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1. Introduction

Let p be a prime and let m ≥ 1 be an integer. We denote by IFp the field of p

elements which we also identify with the set {0,1, . . . , p −1}.
Let w0 and g be given elements of IFp. We recall that the linear congruential

generator of pseudorandom numbers is the sequence w1,w2, . . . of elements of IFp

defined by the recurrence relation

wn =gwn−1 =gnw0, n=1,2, . . . , (1)

with the initial value w0.
Let E be an elliptic curve over IFp, given by an affine Weierstrass equation of

the form

y2 + (a1x +a3)y =x3 +a2x
2 +a4x +a6,

see [2,22]. It is known, see [2,22], that the set E(IFp) of IFp-rational points of E
forms an Abelian group under an appropriate composition rule (which we denote
by ⊕) and with the point at infinity O as the neutral element. We also recall that

|#E(IFp)−p −1|≤2p1/2,
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where #E(IFp) is the number of IFp-rational points, including the point at infinity
O. Furthermore, it will be convenient to work with places of IFp(E). A place H of
degree d of IFp(E) corresponds to a Galois orbit of d points Hi in E(IFpd ). Let
P ∈ E(IFp). The points Hi ⊕ P form a Galois orbit and define a place which we
denote by H ⊕P (similarly with �). Functions in IFp(E) are Galois invariant and
hence have zeros and poles at places. We identify places of degree one and points.

Let G∈E(IFp) be a point of order t , that is, t is the size of the cyclic group 〈G〉
generated by G. Let H be a place of degree d of E and let

F={f1, . . . , fr} (2)

be a set of r ≥1 rational functions in IFp(E) with pole divisors of the form

(fi)∞ = (i + δ)(H), 1≤ i ≤ r, (3)

where

δ =
{

1, if d =1,

0, if d ≥2.

Since E has genus one, such functions exist by the theorem of Riemann-Roch. We
define ρ = r + δ.

For r = 2 and H = O a natural example is given by f1(P ) = x(P ) and
f2(P ) = y(P ), where P = (x(P ), y(P )) 	= O. In particular, d = 1, ρ = 3 for this
example.

Generalising the above construction, for a given initial value W0 ∈ E(IFp),
we define the elliptic curve congruential generator of pseudorandom numbers with
respect to F as the sequence (f1(Wn), . . . , fr (Wn)) of points in IFr

p where the Wn

are defined by the recurrence relation

Wn =G⊕Wn−1 =nG⊕W0, n=1,2, . . . (4)

with the initial value W0 (see also [1,4,6–8,14]). If H ∈〈G〉⊕W0 then the sequence
is not defined for periodical values of n. In these cases we take any fixed vec-
tor (for example the zero vector) as the output of the generator. Obviously the
sequence is purely periodic with period t , which is the order of G in the group
of points of E(IFp).

It is known that the linear congruential generator produces cryptographically
weak sequences [5,9,10,13], thus partially motivated by this fact an elliptic curve
congruential generator has been introduced in [8] and then in [6] where some
attractive properties of this generator and similar generators have been established.
On the other hand, one of the advantages of the linear congruential generator (1)
has been a variety of results about the distribution of its elements [11,16,17].
In [4], using some recent bounds of exponential sums along subgroups of points
on an elliptic curve from [12], a result was established about the distribution of
points Wn in the square [0, p −1]2. Here we consider the distribution of rs-tuples
of points(

fi

(
Wn+j

)
, 1≤ i ≤ r, 1≤ j ≤ s

)
, n=0, . . . , t −1,
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in an rs-dimensional cube [0, p − 1]rs . This question (for r = 2, f1(P ) = x(P ),
f2(P )=y(P ) and s ≥2) has been posed in [4] and although it has been clear that
the same technique should apply, this generalisation has not been obtained before
due to lack of a certain linear independence result. Here we close this gap and
prove the required linear independence of certain functions on elliptic curves which
leads to a multidimensional analogue of [4]. Moreover, the same statement leads
to a new lower bound on the linear complexity of the components of Wn. We
recall, that exactly this reason, that is a very low linear complexity, has led to lat-
tice reduction based attacks on the linear congruential generator of pseudorandom
numbers (1) [5,9,10,13]. Thus we show that the pseudorandom numbers (4) are
free of this disadvantage.

We remark that properties of elliptic curve analogues of some other pseudoran-
dom sequences have been studied in Refs. [20,21].
Throughout the paper, the implied constants in the symbols ‘O’ may sometimes
depend on the integer parameters d, r, s ≥1 and are absolute otherwise.

