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Abstract

Diet is a key regulator of microbiome structure and function across the lifespan. Microbial colonization in the first year of life has
been actively researched; however, studies during childhood are sparse. Herein, the impact of dietary intake and pre- and probiotic
interventions on microbiome composition of healthy infants and children from birth to adolescence is discussed. The microbiome
of breastfed infants has lower microbial diversity and richness, higher Proteobacteria, and lower Bacteroidetes and Firmicutes than
those formula-fed. As children consume more complex diets, associations between dietary patterns and the microbiota emerge.
Like adults, the microbiota of children consuming a Western-style diet is associated with greater Bacteroidaceae and Ruminococ-
caceae and lower Prevotellaceae. Dietary fibers and pre- or/and probiotics have been tested to modulate the gut microbiota in early
life. Human milk oligosaccharides and prebiotics added to infant formula are bifidogenic and decrease pathogens. In children,
prebiotics, such as inulin, increase Bifidobacterium abundance and dietary fibers reduce fecal pH and increase alpha diversity and
calcium absorption. Probiotics have been administered to the mother during pregnancy and breastfeeding or directly to the infant/
child. Findings on maternal probiotic administration on bacterial taxa are inconsistent. When given directly to the infant/child, some
changes in individual taxa are observed, but rarely is overall alpha or beta diversity affected. Cesarean-delivered infants appear to
benefit to a greater degree than those born vaginally. Infancy and childhood represent an opportunity to beneficially manipulate the
microbiome through dietary or prebiotic interventions, which has the potential to affect both short- and long-term health outcomes.
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Introduction

Over the past decade, the essential role that the gut micro-
biota plays in the developmental programming of the neo-
nate, including growth trajectories, metabolism, and immune
and cognitive development, has been demonstrated [1-3].
Thus, fostering the development of the microbiome in the
first 1000 days of life is critical to supporting lifelong health.
Due to the rapid changes in the gut microbiome in the early
postnatal period, most pediatric microbiome research has
focused on differences between breast- and formula-fed
infants in the first year of life [4]. Few studies have evaluated
the microbiota of toddlers and children, and the prevailing
thought is that children attain an adult-like microbiota by
3 years of age [5, 6]. However, recent studies suggest that
maturation of the gut microbiota is influenced by diet, and
differences from an adult-type microbiota persist into later
childhood [6, 7]. Therefore, the goal herein was to review
the current evidence for the role of dietary intake and pre-
and probiotic interventions on the gut microbiota from birth
through adolescence.

Early Life (0-2 years)
Breast- and Formula-Feeding

Among pediatric populations, gut microbiota composi-
tion of breastfed (BF) and formula-fed (FF) infants is most
extensively studied and has been reviewed elsewhere [3,
4]. While heterogeneity exists among demographics, infant
age, formula type, and sampling and analytical techniques
applied in the published literature, most studies show that
both diversity and richness of the microbiome are lower in
BF than FF infants [4, 7-10]. Breastfeeding, particularly
of longer duration, is associated with a more stable bacte-
rial composition [4, 8] as well as a lower microbiota age
[8, 11]. BF infants tend to have higher Actinobacteria [4]
and lower Bacteroidetes and Firmicutes than FF infants [2,
6]. Breastfeeding is strongly associated with Bifidobacte-
rium [4, 7-9, 11] and Bifidobacteriaceae abundance [10].
For example, in the TEDDY (The Environmental Deter-
minants of Diabetes in the Young) cohort, BF infants had
higher relative abundance of B. breve, B. bifidum, and B.
dentium than FF; while B. longum was the most dominant
species in this study, it did not differ by feeding group [7].
Lactobacillus abundance has also been associated with
breastfeeding [9, 11]; however, results vary considerably
among published studies [4]. In a recent meta-analysis of
seven studies, infants who were not exclusively BF har-
bored higher relative abundances of Bacteroides, Eubac-
terium, and Veillonella [8].

