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Abstract. We present a new characterization of semi-bent and bent quadratic functions on
finite fields. First, we determine when a G F(2)-linear combination of Gold functions 7r(x2 1)
is semi-bent over GF(2"), n odd, by a polynomial GCD computation. By analyzing this
GCD condition, we provide simpler characterizations of semi-bent functions. For example, we
deduce that all linear combinations of Gold functions give rise to semi-bent functions over
GF(2P) when p belongs to a certain class of primes. Second, we generalize our results to
fields G F(p") where p is an odd prime and n is odd. In that case, we can determine whether
a GF(p)-linear combination of Gold functions Tr(x?'*!) is (generalized) semi-bent or bent
by a polynomial GCD computation. Similar to the binary case, simple characterizations of
these p-ary semi-bent and bent functions are provided.
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1. Introduction

A Boolean function is a mapping from the vector space (GF(2))" to
G F(2). Boolean functions taking on low Hadamard transform values have
useful applications in cryptography and communications. In cryptography,
such functions provide protection against linear cryptanalysis [14], while in

*Parts of this paper were presented at the 2002 IEEE International Symposium on Informa-
tion Theory [10].
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communications, they correspond to sequences that have low cross-corre-
lation with the m-sequence represented by Tr(x) [7,8].

By Parseval’s equation, the maximum magnitude of the Hadamard
transform is at least 2*/2. This lower bound is achieved only when n is
even, and Boolean functions which achieve this bound are called bent
functions [21]. It is well-known that the Hadamard transform of a bent
function only takes on the values £2"/2. When n is odd, the lower bound
for the maximum size of the Hadamard transform is not known in gen-
eral. However, this lower bound has been shown to be 2"+1/2 when the
function is quadratic [16] or when n=23,5,7 [17]. Also, from [19,20], it
is known that the lower bound for the maximum size of the Hadamard
transform does not exceed 32 x 2¢+D/2 when n> 15 is odd.

A useful class of functions which achieve this lower bound are the semi-
bent functions, whose Hadamard transform only takes on the three val-
ues 0, £2*+1D/2 [4]. In the literature, semi-bent functions are also called
3-valued almost optimal Boolean functions [3], plateaued functions [23]
and preferred functions [6,8]. These functions are widely studied in cryp-
tography because, besides having low Hadamard transform which provides
protection against linear cryptanalysis [14], they usually possess other
desirable properties such as resiliency, propagation criteria, low additive
autocorrelation and high algebraic degree [3,6,8,9,23].

In general, it is a hard problem to characterize all functions with low
Hadamard transform values. But this problem has been solved for the
quadratic Boolean functions f: (GF(2))" — GF(2), defined by

f(xo, .. .,xn_1)=Zc,-jxix]~ +Zc,-xi +c, where ¢;j,ci,ce{0,1}.

i<j i

All quadratic Boolean functions with the lowest Hadamard transform have
been identified (see [16]) and they correspond to the semi-bent functions
when n is odd and the bent functions when n is even.

In this paper, we study a related problem for finite fields. Every func-
tion f: GF(2") — GF(2) is equivalent to a Boolean function, by view-
ing each input x = xja; +--- + xy, € GF(2") as a vector (xq,...,X,) €
(GF(2))" where {«g,...,a,} is a basis of GF(2") over GF(2). Under this
correspondence, a quadratic Boolean function is equivalent to a function
f: GF(2")— GF(2) defined as follows:

f@= 3, Trga,
{i:weight(e;) <2}

where weight(e;) is the number of 1’s in the binary representation of e;.
Note that Tr is the usual trace function from GF(2") to GF(2). Our
objective is to find the quadratic functions on G F(2") with the lowest
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Hadamard transform when n is odd, i.e., the semi-bent quadratic func-
tions.

From the theory of sequences, it is known that the Gold function
Tr(x¥*1) and the Boztas—Kumar function Z;':ll)/ 27r(x¥+1) are “Gold-
like”, i.e., they can be used to form a set of sequences with low cross cor-
relation —1, —14+2"*D/2 by XORing with the m-sequences represented by
Tr(rx) [2,5]. As a consequence, these quadratic functions based on one
Gold function, as well as the sum of all Gold functions, are semi-bent.

