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Abstract Boolean functions on the space F
m
2 are not only important in the theory of

error-correcting codes, but also in cryptography. In these two cases, the nonlinearity of these
functions is a main concept. Carlet, Olejár and Stanek gave an asymptotic lower bound for
the nonlinearity of most of them, and I gave an asymptotic upper bound which was strictly
larger. In this article, I improve the bounds and get an exact limit for the nonlinearity of
most of Boolean functions. This article is inspired by a paper of G. Halász about the related
problem of real polynomials with random coefficients.
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1. Introduction

The nonlinearity of a Boolean function f :Fm
2 −→ F2 is the distance from f to the set of

affine functions with m variables (see Section 2.2). It is an important concept. It occurs in
cryptography (cf. [1, 2, 4]) to construct strong cryptosystems (symmetric ciphers), and in
coding theory with the old problem of the covering radius of the first order Reed–Muller
codes (cf. [3, 8]).

The nonlinearity is bounded above by 2m−1 − 2m/2−1. This bound is reached by bent
functions [6, Ch. 14. Section 5, Theorem 6] which exist only if the number of variables m
of the Boolean functions is even. Except the paper by Chuan-Kun Wu [11] who studies the
distribution of Boolean functions with nonlinearity ≤ 2m−2, the distribution of nonlinearity
was not known until there appeared papers by Carlet [1, 2] and independently Olejár and
Stanek [7] who proved that most of the Boolean functions have a nonlinearity greater than
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2m−1 − 2m/2−1√2m log 2. Then I got more precise results in [9, 10], proving that the
nonlinearity of most of them was contained in the interval [2m−1 − 2m/2−1√2m log 2,
2m−1 − 2m/2−2√m log 2].

Here I show that most of them have indeed a nonlinearity close to
2m−1 − 2m/2−1√2m log 2 (see Section 3.3). For this, I use the link between random poly-
nomials and nonlinearity of Boolean functions, already stressed in my previous papers, and
ideas from a paper by Halász [5] which solves an analogous problem in the case of random
polynomials. Using this method, we have to study the distribution of the spectral amplitude
S( f ) of a Boolean function f , or rather that of a random variable η which measures the
difference between S( f ) and 2m/2√2m log 2, and to find clever estimations of the first two
moments of η.

After some preliminaries in Section 2, I state the results in Section 3 and I leave some
proofs for the following sections.

2. Preliminaries

2.1. Boolean functions

Let m be a positive integer and q = 2m .

Definition 2.1 A Boolean function with m variables is a map from the space Vm = F
m
2 into

F2.

A Boolean function is linear if it is a linear form on the vector space F
m
2 . It is affine if it

is equal to a linear function up to addition of a constant.

2.2. Nonlinearity

Definition 2.2 We call nonlinearity of a Boolean function f :Vm −→ F2 the distance from
f to the set of affine functions with m variables:

nl( f ) = min
h a f f ine

d( f, h)

where d is the Hamming distance.

One can show that the nonlinearity is equal to

nl( f ) = 2m−1 − 1

2
S( f ) (1)

where

S( f ) = max
v∈Vm

∣
∣
∣

∑

x∈Vm

(−1)( f (x)+v·x)
∣
∣
∣

and v · x denote the usual scalar product in Vm . We call S( f ) the spectral amplitude of the
Boolean function f . It is just formed by taking the maximum of the absolute value of the
Fourier transform of (−1) f . This transform is also called Walsh, or Hadamard transform.

We will state the results in terms of spectral amplitude rather than nonlinearity, as it is
linked to it by a simple formula (1).
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2.3. The space of Boolean functions with an infinity of variables

To study asymptotically Boolean functions, we will need the notion of the set of Boolean
functions with an infinity of variables and we will introduce a probability measure on it to
be able to state almost sure results.

We recall that Vm = F
m
2 . We define V∞ as being the space of infinite sequences of ele-

ments of F2 which are almost all equal to zero. We define then Bm as being the algebra of
Boolean functions on Vm and B = B∞ as being the algebra of Boolean functions on V∞. We
have the restriction mappings

πm : B∞ −→ Bm : f �−→ fm = f |Vm .