2. Preparations

Let Mr,s

(
IFp

)
denote the set of all nonzero r × s matrices

C = (ci,j ,1≤ i ≤ r,1≤ j ≤ s
)

over IFp.
For a matrix C ∈Mr,s

(
IFp

)
, a set F of functions (2) and a generic point Q on

E we consider the function

LC,F(Q)=
r∑

i=1

s∑
j=1

ci,j fi

(
Wj ⊕Q

)
,

as a function in the function field IFp(E).

Lemma 1. For any matrix C ∈Mr,s

(
IFp

)
with s ≤ t and any set F of functions (2)

satisfying (3), LC,F(Q) is not constant. The subgroup 〈G〉 contains at most sdρ

zeros of LC,F(Q). If H ∈〈G〉⊕W0 it contains at most s poles of LC,F(Q), which
are of the form H �Wj for 1≤ j ≤ s, and no poles otherwise.

Proof. The function fi(Wj ⊕Q) of IFp(E) has the pole divisor

(fi(Wj ⊕Q))∞ = (i + δ)(H �Wj),

because Q 
→ Wj ⊕ Q induces a translation automorphism of IFp(E). Since the
H � Wj are different for j = 1, . . . , s, and the condition (3) and C 	= 0 hold, we
obtain that LC,F(Q) has poles and is hence not constant. Furthermore, the pole
divisor of LC,F(Q) has degree at most sdρ and support in {H �Wj : 1≤ j ≤ s}.
This latter set does not contain an element of 〈G〉 if H 	∈ 〈G〉⊕W0. The statements
about the poles are hereby proven.
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The bound for the pole divisor implies that LC,F(Q) has at most sdρ zeros in
E(IFp), where IFp is the algebraic closure of IFp, hence (most likely even less) in
G. This proves the statement about the zeros.
Our other tool are bounds of exponential sums of the form

S(C,F)=
t∑

n=1

exp
(
2πiLC,F(nG)/p

)
,

where C is an r × s matrix over IFp.
The following result is a partial case of Corollary 1 of [12].

Lemma 2. For any set F of functions (2) satisfying (3), the bound

max
C∈Mr,s(IFp)

|S(C,F)|=O
(
p1/2

)

holds.

Proof. For t ≤ s the bound is trivial. Otherwise, by Lemma 1 we see that
LC,F(Q) is not constant and thus Corollary 1 of [12] implies the result.

3. Main Results

Let Wn ∈ IF2
p be a sequence generated by (4).

Given a set F of functions (2), we denote by �s (F) the discrepancy of the fol-
lowing point set

(
f1
(
Wn+1

)
p

, . . . ,
fr

(
Wn+1

)
p

, . . . ,
f1 (Wn+s)

p
, . . . ,

fr (Wn+s)

p

)
, (5)

where n=0, . . . , t −1, in the rs-dimensional unit cube. That is,

�r,s = sup
B⊆[0,1]rs

∣∣∣∣T (B)

t
−|B|

∣∣∣∣ ,
where T (B) is the number of points (5) which hit the box B = [α1, β1] × · · · ×
[αrs, βrs ]⊆ [0,1]rs of size |B|= (β1 −α1) · · · (βrs −αrs).

We recall that for at most s values of n = 0, . . . , t − 1 some of the above func-
tions may not be defined, and we define the corresponding block of r coordinates
in an arbitrary (but fixed) way (for example set it to zero).

Theorem 3. For any set F of functions (2) satisfying (3), the bound

�s (F)=O(t−1p1/2 logrs p)

holds.
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Proof. The result follows immediately from Lemma 1 and a standard relation
between the discrepancy and exponential sums, given by Corollary 3.11 in [17] for
example.

Generalising the corresponding definition for one dimensional sequences, for
example [3,15,19], we define the linear complexity L(N) of an r-dimensional
sequence

(
v1,n, . . . , vr,n

)
, n=1, . . . ,N over IFp as the smallest s for which the fol-

lowing relations hold
r∑

i=1

s∑
j=1

ci,j vi,n+j =0, 0≤n≤N − s −1, (6)

with some fixed C = (ci,j

)∈Mr,s

(
IFp

)
.

Theorem 4. For any set F of functions (2) satisfying (3), the linear complexity
L(N) of the r-dimensional sequence

(f1(Wn), . . . , fr (Wn)), n=1, . . . ,N,

satisfies

L(N)≥




min{N/(dρ +1), t/(dρ +1)}, if H =W0,

min{N/(dρ +2), t/(dρ +1)}, if H ∈〈G〉⊕W0,

min{N/(dρ +1), t/(dρ)}, otherwise,

for any N .