In this paper, we investigate the problem of determining when a linear
combination of the Gold functions, namely,

(n=1)/2

fo= Y aTr? ™, (1)

i=1

where ¢; €{0, 1} for 1 <i <(n—1)/2, is semi-bent. Let Q>(n) denote the set
off all functions described by equation (1). Using techniques from linear
algebra and coding theory, we can determine whether a function f € Q,(n)
is semi-bent by a simple polynomial GCD computation.

By analyzing this GCD condition, we obtain several nice characteriza-
tions of families of semi-bent quadratic functions on G F(2"). If n belongs
to a certain class of primes, then we show that all functions f e Q,(n) are
semi-bent. Furthermore, we prove theorems which describe when the sum
of Gold functions corresponding to an arithmetic progression of indices i
is semi-bent.

Finally, we generalize our construction to the fields GF(p"), where p
and n are odd. We study the functions defined as follows:

(n—1)/2 _
fo= Y aTrr'*h, )

i=1

where ¢; e GF(p) for 1 <i<(n—1)/2. The class of functions described by
(2) is denoted Q,(n). In this case, a function f € Q,(n) can be a gener-
alized semi-bent or a bent function, which again can be identified by a
polynomial GCD computation. (A generalized semi-bent function is one
whose Hadamard transform has magnitude 0, p"*+1/2 while a generalized
bent function is one whose Hadamard transform values all have magni-
tude p"/2.) Similar to what we did for GF(2"), we analyze the polynomial
GCD condition to prove that all functions f e Q,(n) are generalized semi-
bent or bent when n belongs to a certain class of primes.

In Section 2, we give some definitions and preliminaries on semi-bent
and bent functions. In Section 3, we show that the semi-bent functions in
9>(n) can be identified by a polynomial GCD computation. In Section 4,
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we study the polynomial GCD condition, and as a result, we characterize
several classes of semi-bent functions in Q,(n). In Section 5, we analyze
when a function f e Q,(n) is bent or semi-bent and, as a result, we dis-
cover large classes of bent and semi-bent functions over G F(p"), when n
is prime.

1.1. Related Work

Kim et al. [11] also investigated how to construct generalized bent func-
tions of the form (2). They describe a construction for generalized bent
functions of the form f(x) as defined by (2), under the condition that all
the coefficients ¢; € {0, 1}. See Section 5 for a more precise statement of
their theorem.

Kim and No [12] present constructions for binary sequence families
with four- and six-valued correlations. These constructions are based on
the function

(n—1)/2 _
fo= Y Treh,
i=1

where k is an integer satisfying some suitable conditions.
2. Definitions

Let GF(p") be the finite field with p" elements, where p is prime. The
trace function on this field is the function Tr: GF(p") — GF(p) defined
as

n—1

Troo=Y .
(=0

The trace function is linear over G F(p).
The Hadamard transform of a function f: GF(p")— GF(p) is the func-
tion f: GF(p")— C defined by

]5()»)= Z wTV(M)—f(X)’

xeGF(p")

where w=¢?/P is a complex pth root of unity.

The special case p =2 is most often studied in the literature. In that
case, we have a function f: GF(2") — GF(2) and the Hadamard trans-
form is defined as follows:

f(}\‘)z Z (_l)T}’()LX)-Ff(x).

xeGFQ2")
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Here, f: GF(2") —R.

DeﬁnitionAZ.] [21]. Let n be even. The function f: GF(2") - GF(2) is
bent if | f(1)|=2"/2 for all Ae GF2").

Bent functions meet the lower bound on the maximum magnitude of the
Hadamard transform of a function. Therefore, they offer the best possible
protection against linear cryptanalysis [14]. Moreover, they are also perfect
nonlinear, which means that the shift f(x)+ f(x +a) is balanced for all
a€ GF(2") [18]. This is desirable for protection against differential crypt-
analysis [1]. However, one drawback of bent functions is that they are not
balanced.

