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Abstract. For pairing based cryptography we need elliptic curves defined over finite fields Fq whose
group order is divisible by some prime � with � | qk − 1 where k is relatively small. In Barreto et al.
and Dupont et al. [Proceedings of the Third Workshop on Security in Communication Networks (SCN
2002), LNCS, 2576, 2003; Building curves with arbitrary small Mov degree over finite fields, Preprint,
2002], algorithms for the construction of ordinary elliptic curves over prime fields Fp with arbitrary
embedding degree k are given. Unfortunately, p is of size O(�2).

We give a method to generate ordinary elliptic curves over prime fields with p significantly less than
�2 which also works for arbitrary k. For a fixed embedding degree k, the new algorithm yields curves
with p ≈ �s where s = 2 − 2/ϕ(k) or s = 2 − 1/ϕ(k) depending on k. For special values of k even better
results are obtained.

We present several examples. In particular, we found some curves where � is a prime of small Ham-
ming weight resp. with a small addition chain.
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1. Introduction

Over the last few years there has been an increasing interest in pairing based cryp-
tography. The primitives of pairing based crypto systems are two groups (G,∗) and
(H,◦) in which the discrete logarithm problem is believed to be hard. Moreover,
we require the existence of an efficiently computable, non-degenerate pairing G×
G→H . This additional structure allows many interesting protocols for all kind of
different applications [5,7,10,12].

Well known examples are the Weil and the Tate pairing on an elliptic curve.
Here, G is the group of points on an elliptic curve defined over a finite field Fq

and H is equal to the multiplicative group of a field extension F
∗
qk .
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Definition 1.1. Let E be an elliptic curve defined over Fq whose group order
#E(Fq) is divisible by a prime �. Then E has embedding degree k with respect to
� if k is the smallest integer such that � divides qk −1.

If E has embedding degree k > 1 with respect to �, the Weil pairing e� defines a
non-degenerate pairing from the group of �- torsion points in E(F∗

qk ) into F
∗
qk . It

can be evaluated in O(k2 log3 q) bit operations. Supersingular elliptic curves have
embedding degree less than or equal to 6 [8,11].

It is an interesting question whether there exist suitable elliptic curves with k≥7.
Obviously, they can not be supersingular. But ordinary elliptic curves with such a
small embedding degree are very rare [2]. We are left with the problem to construct
ordinary curves with relatively small embedding degree (see e.g. [3,6]).

Let E be an ordinary elliptic curve defined over a finite field Fq and let � be a
prime dividing the group order #E(Fq) such that E has embedding degree k with
respect to �. We have

#E(Fq)=q +1− t ≡0 mod � and (1)

qk −1≡0 mod �. (2)

Inserting equation (2) in (1) shows that (t −1) must be a k-th root of unity mod-
ulo �. On the other hand, if E is an elliptic curve over Fq satisfying equation (1)
and t = ζk + 1 mod � for some primitive k-th roots of unity ζk modulo �, E has
embedding degree k with respect to �. The relevance of this fact to pairing based
cryptography was first pointed out by C. Cocks and R. Pinch.

Since E is ordinary, it has complex multiplication by some order O of discrimi-
nant dividing t2 − 4q in an imaginary quadratic field K =Q(

√
d) where −d > 0 is

squarefree. From now on we assume that O is the maximal order in K.
The Frobenius element πq : (x, y) → (xq, yq) corresponds to an element w =

a+b
√

d
2 ∈O such that NormK/Q(w)=ww =q. We have t =a.
This observation leads to a simple algorithm. Given an imaginary quadratic field

K =Q(
√

d). Take a prime � with the properties that � splits in O and �≡1 mod k

and determine a primitive k-th root of unity ζk modulo �. Set a = ζk + 1 mod �

and b=± a−2
δ

mod � where δ is a square root of d modulo �. Finally test whether

NormK/Q(w) with w= a+b
√

d
2 is a prime p (or a prime power q). We find the cor-

responding elliptic curve defined over Fp (or Fq ) using the complex multiplication
method (for the CM method see e.g. [1]).

The correctness of this method can easily be seen by the following lemma which
summarizes the discussion above.

Lemma 1.1. Let E/Fq be an elliptic curve with complex multiplication by an order
O in Q(

√
d) such that the Frobenius endomorphism corresponds to the imaginary

quadratic integer w = a+b
√

d
2 with a, b constructed as above. Then #E(Fq) is divis-

ible by � and has embedding degree k with respect to �.
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Proof. By the choice of b, we find

#E(Fq)=Norm
Q(

√
d)/Q

(w −1)= 1
4
((a −2)2 −db2)≡0 mod �.

Since the trace t of πq is equal to a = ζk + 1 mod �, the embedding degree of E

with respect to � is equal to k.