We will consider the uniform probability P on Bm and we will endow B with a probability
still denoted P such that, for each f ∈ Bm , the probability of the event π−1

m f , which is the
set of those elements h of B such that h |Vm = f , is equal to 1

2q where q = |Vm | = 2m . In
other words, the probability on B is the Haar measure on it with total mass 1.

2.4. Fourier transform of Boolean functions

As usual I call a character of Vm an homomorphism from the additive group of Vm to the
group of multiplicative complex numbers. It is a function µ on Vm with complex values
which is of the form

µ(x) = (−1)x ·y

where y is a given element of Vm . Let us denote by V̂m the set of characters of Vm . The
preceding relation shows that it is isomorphic as a group to Vm .

The Fourier transform is defined on the set of functions on Vm with complex values: to
the function f on Vm into C, there corresponds a function f̂ on V̂m into C by

f̂ (µ) =
∑

x∈Vm

f (x)µ(x)

if µ runs in V̂m . One has

f (x) = 1

q

∑

µ∈V̂m

f̂ (µ)µ(x)

which will be denoted by
∫

µ∈V̂m
f̂ (µ)µ(x)dµ to remind us that the space V̂∞ of characters

of V∞ is no more discrete.

3. Distribution of the spectral amplitude S( f )

3.1. Some auxiliary functions

For f a Boolean function on Vm , we have

S( f ) = max
y∈Vm

∣
∣
∣

∑

x∈Vm

(−1)( f (x)+y·x)
∣
∣
∣ = ‖χ̂ f ‖∞,

where

χ f (x) = (−1) f (x)



62 Des Codes Crypt (2006) 40:59–70

denotes the sign function associated to the Boolean function f and ‖χ̂ f ‖∞ is the maximum
of the absolute value of the function χ̂ f on the set V̂m .

We want to compare ‖χ̂ f ‖∞ with some real number M that we choose such that

M = √

2q log q(1 − β) (2)

with 0 < β < 1/4. We take � =
√

q
log q .

We pick a monotonous infinitely differentiable real function α on [0, 1] such that α(0) =
0, α(1) = 1, and such that the derivatives α(p)(0) and α(p)(1) are 0 for every p. Then we
construct a function u, such that 0 ≤ u(x) ≤ 1 for every x ∈ R and

u(x) =

⎧

⎪⎨

⎪⎩

0 if |x | ≤ M;
α
( |x |−M

�

)

if M ≤ |x | ≤ M +�;
1 if |x | ≥ M +�.

We define the random variable

η =
∫

V̂m

u(χ̂ f (µ))dµ.

The function u is the real Fourier transform of a measure U on R:

u(x) =
∫

R

exp(i t x)dU (t)

whence

η =
∫

V̂m

∫

R

exp(i t χ̂ f (µ))dU (t) dµ =
∫

R

∫

V̂m

exp(i t χ̂ f (µ))dµ dU (t).

3.2. Lower bound of S( f )

Let us note that if f is a Boolean function on Vm such that S( f ) ≤ M , then η = 0. We have
then to compute the probability for η to be 0. Tchebitcheff’s inequality gives an estimation
of the probability that η deviate from the value E(η) of its expectation.

Proposition 3.1 One has

P(η = 0) ≤ P(|η − E(η)| ≥ E(η)) ≤ E(η2)− E2(η)

E2(η)
.

So, we have to compute the expectation of η and of η2.

Proposition 3.2 One has the following estimations, for q tending to infinity,

E(η) =
∫

R

exp
(

− q
t2

2

)

dU (t)+ O

(
log2 q

q

)

;
1

E(η) = O(q1−2β
√

log q); (3)

E(η2) ≤
( ∫

R

exp
(

− qt2

2

)

dU (t)

)2

+ E(η)
q

+ O

(

log5 q

q2

)

.