Bent functions for p=2 can exist only when n is even. When n is odd,
we have the following related concept.

Definition 2.2 [4, Definition 4]. Let n be odd. The function f: GF(2")—
GF(2) is semi-bent if | f(1)|€{0,2"+D/2} for all Ae GF(2").

The semi-bent functions are widely studied in cryptography and have been
investigated under various names, including 3-valued almost optimal Bool-
ean functions, plateaued functions and preferred functions; (see [3,4,6,
23)).

The definition of bent and semi-bent functions can be generalized to
arbitrary finite fields G F(p"), as follows.

Definition 2.3, The function f: GF(p") — GF(p) is a generalized bent
function if | f(2)| = p"/? for all A€ GF(2"). The function f is a general-
ized semi-bent function if | f(1)| € {0, p@*+D/2} for all A e GF2").

3. Linear Combination of Gold Functions

Assume that n is odd. In this section, we show how to determine whether
the function f(x)= Z?;l/ 26 Tr(x¥+1ye Qy(n) is semi-bent using elemen-

tary algebraic techniques.

LemMma 3.1. Let n be odd and let ¢; €{0,1} for 1 <i <(n—1)/2. Suppose
the function f is defined as

n—1

2 )
f@)=Y aTra®th

i=l1
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for all xe GF(2"). Then f is semi-bent if and only if the cyclic matrix

o) €l €2C3...Cn1
Chp—1 Cop C1C2...Ch2
L=]¢-2C-1€0C1 ... Cpn-3 (3)
cl € c€3¢C4... Cp
has rank n — 1 over GF(2), where we define co =0 and c,—;j = ¢; for

i=1,....(n—1)/2.

Proof.  We use the Welch squaring method:
f()\)z — Z(_ I)TV(M)Jrf(x) (— I)Tr()»y)+f(y)

X,y

— Z(_1)Tr()Lx)+f(x)+Tr(A(x+w))+f(x+w) (where y=x+ w)

w,Xx

— Z(_I)Tr(kw)+f(zl)) Z(_l)d)(x,w)7
w X

where ©(x, w)= f(w)+ f(x)+ f(x +w). We simplify ® as follows:

n—1
2

e, w)= Z Ci [Tr(xziﬂ) +Tr? T+ Tr((x+ w)2i+1)]
i=1

n—1

—Zci Tr(xziw + wzix)
i= l

_ch Tr(x(w —l—wZi))
= Tr(xL(w)),

where

o
L(w):Zc(w +w? ).

Note that L is1 a linear function, and under a normal basis
{or, a2, o*, a?' "} of GF(2"), the matrix representation of L is given by

the matrix (3). Also, we have that
Z(_ 1)<I>(x,w) — Z(_l)Tr(xL(w)) —n
X X
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if and only if L(w)=0, otherwise the sum is 0. Therefore

f()\‘)zzzn Z (_I)Tr()uw)-i-f(w).

weker(L)

Let dim(ker(L)) =k. By the definition of ®, Tr(Aw) + f(w) is a linear
function on ker(L). Therefore

Z (_I)Tr()»w)-i-f(w) e {2/(’ 0}’
weker(L)

depending on whether the exponent is the zero function or a non-zero lin-
ear function, respectively. This means that f (1) €{0, £2"*%/2} for all A if
and only if dim(ker(L)) =k. In particular, f is semi-bent if and only if
dim(ker(L)) =1, i.e.,, when rank(L)=n—1. |

Remark 3.1. The bilinear form ®(x, w), defined in the above proof, cor-
responds to the symplectic of f(x) under the Boolean representation. For
results on quadratic Boolean functions, (see [16, Chapter 15]).

