@ Designs, Codes and Cryptography, 38, 237-257, 2006
— © 2006 Springer Science+Business Media, Inc. Manufactured in The United States.

A Fuzzy Vault Scheme

ARI JUELS ajuels@rsasecurity.com
RSA Laboratories, 174 Middlesex Turnpike, Bedford, MA 01730, USA

MADHU SUDAN
Massachusetts Institute of Technology, 32 Vassar street, Cambridge, MA 02139, USA

Communicated by: P. Wild

Received November 27, 2002; Revised January 12, 2005, Accepted February 16, 2005

Abstract. We describe a simple and novel cryptographic construction that we refer to as a
fuzzy vault. A player Alice may place a secret value « in a fuzzy vault and “lock” it using a
set A of elements from some public universe U. If Bob tries to “unlock” the vault using a set
B of similar length, he obtains « only if B is close to A, i.e., only if A and B overlap substan-
tially. In constrast to previous constructions of this flavor, ours possesses the useful feature of
order invariance, meaning that the ordering of A and B is immaterial to the functioning of the
vault. As we show, our scheme enjoys provable security against a computationally unbounded
attacker. Fuzzy vaults have potential application to the problem of protecting data in a num-
ber of real-world, error-prone environments. These include systems in which personal infor-
mation serves to authenticate users for, e.g., the purposes of password recovery, and also to
biometric authentication systems, in which readings are inherently noisy as a result of the
refractory nature of image capture and processing.

Keywords: authentication, cryptography, error-correting codes

1. Introduction

Alice is a movie lover. She is looking to find someone who shares her taste
in movies, but does not want to reveal information about her preferences
indiscriminately to other people. One approach she might take is to com-
pile a set A of her favorite movies and publish it in a concealed form. For
instance, Alice might post to a Web newsgroup a ciphertext C4 represent-
ing an encryption of her telephone number rel4 under the set (here, key)
A. In this case, if another person, say Bob, comes along with a set B of
his own favorites that is identical to A, then he can decrypt C4 and obtain
Alice’s phone number. If Bob tries to decrypt C4 with a set different than
Alice’s, he will fail to obtain her telephone number. A drawback to this
approach is its exactitude, or lack of error-tolerance. If Bob’s interests are
very similar to Alice’s, e.g., if he likes two or three films that Alice doesn’t,

238 JUELS AND SUDAN

then he will not learn rel4. It seems very likely in this case, though, that
Alice would still like Bob to obtain her telephone number, as their tastes
are quite similar.

In this paper, we introduce the notion of a fuzzy vault. This is a cryp-
tographic construction whereby Alice can lock her telephone number tel4
using the set A, yielding a vault denoted by Vy4. If Bob tries to unlock the
vault V4 using his own set B, he will succeed provided that B overlaps
largely with A. On the other hand, anyone who tries to unlock V4 with a
set of favorite movies differing substantially from Alice’s will fail, helping to
ensure that Alice’s set of favorites remains private. Thus, a fuzzy vault may
be thought of as a form of error-tolerant encryption operation where keys
consist of sets. Our fuzzy vault proposal has two important features that
distinguish it over similar, prior work. First, the sets A and B may be arbi-
trarily ordered, i.e., true sets rather than sequences. Second, in contrast to
previous work, we are able to prove information-theoretic security bounds
over some natural non-uniform distributions on the set A.

Error-tolerant cryptographic algorithms are useful in many circum-
stances in which security depends on human factors, and thus exactitude
represents a drawback. We offer just a few examples here, all of which
might benefit from use of our fuzzy vault scheme:

1. Privacy-protected matching: As an extension of our movie lover’s exam-
ple above, we might consider a business scenario. Asco Corp. is look-
ing to sell routers possessing a set A={aj,ay,...,a;} of specifications.
It might publish a fuzzy vault V4 with its identity «, locked under A.
If Bisco Corp. is looking for routers with a set B of similar specifica-
tions, then it will be able to open the vault. Anyone who tries to unlock
the vault with a dissimilar set will not learn «. (We address this idea
in detail later in the paper, and decribe an important security enhance-
ment using on-line throttling mechanisms.)

2. Personal entropy systems: Proposed by Ellison et al. [12], this is a sys-
tem that enables users to recover passwords by answering a series of
questions. In recognition of the unreliability of human memory, the
system permits users to answer some of these questions incorrectly.
A serious vulnerability in this system is exposed in [5], who show
more broadly that the underlying hardness assumption is weak. Our
fuzzy vault scheme offers an alternative implementation that is prov-
ably secure in an information-theoretic sense and that may involve use
of sets, and not just fixed-order answers.

3. Biometrics: Alice authenticates to her server using fingerprint informa-
tion. Her system administrator wishes to store her fingerprint on the

A FUZZY VAULT SCHEME 239

server or, more precisely, a set A of features characterizing her fin-
gerprint. (Such sets are known as biometric templates.) If an attacker
breaks into the server, however, Alice does not want her template A
compromised. An additional complication is that biometric systems are
error-prone: When Alice tries to authenticate herself, her fingerprint
reader is likely to produce a template A’ that is similar to, but not iden-
tical to A (with bit errors and random permutation and erasure of ele-
ments). Alice might store a PIN locked in a fuzzy vault on a set A of
features describing her fingerprint, thereby achieving both error-toler-
ance and privacy. Note that order-invariance is critical here. It is usu-
ally not possible to impose an order effectively on biometric features
because of the problem of erasures. For this reason, previous schemes
like that of Juels and Wattenberg [19] described below are unlikely to
work well for this problem.

1.1. Previous Work

A somewhat less naive approach to a fuzzy vault construction than
straightforward encryption might be achieved through use of Shamir secret
sharing techniques [27]. Alice partitions her secret value x into shares

S1,82,...,8,, and encrypt these shares respectively under each of the ele-
ments ajp,dp,...,a, in her set A. This would yield a set of ciphertexts
e1, e, ...,e,. Given use of a (¢, n)-secret sharing scheme, Bob would only

need to decrypt ¢ shares successfully in order to unlock Alice’s secret
k. The problem with this approach is twofold. First, suppose that Bob’s
set B consists of elements by, by, ..., b,. Because A and B are unordered
sets, Bob has no way of knowing which of the ciphertexts ¢; to try to
decrypt with a given set element b;. Even if Bob tries all n? possible
decryption operations, i.e., tries to decrypt each ¢; with each b;, there is
a second problem: He still does not know which decryptions were success-
ful. Straightforward mechanisms to reveal this information to Bob, e.g., a
checksum to indicate a correct plaintext, can leak substantial information
about A. Indeed, this may be regarded as the source of the weakness in,
e.g., the Ellison et al. construction [12]. It is also possible for Bob to try
to deduce by means of a brute-force search which elements of B do not
overlap with those of A. This strategy is inflexible and likely to be prohibi-
tively slow in many practical scenarios, as the computational requirements
grow exponentially in the size of |AN B].