Proof The proposition is shown in Section 5. �
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Proposition 3.3 One has, if β is fixed

P(S( f ) ≤ M) ≤ P(η = 0) = O
( 1

log2 q

)

.

Proof By the previous propositions, one has

P(η = 0) ≤
O(E(η) log2 q/q)+ O

(
log5 q

q2

)

E2(η)
= O(log2 q)

qE(η) + O

(

log5 q

q2E2(η)

)

We have, by the relation (3),

O(log2 q)

qE(η) = O(q−2β log5/2 q)

and

O
( log5 q

q2E2(η)

)

= O(q−4β log6 q).

This gives the desired conclusion. �

We then get the following asymptotic result.

Theorem 3.1 If f is a Boolean function in B∞, its restriction to Vm fulfills almost surely,
for m big enough:

S( fm) >
√

2q log q(1 − β).

Proof Indeed, summing up for m ∈ N both sides of the inequalities given by the previous
proposition, we get

∑

m

P(S( fm) ≤ M) ≤ O

(
∑

m

1

m2

)

< ∞.

Borel-Cantelli’s lemma tells us that almost surely S( fm) > M except for a finite number
of m. �

3.3. Limit of S( f )

Theorem 3.2 If f is a Boolean function in B∞, then almost surely:

lim
m→∞

S( fm)√
2q log q

= 1.

Proof One uses the previous theorem, letting β tending to 0, and Corollary 4.1 of [9] (cf.
also Corollary 4.1 of [10]) which gives an upper bound for the limit. �

Corollary 3.1 If f is a Boolean function in B∞, then almost surely:

lim
m→∞

2m−1 − nl( fm)

2m/2−1
√

2m log 2
= 1.
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3.4. Remark 1

One could with more work obtain a result like this one similar to Halácz’s [5].

Theorem 3.3 For almost every Boolean function f in B∞, one has
∣
∣
∣
∣

S( fm)

2m/2
√

m
− √

2 log 2

∣
∣
∣
∣
≤ C

log m

m

for m large enough, for some constant C.

3.5. Remark 2

The expression almost surely in Theorem 3.1 or 3.2 or in Corollary 3.1 and the expression
almost every in Theorem 3.3 mean that the results are true only for f belonging to a set of
B∞ of measure 1.

4. Some estimations

The proofs of the following estimations of integrals in proposition 4.1 are similar to Halász’s
ones. I recall them for the convenience of the reader.

Proposition 4.1 One has the following estimations:
∫

R

|dU (t)| = O(log q); (4)

∫

R

|t |p|dU (t)| = O

(
log q

q

)p/2

for 1 ≤ p ≤ 8; (5)

∣
∣
∣

∫

R

exp

(

−qt2

2

)

t p dU (t)
∣
∣
∣ = O

(

q−1+2β−p/2 logp/2−1/2 q
)

for 0 ≤ p ≤ 8. (6)

Proof The measure U , as u is its Fourier transform, is the sum of the Dirac measure at the
origin and of a measure whose density is the indefinitely differentiable function

v(t) = 1

2π

∫

R

(u(x)− 1) exp(−i t x)dx,

which is rapidly decreasing at infinity.
By using the fact that u(x) = 1 if |x | ≥ M +� we get

|v(t)| ≤ 1

2π

∫

|x |≤M+�
|u(x)− 1|dx ≤ 1

π
(M +�) = O(M). (7)

The formula of Fourier transform of derivatives gives for 1 ≤ p ≤ 8:

|2π t pv(t)| ≤
∫

R

|u(p)(x)|dx ≤ 2�‖u(p)(x)‖∞ ≤ 2‖α(p)(x)‖∞
1

�p−1 = O
( 1

�p−1

)

. (8)

To prove the first two estimations of the Proposition 4.1, we split the integration interval
in two pieces: |t | ≤ 1

�
and |t | ≥ 1

�
. For the first piece, we get an upper bound of |t pdU (t)|

with (7) or (8). For the second, we get an upper bound of that expression with (8) for p + 2
and use it to obtain an estimation of the integral

