low-rank attack should overcome
this problem.

In [16, Section 3.2], the authors suggest r ≤ 10 for their scheme which leads to qr =
210. Therefore, we expect all attacks from the previous section to be efficient against these
schemes.

4.2.1 Challenges

In [16, Sect. 6], Kasahara and Sakai propose two challenges with the following parameters:
F = GF(2), n = 100 and r = 4, 5. Using a (highly unoptimised) Magma [23] programme,
we were able to break this challenge in a few hours on an AMD Athlon XP 2000+. For our
attack, we implemented the inversion attack against the low-rank side (cf. Sects. 3.2.2 and
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3.3). As pointed out earlier, the attack should have been more efficient using an attack against
the high-rank side in combination with Dickson’s theorem (cf. Sections 3.2.1). In particular,
we computed the solution x for the given value y. The two solutions are (in vector-notation,
starting with x1 at the left):

• r = 4: (0 0 1 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 0

0 0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0 1 1 1 0 0 1 0 1 1 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1),

• r = 5: (1 1 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 0 1 0 1 0 1 1 0 0 1 0

1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1).

These results have been confirmed by Kasahara and Sakai (Private communication).
Apart from the attacks presented in this article, we also want to point out that the generic

birthday attack for signature schemes applies against the parameter choice q = 2 and n =
100. In this case, the workload becomes only O(250). As Kasahara and Sakai do not use spe-
cial constructions as, e.g., Feistel-Patarin-Networks [24], the generic birthday attack applies
against RSE(2)PKC, RSSE(2)PKC, and also the hybrid type construction from the following
section.

4.3 Hybrid type construction

In [17, Sect. 4.2], Kasahara and Sakai propose a so-called “hybrid type construction” to
enhance the security of RSSE(2)PKC. To simplify explanation, we restrict to the case with
two branches as this is sufficient to point out its vulnerability to the attacks described in this
article.

In this case, the private polynomials p′
i are partitioned into two sets: the polynomials

p′
1, . . . , p′

m/2 are constructed as for RSSE(2)PKC (see above). However, the construction of
the other polynomials now involves a third type of polynomial, denoted σ . For L/2 < l ≤ L
and 1 ≤ i ≤ r we have:

p′
lr+i (x

′) := φl,i (x
′
(l−1)r+1, . . . , x ′

lr )+ ψl,i (x
′
1, . . . , x ′

(l−1)r )

+σlr+i (x
′
1, . . . , x ′

(L/2)) .

As for φl,i and ψl,i , the polynomials σlr+i are quadratic polynomials with randomly chosen
coefficients and no constant term α. All of them depend on the first L/2 variables only.
Therefore, the overall structure of the private polynomials p′

i in terms of the rank of their
matrix representation P ′

i does not change and the attacks of this article are still applicable.

5 Extensions of STS and their vulnerabilities

5.1 General step-wise triangular systems

As outlined in Section 2, regular STS may be generalised by different step-sizes and also
different number of equations in each individual level, denoted r1, . . . , rL ∈ N and m1, . . . ,

mL ∈ N, respectively. Moreover, we may consider these L-tuples as part of the private key;
only their sums n and m are public. However, the internal structure of the private key keeps
the same, in particular, we still obtain the chain of kernels of the private key polynomials.
The only part of the attack we have to be careful about are the values r1 and mL , i.e., the
number of variables in the first layer and the number of equations in the last layer. If the first
is too large, the attack at the low-rank side is no longer effective while a high value of the
latter may preclude the attack from the high-rank side.
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Using gSTS for a signature scheme allows us r1 � m1. However, in this case we may not
allow rL � mL as this leads to a highly overdetermined system of equations — which has
only very few solutions on average. The situation is reverse for encryption schemes. Here,
we may have rL � mL but not r1 � m1. As the system has a solution for y = P(x) by
construction, a large value of mL does not provide a problem here. Unfortunately, we are not
able to find it back if the value for r1 and consequently qr1 is too large.

Therefore, gSTS will either fall to an attack from the high-rank or from the low-rank side.
In both cases the construction is insecure. We want to point out that gSTS is a generalisation
of the TPM construction. In particular, we relax the condition that there is only one new
variable and one new equation at each intermediate level (cf. Section 2).

5.2 Affine transformations

In an attempt to strengthen gSTS, we investigate the replacement of the linear transformations
S, T by affine ones, i.e., to include additional vectors vs ∈ F

n and vt ∈ F
m .