Feeding mode interacts with other perinatal factors to
influence the infant gut microbiota. Ho and colleagues
reported that non-exclusively BF infants have a lower
abundance of Proteobacteria, but only among those deliv-
ered via cesarean section (C-section) [8]. However, breast-
feeding appears to moderate the detrimental effects of
C-section delivery and intrapartum antibiotics on the early
microbiota, producing a microbiota profile more similar to
that of vaginally delivered infants or those not receiving
antibiotics [4]. Geography and ethnicity are also important
to take into account. Across five European countries, the
effect of country was more pronounced than delivery or
feeding method, with dominant bifidobacteria in north-
ern countries and greater early diversification in southern
European countries [12]. Within the USA, Bifidobacterium
abundance differed between white and Hispanic BF and FF
infants, but not black infants [9].

Compared to BF infants, the functional capacity of the
microbiome of FF infants is more similar to that of adults,
consisting of genes related to bile acid synthesis and
methanogenesis, but considerable variation exists among
recent studies [4]. For example, the BF infant microbi-
ome has an increased abundance of genes associated with
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carbohydrate and lipid metabolism and fatty acid biosyn-
thesis than FF [7], although another study reported similar
data related to fatty acid biosynthesis genes, but opposite
results for carbohydrate and lipid metabolism [8]. Com-
pared to FF infants, the BF infant’s microbiome has more
genes associated with vitamin and cofactor metabolism
[8], free radical detoxification [8], and glutathione metabo-
lism [13]. Discrepancies among the studies could be due to
differences in infant age or the inclusion of mixed-feeding
infants (MF) in different feeding groups. Thus, more work
is needed to understand the functional ontogeny of the
infant gut microbiota.

Human milk (HM) contains nutrients, bioactive compo-
nents, and bacteria that drive the aforementioned differences
in the gut microbiota of BF and FF infants. In particular, the
human milk oligosaccharides (HMO) are complex glycans
that are resistant to digestion and exert a number of func-
tions in the distal gastrointestinal tract of the infant [14].
Over 200 unique HMOs have been identified, and maternal
genetics affects the HMO present in milk [4, 14]. HMOs
shape the infant gut microbiota by acting as a prebiotic sub-
strate for select beneficial bacteria, such as certain species
of Bifidobacterium, as well as, acting as a decoy receptor
for pathogenic microorganisms [14]. The addition of HMOs
and other prebiotics to infant formula over the last decade
has likely resulted in some convergence in the microbiota
of BF and FF infants [4] and will be discussed later in this
review. Along with the HMOs, BF infants receive a con-
tinuous source of bacteria from HM [15]. The HM micro-
biome is dominated by Staphylococcus and Streptococcus,
but also contains Bifidobacterium, Lactobacillus, Clostrid-
ium, and Veillonella, all resident genera found in the early
infant microbiome [4, 15-17]. Hundreds of bacterial species
are present in HM [15-17], and composition is associated
with a variety of maternal factors such as body mass index,
delivery mode, geography, and breast pump usage [15]. The
microbial compositions of HM and infant feces are strongly
associated [16]; thus, the unique microbial composition of
each mother’s milk may account for some variation in the
gut microbiome of BF infants [4, 15]. While HMO and the
HM microbiome are most widely studied in relation to the
infant microbiota, other HM components, such as IgA, anti-
microbials, glycoproteins [18], cytokines [19], phages [20],
and fungi [21], likely contribute to development of the early
microbiome.

