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Abstract
The human gastrointestinal (GI) tract contains communities of microbes (bacteria, fungi, viruses) that vary by anatomic location 
and impact human health. Microbial communities differ in composition based on age, diet, and location in the gastrointestinal tract. 
Differences in microbial composition have been associated with chronic disease states. In terms of function, microbial metabolites 
provide key signals that help maintain healthy human physiology. Alterations of the healthy gastrointestinal microbiome have 
been linked to the development of various disease states including inflammatory bowel disease, diabetes, and colorectal cancer. 
While the definition of a healthy GI microbiome cannot be precisely identified, features of a healthy gut microbiome include 
relatively greater biodiversity and relative abundances of specific phyla and genera. Microbes with desirable functional profiles 
for the human host have been identified, in addition to specific metabolic features of the microbiome. This article reviews the 
composition and function of the healthy human GI microbiome, including the relative abundances of different bacterial taxa 
and the specific metabolic pathways and classes of microbial metabolites contributing to human health and disease prevention.
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Introduction

The healthy human microbiome consists of 30-plus tril-
lion microorganisms per person including mostly bacteria, 
viruses (bacteriophages and human viruses), and yeast [1]. 
Human microbes reside on the skin, in the oral cavity, and 
in the gastrointestinal (GI), respiratory, and genitourinary 
tracts, accounting for 1–3% of our total body weight. The 
human GI tract contains relatively rich and complex micro-
bial communities in healthy individuals. Intestinal microbes 
harbor genes that encode for thousands of microbial 
enzymes and metabolites [2, 3]. These metabolic pathways 
and microbial compounds facilitate digestion and assimi-
lation of dietary nutrients, while fostering maturation and 
proper function of the immune and nervous systems.

The Human Microbiome Project (HMP) and the Metagen-
omics of the Human Intestinal Tract (MetaHIT) initiatives 
were the first large-scale microbiome projects defining com-
position and function of the healthy human microbiome [4, 
5]. These endeavors provided the foundation for understand-
ing of the physiology and functional properties of host-asso-
ciated microbial communities. With the advent of new tech-
nologies like next-generation sequencing, whole-genome 

shotgun sequencing, global metabolomics, and advanced 
computational strategies along with humanized animal mod-
els and culture-based human organoid systems, understand-
ing of the microbiome is rapidly progressing [6].

The GI microbiome is a dynamic and functional inter-
face between the external environment, food, and the 
human body [7]. Distinct luminal- and mucus-associated 
ecosystems found throughout the length of the GI tract are 
influenced by various factors including age, diet, antibiotic/
medication ingestion, and other exposures. Alterations in 
GI microbiome diversity have been attributed to disease 
phenotypes such as colorectal cancer, inflammatory bowel 
disease (IBD), irritable bowel syndrome (IBS), and diabe-
tes [8–12]. Here we review how GI microbiome composi-
tion and function affect human health and consider future 
investigations to further elucidate the healthy human GI 
microbiome.

Characteristics of a Healthy GI Microbiome

The microbiome is dynamic and changes spatially and 
temporally, and in relation to an individual’s health status. 
Microbes colonize the human body and shift in composition 
as humans age, with a gradual increase in microbial diversity 
during childhood and relative stabilization during adoles-
cence and adulthood [13]. Breastfeeding seems to play a sig-
nificant role in the formation of early-life microbiome with 
a predominance of Bifidobacterium and Bacteroides species 
in breastfed infants [14, 15]. Breastfeeding appears to have 
long-term effects on the microbiome and its effects on the 
immune system and GI tract [16, 17]. The childhood/adoles-
cent microbiome is enriched in Bifidobacterium spp., Fae-
calibacterium spp., and members of the Lachnospiraceae 
family [13]. Interestingly, children’s gut communities were 
enriched in functions that may support ongoing develop-
ment. In contrast to infant and childhood microbiomes, the 
adult microbiome is more stable and is shaped more by 
environment than by genetics. As humans age, microbial 
diversity increases steadily in healthy individuals [17–19]. 
Decreased microbial diversity has been associated with vari-
ous disease states [20–22].

Much of the initial focus on the microbiome has been 
centered around the understanding of its impact in disease 
leading to the concept of dysbiosis or shifts in the normal 
gut microbiome structure. Shifts in the microbiome are 
influenced by diet, antibiotics, socioeconomic status, and 
geography [23, 24]. However, it is still unclear whether these 
changes in microbiome composition are a cause or conse-
quence of epithelial function alteration and disease. One of 
the features of a healthy microbiome is its resilience, its 
ability to return to an equilibrium state, and resistance to 
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perturbations. A significant degree of interpersonal diversity 
even in the absence of disease in the human microbiome 
makes defining an idealized community of specific microbes 
difficult [25, 26]. The variation of the microbiome between 
the individuals is thought to be driven by ecological pro-
cesses that shape various ecosystems [27, 28]. Rather than 
an idealized community of microbes, a healthy microbiome 
can be characterized by a shared set of metabolic modules 
or functions [18, 29].