Proof. Let s = L(N). Then s ≤ t and LC,F(nG) = 0 whenever it is defined for
n=0, . . . ,N − s −1. Using Lemma 1 we see that LC,F(nG) is defined for at least
min{N −2s, t − s} many distinct points nG in 〈G〉 if H ∈〈G〉⊕W0 and for at least
min{N − s, t} distinct points otherwise. In the special case H = W0 it is defined
for at least min{N − s, t − s} many distinct points because the poles of LC,F(Q)

are contained in {(t − 1)G, . . . , (t − s)G}. Furthermore, LC,F(nG)= 0 for at most
sdρ points in 〈G〉. Thus min{N − s, t − s} ≤ sdρ, min{N − 2s, t − s} ≤ sdρ and
min{N − s, t}≤ sdρ, respectively.

Let us choose an elliptic curve E with a cyclic point group, a generator
G∈ E(IFp), thus t = #E(IFp)∼p, functions fi ∈ IFp(E) with (fi)∞ = (i + 1)(O) for
1≤ i ≤ r and W0 =O. Then d =1, ρ = r +1 and O=W0, and Theorem 4 gives

L(N)≥min
{

N

r +2
,

t

r +2

}
. (7)

Let us now choose an elliptic curve E and G∈E(IFp) such that #E(IFp)=2t where
t is the order of G. Then take W0 ∈E(IFp)\〈G〉 and choose functions fi as above.
Thus d =1, ρ = r +1 and O 	∈ 〈G〉⊕W0, and we obtain

L(N)≥min
{

N

r +2
,

t

r +1

}
. (8)
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Finally, we choose an elliptic curve with a cyclic point group over IFp. Let G be a
generator of this group, thus t =#E(IFp)∼p. We choose a place H of degree two
and let fi ∈ IFp(E) with (fi)∞ = i(H). Then d =2, ρ = r and H 	∈ 〈G〉⊕W0 =E(IFp),
and by Theorem 4 we obtain

L(N)≥min
{

N

2r +1
,

t

2r

}
. (9)

If we take for example r =1, then from (9) we obtain a sequence of period about
p with L(N)≥N/3 from the above constructions by taking any function in IFp(E)

which has precisely one simple pole at a place of degree two (this is smallest possi-
ble). The easiest examples of such functions are f (P )=1/(x(P )−a) where a ∈ IFp

such that a is not equal to an x-coordinate of a point of E(IFp)\{O}.
Accordingly, the bound (8) with r =1 leads to the same result but for sequences

of period about p/2. We remark that for a random sequence of elements of IFp

one should expect the linear complexity to be close to N/2, see [18].

4. Remarks

We observe that the implicit constant in the estimate of Theorem 3 can easily be
evaluated.

We note that when t < p1/2 log p the result of Theorem 3 is trivial. On the
other hand, using the bounds of Theorem 3.4 and Theorem 5.5 of [11] for the lin-
ear congruential generator (1), one can obtain nontrivial results for sequences of
period t ≥p1/3+ε and t ≥pε for all and almost all primes p, respectively. Obtain-
ing similar improvements of Theorem 3 is a challenging problem.

It is natural to ask whether curves with special point groups, which lead to
bounds (7)–(9), exist and are common enough. It follows from Corollary 6.2
in [23] that the majority of (isomorphism classes of) elliptic curves, namely about
75%, have indeed a cyclic point group, which is necessary for (7) and (9). For (8)
we need a cyclic point group of even order. Among the curves y2 = f (x) with
f (x) = x3 + ax + b ∈ IFp[x] about 50% have precisely one point of order 2, corre-
sponding to those f (x) which have precisely one root in IFp ([2, p. 37]). Thus at
least 25% of all (isomorphism classes of) elliptic curves do have cyclic point group
of even order (heuristically we expect this to be more close to 50%). We remark
that by Theorem 2.1(i) of [23] every cyclic group of order within the Hasse–Weil
interval [p+1−2

√
p,p+1+2

√
p] can be realized as the point group of an elliptic

curve over IFp (p ≥5). Several more results about elliptic curves with cyclic point
groups can be found in [23,24].

For supersingular elliptic curves more accurate results have been obtained in [6,
7,14] but that technique cannot be extended to other curves. Moreover, these
curves are usually considered as cryptographically weak.

Finally, one can also consider similar problems in extension fields IFq over IFp

and study the distribution of traces TrIFq/IFp (fi(Wn)). Unfortunately we do not
know how to establish an analogue of Lemma 1 for linear combinations of such
traces.
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24. S. G. Vlăduţ, A note on the cyclicity of elliptic curves over finite field extensions, Finite Fields

Their Appl., Vol. 5 (1999) pp. 354–363.


