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Abstract. Let K denote a field. Let d denote a nonnegative integer and consider a sequence p =
(θi , θ

∗
i , i =0...d;ϕj ,φj , j =1...d) consisting of scalars taken from K. We call p a parameter array when-

ever: (PA1) θi �= θj , θ∗
i �= θ∗

j if i �= j , (0 ≤ i, j ≤ d); (PA2) ϕi �= 0, φi �= 0 (1 ≤ i ≤ d); (PA3) ϕi =
φ1

∑i−1
h=0(θh − θd−h)/(θ0 − θd )+ (θ∗

i − θ∗
0 )(θi−1 − θd ) (1≤ i ≤d); (PA4) φi =ϕ1

∑i−1
h=0(θh − θd−h)/(θ0 − θd )+

(θ∗
i − θ∗

0 )(θd−i+1 − θ0) (1 ≤ i ≤ d); (PA5) (θi−2 − θi+1)(θi−1 − θi )
−1, (θ∗

i−2 − θ∗
i+1)(θ

∗
i−1 − θ∗

i )−1 are equal
and independent of i for 2 ≤ i ≤ d − 1. In Terwilliger, Linear Algebra Appl., Vol. 330(2001) p. 155 we
showed the parameter arrays are in bijection with the isomorphism classes of Leonard systems. Using
this bijection we obtain the following two characterizations of parameter arrays. Assume p satisfies PA1
and PA2. Let A,B,A∗,B∗ denote the matrices in Matd+1(K) which have entries Aii = θi , Bii = θd−i ,
A∗

ii = θ∗
i , B∗

ii = θ∗
i (0 ≤ i ≤ d), Ai,i−1 = 1, Bi,i−1 = 1, A∗

i−1,i
= ϕi , B∗

i−1,i
= φi (1 ≤ i ≤ d), and all other

entries 0. We show the following are equivalent: (i) p satisfies PA3–PA5; (ii) there exists an invertible
G∈Matd+1(K) such that G−1AG=B and G−1A∗G=B∗; (iii) for 0≤ i ≤d the polynomial

i∑
n=0

(λ− θ0)(λ− θ1) · · · (λ− θn−1)(θ
∗
i − θ∗

0 )(θ∗
i − θ∗

1 ) · · · (θ∗
i − θ∗

n−1)

ϕ1ϕ2 · · ·ϕn

is a scalar multiple of the polynomial

i∑
n=0

(λ− θd )(λ− θd−1) · · · (λ− θd−n+1)(θ
∗
i − θ∗

0 )(θ∗
i − θ∗

1 ) · · · (θ∗
i − θ∗

n−1)

φ1φ2 · · ·φn

.

We display all the parameter arrays in parametric form. For each array we compute the above
polynomials. The resulting polynomials form a class consisting of the q-Racah, q-Hahn, dual q-Hahn,
q-Krawtchouk, dual q-Krawtchouk, quantum q-Krawtchouk, affine q-Krawtchouk, Racah, Hahn, dual-
Hahn, Krawtchouk, Bannai/Ito, and Orphan polynomials. The Bannai/Ito polynomials can be obtained
from the q-Racah polynomials by letting q tend to −1. The Orphan polynomials have maximal degree
3 and exist for char(K)=2 only. For each of the polynomials listed above we give the orthogonality, 3-
term recurrence, and difference equation in terms of the parameter array.
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1. Introduction

In this paper we continue to develop the theory of Leonard pairs and Leonard sys-
tems [6,13–19]. We briefly summarize our results so far. In [13] we introduced the
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notion of a Leonard pair and the closely related notion of a Leonard system (see
Section 2). We classified the Leonard systems. In the process we introduced the
split decomposition for Leonard systems. Moreover, we showed that every Leonard
pair satisfies two cubic polynomial relations which we call the tridiagonal rela-
tions. The tridiagonal relations generalize both the cubic q-Serre relations and the
Dolan–Grady relations. In [6] we introduced a generalization of a Leonard pair
(resp. system), which we call a tridiagonal pair (resp. system). We extended some
of our results on Leonard pairs and systems to tridiagonal pairs and systems. For
instance we showed that every tridiagonal system has a split decomposition. More-
over, we showed that every tridiagonal pair satisfies an appropriate pair of tridiag-
onal relations. We did not get a classification of tridiagonal systems and to our
knowledge this remains an open problem. In [14] we introduced the tridiagonal
algebra. This is an associative algebra on two generators subject to a pair of tridi-
agonal relations. We showed that every tridiagonal pair induces on the underlying
vector space the structure of an irreducible module for a tridiagonal algebra. Given
an irreducible finite dimensional module for a tridiagonal algebra, we displayed
sufficient conditions for it to be induced from a tridiagonal pair in this fashion.
We also showed each sequence of Askey–Wilson polynomials gives a basis for an
appropriate infinite dimensional irreducible tridiagonal algebra module. In [15] we
began with an arbitrary Leonard pair, and exhibited 24 bases for the underlying
vector space which we found attractive. For each of these bases we computed the
matrices which represent the Leonard pair. We found each of these matrices is tri-
diagonal, diagonal, upper bidiagonal or lower bidiagonal. We computed the tran-
sition matrix for sufficiently many ordered pairs of bases in our set of 24 to enable
one to readily find the transition matrix for any ordered pair of bases in our set
of 24. In the survey [16] we gave a number of examples of Leonard pairs. We used
these examples to illustrate how Leonard pairs arise in representation theory, com-
binatorics, and the theory of orthogonal polynomials. The paper [17] is another
survey. In [18] we introduced the notion of a parameter array. We showed that the
classification of Leonard systems mentioned above gives a bijection from the set of
isomorphism classes of Leonard systems to the set of parameter arrays. We intro-
duced the T D-D canonical form and the LB-UB canonical form for Leonard sys-
tems. For a Leonard system in T D-D canonical form the associated Leonard pair
is represented by a tridiagonal and diagonal matrix, subject to a certain normal-
ization. For a Leonard system in LB-UB canonical form the associated Leonard
pair is represented by a lower bidiagonal and upper bidiagonal matrix, subject to a
certain normalization. We showed every Leonard system is isomorphic to a unique
Leonard system which is in T D-D canonical form and a unique Leonard system
which is in LB-UB canonical form. We described these canonical forms using the
associated parameter array. In [19] we obtained two characterizations of Leonard
pairs based on the split decomposition.
We now give an overview of the present paper. We first review our bijection
between the set of isomorphism classes of Leonard systems and the set of param-
eter arrays. We then use this bijection to obtain two characterizations of Leon-
ard systems. The first characterization involves bidiagonal matrices and is given
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in Theorem 3.2. The second characterization involves polynomials and is given in
Theorem 4.1. We view Theorem 4.1 as a variation on a theorem of Leonard [2,
p.260], [9]. In Section 5 we display all the parameter arrays. For each parameter
array we display the corresponding polynomials from our second characterization.
These corresponding polynomials form a class consisting of the q-Racah, q-Hahn,
dual q-Hahn, q-Krawtchouk, dual q-Krawtchouk, quantum q-Krawtchouk, affine
q-Krawtchouk, Racah, Hahn, dual-Hahn, Krawtchouk, Bannai/Ito, and Orphan
polynomials. The Bannai/Ito polynomials can be obtained from the q-Racah poly-
nomials by letting q tend to −1. The Orphan polynomials have maximal degree 3
and exist for char(K)=2 only. For each of the polynomials listed above we give the
orthogonality, 3-term recurrence, and difference equation in terms of the parame-
ter array. We conclude the paper with an open problem.
We now recall the definition of a parameter array. For the rest of this paper K will
denote a field.

Definition 1.1. Let d denote a nonnegative integer. By a parameter array over K

of diameter d we mean a sequence of scalars (θi, θ
∗
i , i =0...d;ϕj ,φj , j =1...d) taken

from K, which satisfy the following conditions (PA1)–(PA5):

(PA1) θi �= θj , θ∗
i �= θ∗

j if i �= j, 0≤ i, j ≤d,

(PA2) ϕi �=0, φi �=0, 1≤ i ≤d,

(PA3) ϕi =φ1

i−1∑
h=0

θh−θd−h

θ0−θd
+ (θ∗

i − θ∗
0 )(θi−1 − θd), 1≤ i ≤d,

(PA4) φi =ϕ1

i−1∑
h=0

θh−θd−h

θ0−θd
+ (θ∗

i − θ∗
0 )(θd−i+1 − θ0), 1≤ i ≤d,

(PA5) The expressions

θi−2 − θi+1

θi−1 − θi

,
θ∗
i−2 − θ∗

i+1

θ∗
i−1 − θ∗

i

(1)

are equal and independent of i for 2≤ i ≤d −1.

We now turn our attention to Leonard systems.