Introduction of Complementary Feeding
and Cessation of Breastfeeding

Microbiota composition increases in both diversity and rich-
ness during the transition from a milk-based to an adult-
like diet [4, 9]. Introduction to complementary foods is
accompanied by marked increases in Lachnospiraceae,
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Ruminococcaceae, Blautia, Bacteroides, and Akkermansia
[22-25] and decreases in Bifidobacterium, Veillonellaceae,
Lactobacillaceae, Enterobacteriaceae, and Enterococcaceae
[24]. However, early feeding mode continues to remain evi-
dent throughout these dietary transitions, influencing infant
gut microbiota composition even up to 2 years of age [8, 26].
Whether an infant is BF during solid food introduction influ-
ences microbial patterns [10, 12, 24, 25, 27] (Table 1). Con-
tinued breastfeeding provides substrates necessary to sustain
microbes such as Bifidobacterium, Lactobacillus, Collinsella,
Megasphera, and Veillonella [26, 27] (Table 1). Introduction
of foods high in protein and fiber increases microbial diver-
sity, but the particular foods most correlated with microbial
diversity differ depending on whether the infant is still being
breastfed [24]. For example, a greater number of predicted
functional changes were identified in FF and MF infants dur-
ing introduction of solids compared to BF infants, suggest-
ing that breastfeeding may increase the plasticity of the infant
microbiome [25].

As energy-yielding substrates change over the first year
of life, so does the metabolic capacity of the infant micro-
biome, with increases in genes associated with starch, cen-
tral carbon, and pyruvate metabolism [27]. During weaning
from HM or formula, milk-associated bacteria decrease and
microbes capable of degrading complex polysaccharides, such
as Bacteroidaceae, Lachnospiraceae, and Ruminococcaceae,
increase [24]. Breastfeeding duration influences when these
transitions occur; at 12 months, richness and diversity were
highest among infants weaned before 6 months and lowest
among those still being BF [10]. Similarly, the microbiota
of BF infants residing in Italy and Burkina Faso have been
shown to cluster fairly close together, despite vast differences
in the diets [high fiber vs. high fat/protein] and the environ-
ments [urban vs. rural] of the two countries [29]. However,
once children were fully weaned, the microbiota of children in
Burkina Faso was dominated by Bacteroidetes, while that of
Italian children was enriched with Firmicutes [29].

Previously, cessation of breastfeeding, rather than comple-
mentary food introduction, was proposed to be the driving
force behind the shift toward an adult-like microbiome [27].
However, both contribute to this transition to different degrees
among infants [24]. Still, studies investigating changes in the
microbiome upon weaning and introduction to solid foods are
limited [29]. Additional large, longitudinal cohort studies are
needed to explore the compositional and functional changes
of the microbiota that accompany dietary shifts in early life.

Beyond the 2 Years of Age

Although studies on gut microbiota composition in children
after 2 years of age are more limited, available evidence sug-
gest that the microbiota of young children differs from that
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of adults [28]. As children consume a more complex diet,
associations between dietary patterns and the gut microbiota
emerge, and their microbiota composition becomes more
similar to adults [28]. How diet affects the gut microbiota
can be interrogated at several levels, starting with specific
nutrients, such as fiber [31], to categories of foods, or food
groups [30, 31], to more complex assessments of dietary
intake, such as dietary patterns [30]. A summary of the
impact of diet on gut microbiota composition is shown in
Table 1 and is discussed below.

Toddlers (2-3 Years of Age)

In Australian 2- to 3-year-olds, both habitual diet, as meas-
ured by a Food Frequency Questionnaire (FFQ), and recent
dietary intake, as measured by a 24-h recall 3 days prior to
fecal sample collection, influenced fecal microbiota com-
position [30]. Dairy intake was negatively associated with
species richness and diversity and Bacteroidetes abundance,
but was positively associated with Erysipelatoclostridium
spp. and the Firmicutes-to-Bacteroidetes ratio [F/B ratio].
Vegetable protein intake was positively associated with
abundances of the Lachnospira; soy, pulse, and nut intake
were positively associated with Bacteroides xylanisolvens,
and fruit intake was negatively associated with the relative
abundance of microbes related to Ruminococcus gnavus
[30]. Dairy and vegetable-source proteins explained 7-10%
of the variation in microbiota composition and fruit intake
explained 8%. Among the dairy group, yogurt explained 9%
of the variance in microbiota [30].

