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Abstract. A recent publication introduced a Visual Crypto (VC) system, based on the polarisation of
light. This VC system has good resolution, contrast and colour properties. Mathematically, the VC sys-
tem is described by the XOR operation (modulo two addition). In this paper we investigate Thresh-
old Visual Secret Sharing schemes associated to XOR-based VC systems. Firstly, we show that n out
of n schemes with optimal resolution and contrast exist, and that (2, n) schemes are equivalent to
binary codes. It turns out that these schemes have much better resolution than their OR-based counter-
parts. Secondly, we provide two explicit constructions for general k out of n schemes. Finally, we derive
bounds on the contrast and resolution of XOR-based schemes. It follows from these bounds that for
k <n, the contrast is strictly smaller than one. Moreover, the bounds imply that XOR-based k out of n

schemes for even k are fundamentally different from those for odd k.
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1. Introduction

The idea of using the human visual system for security purposes was first men-
tioned in [1]. Independently of [1], the basic Visual Cryptography (VC) principles
were studied by Naor et al. [7,8]. The main idea is to split an image into two ran-
dom shares (printed on transparencies) which separately reveal no information on
the original image. The original image can be reconstructed by superimposing the
two shares. In [7,8] it is shown that this system is equivalent to a One Time Pad
encryption scheme based on the boolean OR function and therefore uncondition-
ally secure. Later, the associated secret sharing problem and its physical properties
as contrast, resolution and colour were extensively studied by Stinson [3,10], Dros-
te [4], and Verheul and Van Tilborg [12].
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Although the above mentioned visual crypto systems can be made uncondition-
ally secure, they are not satisfactory from a practical point of view. Firstly, because
of the One Time Pad property of the scheme, a key can be used only once. Since
transparencies are static objects, a user has to carry a pile of transparencies with
him to update the keys. Secondly, the bad physical properties (colour, resolution,
contrast) [7,10,12] make the system not very well suited for practical purposes.
In [11], a new visual crypto system is introduced that uses the polarisation of
light. With this new VC system, decryption can be done with a small, cheap and
light-weight decryption display which has a flexible key-updating mechanism.
Moreover, the system has good colour, contrast and resolution properties. The
operation of the VC system is mathematically described by an XOR operation,
that is, a modulo two addition.1 This motivates the investigation of Threshold
Visual Secret Sharing (TVSS) schemes for XOR-based VC in the present paper.
Other polarisation-based VC systems were studied in [2] and [9]. Biham and
Itzkovitz [2] investigate VC schemes based on passive light polarisers. This way
of doing is more flexible than the Naor–Shamir schemes but can not be mod-
elled by an XOR. They present (2, n) and (n, n) black–white schemes and shows
how general (k, n) schemes can be derived from (k, n) Naor–Shamir schemes. Fur-
thermore an example of an efficient coloured (2, n) scheme is given. De Santis [9]
investigates the pixel expansion and contrast of (2, n) VC schemes for general bool-
ean recombination functions.

The paper is organised as follows. In Section 2, the secret sharing problem is
formally defined. We give an almost trivial example of an (n, n) scheme that has
a much better resolution than any (n, n) scheme for an OR-based VC system, and
show the equivalence of (2, n) schemes and binary coding theory. Things get more
complicated in Section 3, where we give two explicit constructions of general k

out of n schemes. The first construction seems to yield very efficient schemes. It
seems not easy to find manageable expressions for the parameters of the schemes
so obtained, but we are able to do so for some specific examples. The second con-
struction is based on MDS codes (known from coding theory, [6, Ch. 11]), and
explicit formulas are derived for the parameters of the k out of n schemes obtained
with this construction. In Section 4, we derive bounds on resolution and contrast
properties of TVSS schemes. It turns out that TVSS schemes for XOR-based VC
systems for even k are fundamentally different from those for odd k. This phenom-
enon does not occur with TVSS schemes for OR-based VC systems.

2. Threshold Visual Secret Sharing Schemes

2.1. Definitions

In this section, we define TVSS schemes for XOR-based VC systems, and give
examples of such schemes for certain parameter values. We restrict ourselves to
images consisting of black and white pixels. The schemes are meant for sharing a
single black or white pixel. In order to share a complete image, the pixel scheme
has to be applied to all pixels in the image.
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Following the notation from [12], a k out of n (or (k, n)) TVSS scheme S =
(C0,C1) consists of two collections of n×b binary matrices C0 and C1. To share
a white (black) pixel, the dealer randomly chooses one of the matrices in C0 (C1)
and distributes its rows as shares among the n participants of the system. Any k

users can determine whether their shares originated from a matrix in C0 or from
C1 by XOR-ing them. Any k −1 or less users have no information whatsoever on
whether a black or a white pixel was shared. The next definition makes the above
more precise.

Definition 1. Let k, n, b, h, l be positive integers satisfying 1≤k ≤n and b≥h>l.
A [(k, n);b,h, l] TVSS scheme consists of two collections of n×b boolean matrices
C0 and C1 such that:

1. For any M ∈C0, the XOR of any k of the n rows of M has at least h zeroes.

2. For any M ∈C1, the XOR of any k of the n rows of M has at most l zeroes.

3. For any i1 < i2 < · · · < it in {1,2, . . . , n} with t < k, the two collections of t × b

matrices D0 and D1, obtained by restricting each n × b matrix in C0 and C1,
respectively, to rows i1, i2, . . . , it are indistinguishable in the sense that they con-
tain the same matrices with the same frequencies.