2. Parameter Arrays and Leonard Systems

We recall the notion of a Leonard system and discuss how these objects are related
to parameter arrays. Our account will be brief; for more detail see [13,15,16,18],
Let d denote a nonnegative integer. Let Matd+1(K) denote the K-algebra consist-
ing of all d +1 by d +1 matrices which have entries in K. We index the rows and
columns by 0,1, . . . , d. Let A denote a K-algebra isomorphic to Matd+1(K). An
element A∈A is called multiplicity-free whenever it has d +1 mutually distinct ei-
genvalues in K. Let A denote a multiplicity-free element of A. Let θ0, θ1, . . . , θd
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denote an ordering of the eigenvalues of A, and for 0≤ i ≤d put

Ei =
∏

0≤j≤d
j �=i

A− θj I

θi − θj

,

where I denotes the identity of A. We observe AEi = θiEi (0≤ i ≤d); (ii) EiEj =
δijEi(0 ≤ i, j ≤ d); (iii)

∑d
i=0 Ei = I . Let D denote the subalgebra of A generated

by A. Using (i)–(iii) we find E0,E1, . . . ,Ed form a basis for the K-vector space D.
We call Ei the primitive idempotent of A associated with θi . By a Leonard system in
A we mean a sequence �= (A;A∗; {Ei}di=0; {E∗

i }d
i=0), which satisfies the following

(i)–(v):

(i) each of A,A∗ is a multiplicity-free element of A,

(ii) E0,E1, . . . ,Ed is an ordering of the primitive idempotents of A,

(iii) E∗
0 ,E∗

1 , . . . ,E∗
d is an ordering of the primitive idempotents of A∗,

(iv) E∗
i AE∗

j =
{

0 if |i − j |>1,

�=0 if |i − j |=1,
(0≤ i, j ≤d),

(v) EiA
∗Ej =

{
0 if |i − j |>1,

�=0 if |i − j |=1,
(0≤ i, j ≤d).

We call A the ambient algebra of � and say � is over K [13, Definition 1.4].
Let �= (A;A∗; {Ei}di=0; {E∗

i }d
i=0) denote a Leonard system in A. Then each of the

following is a Leonard system in A:

�∗ := (A∗;A; {E∗
i }di=0; {Ei}di=0),

�↓ := (A;A∗; {Ei}di=0; {E∗
d−i}di=0),

�⇓ := (A;A∗; {Ed−i}di=0; {E∗
i }di=0).

Viewing ∗,↓,⇓ as permutations on the set of all Leonard systems,

∗2 =↓2=⇓2=1, (2)

⇓∗=∗↓, ↓∗=∗⇓, ↓⇓=⇓↓ . (3)

The group generated by the symbols ∗,↓,⇓ subject to the relations (2), (3) is the
dihedral group D4. We recall D4 is the group of symmetries of a square, and has
8 elements. Apparently ∗,↓,⇓ induce an action of D4 on the set of all Leonard
systems.
Let � = (A;A∗; {Ei}di=0; {E∗

i }d
i=0) denote a Leonard system in A. In order to

describe � we define some parameters. For 0 ≤ i ≤ d let θi (resp. θ∗
i ) denote the

eigenvalue of A (resp. A∗) associated with Ei (resp. E∗
i ). We call θ0, θ1, . . . , θd (resp.

θ∗
0 , θ∗

1 , . . . , θ∗
d ) the eigenvalue sequence (resp. dual eigenvalue sequence) of �. Let V

denote an irreducible left A-module.
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By a decomposition of V we mean a sequence U0,U1, . . . ,Ud consisting of 1-dimen-
sional subspaces of V such that

V =U0 +U1 +· · ·+Ud, (direct sum).

By [13, Theorem 3.2] there exists a unique decomposition U0,U1, . . . ,Ud of V such
that both

(A− θiI )Ui =Ui+1, (0≤ i ≤d −1), (A− θdI )Ud =0, (4)

(A∗ − θ∗
i I )Ui =Ui−1, (1≤ i ≤d), (A∗ − θ∗

0 I )U0 =0. (5)

Pick any integer i (1≤ i ≤d). Then (A∗ − θ∗
i I )Ui =Ui−1 and (A− θi−1I )Ui−1 =Ui .

Apparently Ui is an eigenspace for (A − θi−1I )(A∗ − θ∗
i I ) and the corresponding

eigenvalue is a nonzero scalar in K. We denote this eigenvalue by ϕi . We call
ϕ1, ϕ2, . . . , ϕd the first split sequence of �. We let φ1, φ2, . . . , φd denote the first
split sequence of �⇓ and call this the second split sequence of �.

We recall the notion of isomorphism for Leonard systems. Let � =
(A;A∗; {Ei}di=0; {E∗

i }d
i=0) denote a Leonard system in A and let σ:A→A′ denote

an isomorphism of K-algebras. We write �σ = (Aσ ;A∗σ ; {Eσ
i }d

i=0; {E∗σ
i }d

i=0) and
observe �σ is a Leonard system in A′. Let � and �′ denote any Leonard sys-
tems over K. By an isomorphism of Leonard systems from � to �′ we mean an
isomorphism of K-algebras from the ambient algebra of � to the ambient algebra
of �′ such that �σ =�′. We say � and �′ are isomorphic whenever there exists an
isomorphism of Leonard systems from � to �′.

Theorem 2.1 [13, Theorem 1.9]. Let d denote a nonnegative integer and let
(θi, θ

∗
i , i = 0...d;ϕj ,φj , j = 1...d) denote a sequence of scalars taken from K. Then

the following (i), (ii) are equivalent:

(i) the sequence (θi, θ
∗
i , i =0...d;ϕj ,φj , j =1...d) is a parameter array over K;

(ii) there exists a Leonard system � over K, which has eigenvalue sequence
θ0, θ1, . . . , θd , dual eigenvalue sequence θ∗

0 , θ∗
1 , . . . , θ∗

d , first split sequence
ϕ1, ϕ2, . . . , ϕd and second split sequence φ1, φ2, . . . , φd .

Suppose (i), (ii) hold. Then � is unique up to isomorphism of Leonard systems.

Let �= (A;A∗; {Ei}di=0; {E∗
i }d

i=0) denote a Leonard system. By the parameter array
of � we mean the sequence (θi, θ

∗
i , i = 0...d;ϕj ,φj , j = 1...d), where θ0, θ1, . . . , θd

(resp. θ∗
0 , θ∗

1 , . . . , θ∗
d ) is the eigenvalue sequence (resp. dual eigenvalue sequence) of

� and ϕ1, ϕ2, . . . , ϕd (resp. φ1, φ2, . . . , φd ) is the first split sequence (resp. second
split sequence) of �. By Theorem 2.1 the map which sends a given Leonard sys-
tem to its parameter array induces a bijection from the set of isomorphism classes
of Leonard systems over K to the set of parameter arrays over K.
Earlier we mentioned an action of D4 on the set of Leonard systems. The above
bijection induces an action of D4 on the set of parameter arrays. This action is
described as follows.
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Lemma 2.2 [13, Theorem 1.11]. Let �=(A;A∗; {Ei}di=0; {E∗
i }d

i=0) denote a Leonard
system and let p= (θi, θ

∗
i , i =0...d;ϕj ,φj , j =1...d) denote the corresponding param-

eter array.

(i) The parameter array of �∗ is p∗, where p∗ := (θ∗
i , θi , i = 0...d;ϕj ,φd−j+1, j =

1...d);

(ii) the parameter array of �↓ is p↓, where p↓ := (θi, θ
∗
d−i , i =

0...d;φd−j+1, ϕd−j+1, j =1...d);

(iii) the parameter array of �⇓ is p⇓, where p⇓ := (θd−i , θ
∗
i , i = 0...d;φj , ϕj , j =

1...d).

3. Parameter Arrays and Bidiagonal Matrices

In this section we characterize the parameter arrays in terms of bidiagonal matri-
ces. We will refer to the following set-up.

Definition 3.1. Let d denote a nonnegative integer and let (θi, θ
∗
i , i=0...d;ϕj ,φj , j =

1...d) denote a sequence of scalars taken from K. We assume this sequence satisfies
PA1 and PA2.