∫

|t |≥ 1
�

t p|dU (t)|.
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To prove the third (6), we use the fact that the Fourier transform of the measure t pU is

i−pu(p)(x) and that of exp(− q
2 t2) is

√
2π
q exp

(

− x2

2q

)

. By Parseval formula, we have

∣
∣
∣

∫

R

exp
(

−q

2
t2

)

t pdU (t)
∣
∣
∣ = 1√

2πq

∣
∣
∣

∫

R

exp

(

− x2

2q

)

u(p)(x)dx
∣
∣
∣

= O

(
1

�p√q

∫

|x |≥M
exp

(

− x2

2q

)

dx

)

and by using an estimation for the previous integral

= O

( √
q

M�p
exp

(

− M2

2q

))

= O
(

q−1+2β−p/2 logp/2−1/2) . 	

Remark 4.1 Actually we can check that we used the fact that the auxiliary function α was
8 times continuously differentiable, and not infinitely differentiable, as we supposed in the
section just for simplicity.

5. Proof of Proposition 3.2

Lemma 5.1 Let t be a real number and µ a character of F
m
2 , then, for f running in the

space of Boolean functions on F
m
2 , one has, for x fixed in Vm :

E(exp(i tχ f (x)µ(x))) = cos(t).

Proof Half of Boolean function on Vm are such that χ f (x)µ(x) = 1, half of them are such
that χ f (x)µ(x) = −1. �

Lemma 5.2 For µ given, one has

E(exp(i t χ̂ f (µ))) = exp
(

− q
t2

2

)

+ O(qt4)

for |t | ≤ 1.

Proof As the random variables χ f (x) are independent in x , we have

E(exp(i t χ̂ f (µ))) = E
(

∏

x∈F
m
2

exp
(

i tχ f (x)µ(x)
))

=
∏

x∈F
m
2

E
(

exp
(

i tχ f (x)µ(x)
))

= exp
(

q log(cos t)
)

.

We have

exp(q log cos t) = exp
(

− q
t2

2

)

+ O
(

q
t2

2
+ q log cos t

)

by the relation e−a = e−b + O(b − a) if a, b ≥ 0 and

q
t2

2
+ q log cos t = O(qt4)

by the expansion log cos t = − t2

2 + O(t4) if |t | ≤ 1. �
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5.1. Expectation of η

Lemma 5.3 The expectation of η is such that

E(η) =
∫

R

exp
(

− q
t2

2

)

dU (t)+ O(log2/q).

Proof One has

E(η) =
∫

R

∫

V̂m

E(exp(i t χ̂ f (µ)))dµ dU (t).

By first computing the integral over the interval [−1, 1] and using the previous estimation
which is independent of µ, we get

∫ 1

−1

∫

V̂m

E(exp(i t χ̂ f (µ)))dµ dU (t)

=
∫ 1

−1

∫

V̂m

exp
(

− q
t2

2

)

dµ dU (t)+
∫ 1

−1

∫

V̂m

O(qt4)dµ|dU (t)|

=
∫ 1

−1
exp

(

− q
t2

2

)

dU (t)+
∫ 1

−1
O(qt4)|dU (t)|

=
∫

R

exp
(

− q
t2

2

)

dU (t)+ O
( ∫

R

qt4|dU (t)|
)

as
∫

|t |>1 exp
( − q t2

2

)|dU (t)| = O
( ∫

|t |>1 |dU (t)|
)

= O
( ∫

R
qt4|dU (t)|

)

. The integral,

outside the interval [−1, 1], is
∫

|t |>1

∫

V̂m

E(exp(i t χ̂ f (µ)))dµ dU (t) = O
( ∫

|t |>1
|dU (t)|

)

= O
(

q
∫

R

t4|dU (t)|
)

whence

E(η) =
∫

R

exp
(

− q
t2

2

)

dU (t)+ O
(

q
∫

R

t4|dU (t)|
)

. (9)

We then use the estimations of the Proposition 4.1 to get the result. �

Lemma 5.4 We have

1

E(η) = O(q1−2β
√

log q)