Young Childhood to Adolescence (4-14 Years of Age)

Moving beyond the first 1000 days of life, Berding and cow-
orkers [31] investigated the temporal stability of the fecal
microbiota and whether dietary patterns were associated
with microbial taxa and composition in American 4-8-year-
olds at 3 time points over a 6-month period. Dietary intakes
were assessed over the previous year using the Young Ado-
lescent Questionnaire, and two dietary patterns were identi-
fied by principal components analysis (PCA) and factor anal-
ysis [31]. Temporal stability of microbiota over the 6-month
period was associated with baseline dietary patterns. Dietary
pattern 1, defined by intake of fish, protein foods, refined
carbohydrates, vegetables, fruit, juice and sweetened bev-
erages, kid’s meals and snacks and sweets, was linked to
higher relative abundance of Bacteroidetes, Bacteroides,
and Ruminococcus and lower Bifidobacterium, Prevotella,
Blautia, and Roseburia relative abundance. Dietary pat-
tern 2, defined by intake of grains, dairy and legumes, nuts
and seeds, was associated with higher Cyanobacteria and
Phascolarctobacterium abundance and lower Dorea and
Eubacterium abundance [31]. Additionally, the intake of

@ Springer

snacks and sweets and refined carbohydrates were nega-
tively correlated with both Shannon and the Chaol Indices,
respectively, demonstrating reduced microbial diversity with
greater intake of sugars and refined grains.

Residing in rural vs. urban environments can also affect
food availability and choices, which has been investigated
in a series of studies. A study of Filipino children (7 to
9 years) living in rural (Baybay) and urban (Ormoc) com-
munities showed distinct differences in dietary habits and
fecal microbiota composition [32]. Nearly all (94%) of urban
children consumed fast food four times per week on average
compared to 42% of rural children who consumed fast food
less than once per week. Urban-dwelling children also con-
sumed a diet higher in meat, fat, and confectionaries, such
as sweetened pastries and biscuits, and lower in complex
carbohydrates compared to rural children. Using family-level
bacterial composition to execute PCA and clustering analy-
sis in conjunction with a dataset from five other Asian coun-
tries, it was observed that 87.5% of rural children fell into
the termed P-type cluster [defined by Prevotellaceae] and
78.9% of the urban samples were included in the termed BB-
type cluster (defined by Bacteroidaceae, Bifidobacteriaceae,
Ruminococcaceae, and Lachnospiraceae). Additionally,
Prevotellaceae, including only the genus Prevotella and
consisting of mostly Prevotella copri, were more abundant
in the feces of rural children, making up 10% of the total
community, whereas it represented < 1% of the fecal micro-
bial sequences in most urban children. These findings may
reflect the higher consumption of complex carbohydrates in
rural children. [32].

Similarly, Kisuse and colleagues examined differences
in dietary habits, fecal microbiome composition, and short-
chain fatty acid (SCFA) concentrations of children (9 to
10 years) living in rural (Buriram) and urban (Bangkok)
settings in Thailand [33]. Urban children consumed more
bread, meat, and beverages and less rice and vegetables than
the rural children. Vegetables comprised < 1.0% of total cal-
orie intake in urban children compared to 7.3% in rural chil-
dren. The fecal microbiome of the rural children displayed
significantly greater alpha diversity (Chaol index). The
microbiota of rural children was enriched by bacteria in the
order Clostridiales, containing families such as Peptostrep-
tococcaceae and unclassified Ruminococcaceae, compared
to higher proportions of Actinobacteria, Bacteroidales, and
Selenomadales in urban dwellers. Additionally, rural chil-
dren had significantly higher fecal butyrate and propionate
concentrations, suggesting that the fiber-rich diet in the rural
children promotes a microbiota composition with greater
fermentative capacity [33].