The numbers h and l are called the white-level and black-level, respectively, of the
scheme. The parameter b is called the block length or pixel expansion2 and deter-
mines the resolution of the scheme. The contrast c=c(S) of the scheme is defined
as c= (h− l)/(h+ l).

The interpretation of the white and black-level is the following. As the sub-pixels
of a pixel lie close to each other, the human visual system averages over the black
and white sub-pixels. This means that a pixel which has a majority of white (black)
sub-pixels is interpreted as white (black) by the human visual system. Clearly, it is
desirable to have a large contrast c, and a small block length b. Note that c∈ [0,1]
and that c is maximal when l = 0. Schemes with l = 0 are called maximal contrast
schemes.

The proof of the following symmetry property is left as an easy exercise to the
reader.

Proposition 1. Let S = (C0,C1) be a [(k, n);b,h, l] TVSS scheme. Let Ĉi be
obtained from Ci by replacing zeroes by ones and vice versa. If k is even, then the
scheme (Ĉ0, Ĉ1) is a [(k, n);b,h, l] scheme as well. If k is odd, then (Ĉ1, Ĉ0) is a
[(k, n);b, b− l, b−h] scheme with contrast ĉ given by

ĉ= (h− l)/(2b− l −h).

It follows that ĉ >c whenever l +h>b.

�
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For OR-based VC systems, the minimum block length of a (2,2) TVSS scheme
with contrast c = 1 is at least 2 [4,7]. The following proposition—the proof of
which is left as an easy exercise to the reader—explicitly describes, for each n≥1,
an (n, n) scheme with block length b=1 and contrast c=1.

Proposition 2. Let C0,C1 be the set of all binary vectors of length n with an even,
odd number of ones, respectively. Then (C0,C1) is an [(n, n);1,1,0] TVSS scheme.

2.2. Equivalence of (2,n) TVSS Schemes and Binary Error-Correcting Codes

In this section, we show that (2, n) TVSS schemes are equivalent to binary error-
correcting codes. By a (b, n, d) code, we mean a binary code of length b, consisting
of n words and with minimum Hamming distance at least d.

Theorem 1. Let b, l and h be positive integers such that l <h≤b. The three follow-
ing statements are equivalent.

(i) A [(2, n);b, b, l] TVSS scheme exists.

(ii) A [(2, n);b,h, l] TVSS scheme exists.

(iii) A binary (b, n, b− l) code exists.

Proof. It is clear that (i) implies (ii).
In order to show that (ii) implies (iii), let S = (C0,C1) be a [(2, n);b,h, l] TVSS

scheme. Take a matrix A1 ∈C1 and let C consist of the rows from A1. As S is a
[(2, n);b,h, l] TVSS scheme, the Hamming distance between two words from C is
at least b− l. Consequently, C is a (b, n, b− l) code.

Finally, to show that (iii) implies (i), let C be a binary (b, n, b− l) code. For c∈
C, let A(c) denote the n×b matrix for which each row equals c. Moreover, let B

be an n× b matrix containing each word from C as a row, and for 0 ≤ i ≤ n− 1,
let B(i) be the matrix obtained by a cyclic shift of the rows of B over i positions.
We claim that (C0,C1) = ({A(c) | c ∈ C}, {B(0),B(1), . . . ,B(n − 1)}) is a
[(2, n);b, b, l] scheme. It is clear that both collections contain n matrices, and that
in each row, each word from C occurs in one matrix from C0 and in one matrix
from C1, showing the indistinghuisability. The sum of any two rows from a matrix
in C0 equals 0. Finally, the Hamming distance between any two rows of a matrix
from C1 is at least b− l, showing that the XOR of these two rows contains at most
b− (b− l)= l zeroes.

We give a few examples of application of Theorem 1. If n ≤ 2b, a (b, n,1)

code exists, which results in a [(2, n);b, b, b − 1] TVSS scheme with contrast c =
1/(2b−1). If n≤2b−1, a (b, n,2) code exists (consisting of words of even Hamming
weight), resulting in a [(2, n);b, b, b − 2] TVSS scheme with contrast 1/(b − 1). If
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b = 2m, with m ≥ 3, a (b,2b, b/2) code exists (simplex code [6, Ch. 14]), resulting
in a [(2,2b);b, b, b/2] TVSS scheme with contrast 1/3.

3. Construction of (k, n) Visual Secret Sharing Schemes

In the previous section, we constructed (n, n) schemes and (2, n) schemes. In this
section, we present two constructions showing that (k, n) TVSS schemes exist for
all 2 ≤ k ≤n− 1. In Subsection 3.1 we give some definitions and prove a theorem
that is used in both constructions. The respective constructions are described in
Subsections 3.2 and 3.3.

3.1. Constructing (k,n) TVSS Schemes from (k,n) Pairs of Matrices

For describing the constructions of (k, n) schemes, we use the following notation,
due to Droste [4]. If A is a binary matrix, then P(A) is the multi-set of matrices
obtained by permuting the columns of A, that is, each column permutation cor-
responds to exactly one element of P(A). Moreover, we use the concept of (k, n)

pairs, defined as follows.