Another idea that does not work well is that of imposing a common
ordering on the sets A and B and then using a fuzzy vault construc-
tion or similar technique that does not have the property of order invari-
ance, e.g., [19]. This approach fails because a small difference between sets

240 JUELS AND SUDAN

can produce large differences in an ordered element-by-element compari-
son. Suppose, for example, that A and B again represent respective lists
of Alice and Bob’s favorite movies. If Alice and Bob’s favorites include
all Oscar winners, except that Alice does not like Antonia’s Line, then a
movie-by-movie comparison of these lists in alphabetical order will yield
almost no matches, while in fact A and B overlap considerably. This prob-
lem also applies to attempts to impose ordering on features in biometric
systems.

To overcome these difficulties, we invoke error-correcting codes as the
basis for our construction. Given the strong technical and historical affin-
ities between the two, it is not surprising that error-correcting codes
appear in many areas of cryptography. Applications include public-key
cryptography (via the well known McEliece cryptosystem) [22], identifi-
cation schemes [30], digital signature schemes [1], and cryptanalytic tech-
niques [16], just to name a few examples. This previous work uniting
cryptography and error-correcting codes has not taken tolerance of error
in messages or established keys as a goal. Rather, the objective has been
to exploit the error-correction capabilities or the hardness properties of
problems of selected codes in order to build cryptographic primitives of a
standard nature, i.e., primitives for use in environments in which data is
generally not subject to corruption. For example, in the McEliece cryp-
tosystem, the addition of noise during the encryption process serves the
desired function of concealing a plaintext. Error-correcting codes also play
an important rdle in non-standard cryptographic models. They serve to
compensate for “dark counts” and other apparatus faults in quantum
cryptographic key distribution protocols (see, e.g., [2]) and play roles in
oblivious transfer over both quantum [3,8] and noisy channels (see, e.g.,
[7]). A central feature of all of these cryptographic system designs, in both
standard and non-standard models, is the aim of “exactness”. In particu-
lar, the goal has been to manipulate messages with bit-for-bit integrity or
to establish a key between two players in which all bits are identical.

Exactness in cryptographic systems is obviously of critical importance
in many situations. Permitting an attacker to alter even a single bit in a
sensitive message—such as a funds transfer or patient record—can be quite
dangerous. At the interface between cryptographic systems and their human
users, however, the ability to achieve exactitude breaks down. Human beings
are rather unobliging in this regard: They misremember private information,
make typos in passwords, and present fingers to fingerprint readers a slightly
different way each time. Nor is the inexact nature of human participation
in computing confined strictly to error. Programs that answer Web queries
or match profiles of prospective business partners, for example, must handle
high levels of uncertainty and imprecision.

A FUZZY VAULT SCHEME 241

With these issues in mind, some recent research efforts in cryptography
and data security have aimed at accommodating what might be dubbed
“fuzziness” in user input. One example is provided by graphical password
systems, as in [18], where a user sketches a secret picture in lieu of entering
a text password. Users generally sketch a given picture a slightly different
way each time. Thus graphical password systems must be tolerant of error,
while not sacrificing security. Another example is the “personal entropy”
proposal of Ellison et al.! That system enables users to recover passwords
by answering a series of questions [12]. In recognition of the unreliabil-
ity of human memory, the system permits users to answer some of these
questions incorrectly. The investigation of “fuzzy” cryptographic systems
in this vein was initiated in [9,10], work that incorporated error-correcting
codes into a cryptographic scheme with the stated aim of achieving secu-
rity in biometric applications.

The starting point for our fuzzy vault construction in this paper is the
fuzzy commitment scheme of Juels and Wattenberg [19], which may be
viewed as an extention of and improvement over [9,10] in terms of the
level of error-tolerance it achieves with provable security guarantees. Fuzzy
commitment is a cryptographic primitive whereby a user commits to a
secret value « under a key x. The user may decommit using any key x’
that is “close” to x under some suitable metric, such as Hamming dis-
tance. An attacker without any knowledge of x, however, cannot feasibly
decommit «. When applied to a biometric system, for example, an enrolled
fingerprint template might be viewed as a key x. The user tries to authen-
ticate using another, slightly different image of the same finger, which we
may denote by x’. Authentication is successful if and only if x’ is “close”
to x.

As the fuzzy commitment scheme in [19] is a close conceptual anteced-
ent to our own, it is worth briefly sketching the details. Let F; be a field,
and C be the set of codewords for some error-correcting code; assume that
codewords lie in F,". To commit to a value x € F,”, the user selects a
codeword ¢ uniformly at random from C and computes an offset of the
form §=c—x € F,", i.c., the difference over individual field elements. The
commitment then consists of the pair (8, y), where y =h(c) for some suit-
able one-way function k. To decommit using key x’, the user computes
8+x’ and, if possible, decodes to the nearest codeword ¢’. The decommit-
ment is successful iff h(c')=y.

The construction in [19] has the advantageous features of conceptual sim-
plicity and the ability to make use of any underlying error-correcting code.
Moreover, provided that x is drawn uniformly at random from F,", the
scheme enjoys rigorously proveable security linear in the cardinality of C.
Suppose that the attacker gains no information about ¢ or x from y, as

242 JUELS AND SUDAN

would be the case under a random oracle assumption on % given sufficiently
large security parameters. It is easy to see then that the task of the attacker
is to guess ¢ uniformly over C. A similar, less resilient antecedent scheme
is proposed in [9,10], while another system with similar goals but no rigor-
ously provable security characteristics is proposed in [28,29].

Note that if the value h(c) is removed from the Juels and Wattenberg
scheme, i.e., if we no longer think of it as a commitment scheme, then we
obtain a kind of fuzzy vault in which the vault itself is equal to §. If x
is uniformly distributed, then the scheme enjoys easily provable informa-
tion-theoretic security, i.e., security against a computationally unbounded
attacker (also proportional to the cardinality of C). Like our own fuzzy
vault construction, this one can also be applied to any of the three prac-
tical scenarios described above, i.e., privacy-protected matching, personal
entropy systems, or biometrics.