Structural Composition of the GI Microbiome

The human GI tract is a complex system that begins at the 
esophagus and ends at the anus with most data obtained 
to date from the distal colonic microbiota due to the prac-
tical considerations of specimen collection. Important 

physiologic conditions like pH, bile content, and transit time 
vary along the GI tract and contribute to distinct microbial 
communities inhabiting the upper and lower GI tract [30]. In 
this section, we review what is known about the composition 
of healthy bacterial communities in the oral cavity, esopha-
gus, stomach, small intestine, and colon (Fig. 1).

Oral Cavity

The oral cavity is comprised of several microbial environ-
ments including the tonsils, teeth, gums, tongue, cheeks, 
hard and soft palates. It is the opening to the GI tract 
where food enters and is mixed with saliva. More than 
1000 taxa have been found in the oral cavity so it has 
its own database known as the Human Oral Microbiome 
Database [31]. Six major phyla comprise 96% of the taxa 

Fig. 1  Human microbiome 
composition varies by location 
in the GI tract. Predominant 
bacterial genera in the oral cav-
ity, esophagus, stomach, small 
intestine, and colon are deline-
ated in this figure
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including Firmicutes, Bacteroidetes, Proteobacteria, Act-
inobacteria, Spirochaetes, and Fusobacteria [31]. In saliva 
of healthy patients, the predominant genera are Gemella, 
Veillonella, Neisseria, Fusobacterium, Streptococcus, 
Prevotella, Pseudomonas, and Actinomyces [32]. Differ-
ent locations within the oral cavity have varying degrees 
of biological diversity [33].

Esophagus

Food is transported down the esophagus from the oral 
cavity to the stomach. Similar to the oral cavity, the most 
abundant bacteria in the human esophagus belong to the 
phylum Firmicutes and the genus Streptococcus [34], 
likely derived from the oral cavity [30, 35]. Shotgun 
sequencing has revealed three distinct community types 
in the esophagus of healthy subjects [36]. Communities 
are dominated either by Streptococcus (Streptococcus 
mitis/oralis/pneumoniae), Prevotella (Prevotella mel-
aninogenica and Prevotella pallens) and Veillonella, or 
Haemophilus (Haemophilus parainfluenzae) and Rothia 
(Rothia mucilaginosa). Similar to other GI sites, age con-
tributes to the structure of the esophageal microbiome, 
but interestingly composition appears to be independent 
of proton-pump inhibitor use or gender [36]. Overall, 
there are limited studies to suggest altered microbiome 
composition associated with esophageal diseases so 
further studies are necessary to better elucidate disease 
pathogenesis.

Stomach

The stomach is the first digestive organ of the body. It con-
tains proteolytic enzymes and gastric acid that processes 
the food that is ingested. Due to its acidic environment, the 
growth of many bacteria is inhibited. The harsh environ-
ment is thought to serve as a protective mechanism against 
pathogens. Despite the low pH, a diverse microbiota can be 
found in the stomach. The genera commonly found in the 
corpus and antrum include Bacillales incertae sedis, Strep-
tococcaceae, Enterobacteriaceae, Leptotrichiaceae, Veil-
lonellaceae, and Pseudomonadaceae [32, 35]. Individuals 
can be divided into the two major groups: groups with and 
without Helicobacter pylori. In patients with abundant H. 
pylori, a greater number of bacteria belonged to the phylum 
Proteobacteria and the gastric microbiomes yielded lower 
overall alpha diversity [32, 37]. When looking at the gut 
microbiome of individuals with H. pylori, there is increased 
abundance of Succinivibrio, Coriobacteriaceae, Enterococ-
caceae, and Rikenellaceae [38].