Definition 2. A pair (A,B) of binary n×b matrices is called a (k,n) pair if there
exist numbers a1, . . . , ak and b1, . . . , bk such that

(1) for each i with 1 ≤ i ≤ k, the weight of the sum of any i rows from A equals
ai and the weight of the sum of any i rows from B equals bi , and

(2) ai =bi for 1≤ i <k, and ak �=bk.

The importance of this definition stems from the following theorem.

Theorem 2. If (A,B) is a (k, n)-pair of n × b matrices, then (P (A),P (B)) is a
[(k, n);b,h, l] TVSS scheme with h= max(b −ak, b −bk) and l = min(b −ak, b −bk).
Here, ak and bk denote the weight of the sum of any k rows from A and B, respectively.

We continue with a proof of Theorem 2, or in fact of a generalisation of it.
For a binary vector v of length b, we define z(v) as the number of zeroes in v,

and w(v) as its number of ones. Moreover, we define the unbalance δ(v) of v by
δ(v)= z(v)−w(v). Note that δ(v)=b−2w(v). For later use, we also observe that

δ(v)=
b∑

j=1

(−1)vj . (1)

With each binary n × b matrix A we associate two vectors δ(A) and N(A) of
length 2n, with the components indexed by binary vectors of length n. For each
binary vector x of length n, the x-th component δx(A) of δ(A) is defined as
δx(A) = δ(x�A), the unbalance of the sum of the rows in A whose index i satis-
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fies xi = 1; also, the x-th component Nx(A) of N(A) is defined as the number of
columns of A that are equal to x.

We will show that the vectors δ(A) and N(A) can be computed from each other.
To make this precise, we define the 2n ×2n matrix H by

H(x,y)= (−1)(x,y), (2)

where x,y are binary vectors of length n and (x,y)=∑n
i=1 xiyi denotes the inner

product of x and y. Then we have the following.

Lemma 1. (i) The matrix H is a Hadamard matrix, that is, HH� =2nI .
(ii) The vectors δ(A) and N(A) are related by δ(A)=HN(A).

Proof. (i) For all binary vectors x,y of length n, we have that

HH�(x,y)=
∑

z

(−1)(x,z)(−1)(y,z) =
∑

z

(−1)(x+y,z) =
{

2n, if x =y;
0, otherwise.

(3)

(ii) Let x be a binary vector of length n. From equation (1), it follows that the
contribution of a column y of A to δx(A) equals (−1)(x,y). On the other hand, by
definition, we have

(HN(A))x =
∑

y

(−1)(x,y)Ny(A).

We are now in a position to prove a generalisation of Theorem 2. Before we state
it, we need one more notation: if A is an n × b matrix, then w(AI ) denotes the
weight of the sum of the rows of A indexed by I . Note that

w(AI )= 1
2
(b− δχ(I)(A)), (4)

where χ(I) is the characteristic vector of the set I .

Theorem 3. Let A and B be n×b matrices such that for each I ⊂{1,2, . . . , n} of size
at most k −1, w(AI )=w(BI ). Assume moreover that there exist integers h and l such
that h>l and that for each I ⊂{1,2, . . . , n} of size k, b−w(AI )≥h and b−w(BI )≤ l.
Then (P (A),P (B)) is an [(k, n);b,h, l] TVSS scheme.

Proof. The only non-trivial thing we have to prove is the indistinguishability. Let
I = {i1, . . . , it } be a subset of {1,2, . . . , n} of size t < k. Let Ā and B̄ denote the
restrictions of A and B to the t rows indexed by I . Let x= (x1, . . . , xt ) be a binary
vector of length t , and let x̃ be the binary vector of length n for which entry ij
equals xj for j = 1,2, . . . , t , and whose other entries equal zero. It is clear that
δx(Ā)=δx̃(Ā). As x̃ has weight at most t , we find, using equation (4) and the prop-
erties of A and B, that δx(Ā)= δx(B̄).

Hence by Lemma 1, the number of columns Ny(Ā) in Ā and the number of col-
umns Ny(B̄) in B̄ of type y = (y0, . . . , yt−1) are equal for all binary vectors y of
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length t . As a consequence, the matrices Ā and B̄ are equal up to a column per-
mutation, which readily implies indistinguishability in the rows under consideration
in the multi-sets P(A) and P(B).

3.2. Construction 1

We discuss an explicit construction of (k, n) TVSS schemes for all n and all k

with 1≤k ≤n. According to Theorem 2, it is sufficient to construct (k, n)-pairs for
all such n and k. We will obtain such pairs by concatenation of matrices from a
fixed collection of building blocks. For each n and w with 0 ≤ w ≤ n, we let the
n× (n

w

)
-matrix C

(n)
w consist of all the

(
n
w

)
different 0–1 column vectors of weight

w, in any order. The collection of building blocks C(n) consists of all matrices C
(n)
w

with 0≤w≤n. In what follows, we will consider n fixed and omit all references to
n in the notation. More specifically, we will write Cw for the w-th building block.
It is noteworthy that Droste [4] uses the same building blocks in his construction
of TVSS schemes for OR-based VC systems.

In the sequel, we will need an explicit expression for the weight of the sum of
any j rows from Cw. In the next lemma, we state the result. Here and in what
follows, we will use the standard convention that

(
n
k

)=0 whenever k <0 or k >n.