As a fuzzy vault variant, though, the scheme of Juels and Wattenberg
has two shortcomings. First, while it tolerates some number of errors in
the information symbols in x, it does not tolerate substantial re-ordering
of these symbols. Given that translation and rotation errors are common
in, e.g., biometric systems, it is reasonable to expect that the image x’ may
consist of a permutation of symbols in x. The property of order-invari-
ance is thus likely to be desirable in a fuzzy commitment scheme. A second
shortcoming of [19] is the difficulty of proving rigorous results about secu-
rity over non-uniform distributions. Our proposed scheme addresses these
two shortcomings, and may be thought of as an order-invariant version of
the Juels—Wattenberg scheme.

The present work has appeared previously in the form of a one-page
abstract [20].

1.2. Our Scheme

Like the scheme of Juels and Wattenberg, ours is conceptually simple, and
can be implemented using any underlying error-correcting code (although
we focus on Reed-Solomon codes in our exposition here). While pos-
sessing the advantages of order-invariance and easier analysis on non-
uniform distributions, our scheme does have a couple of drawbacks that
are important to note from the outset. First, it typically has substantially
greater—though still quite practical—memory requirements than the Ju-
els—Wattenberg scheme. Second, it is somewhat less flexible in terms of
available parameter choices at a given security level, as we shall see.

Let us briefly sketch the intuition behind our scheme. Suppose that Alice
aims to lock a secret x under set A. She selects a polynomial p in a single

A FUZZY VAULT SCHEME 243

variable x such that p encodes « in some way (e.g., has an embedding of «
in its coefficients). Treating the elements of A as distinct x-coordinate val-
ues, she computes evaluations of p on the elements of A. We may think of
Alice as projecting the elements of A onto points lying on the polynomial
p. Alice then creates a number of random chaff points that do not lic on
p, 1.e., points that constitute random noise. The entire collection of points,
both those that lie on p and the chaff points, together constitute a commit-
ment of p (that is, «). Call this collection of points R. The set A may be
viewed as identifying those points in R that lie on p, and thus specifying p
(and k). As random noise, the chaff points have the effect of concealing p
from an attacker. They provide the security of the scheme.

Suppose now that Bob wishes to unlock x« by means of a set B. If B
overlaps substantially with A, then B identifies many points in R that lie
on p, so that Bob is able to recover a set of points that is largely correct,
but perhaps contains a small amount of noise. Using error correction, he
is able to reconstruct p exactly, and thereby «. If B does not overlap sub-
stantially with A, then it is infeasible for Bob to learn «, because of the
presence of many chaff points. (If B overlaps “somewhat”, then he may
still be able to recover «. The gap between feasible recovery and infeasi-
ble is fairly small, however, as we discuss below.) We present details and
analysis in what follows.

The hardness of our scheme is based on the polynomial reconstruction
problem, a special case of the Reed—Solomon list decoding problem [5].
Other schemes making use of this problem include, for example, the scheme
proposed by Monrose, Reiter, and Wetzel for hardening passwords using
keystroke data [23]. An important difference between our scheme and pre-
vious ones of this flavor is our range of parameter choices. The [23] scheme
bases its security on the computational hardness of small polynomial recon-
struction instances, while we select parameters enabling us to achieve infor-
mation theoretic security guarantees for the same problem.

1.3. Organization

We sketch protocol and security definitions for our scheme in Section 2. In
Section 3, we present protocol details for our fuzzy vault scheme. We offer
security analysis with proofs in Section 4. We conclude with some discus-
sion around the practical application of fuzzy vaults in Section 5, and con-
clude briefly in Section 6 with some remarks on further research.

2. Definitions and Background

We work over a field F;, and a universe I{; for convenience, we assume
in our exposition that U/ = F,, although this need not be the case in

244 JUELS AND SUDAN

general. Our aim is to lock a secret value k € F,X under a secret set A€
U'=F,', for protocol parameters k and . We consider a fuzzy vault algo-
rithm Lock that takes as input a secret x and set A and outputs a vault
Va € F," for some security parameter r. The algorithm Lock may be (and
for our purposes will be) probabilistic.

A corresponding decryption algorithm UNLock takes as input a vault
Va€F,” and a decryption set B el{’. The output of this algorithm is a
plaintext value «’ € F,*, or else ‘null’ if the algorithm is unable to extract
a plaintext.

Our goal is to come up with a pair of vault locking/unlocking algo-
rithms Lock/UnvLock that allows reconstruction of the plaintext « when
the decryption set B is close to the encryption set A. At the same time, we
want the vault V4 not to reveal «. Recall from above that we are interested
in algorithms that are order invariant. In other words, the ordering on the
sets A and B should have no real impact on the locking and unlocking
procedures.

2.1. Requirements

The next three definitions formalize the requirements of a good pair
(Lock, UNLock) of algorithms for our fuzzy vault scheme. We say that a
probability is negligible if it is asymptotically smaller than any positive poly-
nomial in 7 and r. We say that a probability is overwhelming if it is larger
than 1 —¢ for some negligible quantity ¢. Our first definition outlines the
completeness condition for our algorithms, i.e., what should happen when
the players are honest.

Definition 1. An locking/unlocking pair (Lock, UNLOCK) with parameter
set (k,t,r) is complete with e-fuzziness if the following holds. For every
K€ Fqk and every pair of sets A, BelU’ such that |A — B| <¢ for an integer
€, it is the case that UNLOCK(B, LocKk(A, k)) =« with overwhelming prob-
ability.

We now formalize the security, and in particular the soundness of
the algorithmic pair (Lock, UNLOCK) in an information-theoretic sense.
Assume that A is selected according to some potentially non-uniform dis-
tribution d. We seek to characterize the ability of an attacker with unlim-
ited computational power to determine x from Lock(A,). We assume
that this attacker is given knowledge of a uniformly random §-fraction of
A, i.e., a uniform random subset A’ of at most §¢ elements in A (where
we assume 8¢ to be an integer). This assumption that the adversary has
knowledge of part of the secret key A is slightly unorthodox. In a “fuzzy”

A FUZZY VAULT SCHEME 245

system, however, it is natural to consider such notions of partial adver-
sarial knowledge, as highlighted in our examples below. Of course, other
security assumptions are possible.