Greater Bifidobacterium abundance in 1- to 4-year-olds
compared to adults has been reported [28], and recent stud-
ies have shown that the relative abundance of Bifidobac-
terium in older children is related to dietary intake and is
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associated with metabolic phenotypes. Studying Dutch
children in the KOALA Birth Cohort Study, Zhong and col-
leagues documented higher levels of Bifidobacterium at 6
to 9 years of age compared to adults [34]. They also classi-
fied children into three enterotypes and observed that cor-
relations between dietary and metabolic phenotypes were
dependent on fecal microbial enterotype. For example, a
negative correlation between dietary fiber intake and plasma
insulin was only reported in children with Bacteroides and
Prevotella enterotypes, but not the Bifidobacterium entero-
type [34]. This latter microbiome possesses lower microbial
gene richness, alpha diversity, and functional potential for
butyrate and succinate production, suggesting that children
exhibiting a Bifidobacterium enterotype have a less mature
gut microbiome [34]. Additionally, a study of 8- to 11-year-
olds in Thailand living in two different geographical regions
observed that frequency of vegetable intake was positively
correlated with Lactobacillus and Prevotella, while Bifido-
bacterium spp. was negatively correlated with fish and beef
intake [35].

A similar study of healthy 7- to 12-year-olds from China
and Malaysia, living in three different cities, showed that
geographical-related factors (including diet), rather than
other potential mediating factors, such as ethnicity (e.g.,
Southern Chinese or Malay children), was a major delinea-
tor of microbiome changes [36]. Four genera (Bacteroides,
Fecalibacterium, Bifidobacterium, and Collinsella) showed
significant associations with the 15 food groups under obser-
vation. Bifidobacterium and Collinsella were positively cor-
related with refined-sugar enriched foods, and Collinsella
was also positively associated with fruit and curry intake
[36].

Parallel to these findings, comparing Bangladeshi and
American children (9-14 years), Bangladeshi children
exhibited lower levels of Bacteroides and higher levels of
Prevotella, Butyrivibrio, and Oscillospira, indicative of
their consumption of a non-Western diet low in refined-
sugar enriched foods and meat and rich in rice, bread, and
lentils [37]. Furthermore, the American children consuming
Western diets had higher Bacteroides abundance than chil-
dren in Bangladesh [37]. A Bacteroides enterotype is more
common in adults consuming a Western diet, whereas the
Prevotella enterotype is more common in those consuming
high amounts of fiber [39].

Lastly, a study comparing Egyptian teenagers (mean
13.9 years) consuming a Mediterranean-style diet to Ameri-
can teenagers (mean 12.9 years) consuming a Western diet,
found that Egyptian children clustered to the Prevotella ente-
rotype and American children clustered to the Bacteroides
enterotype [38]. Furthermore, the gastrointestinal environ-
ment of Egyptian children contained higher levels of SCFAs,
microbial polysaccharide degradation-encoding genes, and
polysaccharide-degrading genera [38].

Taken together, these findings provide evidence that
the microbiome in children and adolescents is shaped to a
greater degree by dietary intake [32-38] than by ethnicity
[36]. While it is has been postulated that the microbiota after
age 3 resembles that of adults [5], emerging evidence sug-
gest that, while the microbiota of children can be assembled
into enterotypes [34, 37, 38], differences persist between
children and adults. Additionally, children may also be
more similar to each other than adults are. For example,
in pre-adolescent children (ages 7-12) intragroup simi-
larity in the fecal microbiota was greater in children than
adults [40]. Adults also displayed greater abundances of
Bacteroides spp., while children displayed enhanced Bifi-
dobacterium spp., Faecalibacterium spp., and members of
Lachnospiraceae [40]. However, the current literature on
the impact of diet in this age group has some noted limita-
tions. Nearly all studies are cross-sectional, they use differ-
ent types of questionnaires to collect dietary intake data, and
many of the studies have compared children living in rural
vs. urban settings. While dietary intake differs between rural
and urban communities, many other environmental factors
are also likely contributing, including socioeconomic status,
exposure to agricultural species and routine medical care,
which could also be influencing the gut microbiota.