Note that the rows of matrix (3) span a cyclic code C generated
by the vector (cg,ci,...,c,—1). In the study of cyclic codes, it is use-
ful to represent the vectors of C by polynomials in the quotient ring
GF(Q2)[x]/(x"+1), where

C =span{c(x), xc(x), ..., " le@))

and

n—1

2
c(x)= Z ci(xl 4 x"7H.

i=l

We will make use of the following well-known useful facts about the
cyclic code C (see, e.g., [16]):

1. There exists a unique monic polynomial g(x), called the generator
polynomial, such that g(x)|v(x) for all v(x)eC.

2. rank(L) =dim(C) =n —deg(g(x)).

3. g(x)=ged(c(x), x"+1).

Thus, if we can show that g(x) =gcd(c(x),x" +1)=x+ 1, then we have
proven that rank(L) =dim(C) =n — 1, which is the condition required in
Lemma 3.1 to enusre that f is semi-bent. We summarize this discussion
in the following theorem:
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THEOREM 3.2. Let n be odd and let ¢; €{0, 1} for 1 <i <(n—1)/2. Suppose
the function f is defined as

n—1

2 .
f)=> e Tr**h

i=1

for all xe GF(2"). Then f is semi-bent if and only if ged(c(x), x" +1) =
x+1, where

c(x)—ch(x +x"7h.

i=1

Here are a couple of small examples to demonstrate the application of
Theorem 3.2.

1. f(x)=Tr(x3+x) is semi-bent over GF(2!%%) because ged(x +x2 +
2. f(x)=Tr(x>+x') is not semi-bent over GF(2!5) because ged(x +
x4 15Ty 154 (155 Ly =54,

Using Theorem 3.2, we give short proofs of two known results regard-
ing semi-bent functions.

CoRrOLLARY 3.3 (Gold [5]). Let n be odd. Then the function f(x) =
Tr(x**Y from GF@2") to GF(2) is semi-bent if and only if ged(i,n)=1.

Proof.  We have that
ged(x! +x" 1 x"+ ) =ged(x? + 1, x" + 1) = x8d2D) 4 1
Because n is odd, this gcd equals x 41 if and only if ged(n,i)=1. |

COROLLARY l3.4 (Boztas and Kumar [2]). Let n be odd. Then the function
F=X.2, Trx¥+) from GF(2") to GF(2) is semi-bent.

Proof. The associated cyclic code C is generated by the polynomial
c(x)=2;’;11 x' and

x+De(x)mod x"+1=x+1

is a vector in C. Hence, ged(c(x), x" +1)=x+1. |
For future use, we state a useful lemma regarding generator polynomials
of cyclic codes.
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LEMMA 3.5. Let n be odd and let g(x) be the generator polynomial of the
cyclic code C generated by c(x) :ZE':II)/Z ci(x! +x"71), where ¢; €{0, 1} for
1<i<(n—1)/2. Then g(x)= (x4 Dh(x), where deg(h(x)) is even.

Proof. First, we have that one is a root of c¢(x) and x" + 1, so x +1
is a factor of g(x)=gecd(c(x),x" +1). Next, define h(x) =g(x)/(x + 1).
It is easy to see that, if B is a root of A(x) in some extension field of
GF(2), then B! is also a root of h(x) (this follows because " =1 and
c(B) = c(B~1). Consider the irreducible factor of h(x) of which g is a
root; this is the minimal polynomial mg(x). If B~ is a root of mg(x),
then deg(mg(x)) is even. Otherwise, mg-1(x) is also an irreducible factor
of h(x), and deg(m,g(x))+deg(m/371(x)) is even. It follows that h(x) has
even degree. |

4. Some Characterizations of Semi-bent Quadratic Functions
4.1. Semi-bent Functions for All Choices of Coefficients

In this section, we address the question of determining odd integers n such
that all non-zero functions f(x) e Q,(n) are semi-bent.

LEMMA 4.1. Let n be odd. If all non-zero functions f(x)e€ Qy(n) are semi-
bent, then n is prime.