Lemma 2. The weight of the sum of any j rows, 1≤j ≤n, from Cw does not depend
on the choice of the rows and is equal to Mj,w, where

Mj,w =
∑

i odd

(
j

i

)(
n− j

w − i

)
. (5)

Proof. Fix any j rows. There are precisely
(
j
i

)(
n−j
w−i

)
vectors of weight w that have

i ones in these j rows; these rows contribute one (zero) to the weight of the sum
of these j rows precisely when i is odd (even).

Let λ = (λ0, . . . , λn)
� be a vector of length n + 1 with non-negative integer

entries. We define the matrix C(λ) to be the matrix consisting of the concatenation
of λ0 copies of C0, λ1 copies of C1, . . . , λn copies of the matrix Cn. It is clear that
c0(λ), the number of columns of C(λ), satisfies

c0(λ)=
∑

w

λw

(
n

w

)
. (6)

According to Lemma 2, the weight of the sum of any j rows of C(λ) equals cj (λ),
where

cj (λ)=
∑

w

λw

∑

i odd

(
j

i

)(
n− j

w − i

)
. (7)

Hence, if we define c(λ)= (c0(λ), . . . , cn(λ))�, then the above can also be written as
c(λ)=Mλ, where M is the (n+1)× (n+1) matrix with entries the Mj,w as defined



176 TUYLS ET AL.

in Lemma 2 for j ≥ 1 and with M0,w = (n
w

)
. Now suppose that λ and µ are non-

negative integer vectors such that Mλ and Mµ agree in positions 0,1, . . . ,k−1, but
differ in position k. Then (C(λ),C(µ)) is a (k, n) pair of matrices to which we can
apply Theorem 2. The way to find such vectors λ and µ is described in Theorem 4,
that uses Lemma 3, Corollary 1 and Lemma 4 below.

Lemma 3. For 1≤ j ≤n, 1≤w ≤n, we have that Mj,w =∑k≥1(−2)k−1
(
j
k

)(
n−k
w−k

)
.

Proof. Let f (z) := (1+ z)n−j (1− z)j . It is clear that

f (z)=
∑

i

(
j

i

)
(−1)izi

∑

k

(
n− j

k

)
zk. (8)

As f (z)= (1+ z)n−j ((1+ z)−2z)j , we have that

f (z)=
∑

k

(
j

k

)
(−2z)k(1+ z)n−k =

∑

k

(
j

k

)
(−2z)k

∑

i

(
n−k

i

)
zi . (9)

By comparing the coefficients of zw in f (z) in equations (8) and (9), we see that
∑

i

(
j

i

)
(−1)i

(
n− j

w − i

)
=
∑

k

(
j

k

)
(−2)k

(
n−k

w −k

)
. (10)

By comparing the coefficients of zw in the expansions of (1 + z)j (1 + z)n−j = (1 +
z)n, we obtain the well-known Vandermonde identity,

∑

i

(
j

i

)(
n− j

w − i

)
=
(

n

w

)
. (11)

The lemma is obtained by subtracting equation (10) from (11).

The following is a direct consequence of Lemma 3.

Corollary 1. Let R and L be the (n+1)× (n+1) matrices defined as

Rk,w =
(

n−k

w −k

)
for 0≤k,w ≤n, and

L0,0 =1,Li,0 =L0,i =0 if i >0, and Lj,k = (−2)k−1
(

j

k

)
if 1≤ j, k ≤n.

Then M =LR.

We define the (n+1)× (n+1) matrix S by

Si,j = (−1)i+j

(
n− i

j − i

)
. (12)

The following result is surely well-known, but we could not find a reference. The
result can be derived from [13, Ch. 2, (4a)].
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Lemma 4. The matrices R and S are inverses of each other.

Proof. As R and S are upper triangular matrices with ones on their diagonals,
RS is an upper triangular matrix with ones on its diagonal. If 0 ≤ i < j , then we
have that

(RS)i,j =
∑

w

(
n− i

w − i

)
(−1)w+j

(
n−w

j −w

)
=
∑

w

(−1)w+j

(
n− i

n− j

)(
j − i

w − i

)

=
(

n− i

n− j

)
(−1)i+j

∑

v

(−1)v
(

j − i

v

)
=
(

n− i

n− j

)
(−1)i+j (1−1)j−i =0

We are now in a position to describe our construction, that we cast in the form
of a theorem.

Theorem 4. Let 1≤ k ≤ n − 1. Let θ = (θ0, θ1, . . . , θn) be an integer-valued vector
such that θj =0 if 0≤ j ≤k −1, and θk �=0, and let φ :=Sθ . For 0≤ j ≤n, we define

λj =max(0, φj ) and µj =−min(0, φj ).

Then λ and µ are vectors with non-negative integer entries, and (C(λ),C(µ)) is a
(k, n) pair.
The parameters of the corresponding [(k, n);b,h, l] TVSS scheme satisfy the follow-
ing equations:

b= 1
2

n∑

w=0

|φw|
(

n

w

)
, h− l =2k−1|θk|, and h+ l =b+ 1

2

n∑

w=0

|φw|
∑

i

(−1)i
(

k

i

)(
n−k

w − i

)
.