Note that the case that NormK/Q(w) is not a prime but a prime power is very
unlikely. Hence in the following we only consider the case where NormK/Q(w) is
prime.

The values a and b are solutions of equations modulo �. Hence, they will in gen-
eral be of size O(�) leading to a prime of size O(�2). Desirable would be to have
p of size O(�), because the security of the cryptosystem based on the pairing will
depend on the largest prime factor � dividing the group order #E(Fp) and #E(Fp)

is of size p.
It is still an open question to find an algorithm for the construction of ordinary

elliptic curves with arbitrary embedding degree k where p is significantly smaller
than �2. Barreto, Lynn and Scott describe a method to derive a better relation
between p and � for the case where k is divisible by 3 [3]. In this paper we extend
their idea using the fact that E has embedding degree k if and only if t − 1 is a
k-th root of unity modulo � and get more examples of curves with p ∈ O(�2−ε)

for ε >0. Our method works for general k.
Moreover we find examples where � is a prime of low Hamming weight with

respect to the basis 2. For such primes, the Weil resp. Tate pairing can be effi-
ciently evaluated [4,9].

2. The General Approach

Given k and a discriminant D <0 which is not too large. Let d be the squarefree
part of D, i.e. d = D iff D ≡ 1 mod 4 and d = D/4 otherwise. We can consider
the number field M(ζn,

√
d) for some n, k | n. Suppose M 	 Q[x]/(f (x)) where f

is an irreducible polynomial of degree df where df =2ϕ(n) or ϕ(n) depending on
whether

√
d ⊆Q(ζn) or not. Additionally, we require that f represents primes.

Every element in M can be represented by a polynomial of degree ≤df −1. We
can compute the polynomials g1, . . . , gϕ(k) which represent the primitive k-th roots
of unity. Let h1, h2 =−h1 be the polynomials which represent ±√

d. Suppose that
gi and hi lie in Z[x].

We now set

a(x)= (gi(x)+1)

and

b′(x)= (a(x)−2)hj (x) in Q[x]/(f (x)).

for some 1≤ i ≤ϕ(k), 1≤ j ≤2.
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We test if there exists some congruence class x0 mod (−d) such that b′(x0)≡ 0
mod (−d). For all x1 with x0 ≡x1 mod (−d), b′(x1)/d will be an integer. Set

p(x)= 1
4

(
a(x)2 − b′(x)2

d

)
.

Now suppose the following conditions are satisfied:

• p(x) is irreducible,

• p(x) has integer values for x0 mod (−d) and

• f (dy +x0)∈Z[y] is irreducible.

We can then try to find primes � = f (x1) for some x1 ≡ x0 mod (−D) and test
whether p(x1) is prime as well.

We easily check that if a(x1), b′(x1) are constructed as above and p(x1) is prime,
there exists an elliptic curve over the prime field Fp(x1) with complex multiplication
by the maximal order O in Q(

√
D) such that the Frobenius endomorphism of E

corresponds to the element

a(x1)± b′(x1)
d

√
d

2
∈O.

The order #E(Fp(x1)) is equal to

(a(x1)−2)2 − b′(x1)
2

d

4

and will by construction be divisible by �.
The degrees of a(x) and b′(x) are less than or equal to deg(f ) − 1 = df − 1.

Hence, for a fixed k the ratio log p
log �

will tend to 2−2/df for �→∞ which is strictly
less than 2. In special cases, the relation between � and p will be even better.

Remark 2.1. (1) Note that the assumption that a(x) and b′(x) ∈ Z[x] is very
strong since only few number fields M have a power integer basis. One pos-
sible approach is to replace M by the smallest cyclotomic field containing ζn

and
√

d which is usually larger than the compositum of Q(
√

d) and Q(ζn).
In any case, the discriminant |D| should not be too large. Experiments show
that this idea works well if |D|≤20.

(2) The integer � does not have to be a prime, but it should be prime up to some
small cofactor c, e.g. c≤10.

3. Special Cases With a Better Relation Between � and p

We demonstrate our idea presenting several examples. The first example has
already been considered in [3]. It can easily be deduced from our general approach.
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In all our examples, the number field M = Q(
√

D,ζn) is a cyclotomic field and
therefore has a power integer basis.

(1) Let k = 9, M = Q(ζ9) and take D = −3. The ninth cyclotomic polynomial is
given by x6 +x3 +1. Suppose �=x6

0 +x3
0 +1 for some integer x0 and let D=−3.

We would like to construct a suitable Frobenius element a+b
√−3
2 . The element

a has to be equal to α9 +1 where α9 is a ninth root of unity modulo �. We set
a =x0 +1.
Moreover b should be equal to

±(a −2)√−3
≡ ±√−3(a −2)

3
≡ (x0 −1)(2x3

0 +1)

3
mod �.