Fiber and Prebiotic Interventions in Children
on Gut Microbiota

A consistent finding of the observational studies summa-
rized above is that consumption of a Western-style diet,
characterized by low ratio of whole grains-to-refined carbo-
hydrates, detrimentally influences microbiome composition
and fecal SCFA concentrations in children [30-37]. Dietary
fiber (DF) has documented health benefits for adults, includ-
ing reducing intestinal transit time, plasma cholesterol and
postprandial glycemic response and improving resistance
to pathogens and epithelial barrier function [41-43]. The
underlying mechanisms of these beneficial effects are not
fully known; however, gut microbiome modulation and for-
mation of SCFAs by bacterial fermentation are proposed
[43]. DF is also thought to be beneficial for gut health of
children [44], although more studies are needed. In the USA,
the recommended dietary fiber intake is 14 g/1000 kcal or
25 g for females and 38 g for males. Most Americans only
consume about half of the recommended intake (13.5 and
18 g, respectively) [41]. The fiber intake recommendations
for children between the ages of 1 and 13 years, range from
5 to 31 g/day, depending on the organization, however, in
most cases children are not meeting the recommended fiber
intakes [44]. Thus, various strategies have been developed
for modulation of gut microbiota, including administration
of DFs, pre- or/and probiotics.
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In 2009, the Codex Alimentarius Commission defined
DF as “carbohydrate polymers with 10 or more monomeric
units, which are not hydrolyzed by the endogenous enzymes
in the small intestine of humans” [43]. DF includes non-
digestible carbohydrates naturally occurring in food, isolated
from food or synthesized, the latter two requiring evidence
to support their physiological benefit to health [45]. Most
countries adopted the 2009 Codex [43] definition by inclu-
sion of carbohydrate polymers with degrees of polymeriza-
tion between 3 and 9 [46]. DFs have been classified based
on their physiochemical properties such as particle size, fer-
mentability, solubility, and viscosity, and these properties
influence the functionality of a DF, including its ability to
modulate gut microbiota [47]. Soluble and readily ferment-
able DFs are referred to as prebiotics, which are ““a substrate
that is selectively utilized by host microorganisms conferring
a health benefit.” [48]. Most prebiotics are DF, but not all DF
are considered to be prebiotics.

Infant Formula and Prebiotics

HMOs are considered prebiotics, which may partly explain
the differences in microbiota composition between BF and
FF infants [4]. To narrow the gap between HM and infant
formula, prebiotics are now routinely added to infant for-
mula. The most studied prebiotics are a 9:1 mixture of short-
chain galactooligosaccharides (scGOS) and long-chain fruc-
tooligosaccharides (IcFOS). Other prebiotics supplemented
to infant formula, either alone or in combination, include
GOS, FOS, polydextrose, lactulose, acid oligosaccharides,
oligofructose, and inulin [4]. The effect of prebiotics on the
composition of infant microbiota has been recently reviewed
[4]; most studies show that prebiotics increase the abundance
of Bifidobacterium and sometimes Lactobacillus compared
to infants fed control formula [4]. Several studies reported
a decrease in opportunistic pathogens, such as Escherichia
coli, enterococci, and clostridia [4].

Two HMOs, 2'-fucosyllactose (2'-FL) and lacto-N-ne-
oteraose (LNnT), are added to infant formula. Both are well
tolerated and support age-appropriate growth of infants
[49-51]. A multicenter, randomized, double-blind trial com-
pared the fecal microbiota of healthy infants fed formula
with 2'-FL and LNnT from < 14 days to 6 months of age
to infants consuming with control formula. Findings dem-
onstrated a fecal microbiota closer to that of BF infants in
the infants fed formula with HMO, with higher numbers of
Bifidobacterium and lower potential pathogens than placebo
at 3 months of age [51].