Proof. This is an immediate consequence of Corollary 3.3. u

Henceforth, we only consider the case where n is an odd prime. Since
the generator polynomial g(x) of a cyclic code is closely related to the fac-
torization of the polynomial x" 41, let us examine this factorization more
closely. In the remainder of this paper, ord,(a) will denote the order of a
in the multiplicative group G F (p)\{0}, where p is an odd prime and a #0.
The following result is well-known.

LemMa 4.2 [15]. Let p be an odd prime. The factorization of xP + 1 over
Zo[x] into irreducible factors is of the form

P+ 1=+ Dhi(x)hay(x) ... hi(x),

where each hi(x) is a polynomial of degree ord,(2) and t=(p—1)/ord,(2).

We next look at the cases where x” +1 has either two or three irreduc-
ible factors. First, suppose that p is an odd prime and ord,(2)=p —1.
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Then x? 41 has two irreducible factors by Lemma 4.2, and we can prove
the following theorem.

THEOREM 4.3.  Suppose p is an odd prime such that ord,(2)=p—1. Then
every non-zero function in Qy(p) is semi-bent.

Proof. By Lemma 4.2, x” +1 has factorization
P +l=(+ DA +x+x>+-+xP7hH

into two irreducible factors. Because the generator polynomial g(x) divides
xP + 1 properly, it must beequaltox 4+ 1 or I +x +---+x?~1. But (x +1)|g(x),
which implies g (x) = x + 1, and hence we are done by Theorem 3.2. |

In view of the above theorem, it is natural to ask about the existence
and distribution of primes p for which ord,(2)=p — 1. The first ten such
primes are 3,5, 11,13, 19,29,37,53,59 and 61.

A conjecture of Artin states that there exists an infinite number of such
primes. The precise statement is as follows.

ProproSITION 4.4 (Artin’s Conjecture [13,22]). Let S(2) be the set of all
primes for which two is a primitive root. Then Artin conjectured that the
density of S(2) relative to the set of all primes is given by Cain Where

- 1
CAmn=£[l [1 e 1)} =0.3739558136....

where py is the kth prime.

This conjecture has been proven by Hooley in 1967, assuming that the
Riemann Hypothesis holds [13,22].

The next case we consider is when p=2s+1 is prime, s is odd and
ord,(2) =s. This is the situation where x” +1 has three irreducible factors
of odd degree. We have the following theorem.

THEOREM 4.5.  Suppose p =2s + 1 is a prime such that s is odd and
ord,(2)=s. Then every non-zero function in Q(p) is semi-bent.

Proof. By Lemma 4.2, the factorization of x” + 1 into irreducible poly-
nomials is

xP+1=@+ Dhi(x0)hy(x),
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where h;(x) has degree s, i =1,2. The generator polynomial g(x) is a
proper divisor of x? +1 and has x + 1 as a factor. Hence, g(x) =x + 1
or (x+1h;(x), i=1,2. However, g(x) is a product of x+1 and an even
degree polynomial, by Lemma 3.5. Therefore g(x)=x+1 and we are done
by Theorem 3.2. |

The first ten primes of the form specified in Theorem 4.5 are as follows:
7,23,47,71,79,103, 167, 191, 199, 239

and computer simulations suggest that there are an infinite number of
such primes.

As a corollary of Theorems 4.3 and 4.5, we prove a similar result holds
for the Sophie Germain primes, which are the primes p of the form p=
2q + 1, where ¢ is prime.

COROLLARY 4.6. Suppose that p=2q+ 1 where p and q prime. Then every
non-zero function in Qy(p) is semi-bent.

Proof.  1f ord,(2)=p —1, then we are done by Theorem 4.3. If not, then
ord,(2) is a proper divisor of p —1=2¢g, which implies ord,(2)=2 or g.
But ord,(2) #2 because p >3, so ord,(2) =g, which is an odd prime, and
we are done by Theorem 4.5. u

The first ten Sophie-Germain primes are as follows:
5,7,11,23,47,59, 83,107, 167, 179.

The Sophie Germain primes are well studied in number theory and it is
conjectured that there are an infinite number of such primes.