We characterize security in terms of the following experiment with a
computationally unbounded adversary Adv for a given parameter set. This
adversary Adv takes as input a set of 8¢ elements of A, the parameters ¢
and k, and a vault V4 on A, and outputs a guess at «. Formally, Adv is
an algorithm Adv: U x Z? x F,"— Fqk with no bound on computational
complexity. Let €4 denote selection from probability distribution d, and
€y denote uniform random selection. Here, and in all analysis that fol-
lows, we assume that « is generated uniformly at random, as « is typically
used as a key for some independent ciphertext or cryptographic protocol.
Let {A}; denote the set of subsets of A of cardinality i. The experiment is
as follows.

Experiment Attack(Lock, Adv)
key Fyks AeqU's A ey {A)ses
ifAdv(A’, t, k, LOCK(A, k)) =k

Output'1’;
else
Output'0;

This leads to the following definition.

Definition 2. A locking/unlocking pair (Lock, UNLOCK) is information
theoretically secure with parameter pair (8, u) if pr[Attack(Lock, Adv) =
1]< u for any computationally unbounded adversary Adv.

Let d’ be the probability distribution d restricted to sets A such that
A’ C A. Observe that given vault V4, the best strategy a (computationally
unbounded) adversary can adopt is to output a plaintext «” such that the
expression

w(K/, VA) = prAed/M[[LOCK(A, I(/) = VA]

is maximized. For a given vault V4 =Lock(A, k), the probability of suc-
cess of this strategy is easily seen to be w(k, VA)/ZK/GFqk w(k’, Va).

Remark. Note that our definition of information theoretic security does
not necessarily imply that the secret « is fully protected in an information
theoretically secure manner. In particular, we may have mutual informa-
tion I (Lock, «) > 0. This is to say that our scheme may offer information
theoretic hiding of « over a set of possible values smaller than Fqk.

246 JUELS AND SUDAN

2.2. Reed-Solomon Codes

It is possible to construct a fuzzy vault scheme based on essentially any type
of linear error-correcting code. To sharpen our conceptual focus and analy-
sis, however, we restrict our attention to Reed—Solomon (R-S) codes. We are
interested primarily in (k, t)-codes, i.e., those in which codewords consist of
t information symbols, i.e., field elements, where ¢ >¢. Each codeword cor-
responds to a unique polynomial p of degree less than k over Fy; thus there
are g* codewords in total. For example, when ¢ is prime and thus F, is the
field of residue classes mod g, we may simply embody an R-S code as the
sequence {y;=p(1), y2=p@2),...,y:=p()}, where 1,2, ...,1.

If ¢t >k, then a codeword may be seen to contain some redundancy.
The presence of such redundancy is what permits the code to be used for
error correction. Suppose that ¢’ = {y{,y)....,y/} is a corruption of the
codeword ¢={y1,y2,...,¥:}. In other words, we have y!#y; for some e-
fraction of the information symbols in ¢/, for 0 <e < 1. Provided that €
is small enough, the redundancy of the code is such that given just the
corrupted codeword ¢’, we can recover the original codeword c. For this,
we use a decoding algorithm that we denote by RSpECODE. The algorithm
RSDECODE takes ¢’ as input, and provided that too much corruption has
not occurred, outputs c.

The most common application of a Reed—Solomon or other error-cor-
recting code is to message transmission over a noisy channel. For this, the
procedure is as follows. The sender takes a message « € Fqk and encodes
it as a polynomial of degree at most k. The sender computes the corre-
sponding codeword ¢ and transmits it over a noisy channel. The noise on
the channel causes a corrupted codeword ¢’ to be obtained by the receiver.
The receiver applies RSDECODE to ¢/, obtains ¢, and recovers the original
polynomial p and thus the message «. As we shall see, in our scheme we
may think of the noise on the channel as arising from differences between
the sets A and B. By guessing A inaccurately, Bob introduces noise into
the channel transmitting «. (In contrast, the fuzzy commitment scheme in
[19] never actually makes explicit use of the message space.)

2.3. Owr Special Use of Reed—Solomon Codes

For our constructions, it is convenient to consider a generalization of Reed—
Solomon codes. We think of a codeword as consisting of an evaluation of
a polynomial p over any set of ¢ distinct points in F,. In other words, we
think of a codeword as consisting of a set of pairs {(x;, yi)}f:l, where x; €
Fy, all of the x; are distinct, and y; = p(x;). (We are considering a punc-
tured extended Reed-Solomon code.)

A FUZZY VAULT SCHEME 247

In this generalized view, the decoding algorithm RSDECODE takes as
input a collection of points which are presumed to lie preponderantly on
a single polynomial of pre-specified degree at most k — 1. The RSDECODE
algorithm, if successful, outputs a polynomial p intersecting the large
majority of input points.2 Otherwise, the algorithm outputs ‘null’. This
will happen, for instance, if no polynomial of the right degree matches
the inputs adequately, or if computation of such a polynomial is too hard
because of too much corruption of the associated codeword. The follow-
ing are parameter specifics for the algorithm RSDECODE.

Public parameters: A field F,.

Input: A degree parameter k <g and a set of points Q = {(x;, y;)}{_, such that
x;,yi€F, for 1 <i<t.

Output: A polynomial p of degree less than k over F,, or else ‘null’. We write
RSDECODE(k, Q) to denote the output on inputs k and Q.

For our (practical) purposes, the best choice for RSDECODE is gener-
ally the classical algorithm of Peterson—Berlekamp—Massey [4,21,25]. This
algorithm decodes successfully if at least]‘TJ“’ points in Q share a common
polynomial. The best version of RSDECODE to date, i.e., the one most likely
to recover p successfully, is that of Guruswami and Sudan [15]. This algo-
rithm successfully determines p provided that the number of points in Q
that lie on p is at least +/kr. Our preference for the classical algorithm
is based on the fact that this algorithm is in general much more efficient
than the Guruswami-Sudan, and has the advantage of being well studied
and widely implemented. Moreover, for many of the parameter choices we

are likely to encounter in practice, kTH is fairly close to «/kt.

3. The Fuzzy Vault Algorithms

We are now ready to detail our locking and unlocking algorithms for our
fuzzy vault scheme. We first present the algorithm Lock. The basic idea
here is to create a generalized Reed—Solomon codeword representing the
secret k (as a corresponding polynomial p). This codeword is computed
over x-coordinates corresponding to elements in the set A. To conceal the
codeword, we add chaff points, i.e., random noise in the form of random
(xi, yi) pairs.

In our exposition here, we assume some straightforward, publicly agreed-
upon method for representing the secret x as a polynomial (e.g., taking
the information symbols in « to be the coefficients of the polynomial). We
simply write p <k to represent this conversion. We let €y denote uni-
formly random selection from a set.