Theorem 3.2. With reference to Definition 3.1, the following (i), (ii) are equiva-
lent:

(i) the sequence (θi, θ
∗
i , i =0...d;ϕj ,φj , j =1...d) satisfies PA3–PA5;

(ii) there exists an invertible matrix G∈Matd+1(K) such that both

G−1




θ0 0
1 θ1

1 θ2
· ·

· ·
0 1 θd




G=




θd 0
1 θd−1

1 θd−2
· ·

· ·
0 1 θ0




, (6)

G−1




θ∗
0 ϕ1 0

θ∗
1 ϕ2

θ∗
2 ·

· ·
· ϕd

0 θ∗
d




G=




θ∗
0 φ1 0

θ∗
1 φ2

θ∗
2 ·

· ·
· φd

0 θ∗
d




. (7)

Proof. (i) ⇒ (ii) The sequence (θi, θ
∗
i , i = 0...d;ϕj ,φj , j = 1...d) satisfies PA1–

PA5 and is therefore a parameter array over K. By Theorem 2.1 there exists a
Leonard system over K which has eigenvalue sequence θ0, θ1, . . . , θd , dual eigen-
value sequence θ∗

0 , θ∗
1 , . . . , θ∗

d , first split sequence ϕ1, ϕ2, . . . , ϕd and second split
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sequence φ1, φ2, . . . , φd . We denote this system by � = (A;A∗; {Ei}di=0; {E∗
i }d

i=0).
Let A denote the ambient algebra of � and let V denote an irreducible left A-
module. Let U0,U1, . . . ,Ud denote the decomposition of V which satisfies (4) and
(5). For 0≤ i ≤d let ui denote a nonzero vector in Ui and observe u0, u1, . . . , ud is
a basis for V . Normalizing this basis we may assume (A−θiI )ui =ui+1 for 0≤ i ≤
d − 1 and (A− θdI )ud = 0. Since ϕ1, ϕ2, . . . , ϕd is the first split sequence of � we
have (A∗ − θ∗

i I )ui =ϕiui−1 (1 ≤ i ≤ d), (A∗ − θ∗
0 I )u0 = 0. Applying these comments

to �⇓ we find there exists a basis v0, v1, . . . , vd for V such that (A− θd−iI )vi =vi+1
(0≤ i ≤d −1) (A−θ0I )vd =0 and (A∗ −θ∗

i I )vi =φivi−1 (1≤ i ≤d), (A∗ −θ∗
0 I )v0 =0.

Let G∈Matd+1(K) denote the transition matrix from the basis u0, u1, . . . , ud to the
basis v0, v1, . . . , vd , so that vj =∑d

i=0 Gijui for 0 ≤ j ≤ d. Using this and elemen-
tary linear algebra we find G is invertible and satisfies (6) and (7).
(ii)⇒ (i) We apply Theorem 2.1. We show condition (ii) holds in that theorem. In
order to do this we invoke some results from [19]. Consider the following matrices
in Matd+1(K):

A=




θ0 0
1 θ1

1 θ2
· ·

· ·
0 1 θd




, A∗ =




θ∗
0 ϕ1 0

θ∗
1 ϕ2

θ∗
2 ·

· ·
· ϕd

0 θ∗
d




.

We observe A (resp. A∗) is multiplicity-free, with eigenvalues θ0, θ1, . . . , θd (resp.
θ∗

0 , θ∗
1 , . . . , θ∗

d ). For 0 ≤ i ≤d we let Ei (resp. E∗
i ) denote the primitive idempotent

for A (resp. A∗) associated with θi (resp. θ∗
i ). By [19, Lemma 6.2, Theorem 6.3]

the sequence (A;A∗; {Ei}di=0; {E∗
i }d

i=0) is a Leonard system in Matd+1(K). Let us
call this system �. By the construction � has eigenvalue sequence θ0, θ1, . . . , θd

and dual eigenvalue sequence θ∗
0 , θ∗

1 , . . . , θ∗
d . From the form of A and A∗ we find

ϕ1, ϕ2, . . . , ϕd is the first split sequence for �. By the last line of [19, Theorem
6.3] we find φ1, φ2, . . . , φd is the second split sequence for �. Now Theorem 2.1(ii)
holds; applying that theorem we find (θi, θ

∗
i , i =0...d;ϕj ,φj , j =1...d) is a parame-

ter array over K. In particular (θi, θ
∗
i , i =0...d;ϕj ,φj , j =1...d) satisfies PA3–PA5.

The matrix G from Theorem 3.2(ii) will be discussed further in Section 10.

4. Parameter Arrays and Polynomials

In this section we characterize the parameter arrays in terms of polynomials. We
will use the following notation. Let λ denote an indeterminate, and let K[λ] denote
the K-algebra consisting of all polynomials in λ which have coefficients in K. For
the rest of this paper all polynomials which we discuss are assumed to lie in K[λ].

We view the following theorem as a variation on a theorem of Leonard [2, p.
260], [9].

Theorem 4.1. With reference to Definition 3.1, the following (i), (ii) are equivalent:
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(i) the sequence (θi, θ
∗
i , i =0...d;ϕj ,φj , j =1...d) satisfies PA3–PA5;

(ii) for 0≤ i ≤d the polynomial

i∑
n=0

(λ− θ0)(λ− θ1) · · · (λ− θn−1)(θ
∗
i − θ∗

0 )(θ∗
i − θ∗

1 ) · · · (θ∗
i − θ∗

n−1)

ϕ1ϕ2 · · ·ϕn

(8)

is a scalar multiple of the polynomial

i∑
n=0

(λ− θd)(λ− θd−1) · · · (λ− θd−n+1)(θ
∗
i − θ∗

0 )(θ∗
i − θ∗

1 ) · · · (θ∗
i − θ∗

n−1)

φ1φ2 · · ·φn

. (9)

Proof. Let us abbreviate

A=




θ0 0
1 θ1

1 θ2
· ·

· ·
0 1 θd




, A∗ =




θ∗
0 ϕ1 0

θ∗
1 ϕ2

θ∗
2 ·

· ·
· ϕd

0 θ∗
d




and

B =




θd 0
1 θd−1

1 θd−2
· ·

· ·
0 1 θ0




, B∗ =




θ∗
0 φ1 0

θ∗
1 φ2

θ∗
2 ·

· ·
· φd

0 θ∗
d




.

We let T ,T ∗, T ⇓ denote the matrices in Matd+1(K) which have entries Tij =∏j−1
h=0(θi − θh), T ∗

ij = ∏j−1
h=0(θ

∗
i − θ∗

h ), T
⇓
ij = ∏j−1

h=0(θd−i − θd−h) for 0 ≤ i, j ≤ d. Each
of T ,T ∗, T ⇓ is lower triangular with diagonal entries nonzero so these matrices are
invertible. Let D (resp. D⇓) denote the diagonal matrix in Matd+1(K), which has
iith entry ϕ1ϕ2 · · ·ϕi (resp. φ1φ2 · · ·φi) for 0 ≤ i ≤ d. Each of D, D⇓ is invertible.
We let Z denote the matrix in Matd+1(K), which has ij th entry 1 if i + j =d and
0 if i + j �= d, for 0 ≤ i, j ≤ d. Observe Z2 = I so Z is invertible. We let H (resp.
H ∗) denote the diagonal matrix in Matd+1(K), which has iith entry θi (resp. θ∗

i )
for 0≤ i ≤d. One verifies T A=HT so A=T −1HT . One verifies ZT ⇓B =HZT ⇓ so
B = T ⇓−1ZHZT ⇓. One verifies DA∗D−1T ∗t = T ∗tH ∗ so A∗ = D−1T ∗tH ∗T ∗−1tD.
Similarly B∗ = D⇓−1T ∗tH ∗T ∗−1tD⇓. For 0 ≤ i ≤ d let fi denote the polynomial
in (8). Let P denote the matrix in Matd+1(K), which has ij th entry fj (θi) for
0≤ i, j ≤d. From the form of (8) we find P=T D−1T ∗t . For 0≤ i ≤d let f

⇓
i denote

the polynomial in (9). Let P⇓ denote the matrix in Matd+1(K), which has ij th
entry f

⇓
j (θi) for 0≤ i, j ≤d. From the form of (9) we find P⇓ =ZT ⇓D⇓−1T ∗t .
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(i) ⇒ (ii) By Theorem 3.2 there exists an invertible matrix G ∈ Matd+1(K) such
that G−1AG = B and G−1A∗G = B∗. Evaluating G−1A∗G = B∗ using A∗ =
D−1T ∗tH ∗T ∗−1tD and B∗ =D⇓−1T ∗tH ∗T ∗−1tD⇓ we find T ∗−1tDGD⇓−1T ∗t com-
mutes with H ∗. Since H ∗ is diagonal with diagonal entries mutually distinct we
find T ∗−1tDGD⇓−1T ∗t is diagonal. We denote this diagonal matrix by F and
observe G = D−1T ∗tFT ∗−1tD⇓. In this product each factor is upper triangular
(or diagonal) so G is upper triangular. Recall G−1AG = B; evaluating this using
A = T −1HT and B = T ⇓−1ZHZT ⇓ we find T GT ⇓−1Z commutes with H . Since
H is diagonal with diagonal entries mutually distinct we find T GT ⇓−1Z is diago-
nal. We denote this diagonal matrix by Y and observe T G=YZT ⇓. In this equa-
tion we compute the entries in column 0. To aid in this calculation we recall G

is upper triangular and observe Ti0 = 1, T
⇓
i0 = 1 for 0 ≤ i ≤ d. Computing the col-

umn 0 entries in T G = YZT ⇓ using these facts we find Yii = G00 for 0 ≤ i ≤ d.
Apparently Y =G00I . We remark G00 �=0 since Y is invertible by the construction.
Dividing G by G00 we may assume G00 = 1. Now Y = I so G = T −1ZT ⇓. Recall
T ∗−1tDGD⇓−1T ∗t is diagonal. We evaluate this expression using G=T −1ZT ⇓ and
find T ∗−1tDT −1ZT ⇓D⇓−1T ∗t is diagonal. But T ∗−1tDT −1ZT ⇓D⇓−1T ∗t =P−1P⇓
so P−1P⇓ is diagonal. Taking the inverse we find P⇓−1P is diagonal. For 0≤ i ≤d

let αi denote the ii entry of this diagonal matrix. From the definition of P and P⇓
we find fi(θj )=αif

⇓
i (θj ) for 0≤ i, j ≤d. Recall θ0, θ1, . . . , θd are mutually distinct,

and that each of fi, f
⇓
i has degree i for 0 ≤ i ≤ d. From these comments we find

fi =αif
⇓
i for 0≤ i ≤d.