Proof We have to estimate E(η). By the Lemma 5.3, we begin by an estimation of
∫

R
exp(−q t2

2 )dU (t). The real Fourier transform of exp(−q t2

2 ) is
√

2π
q exp(− x2

2q ). By Parseval

formula one has therefore
∫

R

exp
(

− q
t2

2

)

dU (t) = 1√
2πq

∫

R

exp
(

− x2

2q

)

u(x)dx
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We estimate this integral using

∫

R

exp
(

− x2

2q

)

u(x)dx ≥
∫

M+�≤|x |
exp

(

− x2

2q

)

dx .

≥ q

2M + 2�
exp

(

− (M +�)2

2q

)

There is a constant C1 such that this last terms is greater than

C1
q

2M
exp

(

− M2

2q

)

= C1

√
q

2
√

2 log q(1 − β)
q2β−1

Therefore 1√
2πq

∫

R
exp

(

− x2

2q

)

u(x) is bigger than the error term O

(

log2 q
q

)

in the

Lemma 5.3. Whence one has

1

E(η) = O(q1−2β
√

log q). 	


5.2. Expectation of η2

The computation of E(η2)will be done in several steps. One decomposes η2 in two integrals:

η2 =
∫

µ=ψ
u(χ̂ f (µ))u(χ̂ f (ψ))dµ dψ +

∫

µ�=ψ
u(χ̂ f (µ))u(χ̂ f (ψ))dµ dψ

where the integrals are computed for µ ∈ V̂m and ψ ∈ V̂m .
We evaluate the first term.

Lemma 5.5
∫

µ=ψ
u(χ̂ f (µ))u(χ̂ f (ψ))dµ dψ ≤ η

q
.

Proof We simply remark that
∫

µ=ψ
u(χ̂ f (µ))u(χ̂ f (ψ))dµ dψ =

∫

µ=ψ
u2(χ̂ f (µ))dµ dψ

= 1

q

∫

Vm

u2(χ̂ f (µ))dµ ≤ 1

q

∫

Vm

u(χ̂ f (µ))dµ = η

q
.

�

For the other term, we first have by Fourier transform
∫

µ�=ψ
u(χ̂ f (µ))u(χ̂ f (ψ))dµ dψ =

∫

µ�=ψ

∫

R2
exp(i(t χ̂ f (µ)+ r χ̂ f (ψ)))dU (t) dU (r).

So we compute the expectation of the inner term exp(i(t χ̂ f (µ)+ r χ̂ f (ψ)))
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Lemma 5.6 For t and r of absolute value smaller than 1
2 , and for µ �= ψ,

E
(

exp
(

i(t χ̂ f (µ)+ r χ̂ f (ψ))
))

= exp
(

− q

2
(t2 + r2)

)

− q(t4 + 6t2r2 + r4)

12
exp

(

− q

2
(t2 + r2)

)

+ q O
(

(|t | + |r |)6
)

+ q2 O
(

(|t | + |r |)8
)

.

Proof We decompose the Fourier transforms on Vm and use the independence in x of the
random variables χ f (x)(tµ(x)+ rψ(x)):

E
(

exp
(

i(t χ̂ f (µ)+ r χ̂ f (ψ))
))

= E
(

∏

x∈Vm

exp
(

iχ f (x)(tµ(x)+ rψ(x))
))

=
∏

x∈Vm

E
(

exp
(

iχ f (x)(tµ(x)+ rψ(x))
))

=
∏

x∈Vm

cos(tµ(x)+ rψ(x)).