248 JUELS AND SUDAN

Public parameters: A field F,, a Reed—Solomon decoding algorithm RSDECODE.
Input: Parameters k, ¢, and » such that k <7 <r <g. A secret x € Fqk. A set A=
{a;};_,, where a; € F,, a;’s are distinct.

Output: A set R of points {(x;, y;)}/_, such that x;, y; € F, and x;’s are distinct.

Algorithm Lock
X,R<¢;
p<kK;
fori=1tot do
(xi, yi) < (ai, pai));
X <X U{x};
R« R U {(x;,y)}:
fori=t+1 to r do
Xi €y Fq\X;
X <X U({x;};
vi €v Fg \{p(xi)};
R« R U {(xi,yi)}:
output R;

So as not to leak information about the order in which the x; are chosen,
the set R may be output in a pre-determined order, e.g., points in order of
ascending x-coordinates, or else in a random order. Note that chaff points
in Lock are selected so as to intersect neither the set A nor the polynomial
p. This is for technical reasons, namely to simplify our security proofs.
We refer to the set R and the parameter triple (k, ¢, r) together as a fuzzy
vault, denoted by Vjy.

As explained above, to unlock a vault V4 created by Alice, Bob tries
to determine the codeword that encodes the secret «. Recall that the set
A specifies the x-coordinates of “correct” points in R, i.e., those that lie
on the polynomial p. Thus, if B is close to A, then B will identify a
large majority of these “correct’ points. Any divergence between B and
A will introduce a certain amount of error. Provided that there is suffi-
cient overlap, however, this noise may be removed by means of a Reed-
Solomon decoding algorithm. We write «’ <— p to denote conversion of a

polynomial of degree at most k to a secret in Fqk, i.e., the reverse of the

. b;,o . .
procedure employed in Lock. We let (x;, y;) @0 R denote projection of

R onto the x-coordinate b;. By “projection,” we mean that if there is a
pair (b;, y) € R for any y, then (x;, y;) = (b;, y); otherwise a null element is
assigned to the pair (x;, y;). Our unlocking algorithm is now as follows.

Public parameters: A field F,, a Reed—Solomon decoding algorithm RSDECODE.

A FUZZY VAULT SCHEME 249

Input: A fuzzy vault V, comprising a parameter triple (k, ¢, r) such that k <r<r <
g and a set R of points {(x;, y;)};_; such that x;,y; € F,. A set B={b;}_,, where
b,‘ € Fq .

Output: A value «’ € Fq" U {‘null’}.

Algorithm UnrLock
Q<¢;
fori=1 to t(hdo)
(xi, yi) <—R;
0 <« 0 U{(xi,y)}:
k' < RSDECODE(k, Q) ;
output «’;

If the final decoding operation is successful, then the algorithm outputs
a secret ¥’ which should be equal to « if the set B is close to the original
set A. If the decoding operation fails, then the algorithm outputs ‘null’.

By employing the Peterson—Berlekamp—Massey algorithm in the obvious
manner as the underlying error-correction in RSDECODE, enabling correc-
tion of % errors, we obtain the following proposition characterizing the
completeness of our fuzzy vault scheme.

PROPOSITION 3. Given use of the Peterson—Berlekamp—Massey algorithm for
RSDECODE, the algorithm pair (Lock, UNLOCK) above with parameter triple
(k,t,r) is complete with (%)-fuzziness.

As an example of how the above algorithms might be applied, we briefly
consider a parameterization of k and ¢ in what we call the movie lover’s
problem, i.e., the problem described above in which Alice is seeking some-
one with similar taste in movies. We defer discussion of security parame-
ters for the next section.

ExAMPLE 1 (The movie lover’s problem). Let us consider the movie lover’s
problem with a total set of 10* titles in which Alice selects a set A of t=22
different favorites.> We might choose k=14. Since % =18, another movie
lover with a set B of 22 favorite titles will be able to decrypt the vault via
the Peterson—Berlekamp—Massey algorithm provided that the original set A
and the new set B intersect on at least 18 titles. Notice that for this choice
of parameters, it is feasible to compute all possible subsets of size 18 from
the set of size 22, and try interpolating from each subset. This would result,
however, in an average of 3657.5 trials, while the cost of one decoding step
is easily within an order of magnitude of one interpolation step. Thus the use
of RSdecode speeds up* the decommitment step by at least a factor of 300.

250 JUELS AND SUDAN

4. Security

The security of our fuzzy vault construction depends on the number of chaff
points r —t in the target set R. The greater the number of such points,
the more “noise” there is to conceal p from an attacker. As many chaff
points are added to R, there begins to emerge a set of spurious polynomials
that look like p, i.e., polynomials that have degree less than k and agree
with exactly ¢ points in R. Briefly stated, the more chaff points there are,
the greater the probability that some set of ¢ of these chaff points (and/or
real points) align themselves by chance on some polynomial of the desired
degree. In the absence of additional information, an attacker cannot distin-
guish between the correct polynomial p and all of the spurious ones. Thus,
p is hidden in an information-theoretically secure fashion in R, with security
proportional to the number of spurious polynomials. Note that the security
of the vault V4 depends exclusively on the number of such polynomials,
and not on the length of the secret key «; the vault is often weaker than the
secret « it protects (which is acceptable for the applications we describe).
The following lemma proves that with high probability many polynomials
of degree less than k agree with the target set R in ¢ places, i.c., that there are
many spurious polynomials. This lemma and its proof are based on similar
results of Dumer et al. [11].

Recall that the locking algorithm Lock picks ¢ points according to a
given p of degree less than k and r —¢ random points (x;, y;) in F, x Fy
and outputs this set in random order as a vault hiding p (i.e., k). The fol-
lowing lemma is parameterized by r, k, and ¢t and a small real number wu:

LEMMA 4. For every u, where 0 < <1, with probability at least 1 — u the
target set R gemerated by the algorithm Lock on polynomial p and lock-
ing set A satisfies the following condition: There exist at least /L(;)qk_’ (g—
)" polynomials p' of degree less than k such that R includes exactly t
points of the form (x, p’(x)) € Fy; x F,.

Proof. We first analyze a modified algorithm whose output is just a col-
lection of r random points, say (x;,z;) in Fy x F,, where the x; values are
distinct. We claim that for every fixed choice of xi,...,x,, the expected
number of polynomials (over the choices of the z;’s) that agree with this
set of points in ¢ places, denoted N, is large. To see this, fix a polyno-
mial p and consider the probability that p agrees with the set of points
in exactly 7 places. This probability is given by the expression:

(;)q"(l— 1/g)"".