Consider two affine transformations S ∈ AGLn(F) and T ∈ AGLm(F). Then there exists
a unique, invertible matrix MS ∈ F

n×n (respectively MT ∈ F
m×m) and a unique vector

vs ∈ F
n (respectively, vt ∈ F

m) which describes the affine transformation S (respectively, T )
by S(x) = MS x + vs where x ∈ F

n is an input vector (respectively, T (x) = MT x + vt for
x ∈ F

m). Moreover, we can rewrite the affine transformation S as S( x) = (x + vs) ◦ (MS x)
where x denotes the output of MS x. In addition, we can rewrite the affine transformation T
as T (x) = (MT x̂) ◦ (x + M−1

T vt), where x̂ denotes the output of x + M−1
T vt . As MT is an

invertible matrix, the matrix M−1
T ∈ F

m×m exists and is unique.

Theorem 5.1 Consider the PKC with public key P = (S,P ′, T ) ∈ AGLn(F)×MQm(F
n)×

AGLm(F), where P ′ satisfies the gSTS structure. Then the scheme is equivalent to a PKC
with an equivalent public key but where S and T are linear transformations.

Proof We first express the public key as a composition of the private key

P = T ◦ P ′ ◦ S

= [(MT x̂) ◦ (x̃ + M−1
T vt)] ◦ P ′ ◦ [(x + vs) ◦ (MS x)],

where x̃ is the output of P ′ ◦ [(x′ + vs) ◦ (MS x)] and x̂ is the output of (x̃ + M−1
T vt) ◦ P ′ ◦

[(x′ + vs) ◦ (MS x)]. We have

P = (MT x̂) ◦ [(x̃ + M−1
T vt) ◦ P ′ ◦ (x + vs)] ◦ (MS x)

= (MT x̂) ◦ P ′′ ◦ (MS x)

for some system of equations P ′′. As both (x + vs) and (x̃ + M−1
T vt) are transformations

of degree 1, they do not change the overall degree of P ′′, i.e., as P ′ consists of equations
of degree 2 at most, so will P ′′. In addition, due to its construction, (MS,P ′′,MT ) forms a
private key for the public key P and the layer-structure of STS is not affected by these two
operations. �

Therefore, we can conclude that the use of affine instead of linear transformations does not
enhance the overall security of STS. In fact, we are able to draw a similar conclusion for all
such systems—as long as it is possible to replace the equation P ′ by an equation of similar
shape. The corresponding observation for HFE has been made by Toli [25]. A comprehensive
study of equivalent keys for several multivariate quadratic systems is given in [26, 27].
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5.3 Degree larger than 2

In [16, 17], Kasahara and Sakai generalise their construction to the schemes RSE(d)PKC
and RSSE(d)PKC where d ∈ N denotes the degree of the public polynomials and d ≥ 2. In
their construction, terms of all degrees 1, . . . , d appear in the public polynomials, e.g., linear
and quadratic terms in RSSE(2)PKC and RSE(2)PKC (cf. Sections 4.2 and 4.1). Therefore,
we may apply the structural attack using the degree 2 terms in RSSE(d)PKC for d > 2,
consequently retrieving the transformations S̃ and T̃ , and then the corresponding private
polynomials in the larger degree d . Similar, we may apply the inversion attack.

An obvious way of modifying the cipher is to make sure that there are no terms of degree 2
in the public key—and consequently in the private key. In particular, such a system avoids
terms of the form xi xi x j for the ground field F = GF(2). In this case, we cannot associ-
ate matrices to the polynomials (see Section 3.1). However, we now show how to use an
equivalent notion of rank.

Theorem 5.2 Denote by ηi ∈ F
n, the vector with 1 on position i and zeros elsewhere. The

rank of the matrix P which corresponds to the quadratic polynomial p coincides with the
dimension of the subspace �(p) :

�(p) := {p(x + ηi )− p(x) | i ∈ {1, . . . , n}} .

Proof By definition p(x + ηi ) − p(x) represents the linear polynomial consisting of the
variables x j for which γi, j 	= 0. Therefore, computing the rank of the matrix P by Gaussian
elimination corresponds with the computation of the dimension of the subspace �(p). �

Consequently, the rank of a polynomial matrix P is equal to the number of terms on which
the polynomial nonlinearly depends, i.e., the minimum number of variables involved in the
quadratic part of the polynomial after applying any affine transformation. The definition of
�(p) introduced in Theorem 5.2 does not depend on the degree of the polynomial and can
therefore be used in order to replace the rank for polynomials of degree higher than 2.

As a consequence, the overall attack-complexity in both cases does not grow, while the
complexity of checking the signature of a given message increases as the public key consists
of far more terms now: the number of terms grows in O(mnd) for d > 2.

Another way of breaking such a cipher uses d-tensors, cf. [1] instead of matrices. The
overall attack-complexity will grow in this case—but is still polynomial. Moreover, the com-
plexity of checking the signature of a given message will also increase as the public key
consists of far more terms now. Hence, from a cryptanalytic point of view, such a cipher
should be avoided.