(ii)⇒ (i) We show Theorem 3.2(ii) holds. To do this we exhibit an invertible matrix
G ∈ Matd+1(K) such that AG = GB and A∗G = GB∗. We define G = T −1ZT ⇓.
Observe G is invertible. The equation AG = GB is routinely verified by evaluat-
ing A,B,G using A = T −1HT , B = T ⇓−1ZHZT ⇓, G = T −1ZT ⇓. We now show
A∗G = GB∗. For 0 ≤ i ≤ d there exists αi ∈ K such that fi = αif

⇓
i . It follows P=

P⇓diag(α0, α1, . . . , αd). From this and since H ∗ is diagonal we find PH ∗P−1 =
P⇓H ∗P⇓−1. In this equation we multiply both sides on the left by T −1 and on the
right by ZT ⇓ to obtain T −1PH ∗P−1ZT ⇓ =T −1P⇓H ∗P⇓−1ZT ⇓. In this equation
the left side is equal to A∗G and the right side is equal to GB∗ so A∗G = GB∗.
We have now shown G satisfies Theorem 3.2(ii). Applying that theorem we find
(θi, θ

∗
i , i =0...d;ϕj ,φj , j =1...d) satisifes PA3–PA5.

We finish this section with a comment.

Lemma 4.2. Referring to Theorem 4.1, assume the equivalent conditions (i), (ii)
from that theorem hold. Then for 0 ≤ i ≤ d the scalar referred to in condition (ii) is
equal to

φ1φ2 · · ·φi

ϕ1ϕ2 · · ·ϕi

.

Proof. Compare the coefficient of λi in (8) and (9).
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5. The Parameter Arrays

In this section we display all the parameter arrays over K. We will use the follow-
ing notatation.

Definition 5.1. Let p = (θi, θ
∗
i , i = 0...d;ϕj ,φj , j = 1...d) denote a parameter array

over K. By a base for p, we mean a nonzero scalar q in the algebraic closure of
K such that q +q−1 +1 is equal to the common value of (1) for 2≤ i ≤d −1. We
remark on the uniqueness of the base. Suppose d ≥3. If q is a base for p then so
is q−1 and p has no other base. Suppose d < 3. Then any nonzero scalar in the
algebraic closure of K is a base for p.

Definition 5.2. Let p = (θi, θ
∗
i , i = 0...d;ϕj ,φj , j = 1...d) denote a parameter array

over K. For 0≤ i ≤d we let fi denote the following polynomial in K[λ]:

fi =
i∑

n=0

(λ− θ0)(λ− θ1) · · · (λ− θn−1)(θ
∗
i − θ∗

0 )(θ∗
i − θ∗

1 ) · · · (θ∗
i − θ∗

n−1)

ϕ1ϕ2 · · ·ϕn

. (10)

We call f0, f1, . . . , fd the polynomials which correspond to p.

We now display all the parameter arrays over K. For each displayed array
(θi, θ

∗
i , i = 0...d;ϕj ,φj , j = 1...d) we give a base and present fi(θj ) for 0 ≤ i, j ≤ d,

where f0, f1, . . . , fd are the corresponding polynomials. Our presentation is orga-
nized as follows. In each of Example 5.3–5.15 we give a family of parameter arrays
over K. In Theorem 5.16 we show every parameter array over K is contained in
at least one of these families.
In each of Example 5.3–5.15 the following implicit assumptions apply: d denotes
a nonnegative integer, the scalars (θi, θ

∗
i , i =0...d;ϕj ,φj , j =1...d) are contained in

K, and the scalars q,h,h∗ . . . are contained in the algebraic closure of K.

Example 5.3 (q-Racah). Assume

θi = θ0 +h(1−qi)(1− sqi+1)q−i , (11)

θ∗
i = θ∗

0 +h∗(1−qi)(1− s∗qi+1)q−i (12)

for 0≤ i ≤d and

ϕi =hh∗q1−2i (1−qi)(1−qi−d−1)(1− r1q
i)(1− r2q

i), (13)

φi =hh∗q1−2i (1−qi)(1−qi−d−1)(r1 − s∗qi)(r2 − s∗qi)/s∗ (14)

for 1 ≤ i ≤ d. Assume h,h∗, q, s, s∗, r1, r2 are nonzero and r1r2 = ss∗qd+1. Assume
none of qi, r1q

i, r2q
i, s∗qi/r1, s∗qi/r2 is equal to 1 for 1 ≤ i ≤ d and that neither

of sqi, s∗qi is equal to 1 for 2 ≤ i ≤ 2d. Then (θi, θ
∗
i , i = 0...d;ϕj ,φj , j = 1...d) is a

parameter array over K which has base q. The corresponding polynomials fi satisfy

fi(θj )= 4φ3

(
q−i , s∗qi+1, q−j , sqj+1

r1q, r2q, q−d

∣∣∣∣q, q

)
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for 0≤ i, j ≤d. These fi are the q-Racah polynomials.

Example 5.4 (q-Hahn). Assume

θi = θ0 +h(1−qi)q−i ,

θ∗
i = θ∗

0 +h∗(1−qi)(1− s∗qi+1)q−i

for 0≤ i ≤d and

ϕi =hh∗q1−2i (1−qi)(1−qi−d−1)(1− rqi),

φi =−hh∗q1−i (1−qi)(1−qi−d−1)(r − s∗qi)

for 1 ≤ i ≤ d. Assume h,h∗, q, s∗, r are nonzero. Assume none of qi, rqi, s∗qi/r is
equal to 1 for 1≤ i ≤d and that s∗qi �=1 for 2≤ i ≤2d. Then the sequence (θi, θ

∗
i , i =

0...d;ϕj ,φj , j = 1...d) is a parameter array over K which has base q. The corre-
sponding polynomials fi satisfy

fi(θj )= 3φ2

(
q−i , s∗qi+1, q−j

rq, q−d

∣∣∣∣q, q

)

for 0≤ i, j ≤d. These fi are the q-Hahn polynomials.

Example 5.5 (dual q-Hahn). Assume

θi = θ0 +h(1−qi)(1− sqi+1)q−i ,

θ∗
i = θ∗

0 +h∗(1−qi)q−i

for 0≤ i ≤d and

ϕi =hh∗q1−2i (1−qi)(1−qi−d−1)(1− rqi),

φi =hh∗qd+2−2i (1−qi)(1−qi−d−1)(s − rqi−d−1)

for 1≤ i ≤d. Assume h,h∗, q, r, s are nonzero. Assume none of qi, rqi, sqi/r is equal
to 1 for 1 ≤ i ≤ d and that sqi �= 1 for 2 ≤ i ≤ 2d. Then the sequence (θi, θ

∗
i , i =

0...d;ϕj ,φj , j = 1...d) is a parameter array over K which has base q. The corre-
sponding polynomials fi satisfy

fi(θj )= 3φ2

(
q−i , q−j , sqj+1

rq, q−d

∣∣∣∣q, q

)

for 0≤ i, j ≤d. These fi are dual the q-Hahn polynomials.

Example 5.6 (quantum q-Krawtchouk). Assume

θi = θ0 − sq(1−qi),

θ∗
i = θ∗

0 +h∗(1−qi)q−i
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for 0≤ i ≤d and

ϕi =−rh∗q1−i (1−qi)(1−qi−d−1),

φi =h∗qd+2−2i (1−qi)(1−qi−d−1)(s − rqi−d−1)

for 1 ≤ i ≤d. Assume h∗, q, r, s are nonzero. Assume neither of qi, sqi/r is equal to
1 for 1 ≤ i ≤ d. Then the sequence (θi, θ

∗
i , i = 0...d;ϕj ,φj , j = 1...d) is a parameter

array over K which has base q. The corresponding polynomials fi satisfy

fi(θj )= 2φ1

(
q−i , q−j

q−d

∣∣∣∣q, sr−1qj+1
)

for 0≤ i, j ≤d. These fi are the quantum q-Krawtchouk polynomials.