If a prime p is not of the form considered in Theorems 4.3 and 4.5,
then we will show that there exists a non-zero function in Q,(p) that is
not semi-bent.

THEOREM 4.7. The only odd integers n such that all non-zero functions in
Q>(n) are semi-bent are the primes mentioned in Theorems 4.3 and 4.5.

Proof. Let p be a prime not of the form considered in Theorems 4.3
and 4.5 and let ¢ be a primitive pth root of unity in G F(2”). The mini-
mal polynomial of ¢, denoted m(x), is the polynomial in G F(2)[x] whose
roots are all the conjugates of ¢. m;(x) is an irreducible factor of x” 41
whose degree is s =ord,(2).

Define a polynomial u(x), depending on whether ¢! is a root of mg(x),
as follows:
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Case 1. ¢! is a root of m¢ (x). Define u(x)=(x 4+ 1)m(x). In this case, s
is even and deg(u) =s+ 1. Observe that s < p—1 because we are
assuming that ord,(2)#p—1.

Case 2. ¢~ ! is not a root of m¢(x). Define u(x)=(x + l)m;(x)mtl(x). In
this case, s is odd and deg(u) =2s+ 1. Observe that s <(p—1)/2
because we are assuming that ord,(2)# (p—1)/2 and we are not
in case 1.

It is easy to see that u(x)=x"u(l/x), where r=deg(u) <p—1, in both
cases 1 and case 2. This implies that u(x)=Y);_, u;x’, where u; =u,_; for
all i. Now consider the polynomial c(x)=xP~"=D/2y(x). The following

properties of c(x) are easily verified:

® deg(c)<p—1.
o c(x):Zf:ll cix', where ¢; €{0,1} and ¢; =c,_; for all i.

® gcd(c(x), xP+ D) =ux)#x+1.
It therefore follows from Theorem 3.2 that the function

(p—1)/2 ,
fo= Y aTre®™h

i=1

is not semi-bent. [ |

ExAMPLE 4.1. Consider the prime p =17, which is not of the form consid-
ered in Theorems 4.3 and 4.5. Let ¢ be a primitive 17th-root of unity in
GFQ'"). It can be verified that

m;(x):mgfl(x):x8+x7+x6+x4+x2+x+1
and we define
c(x):x(”_g_l)/z(l+x)m;(x):xl3+x10+x9+x8+x7+x4.
Then ged(c(x), x'7 +1) = (x 4+ Dm; (x) and hence
fE)=Tr! +x' +x27),

x e GFQY), is not semi-bent. [ |
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4.2. Semi-bent Quadratic Functions from Arithmetic Progressions

We now characterize semi-bent functions formed by a sum of Gold func-
tions corresponding to an arithmetic progression. These contain semi-bent
functions which are a sum of two Gold functions as a special case.

THEOREM 4.8. Let n be odd. Consider the function f(x)e Qy(n) defined as

2a+(r71)d+1

FE)=TreX ™)+ Tra™ Y 4+ Tr(x )+ Tr (2.

Then f is semi-bent if gcd(Ra +rd,n) =1 =gcd((r + 1)d, n). Further, if
ged(d,n) =1, then gcdQRa+rd,n) #1 or ged((r + 1)d,n) # 1 implies f is
not semi-bent.

Proof. The polynomial ¢(x) corresponding to f(x) is

C(x):xa+---+xa+rd+xn_a_rd—|—~..+x”_a
=(1—|—xn_(20+rd))(xa+N.+xa+rd)

1+x(r+l)d
_ —Qa+rd)
_(1 +.an a )x” <W .

The ged of the numerator and x" +1 is equal to x+1 if gcd(2a+rd,n)=

1 =gcd((r + 1)d, n). In this case, f(x) is bent by Theorem 3.2.
Now suppose that ged(l1 +x4,1+x")=1+x (ie., ged(d,n)=1). Then
ged(e(x), x"+1)=x+1 if and only if gcd(2a +rd, n) =1=gcd((r + 1)d, n).
|

CoROLLARY 4.9. Let n be odd. Consider the function f(x)e€ Q2(n) defined
as f(x) =Trx2 Y + Tr(x¥+Y. Then f(x) is semi-bent if and only if
ged(i + j,n)=1=ged(@ — j, n).