Proof. As S has integer entries, φ has integer entries, whence λ and µ have non-
negative integer entries. Using Corollary 1, Lemma 4, and the fact that φ =λ−µ,
we find that

c(λ)− c(µ)=Mλ−Mµ=M(λ−µ)=Mφ =LRSθ =Lθ.

As L is a lower triangular matrix, and θj =0 if j <k, it follows that cj (λ)= cj (µ)

if 0≤ j ≤k −1, and that h− l =|ck(λ)− ck(µ)|= |(L)k,kθk|=2k−1|θk|.
Moreover, 2b = c0(λ)+ c0(µ)= c0(λ+µ)= c0(|φ|), and similarly (b −h)+ (b − l)=
ck(λ+µ)= ck(|φ|).

The construction above shows the existence of (k, n) pairs for all pairs of inte-
gers k and n. There is ample choice for the vector θ . We will discuss three choices
for it.

Example 1. Take

θ = (0, . . . ,0,1,2, . . . , n−k, n−k +1)�. (13)
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As φ =Sθ , we have by definition

φi =
n−i∑

v=k−i−1

(−1)v
(

n− i

v

)
(v −k + i +1).

After some computations (see Appendix A), it follows that

φi = (−1)i+k

(
n−2− i

k −2− i

)
if 0≤ i ≤k −2,

φi =0 if k −1≤ i ≤n−2, φn−1 =−1, and φn =n−k +1. (14)

It does not seem easy to obtain manageable formulas for the length b and the con-
trast c of the resulting schemes. We work out the special cases k =3 and k =4.

Case 1. k =3.
If k=3, then φ=(2−n,1,0,0,. . . ,−1, n−2). Consequently, λ= (0,1,0, . . . ,0, n−2)

and µ= (n−2,0, . . . ,0,1,0). That is to say, A=C(λ) consists of the n×n identity
matrix and n−2 columns of weight n, while B =C(µ) consists of n−2 all-zero col-
umns and furthermore contains each column of weight n−1 once. It is clear that
A and B both contain 2n − 2 columns. Straightforward computations show that
a1 =b1 =n−1, a2 =b2 =2, a3 =n+1, b3 =n−3. As a consequence, we obtain a

[(3, n);2n−2, n+1, n−3] TVSS scheme with c=2/(n−1).

Case 2. k =4.
If k =4, then φ = (

(
n
2

)−2n+3,3−n,1,0, . . . ,0,−1, n−3). Consequently, λ= (
(
n
2

)−
2n+3,0,1,0, . . . ,0, n−3) and µ= (0, n−3,0, . . . ,0,1,0). That is to say, A=C(λ)

consists of
(
n
2

)−2n+3 all-zero columns, n−3 all-one columns, and contains each
vector of weight 2 exactly once. The matrix B =C(µ) consists of n−3 copies of the
identity matrix, and contains each column of weight n−1 exactly once. It is clear
that A and B both contain n(n−2) columns. Straightforward computations show
that a1 = b1 = 2n− 4, a2 = b2 = 2n− 4, a3 = b3 = 4n− 12, a4 = 4n− 16, b4 = 4n− 8.

As a consequence, we obtain a

[(4, n);n2 −2n,n2 −6n+16, n2 −6n+8] TVSS scheme with c=4/(n2 −6n+12).

Example 2. Take θ = ek, the k-th unit vector. Then φ is just the k-th column from
S. This leads to vectors λ and µ with

λ2i =
(

n−2i

k −2i

)
, λ2i+1 =0, µ2i =0, µ2i+1 =

(
n−2i −1
k −2i −1

)
, (15)

for 0≤ i ≤k/2. For example, if k =3, then

λ=
((

n

3

)
,0, n−2,0, . . . ,0

)
and µ=

(
0,

(
n−1

2

)
,0,1,0, . . . ,0

)
. (16)
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So A consists of
(
n
3

)
zero-columns followed by n − 2 matrices C2 of size n × (

n
2

)
,

where C2 consists of all columns of weight 2; similarly, B consists of
(
n−1

2

)
copies

of the n×n identity matrix followed by the n× (n3
)
-matrix consisting of all columns

of weight 3. It is easily verified that both matrices have b= 2
3n(n−1)(n−2) columns.

Straightforward computations show that

a1 =b1 = (n−1)(n−2), a2 =b2 =2(n−2)2, a3 =3n2 −15n+18, b3 =3n2 −15n+22

Consequently, we have obtained a

[(3, n); 2
3
n(n−1)(n−2), (2n3 −15n2 +49n−54)/3,

(2n3 −15n2 +49n−66)/3] TVSS scheme , with c=6/(2n3 −15n2 +49n−60).

Clearly, the (3, n) scheme from Example 1 has better parameters.
The parameters of the obtained TVSS scheme can be computed for all k and n.
Indeed, the following proposition holds (for a proof, see Appendix B).

Proposition 3. The parameters of the [(k, n);b,h, l] TVSS scheme obtained in
Example 2 are given by

b=2k−1
(

n

k

)
, h=2k−2

[(
n

k

)
+
(

n−k

k

)
+1

]
, and l =2k−2

[(
n

k

)
+
(

n−k

k

)
−1

]
.