Example 5.7 (q-Krawtchouk). Assume

θi = θ0 +h(1−qi)q−i ,

θ∗
i = θ∗

0 +h∗(1−qi)(1− s∗qi+1)q−i

for 0≤ i ≤d and

ϕi =hh∗q1−2i (1−qi)(1−qi−d−1),

φi =hh∗s∗q(1−qi)(1−qi−d−1)

for 1 ≤ i ≤ d. Assume h,h∗, q, s∗ are nonzero. Assume qi �= 1 for 1 ≤ i ≤ d and that
s∗qi �= 1 for 2 ≤ i ≤ 2d. Then the sequence (θi, θ

∗
i , i = 0...d;ϕj ,φj , j = 1...d) is a

parameter array over K which has base q. The corresponding polynomials fi satisfy

fi(θj )= 3φ2

(
q−i , s∗qi+1, q−j

0, q−d

∣∣∣∣q, q

)

for 0≤ i, j ≤d. These fi are the q-Krawtchouk polynomials.

Example 5.8 (affine q-Krawtchouk). Assume

θi = θ0 +h(1−qi)q−i ,

θ∗
i = θ∗

0 +h∗(1−qi)q−i

for 0≤ i ≤d and

ϕi =hh∗q1−2i (1−qi)(1−qi−d−1)(1− rqi),

φi =−hh∗rq1−i (1−qi)(1−qi−d−1)

for 1 ≤ i ≤ d. Assume h,h∗, q, r are nonzero. Assume neither of qi, rqi is equal to
1 for 1 ≤ i ≤ d. Then the sequence (θi, θ

∗
i , i = 0...d;ϕj ,φj , j = 1...d) is a parameter

array over K which has base q. The corresponding polynomials fi satisfy

fi(θj )= 3φ2

(
q−i , 0, q−j

rq, q−d

∣∣∣∣q, q

)

for 0≤ i, j ≤d. These fi are the affine q-Krawtchouk polynomials.
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Example 5.9 (dual q-Krawtchouk). Assume

θi = θ0 +h(1−qi)(1− sqi+1)q−i ,

θ∗
i = θ∗

0 +h∗(1−qi)q−i

for 0≤ i ≤d and

ϕi =hh∗q1−2i (1−qi)(1−qi−d−1),

φi =hh∗sqd+2−2i (1−qi)(1−qi−d−1)

for 1 ≤ i ≤ d. Assume h,h∗, q, s are nonzero. Assume qi �= 1 for 1 ≤ i ≤ d and sqi �=
1 for 2 ≤ i ≤ 2d. Then the sequence (θi, θ

∗
i , i = 0...d;ϕj ,φj , j = 1...d) is a parameter

array over K which has base q. The corresponding polynomials fi satisfy

fi(θj )= 3φ2

(
q−i , q−j , sqj+1

0, q−d

∣∣∣∣q, q

)

for 0≤ i, j ≤d. These fi are the dual q-Krawtchouk polynomials.

Example 5.10 (Racah). Assume

θi = θ0 +hi(i +1+ s), (15)

θ∗
i = θ∗

0 +h∗i(i +1+ s∗) (16)

for 0≤ i ≤d and

ϕi =hh∗i(i −d −1)(i + r1)(i + r2), (17)

φi =hh∗i(i −d −1)(i + s∗ − r1)(i + s∗ − r2) (18)

for 1≤ i ≤d. Assume h,h∗ are nonzero and that r1 + r2 = s + s∗ +d +1. Assume the
characteristic of K is 0 or a prime greater than d. Assume none of r1, r2, s

∗ − r1,
s∗ − r2 is equal to −i for 1≤ i ≤d and that neither of s, s∗ is equal to −i for 2≤ i ≤
2d. Then the sequence (θi, θ

∗
i , i =0...d;ϕj ,φj , j =1...d) is a parameter array over K

which has base 1. The corresponding polynomials fi satisfy

fi(θj )= 4F3

(−i, i +1+ s∗, −j, j +1+ s

r1 +1, r2 +1, −d

∣∣∣∣1
)

for 0≤ i, j ≤d. These fi are the Racah polynomials.

Example 5.11 (Hahn). Assume

θi = θ0 + si,

θ∗
i = θ∗

0 +h∗i(i +1+ s∗)

for 0≤ i ≤d and

ϕi =h∗si(i −d −1)(i + r),

φi =−h∗si(i −d −1)(i + s∗ − r)
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for 1 ≤ i ≤ d. Assume h∗, s are nonzero. Assume the characteristic of K is 0 or a
prime greater than d. Assume neither of r, s∗ − r is equal to −i for 1 ≤ i ≤ d and
that s∗ �=−i for 2 ≤ i ≤ 2d. Then the sequence (θi, θ

∗
i , i = 0...d;ϕj ,φj , j = 1...d) is a

parameter array over K which has base 1. The corresponding polynomials fi satisfy

fi(θj )= 3F2

(−i, i +1+ s∗, −j

r +1, −d

∣∣∣∣1
)

for 0≤ i, j ≤d. These fi are the Hahn polynomials.

Example 5.12 (dual Hahn). Assume

θi = θ0 +hi(i +1+ s),

θ∗
i = θ∗

0 + s∗i

for 0≤ i ≤d and

ϕi =hs∗i(i −d −1)(i + r),

φi =hs∗i(i −d −1)(i + r − s −d −1)

for 1 ≤ i ≤ d. Assume h, s∗ are nonzero. Assume the characteristic of K is 0 or a
prime greater than d. Assume neither of r, s − r is equal to −i for 1≤ i ≤d and that
s �=−i for 2≤ i ≤2d. Then the sequence (θi, θ

∗
i , i =0...d;ϕj ,φj , j =1...d) is a param-

eter array over K which has base 1. The corresponding polynomials fi satisfy

fi(θj )= 3F2

(−i, −j, j +1+ s

r +1, −d

∣∣∣∣1
)

for 0≤ i, j ≤d. These fi are the dual Hahn polynomials.

Example 5.13 (Krawtchouk). Assume

θi = θ0 + si,

θ∗
i = θ∗

0 + s∗i

for 0≤ i ≤d and

ϕi = ri(i −d −1)

φi = (r − ss∗)i(i −d −1)

for 1 ≤ i ≤ d. Assume r, s, s∗ are nonzero. Assume the characteristic of K is 0 or a
prime greater than d. Assume r �= ss∗. Then the sequence (θi, θ

∗
i , i =0...d;ϕj ,φj , j =

1...d) is a parameter array over K which has base 1. The corresponding polynomials
fi satisfy

fi(θj )= 2F1

(−i, −j

−d

∣∣∣∣ r−1ss∗
)

for 0≤ i, j ≤d. These fi are the Krawtchouk polynomials.
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Example 5.14 (Bannai/Ito). Assume

θi = θ0 +h(s −1+ (1− s +2i)(−1)i), (19)

θ∗
i = θ∗

0 +h∗(s∗ −1+ (1− s∗ +2i)(−1)i) (20)

for 0≤ i ≤d and

ϕi =




−4hh∗i(i + r1) if i even, d even,

−4hh∗(i −d −1)(i + r2) if i odd, d even,

−4hh∗i(i −d −1) if i even, d odd,

−4hh∗(i + r1)(i + r2) if i odd, d odd,

(21)

φi =




4hh∗i(i − s∗ − r1) if i even, d even,

4hh∗(i −d −1)(i − s∗ − r2) if i odd, d even,

−4hh∗i(i −d −1) if i even, d odd,

−4hh∗(i − s∗ − r1)(i − s∗ − r2) if i odd, d odd

(22)

for 1≤ i ≤d. Assume h,h∗ are nonzero and that r1 + r2 =−s − s∗ +d +1. Assume the
characteristic of K is either 0 or an odd prime greater than d/2. Assume neither of
r1,−s∗ − r1 is equal to −i for 1 ≤ i ≤ d, d − i even. Assume neither of r2, −s∗ − r2
is equal to −i for 1≤ i ≤d, i odd. Assume neither of s, s∗ is equal to 2i for 1≤ i ≤
d. Then the sequence (θi, θ

∗
i , i = 0...d;ϕj ,φj , j = 1...d) is a parameter array over K

which has base −1. We call the corresponding polynomials from Definition 5.2 the
Bannai/Ito polynomials [2, p. 260].

Example 5.15 (Orphan). For this example assume K has characteristic 2. For
notational convenience we define some scalars γ0, γ1, γ2, γ3 in K. We define γi = 0
for i ∈{0,3} and γi =1 for i ∈{1,2}. Assume

θi = θ0 +h(si +γi), (23)

θ∗
i = θ∗

0 +h∗(s∗i +γi) (24)

for 0 ≤ i ≤ 3. Assume ϕ1 = hh∗r, ϕ2 = hh∗, ϕ3 = hh∗(r + s + s∗) and φ1 = hh∗(r +
s(1+ s∗)), φ2 =hh∗, φ3 =hh∗(r + s∗(1+ s)). Assume each of h,h∗, s, s∗, r is nonzero.
Assume neither of s, s∗ is equal to 1 and that r is equal to none of s + s∗, s(1+ s∗),
s∗(1 + s). Then the sequence (θi, θ

∗
i , i = 0...3;ϕj ,φj , j = 1...3) is a parameter array

over K which has diameter 3 and base 1. We call the corresponding polynomials from
Definition 5.2 the Orphan polynomials.