Proof. From the proof of Theorem 4.8 with a=i, r=1and d=j —i, we
see that

c(x)=(1+x""UHD)xI (1 4 x/71).
Thus ged(c(x), x*+1)=x+1 if and only if ged(i + j,n) =1=ged(i — j, n).
|

Remark 4.1. When n=p is prime in Theorem 4.8, all functions corre-
sponding to arithmetic progressions are semi-bent.
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5. Generalized Bent and Semi-bent Functions over G F (p")

Theorem 3.2 characterizes when a linear combination of binary Gold
functions is semi-bent. We now generalize this result to the p-ary case,
where we can get both semi-bent and bent functions. We omit the proofs
because they are similar to the binary case.

LEMMA 5.1. Let p be an odd prime and let n be an odd integer which is
not divisible by p. Suppose c; € GF(p) for 1 <i<(m—1)/2 and suppose the
function f is defined as

1

n

f)=

1

ci Tr(xle),

14

1

x € GF(p"™). Define the cyclic matrix

o €l €2C3...Ch1
Chel €0 C1Cy...Cha
L=] ¢n-2¢C-1€0C1 -.-Cp-3

cl € c3¢C4... €

where cg=0 and c,—ij=c; for i=1,...,(n—1)/2. Then f(x) is generalized
bent if and only if L has rank n over GF(p), and f(x) is generalized semi-
bent if and only if L has rank n—1 over GF (p).

Remark 5.1. When p =2, the matrix L cannot have rank n. This follows
because the sum of all the rows is the O-vector in (G F(2))".

Similar to the binary case, the rows of matrix L give rise to a
cyclic code C in GF(p)[x]/(x" — 1) generated by the polynomial c(x) =

n—1

;2 ci(x’ +x"77). The following result is analogous to Theorem 3.2.

THEOREM 5.2. Let p be a prime and let n be an odd integer not divisible
by p. Let ¢c;e GF(p) for 1 <i<(n—1)/2, and define the function

n—1

2 .
fO)=Y aTrrth,

i=1
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for all xe GF(p"). Then f is generalized bent or semi-bent if and only if
ged(e(x), x" —1)=1 or x — 1 respectively, where

n—1

)
c(x)= Zci (X",

i=1

Using Theorem 5.2, we can characterize classes of bent and semi-bent
functions over GF(p") when n# p is a prime.

THEOREM 5.3. Let p,n be primes such that p #n. Suppose that ord,(p)
=n-—1, or ord,(p) =m — 1)/2 is odd. Then every non-zero function in
Qp(n) is bent or semi-bent.

Remark 5.2. A function f(x) in Theorem 5.3 is bent if

(n—1)/2
Z ¢i#Z0 mod p

i=l

and semi-bent, otherwise.

It is interesting to compare Theorem 5.3 to the following result, which
is proven by Kim et al. [11].

THEOREM 5.4. Let IC{l,...,(n—1)/2} and let f(x):GF(p")— GF(p) be
defined as f(x)=7 ;. Tr(xP'tY. If |1| is relatively prime to both n and p,
then f(x) is generalized bent.

This theorem has fewer conditions than our Theorem 5.3; however our
result permits coefficients to take on arbitrary values in G F(p).

6. Conclusion

Functions with low Hadamard transform, such as (generalized) semi-bent
and bent functions, have useful applications in cryptography and commu-
nications. We showed that the semi-bent quadratic functions over finite
fields of characteristic two correspond to cyclic binary matrices with rank
n— 1. By studying the connection between cyclic matrices and cyclic codes,
this allowed us to characterize several large classes of semi-bent func-
tions on GF(2"). We also observed that this technique can be naturally
extended to the finite fields GF(p"), where p is odd. In this case, we
obtain both generalized bent and semi-bent functions.
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