Example 3. We apply Construction 1 for obtaining 2m−1 out of 2m schemes. We
take for θ the vector (0,0, . . . ,0,1,m). The computations in Appendix C imply that
we obtain a

[
(2m−1,2m);m

(
2m−1

m

)
,
m

2

(
2m−1

m

)
+22m−3,

m

2

(
2m−1

m

)
−22m−3

]

TVSS scheme, with c=22m−2 / m

(
2m−1

m

)
.

Application of Stirling’s formula shows that for large m, the contrast behaves like√
π

4m
.

3.3. Construction 2

In general, it seems hard to give manageable expressions for the physical parame-
ters (block-length, white level and black level) of the schemes obtained with Con-
struction 1. In this section, we give an explicit construction of (k, n) TVSS schemes
for all k and n with 2< k < n that has the virtue that the physical parameters of
these schemes can readily be computed. However, the physical parameters of the
schemes obtained with Construction 1 (whenever we could compute them) seem
to be far superior to those of the schemes obtained with Construction 2.
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Again, we construct a (k, n) TVSS scheme from a (k, n) pair of matrices. For
constructing these matrices, we use MDS codes over GF(q), the finite field with q

elements. An [n, k] MDS code over GF(q) consists of qk vectors of length n with
entries from GF(q) such that any two codewords have Hamming distance at least
n−k +1. It is known that such a code exists whenever q +1≥n [6, Ch. 11, Thm.
9]. Therefore, we choose q ≥n−1.

Lemma 5. Let C be an [n, k] MDS code over GF(q). In any set of k positions, each
of the qk possible patterns occurs in exactly one of the words of C.

Proof. Fix k positions. Two codewords that agree in these positions, differ in at
most n−k positions. We conclude that each of the qk patterns agrees with at most
one codeword. As the number of patterns equals the number of codewords, each
pattern agrees with exactly one codeword in the given positions.

Let C be an [n, k] MDS code over GF(q). Let U(C) be an n× qk matrix over
GF(q) in which each word from C occurs as a column once, and let A(C) be the
binary n × qk matrix obtained from U(C) by replacing each non-zero symbol in
GF(q) by a ‘1’, and the zero-symbol in GF(q) by a ‘0’.

Proposition 4. Let 1 ≤ j ≤ k. The sum of any j rows of A(C) has weight
1
2qk−j

[
qj − (2−q)j

]
.

Proof. Consider j rows from U(C). Lemma 5 implies that each of the qj pos-
sible patterns occurs in these j positions in qk−j words from C. The number of
patterns with w non-zero elements equals

(
j
w

)
(q − 1)w. Each such pattern yields a

column in A(C) with exactly w ones in the j prescribed rows. Consequently, the
number of ones in the sum of the j rows from A(C) under consideration equals

qk−j
∑

w odd

(
j

w

)
(q −1)w = 1

2
qk−j

(
(q −1+1)j − (−1)j (q −1−1)j

)
.

Proposition 5. The sum of any k +1 rows of A(C) has weight

1
2q

(qk+1 − (2−q)k+1)− q −1
q

2k.

Proof. Consider k + 1 positions in C. Any two distinct words from C differ in
at least two of these positions. That is, restricted to these k + 1 positions, C is a
[k +1, k,2] code over GF(q). According to [6, Ch. 11, Thm. 6], the number of
words of weight w in such a code equals

bw =
(

k +1
w

)
(q −1)

w−2∑

j=0

(−1)j
(

w −1
j

)
qw−2−j =

(
k +1
w

)(
(q −1)w−1 − (−1)w−1

q

)
.



XOR-BASED VISUAL CRYPTOGRAPHY SCHEMES 181

The weight of the sum of the rows of A(C) corresponding to the k+1 chosen posi-
tions is obtained by summing the above expressions for bw over all odd w.

Theorem 5. Let 2 ≤ k ≤n− 1, and let q be a prime power not smaller than n− 1.
There exists a

[(k, n);qk,
1
2
(qk + (−1)k(q −2)k + (q −1)2k),

1
2
(qk + (−1)k(q −2)k)] TVSS scheme,

with contrast (q −1)2k−1/
[
qk + (−1)k(q −2)k + (q −1)2k−1

]
.

Proof. Let C be an [n, k] MDS code over GF(q), and let D be an [n, k−1] MDS
code over the same field. In the notation of this section, let A equal A(C), and let
B equal the concatenation of q copies of A(D). By combining the above results,
(A,B) is a (k, n) pair, and (P (A),P (B)) is a TVSS scheme with parameters as
claimed in the theorem.

4. Bounds on the Parameters b, h and l

In this section, we provide bounds on the parameters of (k, n) TVSS schemes. As
shown in Subsection 2.2, a [(2, n);b, b, l] TVSS scheme exists if and only if a binary
code of length b with n words and minimum Hamming distance b− l exists. There-
fore, for the case k = 2 we can use the well-established results on error-correcting
codes, e.g. [6]. For this reason, we will concentrate on the case that k ≥3.

We start by proving that maximal contrast schemes (l = 0) do not exist.
We note that for OR-based systems maximal contrast schemes can always be
constructed [12].

Proposition 6. Let 3 ≤ k <n. There exists neither a [(k, n);b,h,0] TVSS scheme,
nor a [(k, n);b, b, l] scheme.