Small Intestine

The small intestine consists of the duodenum, jejunum, and 
the ileum and is the location where most nutrient digestion 
and absorption occur. The duodenum is the portion of the 
small intestine where the food bolus enters from the stom-
ach, and bile salts from the gallbladder along with pancre-
atic enzymes start digestion. The intestinal epithelium of the 
jejunum and ileum is then responsible for nutrient absorp-
tion. Metabolism favors simple sugar and amino acid metab-
olism, so the small intestine is dominated by rapidly dividing 
facultative anaerobes such as Proteobacteria and Lactobacil-
lales [39]. This finding was supported by studies analyzing 
jejunal samples obtained via enteroscopy. One study showed 
that Streptococcus, Prevotella, Veillonella, Fusobacterium, 
Escherichia, Klebsiella, and Citrobacter were abundant, 
whereas extreme anaerobes like Alistipes, Ruminococcus, 
and Faecalibacterium were not present [40]. Also, when the 
jejunum and ileum contents from three individuals were ana-
lyzed, the most common communities consisted of strepto-
cocci, lactobacilli, Gammaproteobacteria, the Enterococcus 
group, and the Bacteroides group [41]. As the small intestine 
progresses distally in the ileum, the microbial composition 
becomes more complex and approaches that of the colon 
in terms of diversity and richness. Vaspapolli et al. found 
that the duodenum harbored similar genera as the stomach 
(Bacillales incertae sedis, Streptococcaceae, Enterobacte-
raceae, Leptorichiaeceae, Veillonellaceae, and Pseudomon-
adaceae), while the terminal ileum exhibited a composition 
closer to that of the colon (Clostridiaceae, Lachnospiraceae, 
Peptostreptococcaceae, Ruminococcaceae, Enterobacte-
riaceae, and Bacteroidaceae) [32]. These findings dem-
onstrate unique microbial compositional profiles along the 
length of the small intestine.

Colon

The colon consists of the cecum, ascending, transverse, 
descending, and sigmoid colon, as well as the rectum. It 
is the location where water and minerals are absorbed and 
complex carbohydrate fermentation occurs [42]. Complex 
foods that have not been digested by the host reach the colon 
and feed the colonic microbiota. The healthy human colon 
yields a relatively rich abundance of microbes in the colon, 
and these communities are highly diverse. The predominant 
colonic bacterial phyla in the healthy human are Bacteroi-
detes, Firmicutes, Verrucomicrobia, Proteobacteria, and 
Actinobacteria [35]. Few differences have been observed 
between the ascending and descending colon in terms of 
microbiome composition, with families from the colon 
including Clostridiaceae, Lachnospiraceae, and Bacteroi-
daceae dominating the microbiome structure [32].
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A major difference between the small and large intes-
tine is the structure of the mucus layer. In the colon, the 
mucus forms a stratified layer that is more defined than in 
the small intestine. The colonic mucus layer consists of an 
inner mucus layer, physically excludes bacteria, and contains 
immune effectors that target the microbiota [43]. In contrast, 
the outer mucus layer is loose and serves as a colonization 
site for numerous microbes. Due to the structural makeup 
of the colon, it has been observed that bacteria are organ-
ized along the transverse axis of the colon, from the lumen 
to the mucosa. Microbes that prioritize dietary starches and 
nutrients reside within the colonic lumen. Organisms that 
can utilize mucin such as Akkermansia, Ruminococcus, and 
some Bacteroides species reside within the outer intestinal 
mucus layer [44–47]. In addition to nutrient sources, oxygen 
gradients exist from the intestinal lumen to the mucosa as 
well as moving down the colon, with consequent effects on 
microbial composition of the colon. For example, Proteo-
bacteria and Actinobacteria phyla are found closer to the 
rectum than feces as a result [48].

Several studies have attempted to define a human intes-
tinal core microbiota. Longitudinal analysis and cross-sec-
tional comparisons of fecal 16S rRNA have revealed that a 

significant fraction of bacterial phylotypes is continuously 
present and thus comprises a stable microbial core [49–54]. 
These core microbes include Bacteroides, Eubacterium, 
Faecalibacterium, Alistipes, Ruminococcus, Clostridium, 
Roseburia, and Blautia; with Faecalibacterium prausnitzii, 
Oscillospira guillermondii, and Ruminococcus obeum as the 
top three taxa shared by all adults [55].

Alterations of the colonic microbiota and breaches in the 
colonic structure have been associated with various disease 
states. Recent microbiome genome-wide association stud-
ies revealed multiple alterations in gut microbiome com-
position in metabolic disorders and disorders of immunity 
[56]. Inflammatory bowel disease (IBD) is characterized 
by immune activation and disrupted intestinal epithelial 
mucosal barrier function, which can culminate in the inap-
propriate immune activation against commensal bacteria. 
Affected sites in IBD are locations with relatively greater 
bacterial densities such as the distal ileum and cecum. In 
addition, mucus-degrading bacteria were increased in rela-
tive abundance in IBD patients leading to the an increase in 
available substrates to sustain mucosa-associated bacteria 
during colitis [57], and large increases in Ruminococcus 
gnavus have been noted in mucosal samples of IBD patients 