A FUZZY VAULT SCHEME 251

Thus the expected number of polynomials of degree less than k that
agree with ¢ of the r random points is N =(7)g"" (¢ —1)"".

We now revert to our original problem, where the algorithm Lock is not
outputting a random set of points, but rather a set of points ¢ of which
are selected to be from a fixed polynomial p. We will show that in this
case the probability that the number of polynomials in agreement with
the output set in ¢ points is less than uN, is at most u. (Once again we
prove this for every fixed choice of x,...,x,.) This yields the lemma as
desired. To prove this part, we construct a (huge) bipartite graph G. The
left vertices correspond to polynomials of degree less than k (i.e., there
is one vertex for each such polynomial). The right vertices correspond to
vectors from F,” (i.e., there is one vertex for vector from F,"). Two ver-
tices p and y=(y1,...,y,) are adjacent if p agrees with this vector in
exactly ¢ points, i.e., p(x;) =y; for exactly ¢ choices of i. The analysis
of the modification of Lock showed that the average degree of a right
vertex is N. Notice that the algorithm Lock, on the other hand, picks
a fixed vertex p on the left and outputs a random neighbor of this ver-
tex. Our goal is to show that this output vertex has high degree (say uN)
with high probability. Towards this end, we first notice that the graph G
is symmetric about left vertices, i.e., for every pair of vertices on the left
p and p’ there is an automorphism of G that maps p to p’. (Specifically,
the automorphism maps a left vertex f to the vertex f+ p' — p and a
right vertex y=(yi,..., y,) is mapped to the vertex z=(zy,...,z,) Where
zi=yi + p'(x;) — p(x;).) Thus, it would suffice to consider the right end-
point of a random edge of G and argue that its degree is at least uN. But
this is obviously true since vertices with degree < uN can only account

for a u fraction of the edges in the graph G. The lemma is thus proved.
|

EXAMPLE 2. As an example, consider the following choice of parameters.
Suppose we pick a field size q of approximately 10*, and set r =q. Now let
t=22, i.e, the movie lovers pick 22 of their favorite movies out of a choice
of q, and we chaff the data with q —22 random points. Suppose we use this
information to encrypt a polynomial of degree less than 14 (as in our ear-
lier example). Then we expect to see about 280 polynomials of degree less
than 14 agreeing with 22 out of the roughly 10* points in R. In particu-
lar, with probability at least 1 —2=%, there will be 2* polynomials exhib-
iting this behavior. (Thus, we achieve what may be roughly characterized as
a 43-bit security level.)

The example above suffers from a significant loss in security due to a
naive transformation of expected values to high probability results in the

252 JUELS AND SUDAN

proof of Lemma 4. We believe that this loss in security is just an arti-
fact of the proof, and that the true answer is perhaps more along the lines
“With probability at least 1 —2733, there are 2% polynomials agreeing with
the given data on 22 points.” (Thus, we get roughly 83-bit security.) Again,
this conjecture remains open at this stage. For the moment, however, we
try a different choice of parameters to strengthen our security analysis.

EXAMPLE 3. Again, we pick r=q~10* and t =22. This time we use this
information to encrypt a polynomial of degree less than 18. The decommit-
ment works correctly with 20 agreements, and the running time is faster than
a brute-force search by a factor of at least 10. Then we expect to see about
2139 polynomials of degree less than 18 agreeing with 22 out of the approx-
imately 10* points in Q. In particular, with probability at least 1 —2779,
there will be 270 polynomials exhibiting this behavior. (Thus, we achieve what

may be roughly characterized as a 70-bit security level.)

As stated above, we believe our scheme more amenable to analysis over
non-uniform distributions than that in [19]. As an example, we note that
the above lemma naturally adapts itself to the case where the set of lock-
ing sets A are not all considered equally likely. For simplicity we consider
the case where A is equally likely to come from some family of sets £ C
U =2F4 j.e., a family of sets over U = F,. This is reflected in the following
lemma.

LEMMA 5. For every >0, with probability at least 1 — u, the target
set R generated by the algorithm Lock to commit to a polynomial p
with locking set A satisfies the following condition: There exist at least
wl€1(()/(9) "= (g = D" polynomials p' € P such that R agrees with p’
on some subset of t points in the family .

Proof. This lemma is proved in exactly the same way as the previous one.
The only change is that the probability that a given polynomial p’ agrees
with a random set of r points in one of the subsets from & reduces to

] ((t) / (f)) (/g (1 =1/g)"~",

and this change percolates through the rest of the proof. u

ExampLE 4. Consider a variant of the movie lover’s problem where the
movie lover is expected to choose 2 movies each from 10 categories, and each
category consists of 1000 movies. In this case, the distribution on movies has

A FUZZY VAULT SCHEME 253

3.\ 10
support on only ((1(2))) sets. The above lemma shows that with r =10%,

t =20 and k=16, one expects to find 21 polynomials of degree at most
15 agreeing with the data on 20 points, with two agreements each from each
of 10 categories. As usual, this can be converted to the following probability
statement: With probability at least 1 —273 there exist 2>3 polynomials of
degree at most 15 that agree with the given data points on two points each in
each of the 10 categories. (Thus, we achieve roughly a 53-bit security level.)

Finally, we give a general characterization of the information-theoretic
security of Lock according to Definition 2.

THEOREM 6. For every § >0, the algorithm Lock is (8, p)-information the-
oretically secure for p:2\/%qk—(1+5)f(r/t)(l—5)’

Proof. As in the proofs of Lemma 4 and Lemma 5, we first argue that
given any u >0, E CU of size r and E' C E of size §t, the data points
R have at least §¢F=(1+91(/1) =91 polynomials agreeing with the data
points on ¢ points that include E’ as a subset.

Picking ,uz\/ %qk—(“ﬂs)’ (r/t)(1=9)1 we get that with probability at least
1 — p, there are at least 1/u polynomials exhibiting such behavior. By sym-
metry, each of these polynomials is equally likely to be the polynomial
p that is being encrypted. Thus the Attack algorithm has at most a 2u
chance of finding p—success probability of u, if our encryption is unlucky
and there are not too many polynomials agreeing with the data; and p is
the probability that the encryption is correct, but the attacker manages to
guess it by luck. Thus we get the security as claimed. |

Remark. 1t is possible to make a substantially stronger security claim
under reasonable computational assumptions on the hardness of Reed-
Solomon decoding, as done in, e.g., [23]. We do not explore this possibil-
ity here, as it is not essential to our achieving good security results, and
there is no general consensus about appropriate hardness assumptions for
this problem.