DF and Prebiotics in Children

Only a few studies have studied DFs and prebiotics on the
gut microbiota in healthy 3-6-year-old children [52] and
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adolescents (8—15 years) [53—-56] (Table 2). As prebiotic
fibers, both GOS and inulin-type fructans have been shown
to increase abundance of Bifidobacterium [52—-54]. Several
studies have demonstrated that the intake of DFs shape the
gut microbes of children; however, their effects on micro-
biota composition depend on the type of fiber studied.
For example, administration of wheat bran extract (5 g/d
for 3 weeks) increased fecal Bifidobacterium [53], while
consumption of soluble corn fiber (SCF; 10 or 20 g/d for
4 weeks) modulated the overall microbiota, increased the
alpha diversity and altered the relative abundances of some
bacterial genera, including Parabacteroides and unclassi-
fied Lachnospiraceae [54]. This same group also showed
that GOS [55] and SCF [56] increased calcium absorption
in adolescent girls and boys, demonstrating a health benefit
for this age population. The authors proposed that bacte-
rial fermentation of SCF to SCFAs reduced the luminal pH,
which increased calcium solubility and transcellular absorp-
tion [54]. Calcium absorption was negatively correlated with
Parabacteroides relative abundance, but positively corre-
lated with Clostridium and unclassified Clostridiaceae abun-
dance [54]. The authors speculated that the two groups of
bacteria were cross-feeding, with the Bacteroidetes (Para-
bacteroides) fermenting SCF to acetate or lactate, and the
Firmicutes (Clostridium) further fermenting these substrates
to butyrate [54]. The limited studies suggest that prebiotic
and DF doses of 5-20 g are well tolerated in children, pro-
mote the expansion of bifidobacterial populations, and may
exert other health benefits. Further large-scale studies are
needed with different fiber sources.

Probiotic Interventions in Children on Gut
Microbiota

Probiotics are “live microorganisms that, when administered
in adequate amounts, confer a health benefit on the host”
[57]. The most commonly administered probiotic bacteria
belong to the genera Bifidobacterium and Lactobacillus,
but can be provided either as single or mixtures of strains.
The beneficial effects of probiotics in pediatric populations
have been previously reviewed [58-61], although most
studies have not been conducted in healthy children. Pro-
biotics shorten the duration of acute gastroenteritis, prevent
antibiotic-associated diarrhea, reduce the risk of necrotiz-
ing enterocolitis in preterm infants and lower the incidence
of eczema in high-risk children [58—61]. The mechanisms
of action of probiotics are not fully understood; however,
modulation of gut microbiota has been postulated as one of
the mechanisms [62].

Two general probiotic approaches have been taken to
influence the infant or child microbiota. The first approach
is to administer the probiotic to the mother during pregnancy
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and then to either the mother and/or infant postpartum
[63-70] (Table 3), and the second is to administer the pro-
biotic directly to the infant or child [71-84] (Table 4). For
the first approach, most studies gave probiotics to the moth-
ers of infants with high-risk of allergy, with the goal of
prevention of allergic disease, such as eczema, asthma and
allergic rhinitis [63-65, 69, 70]. The impact of maternal pro-
biotic supplementation on the abundances of bacterial taxa
were studied [63—70]; however, the results are inconsistent,
even when the same probiotic strain was used [63, 64, 69]
(Table 3). For example, supplementation of pregnant and
lactating women with L. rhamnosus GG (LGG), L. acidophi-
lus La-5 and B. animalis subsp. lactis BB-12 from 36-week
gestation until 3 months postnatal during breastfeeding did
not affect the proportions of bacteria classes and genera of
the infants at 3 months and 2 years [67]. In contrast, a Finish
study evaluated the effect of administration of L. rhamnosus
LPR and B. longum BL999 to mothers 2 months before and
2 months after delivery. They observed that infants whose
mother received probiotics had lower counts of Bifidobacte-
rium and a higher percentage of Lactobacillus/Enterococcus
than placebo at 6 months of age [68]. In addition, several
groups investigated the diversity of infant microbiota, report-
ing that administration of probiotics during pregnancy and
lactation, or directly to infants after delivery have no or lim-
ited effects on alpha and beta diversity of infant microbiota
[65, 67, 70] (Table 3).