Proof. Let S= (C0,C1) be a [(k, n);b,h,0] TVSS scheme and let B ∈C1. Denote
by σ 1, σ 2 two arbitrary rows in B. Since n− 2 ≥ k − 1, B contains (at least) k − 1
more rows. We denote these rows by σ 3, . . . , σ k+1. Since S is a threshold scheme
with l =0, the XOR of σ 1, σ 3, σ 4, . . . , σ k+1 is the all-one vector, as is the XOR of
σ 2, σ 3, σ 4, . . . , σ k+1. It follows that σ 1 =σ 2, so all rows of B are equal.

Next, let A∈C0 and consider row i and j of A. As k≥3, the indistinguishability
property of Definition 1 implies that there is a B ∈C1 that agrees with A in these
rows. As all rows of B are equal, the i-th and j -th row of A are equal. Since i

and j are arbitrary, all rows of A are equal, so A=B, a contradiction.
The second statement follows from an analogous reasoning.

Note that Proposition 6 implies that [(k, n);1, h, l] TVSS schemes do not exist
for 1<k <n. Moreover, it is noteworthy that [(2, n);b, b, l] TVSS schemes with l >

0 exist while [(2, n);b,h,0] TVSS schemes do not exist.
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The next two propositions show that TVSS schemes with odd and even k fun-
damentally differ.

Proposition 7. Let k be odd, and let k <n. For each ε > 0, there are integers b, l

and h such that l/b<ε and a [(k, n);b,h, l] TVSS scheme exists.

Proof. Construction 2 of Section 3.3 yields for each prime power q > n − 1 a
[(k, n);b,h, l] TVSS scheme for which

l

b
= 1

2
(1− (1− 2

q
)k).

Proposition 8. Let k be even, and let k < n. If a [(k, n);b,h, l] TVSS scheme
exists, then l/b≥1/(k +1).

Proof. Let (C0,C1) be a [(k, n);b,h, l] TVSS scheme. Choose a matrix B ∈C1.
Let B̂ be a set of k +1 arbitrarily chosen rows in B. Let α1 denote the number of
positions in which the rows of B̂ all have the same coordinate and let α2 denote
the number of positions in which not all of the k + 1 rows of B̂ have the same
coordinate. Note that α1 + α2 = b. Consider the k + 1 subsets of k elements of B̂

and compute the sum vector of each of the subsets of k elements. The total num-
ber of zeroes z in all these sum vectors together satisfies

(k +1)l ≥ z ≥ (k +1)α1 +α2 ≥ α1 +α2 =b.

Corollary 2. For even k<n, the contrast of a k out of n TVSS scheme is at most
k/(k +2).

Proof. Let S be a [(k, n);b,h, l] scheme. By definition, the contrast c is equal to
(h − l)/(h + l). It is clear that c is increasing in h, and so c ≤ (b − l)/(b + l). As
(b − l)/(b + l) is decreasing in l, we obtain an upper bound on c by plugging in
the upper bound for l from Proposition 8.

Just like we wish l to be small, we wish h to be large. If k =2, then h can be as
large as b (see Section 2.2). For larger k, Construction 2 (combined with Proposi-
tion 1, if k is odd) yields (k, n) schemes with h/b arbitrarily close to 1.

To prove Proposition 9, we need two lemmas.

Lemma 6. Let k be an even integer. Let B be a binary matrix with n rows such that
the sum of any k rows from B differs from 0. Then B has at least n−k +2 distinct
rows.

Proof. By induction on k. The result is obvious for k=2. Now assume that k≥4,
and that B has two equal rows (otherwise we are done). By removing these two
rows from B, we obtain a matrix B∗ with n−2 rows. The sum of any k −2 rows
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from B∗ differs from 0, as otherwise these k − 2 rows and the two removed rows
would add up to 0. The induction hypothesis implies that B∗ (and so surely B)
has at least (n−2)− (k −2)+2 = n−k +2 distinct rows.

Lemma 7. Let (C0,C1) be a [(k, n);b,h, l] TVSS scheme with k≥3, and let c1 and
c2 be two rows of a matrix in C0 and hence also two rows of some matrix in C1.
Then, the Hamming distance between c1 and c2 satisfies

d(c1, c2)≤min{2l,2(b−h)}.

Proof. Let B be a share matrix in C1 containing the rows c1, c2 and let c denote
the sum of k −1 other rows. Then, with 1 the all-one vector), we have that

d(c1,1⊕ c)= the number of zeroes in (c⊕ c1) ≤ l,

and similarly d(c2,1⊕ c) ≤ l. (17)

Combining equation (17) with the triangle inequality, we find that d(c1, c2)≤2l.

A similar reasoning with a matrix A ∈C0 containing the shares c1, c2 and the
sum ĉ of k −1 other rows yields that d(c1, c2)≤2(b−h).

Proposition 9. Let k be even, k ≥4. If a [(k, n);b,h, l] TVSS scheme exists, then

n−k +1 ≤
min(l,2(b−h))∑

i=0

(
b

i

)
.

Proof. Let k be even, k ≥ 4, and let S = (C0,C1) be a [(k, n);b,h, l] scheme. Let
B be a matrix in C1. As l �=b, no k rows of B add to the all-zero word. Lemma 6
implies that B has at least n−k+2 distinct rows. Since according to Lemma 7, all
rows from B have Hamming distance at most 2(b−h) to its top row, we obtain

n−k +2≤
2(b−h)∑

i=0

(
b

i

)
.