By using the relations

e−a = e−b + (b − a)e−b + O((b − a)2) if a, b ≥ 0 (10)

and the expansion

log cos(z) = − z2

2
− z4

12
+ O(z6) if |z| ≤ 1. (11)

we get for |t | < 1
2 and |r | < 1

2 , by taking a = −∑

x ln(cos(tχ(x) + rψ(x))) and b =
∑

x
(tχ(x)+ rψ(x))2

2 :

E
(

exp
(

i(t χ̂ f (µ)+ r χ̂ f (ψ))
))

= exp
∑

x∈Vm

log cos(tµ(x)+ rψ(x))

= exp
(

−
∑

x∈Vm

(tµ(x)+ rψ(x))2

2

)

− 1

12

∑

x∈Vm

(tµ(x)+ rψ(x))4

× exp
(

−
∑

x∈Vm

(tµ(x)+ rψ(x))2

2

)

+ q O
(

(tµ(x)+ rψ(x))6
)

+ q2 O
(

(tµ(x)+ rψ(x))8
)

.

One can do the following computation by noticing that µ �= ψ :

∑

x∈Vm

(tµ(x)+ rψ(x))2

2
= q

2
(t2 + r2)
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and
∑

x∈Vm

(tµ(x)+ rψ(x))4 = q(t4 + 6t2r2 + r4)

and we get the result. �

We can use this result to compute the integral over R
2 of

E
(

exp
(

i(t χ̂ f (µ)+ r χ̂ f (ψ))
))

.

Lemma 5.7

E
( ∫

R2
exp(i(t χ̂ f (µ)+ r χ̂ f (ψ)))dU (t) dU (r)

)

=
(∫

R

exp(−q

2
(t2))dU (t)

)2

+ O
( log5 q

q2

)

.

Proof One uses the previous lemma. One benefits from the fact that outside of the square
|t | < 1

2 , |r | < 1
2 the term exp(i(t χ̂ f (µ) + r χ̂ f (ψ))) is bounded in absolute value by 1. So

one has

E
( ∫

R2
exp(i(t χ̂ f (µ)+ r χ̂ f (ψ)))dU (t) dU (r)

)

=
∫ 1/2

−1/2

∫ 1/2

−1/2
exp

(

− q

2
(t2 + r2)

)

dU (t) dU (r)

− q

12

∫ 1/2

−1/2

∫ 1/2

−1/2
(t4 + 6t2r2 + r4) exp

(

− q

2
(t2 + r2)

)

dU (t) dU (r)

+q O
( ∫

R2
(|t | + |r |)6dU (t) dU (r)

)

+ q2 O
( ∫

R2
(|t | + |r |)8dU (t) dU (r)

)

+O
( ∫

|t |≥1/2
or |r |≥1/2

∫

R

dU (t) dU (r)
)

. (12)

We may neglect the integrals outside the square [− 1
2 ,

1
2 ]: the change in the integrals is smaller

than the error terms in the formula. So is the last term (12). Therefore one gets

E
( ∫

R2
exp(i(t χ̂ f (µ)+ r χ̂ f (ψ)))dU (t) dU (r)

)

=
∫

R2
exp

(

− q

2
(t2 + r2)

)

dU (t) dU (r)

− q

12

∫

R2
(t4 + 6t2r2 + r4) exp

(

− q

2
(t2 + r2)

)

dU (t) dU (r) (13)

+q O
( ∫

R2
(|t | + |r |)6dU (t) dU (r)

)

(14)

+q2 O
( ∫

R2
(|t | + |r |)8dU (t) dU (r)

)

. (15)

One evaluates the three last terms by Proposition 4.1 to get the result. Indeed the term (13)
is a sum of 3 terms of the form:

q
∫

R

ta exp
(

− q

2
(t2)

)

dU (t)
∫

R

rb exp
(

− q

2
(r2)

)

dU (t) dU (r)
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with a + b = 4, each of which are

q O

(
log q

q4 q4β
)

= O

(
log5 q

q2

)

if β < 1/4. The term (14) is a sum of several terms of the form:

q
∫

R

|t |a dU (t)
∫

R

|r |b dU (r)

with a + b = 6, each of which are q O
(

log4 q
q3

)

. In the same way, the term (15) is a sum of

several terms, each of which is q2 O
(

log5 q
q4

)

. �

5.3. End of proof of Proposition 3.2.

One has to collect the results of Lemmas 5.5 and 5.7 with the remark made at the beginning
of the previous section. �
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