Theorem 5.16. Every parameter array over K is listed in at least one of the Exam-
ples 5.3–5.15.

Proof. Let p := (θi, θ
∗
i , i =0...d;ϕj ,φj , j =1...d) denote a parameter array over K.

We show this array is given in at least one of the Examples 5.3–5.15. We assume
d ≥ 1; otherwise the result is trivial. For notational convenience let K̃ denote the
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algebraic closure of K. Let q denote a base for p as in Definition 5.1. For d < 3
we may assume q �=1 and q �=−1 in view of the remark in Definition 5.1. By PA5
and Definition 5.1 both

θi−2 − [3]qθi−1 + [3]qθi − θi+1 =0, (25)

θ∗
i−2 − [3]qθ∗

i−1 + [3]qθ∗
i − θ∗

i+1 =0 (26)

for 2≤ i ≤d −1, where [3]q :=q +q−1 +1. We divide the argument into Case I–IV.
(I) q �= 1, q �= −1; (II) q = 1 and char(K) �= 2; (III) q = −1 and char(K) �= 2; (IV)
q =1 and char(K)=2.

Case I. q �=1, q �=−1.
By (25) there exist scalars η,µ,h in K̃ such that

θi =η+µqi +hq−i , 0≤ i ≤d. (27)

By (26) there exist scalars η∗,µ∗, h∗ in K̃ such that

θ∗
i =η∗ +µ∗qi +h∗q−i , 0≤ i ≤d. (28)

Observe µ,h are not both 0; otherwise θ1 = θ0 by (27). Similarly µ∗, h∗ are not
both 0. For 1≤ i ≤d we have qi �=1; otherwise θi = θ0 by (27). Setting i =0 in (27)
and (28) we obtain

θ0 =η+µ+h, (29)

θ∗
0 =η∗ +µ∗ +h∗. (30)

We claim there exists τ ∈ K̃ such that both

ϕi = (qi −1)(qd−i+1 −1)(τ −µµ∗qi−1 −hh∗q−i−d), (31)

φi = (qi −1)(qd−i+1 −1)(τ −hµ∗qi−d−1 −µh∗q−i ) (32)

for 1≤ i ≤d. Since q �=1 and qd �=1 there exists τ ∈K̃ such that (31) holds for i =1.
In the equation of PA4, we eliminate ϕ1 using (31) at i =1, and evaluate the result
using (27), (28), and [13, Lemma 10.2] in order to obtain (32) for 1≤ i ≤d. In the
equation of PA3, we eliminate φ1 using (32) at i =1, and evaluate the result using
(27), (28), and [13, Lemma 10.2] in order to obtain (31) for 1≤ i ≤d. We have now
proved the claim. We now break the argument into subcases. For each subcase our
argument is similar. We will discuss the first subcase in detail in order to give the
idea; for the remaining subcases we give the essentials only.
Subcase q-Racah: µ �= 0,µ∗ �= 0, h �= 0, h∗ �= 0. We show p is listed in Example 5.3.
Define

s :=µh−1q−1, s∗ :=µ∗h∗−1q−1. (33)

Eliminating η in (27) using (29) and eliminating µ in the result using the equa-
tion on the left in (33), we obtain (11) for 0 ≤ i ≤ d. Similarly we obtain (12) for
0≤ i ≤d. Since K̃ is algebraically closed it contains scalars r1, r2 such that both

r1r2 = ss∗qd+1, r1 + r2 = τh−1h∗−1qd. (34)
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Eliminating µ,µ∗, τ in (31), (32) using (33) and the equation on the right in (34),
and evaluating the result using the equation on the left in (34), we obtain (13), (14)
for 1≤ i ≤d. By the construction each of h,h∗, q, s, s∗ is nonzero. Each of r1, r2 is
nonzero by the equation on the left in (34). The remaining inequalities mentioned
below (14) follow from PA1, PA2 and (11)–(14). We have now shown p is listed in
Example 5.3.
We now give the remaining subcases of Case I. We list the essentials only.
Subcase q-Hahn: µ=0,µ∗ �=0, h �=0, h∗ �=0, τ �=0. Definitions.

s∗ :=µ∗h∗−1q−1, r := τh−1h∗−1qd.

Subcase dual q-Hahn: µ �=0,µ∗ =0, h �=0, h∗ �=0, τ �=0. Definitions.

s :=µh−1q−1, r := τh−1h∗−1qd.

Subcase quantum q-Krawtchouk: µ �=0,µ∗ =0, h=0, h∗ �=0, τ �=0. Definitions.

s :=µq−1, r := τh∗−1qd.

Subcase q-Krawtchouk: µ=0,µ∗ �=0, h �=0, h∗ �=0, τ =0. Definition.

s∗ :=µ∗h∗−1q−1.

Subcase affine q-Krawtchouk: µ=0,µ∗ =0, h �=0, h∗ �=0, τ �=0. Definition.

r := τh−1h∗−1qd.

Subcase dual q-Krawtchouk: µ �=0,µ∗ =0, h �=0, h∗ �=0, τ =0. Definition.

s :=µh−1q−1.

We have a few more comments concerning Case I. Earlier we mentioned that µ,h

are not both 0 and that µ∗, h∗ are not both 0. Suppose one of µ,h is 0 and one of
µ∗, h∗ is 0. Then τ �=0; otherwise ϕ1 =0 by (31) or φ1 =0 by (32). Suppose µ∗ �=0,
h∗ =0. Replacing q by q−1 we obtain µ∗ =0, h∗ �=0. Suppose µ∗ �=0, h∗ �=0, µ �=0,
h = 0. Replacing q by q−1 we obtain µ∗ �= 0, h∗ �= 0, µ = 0, h �= 0. By these com-
ments we find that after replacing q by q−1 if necessary, one of the above subcases
holds. This completes our argument for Case I.

Case II. q =1 and char(K) �=2.
By (25) and since char(K) �=2, there exist scalars η,µ,h in K̃ such that

θi =η+ (µ+h)i +hi2, 0≤ i ≤d. (35)

Similarly there exist scalars η∗,µ∗, h∗ in K̃ such that

θ∗
i =η∗ + (µ∗ +h∗)i +h∗i2, 0≤ i ≤d. (36)
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Observe µ,h are not both 0; otherwise θ1 =θ0. Similarly µ∗, h∗ are not both 0. For
any prime i such that i ≤d we have char(K) �= i; otherwise θi = θ0 by (35). There-
fore, char(K) is 0 or a prime greater than d. Setting i =0 in (35), (36) we obtain

θ0 =η, θ∗
0 =η∗. (37)

We claim there exists τ ∈ K̃ such that both

ϕi = i(d − i +1)(τ − (µh∗ +hµ∗)i −hh∗i(i +d +1)), (38)

φi = i(d − i +1)(τ +µµ∗ +hµ∗(1+d)+ (µh∗ −hµ∗)i +hh∗i(d − i +1)) (39)

for 1 ≤ i ≤ d. There exists τ ∈ K̃ such that (38) holds for i = 1. In the equation of
PA4, we eliminate ϕ1 using (38) at i = 1, and evaluate the result using (35), (36),
and [13, Lemma 10.2] in order to obtain (39) for 1≤ i ≤d. In the equation of PA3,
we eliminate φ1 using (39) at i =1, and evaluate the result using (35), (36), and [13,
Lemma 10.2] in order to obtain (38) for 1≤ i ≤d. We have now proved the claim.
We now break the argument into subcases.
Subcase Racah: h �=0, h∗ �=0. We show p is listed in Example 5.10. Define

s :=µh−1, s∗ :=µ∗h∗−1. (40)

Eliminating η,µ in (35) using (37), (40) we obtain (15) for 0 ≤ i ≤ d. Eliminating
η∗,µ∗ in (36) using (37), (40) we obtain (16) for 0≤ i ≤d. Since K̃ is algebraically
closed it contains scalars r1, r2 such that both

r1r2 =−τh−1h∗−1, r1 + r2 = s + s∗ +d +1. (41)

Eliminating µ,µ∗, τ in (38), (39) using (40) and the equation on the left in (41) we
obtain (17), (18) for 1 ≤ i ≤ d. By the construction each of h,h∗ is nonzero. The
remaining inequalities mentioned below (18) follow from PA1, PA2 and (15)–(18).
We have now shown p is listed in Example 5.10.
We now give the remaining subcases of Case II. We list the essentials only.
Subcase Hahn: h=0, h∗ �=0. Definitions.

s =µ, s∗ :=µ∗h∗−1, r :=−τµ−1h∗−1.