Fig. 2  Microbial metabolites produced in the gastrointestinal tract 
have diverse functions. The gastrointestinal microbiome can modu-
late both intra- (microbe–microbe) and inter-kingdom (microbe-host) 
interactions that can influence human health. Bacteria are involved 
in quorum sensing and can release bacteriocins, hydrogen peroxide, 
and lactic acid, which yield effects on the gut microbiome and patho-

gens. In addition, bacteria can produce gamma-aminobutyric acid 
(GABA), tryptophan metabolites, histamine, polyamines, serpins, 
lactocepin, vitamins, short chain fatty acids (SCFA), long chain fatty 
acids (LCFA), and outer membrane vesicles (OMVs), which can have 
effects on the human host epithelium, immune cells, mesenchyme, 
and enteric neurons
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[56]. In colorectal cancer patients, Coriobacteriaceae were 
found in greater abundance in tumors [8]. Obesity is asso-
ciated with lower abundances of Christensenella minuta, 
Akkermansia muciniphila, and Methanobrevibacter smithii 
and an overabundance of Blautia [56]. The colonic microbi-
ome plays a pivotal role in maintaining intestinal epithelial 
homeostasis and overall human health.

Microbial Functions in the GI Tract

Although microbiome structure varies among healthy indi-
viduals, microbial functions are well-conserved [32]. One 
important function of the microbiome is the generation of 
microbial metabolites which influence both microbes and 
host. This section details the functional capacity of the GI 
microbiota and specifically touches on microbial-derived 
metabolites that modulate both intra- (microbe–microbe) 
and inter-kingdom (microbe-host) interactions that impact 
human health (Fig. 2).

Microbial Metabolites

Secreted microbial compounds can target the microbi-
ome by acting as signaling molecules for inter-bacterial 
communication. These molecules, known as quorum sen-
sors, can influence bacterial homeostasis, growth, spore 
formation, programmed cell death, virulence, and biofilm 
formation [58–62]. Quorum sensing offers advantages to 
biofilm communities by allowing them to adapt to environ-
mental changes [58–60, 63]. Quorum sensing compounds 
are grouped into three classes: (1) LuxI/LuxR-type; (2) 
oligopeptide-two-component-type; and (3) luxS-encoded 
autoinducer 2 (AI-2) quorum sensing [58]. In intestinal 
communities, the levels of the quorum sensing compound 
AI-2 were associated with relatively decreased abundance 
in Bacteroidetes and increased abundance in Firmicutes 
[64]. Additionally, AI-2 also promoted Firmicutes that 
encoded a LuxS homolog, indicating that a positive feed-
back loop might exist within the microbiota, whereby 
AI-2 signaling and downstream responses drive increases 
in abundance of the AI-2 producers, which then further 
increases signal levels and amplifies the response through-
out the community.

While quorum sensing compounds typically encourage 
bacterial growth of similar microbes, bacteria also secrete 
compounds that inhibit the growth of competitors. These 
antibiotic compounds can be proteins (bacteriocins) or 
small molecules (lactic acid, hydrogen peroxide  (H2O2), 
and reactive aldehydes) and effectively enhance host health 
through colonization resistance [65, 66]. Bacteriocins tar-
get phosphate groups on bacterial cell membranes, deplete 

the transmembrane potential (Δѱ), and form membrane 
pores. These events result in membrane disruption, cellular 
leakage, and cell death [67–69]. Interestingly, bacteriocins 
have a synergistic effect with lactic acid, produced com-
monly by probiotics, and exhibit greater antibacterial activ-
ity at lower pH. Lactic acid bacteria (LAB) produce lactic 
acid as an end product of glucose fermentation [70], which 
(1) reduces local pH and suppresses colonization and pro-
liferation of potential pathogens, and (2) can penetrate the 
bacterial cytoplasmic membrane, lower the intracellular 
pH, and suppress the electron transport system, leading 
to oxidative stress, DNA damage, and cell death [71–74]. 
Lactic acid also works synergistically with  H2O2 to inhibit 
pathogens and shape microbial communities [71, 75, 76] 
by damaging bacterial nucleic acids and preventing chro-
mosomal replication [77–80]. Apart from intra-kingdom 
interactions, L-lactic acid can directly impact host health 
by suppressing pro-inflammatory responses of immune 
cells [81]. An isomeric mixture of 3-hydroxypropionalde-
hyde (3-HPA) also known as reuterin is produced by LAB 
[82, 83] and inhibits enteric pathogen growth [84–86]. 
Reuterin is the by-product of glycerol fermentation [87, 
88], which is hypothesized to stem from the breakdown of 
a prevalent bacterial membrane phospholipid phosphatidy-
lethanolamine into glycerol and ethanolamine, suggesting 
that glycerol is abundant in the GI tract. Like lactic acid, 
reuterin also mediates inter-kingdom interactions; recent 
studies have linked reuterin production with iron homeo-
stasis in the host [89, 90].