Probiotics have been administrated directly to infants and
children [71-84] (Table 4). These studies varied in terms of
age of the children (newborns to age 18), type of probiotic,
dose administered, and duration of the intervention. Despite
these differences in study design, no effects of probiotic
administration were observed on microbiome alpha or beta
diversity between children in probiotic and control groups,
with the exception of one study [73]. In that study, formula
or L. reuteri DSM 17938-supplemented formula was fed for
6 months to newborns born by either vaginal or C-section
delivery [73]. The L. reuteri-supplemented formula had a
limited effect on the microbiota of vaginally born infants;
however, the overall microbiota composition of C-section-
delivered infants consuming the probiotic-supplemented
formula differed from that of placebo and was similar to
vaginally delivered infants at 2 weeks of age [73].

Similar to the findings when probiotics were adminis-
tered to the mother, inconsistent results were observed
on the abundances of bacterial taxa when probiotics were
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supplemented directly to the children; some probiotics
affected the proportions of individual bacterial taxa, while
others did not (Table 4). These conflicting results may be
related to differences in probiotic strain/strains used, the
dose use, duration of administration, and the methods used
for microbiota analysis. Furthermore, factors that influence
the development of gut microbiota, such as delivery mode,
children’s age, and diet, likely confound the effects of pro-
biotic supplementation in this population [73].

While some encouraging data exist on the efficacy of pro-
biotics on disease prevention, no broad consensus exists to
recommend the use of probiotics in these conditions [59].
Although probiotics are safe for use in healthy population;
several concerns have been raised related to the administra-
tion of probiotics early in life when gut microbiota is not
fully established. Long-term consequences of such admin-
istration should be carefully evaluated [60].

Future Directions

There is a need for more dietary intervention studies in
healthy populations, as the majority of currently published
studies describe dietary interventions in the context of dis-
ease states, such as obesity, which is represented by micro-
bial dysbiosis [85]. In particular, randomized, controlled
clinical trials on the effects of DFs, prebiotics, and probiotics
are needed in pediatric populations, particularly in adoles-
cence to young adulthood (15-20 years), where there is a
paucity of data available. Additionally, long-term follow-
up studies of early-life dietary interventions are needed to
determine long-term effects. For example, it is not known
whether or not early-life acceleration toward an adult-like
microbiome has negative downstream effects on health.
None of the reported human studies report effects on host
gut gene expression, which is possible to do noninvasively
in pediatric populations using exfoliated epithelial cells
[86]. Exploring host-microbe molecular cross-talk [87] and
incorporating other multi-omic approaches, including the
fecal metabolome [88] will further our understanding of
the complex relationships between diet, gut microbiota, and
human health and disease and can lead to the development of
low-cost, safe and efficacious dietary interventions [89, 90].
These “microbiota-directed foods” [90] have the potential to
prevent or treat some of the most pressing health nutritional
challenges facing the world’s population.
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Key Findings and Implications for Clinicians

e The gut microbiota in infancy and childhood is more
readily shaped by nutrition than during adulthood.

e The microbiome of BF infants is nurtured by human milk
components, including HMO, and differs from that of FF
infants.

e The addition of HMO and prebiotics to infant formula at
concentrations found in human milk promotes the growth
of bifidobacteria and narrows the differences between BF
and FF infants.

e Prebiotics and dietary fiber at doses of 5-20 g/day
modify the gut microbiome of children, increase SCFA
production, and may exert other health benefits, includ-
ing increasing calcium absorption.

¢ Findings on probiotic administration to pregnant or
lactating women or directly to the infant or child are
inconsistent, likely due to the variation in the bacterial
strains, doses, duration and methods of microbiome
analysis.

e Better understanding of diet—microbiome—-host interac-
tions is needed, but represents an enormous opportunity
to refine dietary interventions with the goal of supporting
a healthy microbiome and human well-being.
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