Subcase dual Hahn: h �=0, h∗ =0. Definitions.

s :=µh−1, s∗ =µ∗, r :=−τh−1µ∗−1.

Subcase Krawtchouk: h=0, h∗ =0. Definitions.

s :=µ, s∗ :=µ∗, r :=−τ.

Case III. q =−1 and char(K) �=2.
We show p is listed in Example 5.14. By (25) and since char(K) �= 2, there exist
scalars η,µ,h in K̃ such that

θi =η+µ(−1)i +2hi(−1)i , 0≤ i ≤d. (42)
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Similarly there exist scalars η∗,µ∗, h∗ in K̃ such that

θ∗
i =η∗ +µ∗(−1)i +2h∗i(−1)i , 0≤ i ≤d. (43)

Observe h �=0; otherwise θ2 =θ0 by (42). Similarly h∗ �=0. For any prime i such that
i ≤d/2 we have char(K) �= i; otherwise θ2i =θ0 by (42). By this and since char(K) �=
2 we find char(K) is either 0 or an odd prime greater than d/2. Setting i = 0 in
(42), (43) we obtain

θ0 =η+µ, θ∗
0 =η∗ +µ∗. (44)

We define

s :=1−µh−1, s∗ =1−µ∗h∗−1. (45)

Eliminating η in (42) using (44) and eliminating µ in the result using (45) we find
(19) holds for 0 ≤ i ≤ d. Similarly we find (20) holds for 0 ≤ i ≤ d. We now define
r1, r2. First assume d is odd. Since K̃ is algebraically closed it contains r1, r2 such
that

r1 + r2 =−s − s∗ +d +1 (46)

and such that

4hh∗(1+ r1)(1+ r2)=−ϕ1. (47)

Next assume d is even. Define

r2 :=−1+ ϕ1

4hh∗d
(48)

and define r1 so that (46) holds. We have now defined r1, r2 for either parity of d.
In the equation of PA4, we eliminate ϕ1 using (47) or (48), and evaluate the result
using (19), (20), and [13, Lemma 10.2] in order to obtain (22) for 1≤ i ≤d. In the
equation of PA3, we eliminate φ1 using (22) at i =1, and evaluate the result using
(19), (20), and [13, Lemma 10.2] in order to obtain (21) for 1 ≤ i ≤ d. We men-
tioned each of h,h∗ is nonzero. The remaining inequalities mentioned below (22)
follow from PA1, PA2 and (19)–(22). We have now shown p is listed in Example
5.14.

Case IV. q =1 and char(K)=2.
We show p is listed in Example 5.15. We first show d = 3. Recall d ≥ 3 since q =
1. Suppose d ≥ 4. By (25) we have

∑3
j=0 θj = 0 and

∑4
j=1 θj = 0. Adding these

sums we find θ0 =θ4, which contradicts PA1. Therefore d =3. We claim there exist
nonzero scalars h, s in K such that (23) holds for 0 ≤ i ≤ 3. Define h = θ0 + θ2.
Observe h �= 0; otherwise θ0 = θ2. Define s = (θ0 + θ3)h

−1. Observe s �= 0; otherwise
θ0 = θ3. Using these values for h, s we find (23) holds for i = 0,2,3. By this and∑3

j=0 θj =0 we find (23) holds for i =1. We have now proved our claim. Similarly
there exist nonzero scalars h∗, s∗ in K such that (24) holds for 0 ≤ i ≤ 3. Define



326 TERWILLIGER

r :=ϕ1h
−1h∗−1. Observe r �=0 and that ϕ1 =hh∗r. In the equation of PA4, we elim-

inate ϕ1 using ϕ1 =hh∗r and evaluate the result using (23), (24) and [13, Lemma
10.2] in order to obtain φ1 = hh∗(r + s(1 + s∗)), φ2 = hh∗, φ3 = hh∗(r + s∗(1 + s)).
In the equation of PA3, we eliminate φ1 using φ1 = hh∗(r + s(1 + s∗)) and evalu-
ate the result using (23), (24) and [13, Lemma 10.2] in order to obtain ϕ2 =hh∗,
ϕ3 =hh∗(r + s + s∗). We mentioned each of h,h∗, s, s∗, r is nonzero. Observe s �=1;
otherwise θ1 = θ0. Similarly s∗ �= 1. Observe r �= s + s∗; otherwise ϕ3 = 0. Observe
r �= s(1+ s∗); otherwise φ1 =0. Observe r �= s∗(1+ s); otherwise φ3 =0. We have now
shown p is listed in Example 5.15. We are done with Case IV and the proof is
complete.

6. The Orthogonality Relation in Terms of the Parameter Array

Some facts about the polynomials in Examples 5.3–5.15 can be expressed in a uni-
form and attractive manner by writing things in terms of the associated parameter
array. We illustrate this by giving the orthogonality relation, the three-term recur-
rence, and the difference equation in terms of the parameter array. We start with
the orthogonality relation. In order to state the result we define some scalars.

Definition 6.1. Let (θi, θ
∗
i , i =0...d;ϕj ,φj , j =1...d) denote a parameter array over

K. For 0≤ i ≤d we let ki equal

ϕ1ϕ2 · · ·ϕi

φ1φ2 · · ·φi

times

(θ∗
0 − θ∗

1 )(θ∗
0 − θ∗

2 ) · · · (θ∗
0 − θ∗

d )

(θ∗
i − θ∗

0 ) · · · (θ∗
i − θ∗

i−1)(θ
∗
i − θ∗

i+1) · · · (θ∗
i − θ∗

d )
.

For 0≤ i ≤d we let k∗
i equal

ϕ1ϕ2 · · ·ϕi

φdφd−1 · · ·φd−i+1

times

(θ0 − θ1)(θ0 − θ2) · · · (θ0 − θd)

(θi − θ0) · · · (θi − θi−1)(θi − θi+1) · · · (θi − θd)
.

We observe k0 =1, k∗
0 =1. We define

ν = (θ0 − θ1)(θ0 − θ2) · · · (θ0 − θd)(θ∗
0 − θ∗

1 )(θ∗
0 − θ∗

2 ) · · · (θ∗
0 − θ∗

d )

φ1φ2 · · ·φd

.

Theorem 6.2 [15, Lines (128), (129)]. Let (θi, θ
∗
i , i =0...d;ϕj ,φj , j =1...d) denote a

parameter array over K and let f0, f1, . . . , fd denote the corresponding polynomials
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from Definition 5.2. Then both

d∑
r=0

fi(θr )fj (θr )k
∗
r = δij νk−1

i , 0≤ i, j ≤d, (49)

d∑
r=0

fr(θi)fr(θj )kr = δij νk∗−1
i , 0≤ i, j ≤d. (50)

The scalars ki, k
∗
i , ν are from Definition 6.1.

We have a comment.

Lemma 6.3. With reference to Definition 6.1, both

ν =
d∑

r=0

kr , ν =
d∑

r=0

k∗
r . (51)

Proof. To get the equation on the left in (51) set i =0, j =0 in (50) and observe
fr(θ0)= 1 for 0 ≤ r ≤d. To get the equation on the right in (51) set i = 0, j = 0 in
(49) and observe f0 =1.

7. The Three-term Recurrence in Terms of the Parameter Array

In this section we give a three-term recurrence satisfied by the polynomials in
Example 5.3–5.15. We express the result in terms of the associated parameter array.
In order to state the result we define some scalars.

Definition 7.1. Let (θi, θ
∗
i , i =0...d;ϕj ,φj , j =1...d) denote a parameter array over

K. We define

bi =ϕi+1
(θ∗

i − θ∗
0 )(θ∗

i − θ∗
1 ) · · · (θ∗

i − θ∗
i−1)

(θ∗
i+1 − θ∗

0 )(θ∗
i+1 − θ∗

1 ) · · · (θ∗
i+1 − θ∗

i )
, 0≤ i ≤d −1 (52)

and bd =0. We define

ci =φi

(θ∗
i − θ∗

d )(θ∗
i − θ∗

d−1) · · · (θ∗
i − θ∗

i+1)

(θ∗
i−1 − θ∗

d )(θ∗
i−1 − θ∗

d−1) · · · (θ∗
i−1 − θ∗

i )
, 1≤ i ≤d (53)

and c0 =0. We define

ai = θ0 − ci −bi, 0≤ i ≤d. (54)

Theorem 7.2. Let (θi, θ
∗
i , i = 0...d;ϕj ,φj , j = 1...d) denote a parameter array over

K and let f0, f1, . . . , fd denote the corresponding polynomials from Definition 5.2.
For 0≤ i, j ≤d we have

θjfi(θj )= cifi−1(θj )+aifi(θj )+bifi+1(θj ), (55)
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where f−1, fd+1 are indeterminates and where the ai, bi, ci are from Definition 7.1.