5. Application of Fuzzy Vaults

In the examples we have given above, the security parameterization is
slightly weak from a cryptographic standpoint. For instance, in example 4,
we achieve roughly a 53-bit security level, slightly weaker than DES, and
thus vulnerable to intensive off-line attack [13]. In many cases, we may
address this problem simply by re-parameterizing the vault, in particular,
raising the size ¢ of the set A. For example, to construct a strong personal-

254 JUELS AND SUDAN

entropy system, we might require the user to answer 29 questions correctly
out of 32 (with t =32 and k=25), thereby achieving a fuzzy vault with 85-
bit security, which offers good cryptographic security for most purposes.

For applications involving privacy-protected matching, such as the movie-
lover’s problem, this approach will not work. The problem here lies not in
the fuzzy vault scheme, but is inherent in the problem of matching people or
other entities. In particular, given that there are only six billion or so people
in the world, if Alice wants to have a good chance of finding a compati-
ble movie lover, she can at best select a set that can be guessed by a well-
informed attacker with a probability of one in six billion or so. As six billion
is equal roughly to 2323, this means that Alice’s vault can at best be expected
to have less than 33-bit security’—entirely inadequate for cryptographic pur-
poses. In most scenarios involving matching, the pool of participants, and
thus the best achievable oft-line security, is likely to be even smaller.

For this reason, we propose that fuzzy vaults in such privacy-protecting
matching scenarios are best employed in an on-line setting. Here is a rough,
first sketch of an idea for an on-line version of the movie-lover’s problem.
Alice publishes a fuzzy vault V4 encrypting a secret value « under a set A
of her favorite movies. If Bob wishes to obtain Alice’s telephone number, he
tries to open V4 using his set of favorite movies B. If he decodes successfully,
he obtains a secret value «’. Alice and Bob now invoke a password-authen-
ticated key-agreement protocol (see [6] for a recent example). They use their
respective secrets k and «’ as passwords for this protocol.® If k =«’, then
Alice and Bob will successfully establish a private channel. Otherwise, they
will learn no information about the secret value of the other party, aside
from the fact that « #«’. By employing an appropriate throttling mecha-
nism, Alice can restrict the number of overall queries or queries from a
single source so as to restrict information leakage.

This strategy effectively protects Alice’s set A, but enables Alice to
attract inappropriate matches. To illustrate this problem, consider the fol-
lowing simple strategy. Alice creates a vault V4 in which all x-coordinates
agree with some polynomial p. Now, no matter what Bob inserts into his
set B, he will think that Alice has the same favorite movies. This exam-
ple highlights the important fact that a fuzzy vault is not, strictly speaking
a commitment. In particular, it is not uniquely binding: Alice may embed
multiple sets Aq, Ay, ..., A; in a single vault Vy.

There are several ways to avoid this difficulty. One way is for Alice to
include in her vault a cryptographically binding commitment c4 to her
secret value « using, such as, e.g., a Pedersen commitment [24]. Now, Alice
participates in the key agreement protocol with Bob in a manner that
binds her to c4 (through a straightforward modification of existing algo-
rithms). This does not ensure that V4 and c4 represent the same secret

A FUZZY VAULT SCHEME 255

Kk, but this condition is not required for secure matching. A more general,
mutually binding protocol is the following.

Alice publishes V4 on secret «4.

. Bob publishes Vp on secret «p.

3. Alice applies UNLOCK to Vp using her set A. If successful, she obtains
a value k. Otherwise, she aborts.

4. Bob applies UnLock to V4 using his set B. If successful, he obtains
a value «/,. Otherwise, he aborts.

5. Alice and Bob do a password-authenticated key agreement using

respective passwords (k4 [|«z) and (kg || k). (Here, | is some suitable

conjunctive operator.)

DN —

This protocol binds Alice and Bob to use of their respective vaults V4
and Vp. Omitting details, we remark that given use of a secure pass-
word-authenticated key-agreement algorithm (e.g., [6]), the above protocol
reveals to Alice and Bob only the information contained in V4 and Vg
and also whether k4 =«p.

6. Conclusion: Further Research

Fuzzy vaults represent a new cryptographic primitive with the special
property of error-tolerance in the presence of limited noise and arbitrary
re-ordering of the symbols in a decomittment key. As explained above,
one of the possible most promising applications of this idea is the pro-
tection of biometric templates, particularly for fingerprints. A major class
of fingerprint matching algorithms are based on the comparison of regis-
tered with freshly presented features known as minutia points. (These are,
roughly speaking, points in a fingerprint where ridges either end or inter-
sect.) Because of the difficulty of achieving consistency in fingerprint imag-
ing processes, and the consequent problems of erasure and re-ordering of
minutia points in readings, measurement of set overlap is a natural met-
ric to apply in this environment. The vanguard of research into finger-
print-matching algorithms is largely proprietary, making details difficult to
obtain. It is hoped that such obstacles will not greatly hinder investigation
into the application of fuzzy vaults to this promising avenue of research.

Another important area for further research is the analysis centered
on Lemma 4. Our belief is that the transformation from expected values
to high-probability bounds may be considerably improved. This might be
achieved through a more refined understanding of the probability distribu-
tion of polynomials in agreement with random point sets—a basic ques-
tion with larger ramifications in coding theory.

256 JUELS AND SUDAN

Acknowledgments

The authors wish to extend special thanks to Burt Kaliski for his ideas regard-
ing Section 5. Thanks also to Daniel Bleichenbacher and Markus Jakobsson.

Notes

1.

A serious vulnerability in this system is exposed in [5]. A fix with rigorously provable
security properties is proposed in [14], based on [19]. Our own proposed scheme here
offers an alternative with different properties.

So-called set decoding algorithms may in fact produce a set of candidate polynomials. We
assume that a successful algorithm outputs one of these selected uniformly at random
from the entire set.

We consider 22 titles, as this is the number of password questions used in [12], which
seems a good example application for our ideas.

Another way of viewing this is that the fuzzy vault algorithm can be enhanced by addi-
tional use of brute-force search, thereby improving the security threshold. This improve-
ment can be made substantial without a loss of speed relative to the pure brute-force
algorithm.