We now choose x0 ≡ 1 mod 3. Then a ≡b mod 2 and p = NormK/Q( a+b
√−3
2 )

is of size O(�
4
3 ).

Note that we get a better ratio log p
log �

because the degree of the polynomials
a(x) and b′(x) are <5, i.e. they are smaller than expected.

(2) Let k =10, M =Q(ζ10,
√−1) and D =−4. The number field M is generated by

the polynomial x8 −x6 +x4 −x2 +1. The primitive 10th roots of unity are rep-
resented by the polynomials

x2,−x4,−x6 +x4 −x2 +1, x6

and the roots of −1 are given by the polynomials ±x5.
Suppose that � is equal to x8

0 − x6
0 + x4

0 − x2
0 + 1 for some integer x0. Set a =

(−x6
0 +x4

0 −x2
0 +2). Then b should be equal to

±(a −2)√−1
= ±(−x6

0 +x4
0 −x2

0 )

x5
0

≡±(−x5
0 +x3

0) mod �.

We have to ensure that NormK/Q( a+b
√−1
2 ) is an integer and is prime.

In this case, p is of order O(�
3
2 ).

(3) Let q be a prime. Consider M = Q(ζq, i) and k = q. In this case the minimal
polynomial is given by

f (x)=x2q−2 −x2q−4 +x2q−6 −x2q−8 +· · ·+1.

Note that f (x)(x2 +1)=x2q +1. Hence x2q =−1 mod f (x), i.e. the element√−1 corresponds to ±xq mod f (x).
Moreover we have x2 is a primitive 2q-th root of unity, i.e. −x2 is a q-th

root of unity. We can set a(x)=−x2 +1 and b′(x)= (−x2 −1)xq =−xq+2 −xq .
The ratio log(p)

log(�)
is approximately q+2

q−1 .

(4) Let q be a prime. Consider M =Q(ζq, ζ3) and k =q. In this case the minimal
polynomial is given by
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f (x)= x2q −xq +1
x2 −x +1

.

We have f (x)(x3 + 1)�2q(x)= x3q + 1 where �2q(x) is the 2q-th cyclotomic
polynomial and f (x)(x2 −x +1)=x2q −xq +1. As above we see that −x3 is a
q-th root of unity. We can choose a(x)=−x3 +1. Now (2xq −1)2 +3=4(x2q −
xq + 1) ≡ 0 mod f (x). So (2xq − 1) corresponds to the element

√−3 and we
can set b′(x)= (−x3 −1)(2xq +1). The ratio log(p)

log(�)
is approximately q+3

q−1 .

(5) In most cases, D =−3 or D =−4 give the optimal ratio for log p/ log �. But in
some rare cases there might be better choices for D.
Let k =18 and take D =−8. Set M =Q(ζ72).

The 72nd cylcomotic polynomial is given by �72(x)=x24 −x12 +1. The poly-
nomial x4 represents a primitive 18th root of unity and ±x15 ± x9 ∓ x3 repre-
sent the two roots of

√−2.
We get a(x)=x4 +1 and b′(x)=−x19 +x15 −x13 +x9 +x7 −x3. The polyno-

mial p(x)= 1
4

(
a(x)2 + 1

2b′(x)2
)

takes integer values for x =x0 iff x0 is odd.
Note that our method fails if we use D = −3 for k = 18 and for D = −4
the ratio log p/ log � is approximately 11/6 which is worse than (38/ϕ(72)) =
(19/12).

Remark 3.1. We implemented an algorithm which takes as input an imaginary
quadratic discriminant D, the embedding degree k and an integer n divisible by
D and k. It generates the field M = Q(ζn), computes the polynomials a(x), b′(x)

and p(x) as in Section 2. It then tests whether p(x) is irreducible and takes prime
values for some x0.

We started some experiments with different values for D and came up with the fol-
lowing table. We found the following ratios for log p/ log � which are probably optimal.

k D
log p
log �

k D
log p
log �

6 −4,−7 3
2 7 −4 3

2

8 −3 5
4 9 −3 4

3

10 −4 3
2 11 −4 13

10

12 −3 3
2 13 −4 5

4

14 −3 3
2 15 −3 3

2

16 −3,−4 11
8 17 −4 19

16

18 −8 19
12 19 −4 7

6

20 −3 11
8 21 −3 4

3
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4. Cryptographically Interesting Examples

4.1. Primes with Low Hamming Weight

Since evaluating the pairing can be seen as multiplying a point on the curve by
�, pairing based cryptography is very efficient if the prime � has low signed Ham-
ming weight (see [4,9]). For the signed Hamming weight we allow the coefficients
of the binary expansion to be −1,0,1.