Now, we assume without loss of generality that the top n−k+1 rows of B are dis-
tinct. Let c be the sum of the k−1 bottom rows of B. For 1≤ i ≤n−k+1, the sum
of c and the i-th row of B contains at most l ones; that is to say, the i-th row of
B has Hamming distance at most l to the complement of c. As the n− k + 1 top
rows of B are distinct, n − k + 1 is at most the number of vectors at distance at
most l from the complement of c, so

n−k +1≤
l∑

i=0

(
b

i

)
.
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Appendix A

Computations for Example 1

By defintion, we have

φi =
∑

j

Si,j θj =
n∑

j=k

(j −k +1)(−1)i+j

(
n− i

j − i

)
=

n−k∑

v=0

(−1)i+n+v(n−k +1−v)

(
n− i

v

)
.

According to [14, equation (5.25)], we have for all integers l,m,p ≥0

∑

v≤p

(
p −v

m

)(
s

v −q

)
(−1)v = (−1)l+m

(
s −m−1
p −m−q

)
(18)

Note that equation (18) also holds for binomial coefficients of the form
(
r
j

)
with

negative r; it is then used that [14, equation (5.14)]
(

r

j

)
= (−1)j

(
j − r −1

j

)
for integer j and arbitrary r (19)

By applying equation (18) with m=1, q =0, s =n− i, and p =n−k +1, we obtain
that

φi = (−1)i+k

(
n− i −2

n−k

)
. (20)

This is indeed the claimed result. Note that
(
n−i−2
n−k

)=0 if 0≤n− i −2<n−k, that
is, φi =0 if k −1≤ i ≤n−2, and application of equation (19) yields that φn−1 =−1
and that φn =n−k +1.

Appendix B

Proof of Proposition 3

We prove Proposition 3 by employing Theorem 4. In Example 2, for each w we
have that |φw|= (n−w

k−w

)
, whence

b= 1
2

∑

w

(
n−w

k −w

)(
n

w

)
= 1

2

∑

w

(
n

k

)(
k

w

)
=
(

n

k

)
2k−1.

As θk =1, h− l =2k−1. Application of Theorem 4 and equation (10) implies that

h+ l =b+ 1
2

∑

w

(
n−w

k −w

)∑

j

(
k

j

)
(−2)j

(
n− j

w − j

)

=b+ 1
2

∑

j

(−2)j
(

k

j

)∑

w

(
n−w

k −w

)(
n− j

w − j

)
.
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As
(
n−w
k−w

)(
n−j
w−j

)= (k−j
w−j

)(
n−j
n−k

)
, we obtain that

h+ l =b+ 1
2

∑

j

(−2)j
(

k

j

)(
n− j

n−k

)∑

w

(
k − j

w − j

)
=b+ 1

2

∑

j

(−2)j
(

k

j

)(
n− j

n−k

)
2k−j .

We apply equation (18) with the following substitutions: p=n, v = j,m=n−k, s =
k, and q =0. Moreover, we apply equation (19) with r =n−k. We obtain that

h+ l =b+2k−1
(

n−k

k

)
=2k−1

[(
n

k

)
+
(

n−k

k

)]
.

Appendix C

Computations for Example 3

As Si,2m−1 = (−1)i−1(2m − i) and Si,2m = (−1)i , we have that φi = (−1)i+1(m − i).
According to Theorem 4, the block length b is given by

b= 1
2

∑

w

|m−w|
(

2m

w

)
.

If m≤w ≤2m, then |m−w|(2m
w

)= (w −m)
(2m

w

)=|m− (2m−w)|( 2m
2m−w

)
, and so

b=
m∑

w=0

(m−w)

(
2m

w

)
=m

m∑

w=0

(
2m

w

)
−2m

m∑

w=1

(
2m−1
w −1

)

=m

(
1
2

∑

w

(
2m

w

)
+ 1

2

(
2m

m

))
−m

2m−1∑

j=0

(
2m−1

j

)
= 1

2
m

(
2m

m

)
=m

(
2m−1

m

)
.

For computing l and h, we note that, according to Theorem 4, h − l = 2k−1φk =
2k−1 =22m−2. Theorem 4 also implies that

h+ l =b+ 1
2

∑

w

|m−w|
∑

i

(−1)i
(

2m−1
i

)(
1

w − i

)

=b+ 1
2

∑

w

|m−w|(−1)w
[(

2m−1
w

)
−
(

2m−1
w −1

)]

=b+ 1
2

∑

w

|m−w|(−1)w
m−w

m

(
2m

w

)
.

For 0≤w ≤m, we have that

|m− (2m−w)|(m− (2m−w))

(
2m

2m−w

)
=|w −m|(w −m)

(
2m

w

)
.

That is to say, the terms with w and 2m−w in the above sum cancel each other,
whence h+ l =b.
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Conmemorative Note

Sadly, prof. Jack van Lint passed away on the 28th of September 2004. We have
lost a great mathematician, an inspiring collaborator, and a dear friend.

Notes

1. Another Visual Crypto system using an XOR process has been recently introduced in [5]. Their sys-
tem, being based on interferometric techniques and needing a Mach–Zehnder interferometer is less
practical and more expensive.

2. In the literature the pixel expansion is often denoted by m.
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