Proof. Let P denote the matrix in Matd+1(K), which has ij th entry fj (θi) for
0 ≤ i, j ≤ d. Let K∗ denote the diagonal matrix in Matd+1(K), which has entries
K∗

ii =k∗
i for 0≤ i ≤d, where the k∗

i are from Definition 6.1. Let H denote the diag-
onal matrix in Matd+1(K), which has entries Hii = θi for 0 ≤ i ≤ d. Let C denote
the following matrix in Matd+1(K).

C =




a0 b0 0
c1 a1 b1

c2 · ·
· · ·

· · bd−1
0 cd ad




.

We define P ∗ =PtK∗. By [15, Line (118)] we have CP ∗ =P ∗H . By this and since
K∗,H are diagonal we find CPt = PtH . In this equation we expand each side
using matrix multiplication and routinely obtain (55).
We finish this section with a comment.

Lemma 7.3. With reference to Definitions 6.1 and 7.1,

ki = b0b1 · · ·bi−1

c1c2 · · · ci

, 0≤ i ≤d.

Proof. Compare the formulae for the ki, bi, ci given in Definitions 6.1 and 7.1.

8. The Difference Equation in Terms of the Parameter Array

In this section we give a difference equation satisfied by the polynomials in Exam-
ple 5.3–5.15. We express the result in terms of the associated parameter array. In
order to state the result we define some scalars.

Definition 8.1. Let (θi, θ
∗
i , i =0...d;ϕj ,φj , j =1...d) denote a parameter array over

K. We define

b∗
i =ϕi+1

(θi − θ0)(θi − θ1) · · · (θi − θi−1)

(θi+1 − θ0)(θi+1 − θ1) · · · (θi+1 − θi)
, 0≤ i ≤d −1

and b∗
d =0. We define

c∗
i =φd−i+1

(θi − θd)(θi − θd−1) · · · (θi − θi+1)

(θi−1 − θd)(θi−1 − θd−1) · · · (θi−1 − θi)
, 1≤ i ≤d

and c∗
0 =0. We define

a∗
i = θ∗

0 − c∗
i −b∗

i , 0≤ i ≤d.
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Theorem 8.2. Let (θi, θ
∗
i , i = 0...d;ϕj ,φj , j = 1...d) denote a parameter array over

K and let f0, f1, . . . , fd denote the corresponding polynomials from Definition 5.2.
For 0≤ i, j ≤d we have

θ∗
i fi(θj )= c∗

j fi(θj−1)+a∗
j fi(θj )+b∗

j fi(θj+1), (56)

where θ−1, θd+1 are indeterminates and the a∗
j , b∗

j , c
∗
j are from Definition 8.1.

Proof. By Lemma 2.2(i) the sequence (θ∗
i , θi , i = 0...d;ϕj ,φd−j+1, j = 1...d) is a

parameter array over K. Let f ∗
0 , f ∗

1 , . . . , f ∗
d denote the corresponding polynomials

from Definition 5.2, so that

f ∗
i =

i∑
n=0

(λ− θ∗
0 )(λ− θ∗

1 ) · · · (λ− θ∗
n−1)(θi − θ0)(θi − θ1) · · · (θi − θn−1)

ϕ1ϕ2 · · ·ϕn

(57)

for 0 ≤ i ≤ d. Applying Theorem 7.2 to (θ∗
i , θi , i = 0...d;ϕj ,φd−j+1, j = 1...d) and

f ∗
0 , f ∗

1 , . . . , f ∗
d we find that for 0≤ i, j ≤d,

θ∗
j f ∗

i (θ∗
j )= c∗

i f
∗
i−1(θ

∗
j )+a∗

i f ∗
i (θ∗

j )+b∗
i f

∗
i+1(θ

∗
j ), (58)

where f ∗
−1, f

∗
d+1 are indeterminates. Comparing (10) and (57) we find

fi(θj )=f ∗
j (θ∗

i ), 0≤ i, j ≤d. (59)

Evaluating (58) using (59) and reindexing the result we obtain (56).
We finish this section with a comment.

Lemma 8.3. With reference to Definitions 6.1 and 8.1,

k∗
i = b∗

0b∗
1 · · ·b∗

i−1

c∗
1c∗

2 · · · c∗
i

, 0≤ i ≤d.

Proof. Similar to the proof of Lemma 7.3.

9. Some Useful Formulae

In this section we give alternative formulae for the scalars ai, bi, ci from Definition
7.1. To avoid trivialities we assume the diameter d ≥1. We begin with the ai .

Theorem 9.1. [13, Lemma 5.1]. With reference to Definition 7.1, let us assume d ≥
1. Then

a0 = θ0 + ϕ1

θ∗
0 − θ∗

1
, (60)

ai = θi + ϕi

θ∗
i − θ∗

i−1
+ ϕi+1

θ∗
i − θ∗

i+1
, 1≤ i ≤d −1, (61)

ad = θd + ϕd

θ∗
d − θ∗

d−1
. (62)
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Lemma 9.2. With reference to Definition 7.1, assume d ≥1. Then

ci(θ
∗
i−1 − θ∗

i )−bi(θ
∗
i − θ∗

i+1)= (θ1 − θ0)(θ
∗
i − θ∗

0 )+ϕ1 (63)

for 0≤ i ≤d, where θ∗
−1, θ

∗
d+1 denote indeterminates.

Proof. Setting λ= θ1 in (10) we find

fi(θ1)=1+ (θ1 − θ0)(θ
∗
i − θ∗

0 )

ϕ1
, 0≤ i ≤d. (64)

Setting j =1 in (55) and evaluating the result using (54), (64) we obtain (63).

Theorem 9.3. With reference to Definition 7.1, assume d ≥1. Then

b0 = ϕ1

θ∗
1 − θ∗

0
, (65)

bi =
(θ0 −ai)(θ

∗
i − θ∗

i−1)+ (θ0 − θ1)(θ
∗
0 − θ∗

i )+ϕ1

θ∗
i+1 − θ∗

i−1
, 1≤ i ≤d −1, (66)

bd =0, (67)

c0 =0, (68)

ci =
(θ0 −ai)(θ

∗
i − θ∗

i+1)+ (θ0 − θ1)(θ
∗
0 − θ∗

i )+ϕ1

θ∗
i−1 − θ∗

i+1
, 1≤ i ≤d −1, (69)

cd = φd

θ∗
d−1 − θ∗

d

. (70)

Proof. Lines (67) and (68) are clear. To get (65) set i =0 in (52). To get (70) set
i =d in (53). To get (66) and (69), solve the linear system (54) and (63) for bi, ci .

Results similar to Theorem 9.1, Lemma 9.2, and Theorem 9.3 hold for the
a∗
i , b∗

i , c
∗
i .

10. Remarks

We conclude this paper with a few remarks.
Let (θi, θ

∗
i , i = 0...d;ϕj ,φj , j = 1...d) denote a parameter array over K and let

f0, f1, . . . , fd denote the corresponding polynomials from Definition 5.2. Applying
Theorem 4.1 with λ= θd and using Lemma 4.2 we find

fi(θd)= φ1φ2 · · ·φi

ϕ1ϕ2 · · ·ϕi

, 0≤ i ≤d. (71)

Let the scalars ki be as in Definition 6.1. Comparing (71) with the formulae for ki

given in Definition 6.1 we find

kifi(θd)= (θ∗
0 − θ∗

1 )(θ∗
0 − θ∗

2 ) · · · (θ∗
0 − θ∗

d )

(θ∗
i − θ∗

0 ) · · · (θ∗
i − θ∗

i−1)(θ
∗
i − θ∗

i+1) · · · (θ∗
i − θ∗

d )
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for 0≤ i ≤d.
We describe the matrix G from Theorem 3.2. We use the following notation. Let
(θi, θ

∗
i , i =0...d;ϕj ,φj , j =1...d) denote a parameter array over K and let q denote

a base for this array. To keep things simple we assume q �=1, q �=−1. For nonega-
tive integers r, s, t such that r + s + t ≤d we define

[r, s, t ]q := (q;q)r+s(q;q)r+t (q;q)s+t

(q;q)r(q;q)s(q;q)t (q;q)r+s+t

,

where

(a;q)n := (1−a)(1−aq) · · · (1−aqn−1), n=0,1,2, . . .

We comment [r, s, t ]q ∈ K [15, Definition 13.1]. Let S denote the upper triangular
matrix in Matd+1(K) which has entries

Sij = (θ0 − θd)(θ0 − θd−1) · · · (θ0 − θd−j+i+1)[i, j − i, d − j ]q

for 0≤ i ≤j ≤d. Then for G∈Matd+1(K), G satisfies Theorem 3.2(ii) if and only if
there exists a nonzero α ∈ K such that G=αS [15, Theorem 15.2]. Similar results
hold for q =1 and q =−1 [15, Lemma 13.2].

11. Open Problems

Problem 11.1. Generalize Theorem 4.1 so that it applies to polynomial sequences
of infinite length. Use this result to characterize the polynomials of the Askey scheme.
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