Using the method in Section 2, we find some particularly nice examples. To find
these examples we run through cyclotomic fields with discriminant divisible by 3
or 4. For each field, we determine the minimal polynomial f (x) and test whether
f (x0) is prime for some x0 of low Hamming weight, say x0 = 2i , x0 = 2i ± 2k or
x0 = 3i . Next we choose a discriminant D = −3,−4, compute the corresponding
polynomials a(x) and b′(x) and test whether a(x0)

2−d(b′(x0)
′d)2

4 (where d =−1 resp.
−3) is prime, too.

(1) Take M =Q(ζ15), k =15 and the imaginary quadratic field of discriminant D =−3.
Let x0 =232 +1 and �=�15(x0). The prime � has 257 binary digits and signed
Hamming weight 17. Set a=x4

0 +1 and b′ =2x7
0 −2x6

0 −2x5
0 +x4

0 −2x3
0 +2x2

0 −3.

The prime p is given by 1
4 (a2 +3( b′

3 )2). It is of order O(�
7
4 ).

(2) Take M = Q(ζ20), k = 10 and the imaginary quadratic field of discriminant
D =−4.
Let x0 = 223 + 1 and � = �20(x0). We have �log2(�)� ∼ 184 and � has signed
Hamming weight 17. Set a = x2

0 + 1 and b = x7
0 − x5

0 . The prime p = 1
4 (a2 + b2)

is of order O(�
7
4 ).

(3) Take M =Q(ζ12), k =12 and the imaginary quadratic field D =−3.
Let x0 = 239 + 211 + 210 and � = �12(x0). We have �log2(�)� ∼ 157 and � has
signed Hamming weight 21. Set a =−x3

0 +x0 +1 and b′ =x3
0 −2x2

0 +x0 +1. The

prime p is of order O(�
3
2 ).

4.2. Primes with Fast Addition Chain

There exist natural numbers whose Hamming weight is not particularly small but
which still allow a fast scalar multiplication.

Lemma 4.1. Let P be a point on an elliptic curve and let

m=2j1 ±2j2 ±2j3

where 0 ≤ j3 < j2 < j1. Then mP can be computed with j1 doublings and two
additions/subtractions.

Note that a subtraction has the same complexity as an addition, since taking the
inverse on an elliptic curve is a free operation.
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Proof. Set Q1 =2j3P , Q2 =2j2−j3Q1 and Q3 =2j1−j2Q2. We need j1 doublings to
compute Q1, Q2 and Q3 and 2 additions/subtractions to compute Q3 ±Q2 ±Q1.

We can now consider the values of certain cyclotomic polynomials at m given as
above.

Corollary 4.2. Let f be a polynomial of degree s with coefficients in {0,±1} and
t non-zero coefficients. Then f (m)P with m given as in Lemma 4.1 can be evaluated
with sj1 doublings and 2s + t −1 additions/subtractions.

For the proof we just count the number of operations.

Example 4.3. (1) Take m = 222 + 213 + 1 and consider M = Q(ζ24) with k = 8.
We have �24(x) = x8 − x4 + 1. Set � = �24(m). We can calculate �P with only
8 · 22 = 176 doublings and 18 additions. Note that the signed Hamming weight
of �24(m) is larger than 30.

We have �log2(�)� ∼ 176. Set a = x5
0 − x0 + 1 and b′ = x5

0 + 2x4
0 + x0 − 1. The

prime p is of order O(�
5
4 ). The corresponding curve defined over Fp is given

by y2 =x3 +41.
Alternatively, we can take m=223 +217 +26. In this case, the evaluation takes

8 · 23 = 184 doublings and 18 additions. We set a =−x5
0 + x0 + 1 and b′ =−x5

0 +
2x4

0 −x0 −1. The prime is of order O(�
5
4 ). The elliptic curve over Fp is given by

y2 =x3 +23.
Or we take m = 222 − 210 − 24 and −x5

0 + x0 + 1 and b′ = −x5
0 + 2x4

0 − x0 − 1.
In all three cases, we find an elliptic curve over Fp with p = 1

4

(
a2 +3( b

3 )2
)

with
complex multiplication by Z[ζ3]. The corresponding elliptic curve is given by
y2 =x3 +32.

(2) Take �20(x)=x8 −x6 +x4 −x2 +1 and m=220 +214 +4. Then �=�20(m)

can be computed using 160 doublings and 20 additions.
Let k = 10 and set a = −x6

0 + x4
0 − x2

0 + 2 and b = x5
0 − x3

0 . We find an elliptic
curve with complex multiplication by Z[i] over Fp with p = 1

4 (a2 +b2) of order

O(�
3
2 ). The equation of the elliptic curve is y2 =x3 +x.
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