Microbial Metabolites/Compounds and Their Impact 
on Host Processes

Bacterial metabolites can also mediate host processes and 
functionally complement host metabolic capabilities. Cer-
tain microbes can generate biologically active compounds 
including but not limited to, gamma-aminobutyric acid 
(GABA), tryptophan metabolites, polyamines, and histamine 
[91–107]. Microbial neuromodulators like GABA may par-
ticipate in communication with the enteric and central nerv-
ous systems, while microbial-derived immunomodulators 
like histamine interact with intestinal immune cells. Serpins, 
another example of microbial-derived immunomodulators, 
are similar to eukaryotic serine protease inhibitors which 
suppress inflammatory responses by inhibiting elastase 
activity [108–112]. Similarly, lactocepins are bacterial 
enzymes which can degrade pro-inflammatory signals 
[113–115]. For example, Lactobacillus-secreted lactocepin 
selectively degrades lymphocyte recruiting chemokine 
IP-10, I-TAC and eotaxin, thereby suppressing pro-inflam-
matory signaling cascades [116, 117].

Short-chain fatty acids (SCFAs) implicated in immune 
regulation, pH regulation, sodium and water absorption, and 
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mucus secretion [66, 118, 119] are an important microbial 
by-product of complex carbohydrate fermentation in the 
intestine. The most abundant and well-studied SCFAs are 
acetate, propionate, and butyrate; however, the intestinal 
composition of SCFAs is contingent on microbial composi-
tion, diet, and intestinal pH [120–123]. SCFAs are absorbed 
by host epithelial cells and diminished in concentration from 
the proximal to the distal colon [124–128]. In addition to 
epithelial cells, SCFA transporters are found on immune, 
enteroendocrine, kidney and brain cells [127–137] reflecting 
the diverse effects of SCFAs on host physiology. In addi-
tion to SCFAs, microbes can produce long-chain fatty acids 
(LCFAs) [138–141] known to reduce hepatic triacylglycer-
ols and inhibit atherosclerosis [142, 143].

Select intestinal microbes are able to produce vitamins, 
essential nutrients required for growth and immune func-
tion, which are primarily absorbed in the colon [144–151]. 
Genomes of gut microbes yield enzymatic pathways 
involved in vitamin synthesis for eight different B complex 
vitamins: biotin (B7), cobalamin (B12), folate (B9), niacin 
(B3), pantothenic acid (B5), pyridoxine (B6), and riboflavin 
(B2) [152]. Metagenomic studies have also indicated the 
enrichment of microbial enzymatic pathways for vitamin 
precursors in the gut and have emphasized the production of 
vitamins through coordinated bacterial cross-feeding [153]. 
Interestingly, recent studies have linked vitamin deficiencies 
with antibiotic-diminished gut microbiota, solidifying a dis-
tinct contribution of microbial vitamins to host health that 
differs from vitamin supplementation in the diet [154]. Key 
modifications of microbial vitamins like mono- and polyglu-
tamylated folate influence their absorption and function in 
the host [155–157], which further supports the significance 
of microbial micronutrients in host health.

Outer membrane vesicles (OMVs) are another key 
immunomodulatory factor produced by our gut microbiota 
[158–160]. OMVs typically harbor a number of soluble pro-
teins which can signal to multiple cell types, including cells 
in the innate and adaptive immune systems [161]. Bacteroides 
fragilis OMV delivery of polysaccharide capsular antigen 
(PSA) has been widely studied for its immunomodulatory 
effects. B. fragilis OMVs were found to modulate CD4+ T 
cell homeostasis and cytokine production [162] and directly 
modulate dendritic cells (DCs) [163, 164]. These immu-
nomodulatory functions have been shown to benefit intestinal 
inflammation [165] and CNS inflammation [166–168].

Conclusions

The human gastrointestinal microbiome is essential to main-
taining human health. Despite technological advances in 
human microbiome research, the individual composition, 

functional features, and interactions between human host 
and microbes remain to be elucidated. These studies empha-
size the importance of a healthy GI microbiome and the 
key roles of bacterial metabolites in fine-tuning the host 
response. Additional studies may provide more precise etio-
logic explanations for the interactions between the host and 
human microbiome. As we begin to understand the compo-
sition and function of the healthy microbiome, we may be 
able to identify individual species and strains which can be 
tailored for specific targets of interest.
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