It is possible to slow the algorithm UNLOCK so as to impose a higher computational bur-
den on an attacker, but this approach still doesn’t offer adequate security here.
Alternatively, as a practical alternative more compatible with existing infrastructure, they
can employ the Secure Socket-Layer (SSL) protocol to establish a private, authenticated
channel, and then employ a socialet millionaires’ or similar protocol to test the condition
k =«' in zero knowledge [17,26]. This method depends upon one player having an appro-
priately signed certificate.

References

1.

M. Alabbadi and S. B. Wicker, A digital signature scheme based on linear error-cor-
recting block codes. In Josef Pieprzyk and Reihanah Safavi-Naini (eds.), 4siacrypt 94,
Springer-Verlag (1994) LNCS no. 917, pp. 238-248.

C. H. Bennett, F. Bessette, G. Brassard, G. Savail and J. Smolin, Experimental quantum
cryptography, J Cryptol. Vol. 5, no. 1 (1992), pp. 3-28.

C. H. Bennett, G. Brassard, C. Crépeau and M.-H. Skubiszewska, Practical quantum
oblivious transfer protocols. In J. Feigenbaum (ed.), Crypto 91, Springer-Verlag (1991).
LNCS no. 576, pp. 351-366.

E. R. Berlekamp, Algebraic Coding Theory, McGraw Hill, New York (1968).

D. Bleichenbacher and P. Nyuyen, Noisy polynomial interpolation and noisy chinese
remaindering. In B. Preneel (ed.), Eurocrypt ‘00, (2000) LNCS no. 1807, pp. 53-69.

V. Boyko, P. MacKenzie, and S. Patel, Provably secure password-authenticated key
exchange using Diffie-Hellman. In B. Preneel (ed.), Eurocrypt 00, Springer-Verlag
(2000) LNCS no. 1807, pp. 156-171.

C. Crépeau, Efficient cryptographic protocols based on noisy channels. In W. Fumy
(ed.), Eurocrypt '97, Springer-Verlag, (1997) LNCS no. 1233, pp. 306-317.

C. Crépeau and J. Kilian, Achieving oblivious transfer using weakened security assump-
tions. In Proceedings of the 29th IEEE Symposium on the Foundations of Computer Sci-
ence (1988), pp. 42-52.

A FUZZY VAULT SCHEME 257

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

G. I. Davida, Y. Frankel and B. J. Matt, On enabling secure applications through off-line
biometric identification. In IEEE Symposium on Privacy and Security (1998).

G. I. Davida, Y. Frankel and B. J. Matt, On the relation of error correction and cryp-
tography to an offline biometric based identification scheme. In Proceedings of WCC99,
Workshop on Coding and Cryptography (1999).

I. Dumer, D. Micciancio and M. Sudan. Hardness of approximating the minimum dis-
tance of a linear code. In Proceedings of the 40th Annual Symposium on Foundations of
Computer Science (FOCS), (1999), pp. 475-484.

C. Ellison, C. Hall, R. Milbert and B. Schneier, Protecting Secret Keys with Personal
Entropy, J. Fut. Comput. Sys. Vol. 16, no. 4 (2000, February) pp. 311-318.

Electronic Frontier Foundation, Cracking DES: Secrets of encryption research, wiretap
politics & chip design. O’Reilly (1998).

N. Frykholm and A. Juels, An error-tolerant password recovery scheme. In P. Samarat-
i (ed.), Eighth ACM Conference on Computer and Communications Security, ACM Press
(2001) pp. 1-8.

V. Guruswami and M. Sudan, Improved decoding of Reed-Solomon and algebraic-geo-
metric codes, In FOCS ’98, IEEE Computer Society (1998), pp. 28-39.

T. Jakobsen, Cryptanalysis of block ciphers with probabilistic non-linear relations of low
degree, In H. Krawczyk (ed.), Crypto '98, Springer-Verlag (1998) LNCS no. 1462, pp.
212-222.

M. Jakobsson and M. Yung, Proving with knowing: On oblivious, agnostic, and blind-
folded provers, In N. Koblitz (ed.), Crypto ‘96, Springer-Verlag (1996), LNCS no. 1109,
pp. 186-200.

I. Jermyn, A. Mayer, F. Monrose, M. K. Reiter and A. D. Rubin, The design and anal-
ysis of graphical passwords, In Proceedings of the 8th USENIX Security Symposium
(1999), pp. 1-14.

A. Juels and M. Wattenberg, A fuzzy commitment scheme, In G. Tsudik, (ed), Sixth ACM
Conference on Computer and Communications Security, ACM Press (1999), pp. 28-36.
A. Juels and M. Sudan, A fuzzy vault scheme, In International Symposium on Informa-
tion Theory (ISIT), IEEE Pressm, (2002), p. 408.

J. L. Massey, Shift register synthesis and BCH decoding. IEEE Trans. Inform. Theory,
Vol. 15, no. 1 (1969) pp. 122-127.

R. J. McEliece, A public-key cryptosystem based on algebraic coding theory, Technical
Report DSN progress report 42-44, Jet Propulsion Laboratory, Pasadena (1978).

F. Monrose, M. K. Reiter and S. Wetzel, Password hardening based on keystroke
dynamics, In G. Tsudik (ed.), Sixth ACM Conference on Computer and Communications
Security, ACM Press (1999), pp. 73-82.

T. Pedersen, Non-interactive and information-theoretic secure verifiable secret sharing.
In J. Feigenbaum (ed.), Crypto '91, Springer-Verlag (1991), LNCS no. 576, pp. 129-140.
W. W. Peterson, Encoding and error-correction procedures for Bose-Chaudhuri codes,
IEEE Trans. Inform. Theory, Vol. IT-60 (1960) pp. 459-470.

B. Schoenmakers, F. Boudot and J .Traoré, A fair and efficient solution to the sociaset
millionaires’” problem, Discrete Appl. Math. Vol. 111 (2001, July) pp. 23-36.

A. Shamir, How to share a secret, Commun. ACM, Vol. 22 (1979) pp. 612-613.

C. Soutar, Biometric encryption for secure key generation, January 1998, Presentation at
the 1998 RSA Data Security Conference.

C. Soutar and G. J. Tomko, Secure private key generation using a fingerprint, In Card-
TechlSecurTech Conference Proceedings, Vol. 1, (May 1996) pp. 245-252.

J. Stern, A new identification scheme based on syndrome decoding, In D.R. Stinson
(ed.), Crypto ’93, Springer-Verlag (1993), LNCS no. 773, pp. 13-21.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