5.4 Highly Overdetermined schemes

When the scheme has more equations than variables, i.e., for m > n, we need to adapt the
algorithm LowRankAttack (cf. Section 2.2). Instead of picking one vector in each layer,
we need to consider λ := ⌈m

n

⌉
vectors v1, . . . , vλ ∈ F

n simultaneously. Now, we have

to solve the system of equations
∑m

i=0 v
j
i (wPi ) = 0 for j ∈ {1, . . . , λ} in order to have

enough information for recovering the rows of T̃ . As for the case m ≤ n, this system of
linear equations has qlr solutions if and only if all vectors v1, . . . , vλ are in the kernel kerl .
Consequently, the complexity for the LowRankAttack increases exponentially with λ and is
equal to O(mn3Lqλr ). In practice we will have small values for λ as highly overdetermined
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systems of quadratic equations are easy to solve, using general purpose algorithms as given
in, e.g., [22].

5.5 Tame-like schemes

Moh proposed in 1999 a new type of triangular schemes which were based on the “Tame-
transformation” method [28]. Since, the attack from Goubin et al. [15], the design of such
schemes has drastically been improved. The latest variation on Tame-signature schemes,
called the “Enhanced TTS” due to Yang and Cheng [29, Section 4.2], uses the following
construction for the central equations P ′

p′
i := xi +

7∑

j=1

γ ′
i, j x ′

j x ′
8+(i+ j mod 9) for i = 8, . . . , 16,

p′
17 := x17 + γ ′

17,1x ′
1x ′

6 + γ ′
17,2x2x5 + γ ′

17,3x ′
3x ′

4 + γ ′
17,4x ′

9x ′
16

+ γ ′
17,5x ′

10x ′
15 + γ ′

17,6x11x14 + γ ′
17,7x ′

12x ′
13,

p′
18 := x18 + γ ′

18,1x ′
2x ′

7 + γ ′
18,2x ′

3x ′
6 + γ ′

18,3x ′
4x ′

5 + γ ′
18,4x ′

10x ′
17

+ γ ′
18,5x ′

11x ′
16 + γ ′

18,6x ′
12x ′

15 + γ ′
18,7x ′

13x ′
14,

p′
i := xi + γ ′

i,0xi−11x ′
i−9 +

i∑

j=19

γ ′
i, j−18x ′

2(i− j)x
′
j

+
27∑

j=i+1

γ ′
i, j−18x ′

i− j+19x ′
j for i = 19, . . . , 27

for γ ′
i, j ∈ GF(256). In lower-triangular representation, the polynomials p8, . . . , p16 have a

rank of 7 each. The Tame-equations p17, p18 yield 7, too, and the equations p19, . . . , p27

give 10. This scheme is a type of triangular scheme since the decryption of the private system
of polynomials can be done by easy serial computation through substitution of linear equa-
tions. However, it is easy to see that no chain of kernels in the subsequent private polynomials
exists, which makes our proposed attacks unfeasible. Hence, the security of these schemes is
an open problem. Several constructions for “Scaled-Up” Enhanced TTS schemes were also
proposed in [29, Appendix A]. We want to point out in this context that an earlier version of
this construction has been broken in [30], exploiting the existence of UOV-type properties.

6 Conclusion

In this article, we have generalised the systems TPM, RSE(2)PKC, and RSSE(2)PKC to the
STS. In particular, we allow “steps” which contain more than one new variable (restriction
in TPM) and give the private key polynomials p′

i more flexibility than in RSE(2)PKC or
RSSE(2)PKC.

We have presented two different types of attacks against the STS schemes: an inver-
sion attack with complexity O(mn3Lqr + n2 Lrqr ) and a structural attack with complexity
O(mn3Lqr + mn4). As the value of qr has to be chosen rather small to derive a practical
scheme, we conclude that STS is broken for all practical values (TPM uses two here while
RSE(2)PKC and RSSE(2)PKC allow 1,024 as maximal value). This is a new result for the
special cases RSE(2)PKC and RSSE(2)PKC which have been considered to be secure against
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rank-attacks by their inventors. In particular, we were able to compute the solutions for the
challenges proposed by Kasahara and Sakai (cf. Section 3.2).

We have demonstrated that the existing generalisations of STS are either insecure or
impractical. At present, it does not seem likely that there will ever be secure versions of STS
schemes. In particular, we see no way of avoiding both the large kernel at one end and the
small kernel at the other end—leave alone the chain of kernels—and still obtaining a scheme
which may be used in practice for either encryption or signing.
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