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Abstract Inflammatory bowel disease (IBD) is an impor-

tant etiologic factor in the development of colorectal cancer

(CRC). The risk of CRC begins to increase 8 or 10 years after

the diagnosis of IBD. This type of cancer is called colitis-

associated CRC (CA-CRC). The molecular pathogenesis of

inflammatory epithelium might play a critical role in the de-

velopment of CA-CRC. Genetic alterations detected in CA-

CRC such as genetic mutations, microsatellite instability, and

DNA hypermethylation are also recognized in sporadic CRC;

however, there are differences in the timing and frequency of

molecular events between CA-CRC and sporadic CRC. In-

teraction between gene–environmental factors, including in-

flammation, lifestyle, psychological stress, and prior

appendectomy, might be associated with the etiopathology of

IBD. The mucosal inflammatory mediators, such as oxidant

stress, free radicals, and chemokines, may cause the genetic

alterations. Understanding the molecular mechanisms of CA-

CRC might be important to develop clinical efficacies for

patients with IBD. This review discusses the molecular

characteristics of CA-CRC, especially ulcerative colitis-as-

sociatedCRC, including clinical features, signaling pathways,

and interactions between genetic alterations and environment

involved in inflammatory carcinogenesis.
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Introduction

Crohn and Rosenberg reported the first case of adenocar-

cinoma complicating ulcerative colitis (UC) in 1925 [1].

Since then, it has been recognized that the risk of devel-

oping colorectal cancer (CRC) is increased in patients with

long-term inflammatory bowel disease (IBD) such as UC

and Crohn’s disease (CD) [2, 3]. Chronic inflammation

plays a critical role in human carcinogenesis in some types

of solid cancers [4, 5]. Colitis-associated colorectal cancer

(CA-CRC) is also believed to occur by a progression from

a non-neoplastic inflammatory epithelium to dysplasia to

carcinoma [2]. Recent studies elucidate the molecular

pathogenesis of CA-CRC, particularly in ulcerative colitis-

associated CRC (UC-CRC) [6–8]. CA-CRC shows char-

acteristic genetic changes including nucleotide mutation,

chromosomal alteration, and hypermethylation in oncoge-

nes and tumor suppressor genes. Reactive oxygen, nitrogen

species, and cytokines involved in inflammatory mucosa

might be associated with these genetic alterations as

pathogenesis of CA-CRC. Analysis of the correlation

between these molecular features and clinicopathologic

features in CA-CRC might be useful to develop new

biomarkers and drugs for patients with CA-CRC [9, 10]. In

this paper, we present an overview of the molecular char-

acteristics in CA-CRC, mainly in UC-CRC.

Clinical Features of Colitis-Associated CRC

An inflammatory environment is believed to play an im-

portant role for the pathogenesis of CRC in patients with

chronic colitis [2]. UC-CRC accounts for about 1 % of all

CRC [11]. The risk of CRC begins to increase 8 or 10 years

after the diagnosis of UC [12–14]. UC-CRC patients more

& Masakazu Yashiro

m9312510@med.osaka-cu.ac.jp

1 Department of Surgical Oncology, Oncology Institute of

Geriatrics and Medical Science, Osaka City University

Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku,

Osaka 545-8585, Japan

123

Dig Dis Sci (2015) 60:2251–2263

DOI 10.1007/s10620-015-3646-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s10620-015-3646-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10620-015-3646-4&amp;domain=pdf


frequently have multiple cancerous lesions and histo-

logically show permeating pattern of spread including

mucinous or signet ring cell carcinomas [15–17]. Risk

factors for CRC with UC patients include young age at

diagnosis [12, 18], longer duration [19], greater anatomic

extent of colonic involvement [20], the degree of inflam-

mation [21–23], family history of CRC [24, 25], and the

presence of primary sclerosing cholangitis [26]. Especially,

the extent of colitis is an independent risk factor for the

development of CRC. UC patients with pancolitis are at

highest risk, left-sided colitis carries a moderate risk, and

patients with proctitis and protosigmoiditis are at similar

risk of CRC without IBD [21–23]. In addition, smoking,

pseudopolyps, persisting inflammation of the colon, and

backwash ileitis are also risk factor for CRC [27, 28]. Also,

the relative risk of CRC in patients with CD was two- to

threefold, and that for small bowel carcinoma was ten- to

12-fold [29, 30], while some studies reported that few CD

patients developed cancer of the small intestine [31, 32].

Surveillance Colonoscopy

Surveillance colonoscopy is currently the most widely used

method to detect dysplasia and cancer in patients with IBD

[28, 33–37]. Current guidelines from the British Society of

Gastroenterology (BSG) [36, 38–41], European Crohn’s and

Colitis Organization (ECCO) [42], and the American Gas-

troenterology Association (AGA) [43] recommend colono-

scopic surveillance every 1–5 years at the beginning of

8–10 years after symptom onset for IBD-colitis patients. The

main aim of surveillance programs is to detect early dys-

plastic alterations because cancer surveillance is based on the

high-risk factors that identify patients who are likely to de-

velop cancer. The recommended guidelines of colonoscopy

are as follows [36, 39–41]: (a) Screening colonoscopy should

be performed when the disease is in remission. (b) Initial

surveillance colonoscopy should be performed in each pa-

tient beginning 8–10 years after symptom onset, partly to

reassess disease extent. (c) Regular surveillance should begin

on an annual or biannual basis beginning 8–10 years of

disease for patients with left-sided or extensive colitis after

symptom onset. (d) Two to four random biopsy specimens

should be taken every 10 cm from the entire colon, with

additional samples of suspicious areas. Particularly in UC,

consideration should be given to taking 4-quadrant biopsies

every 5 cm in the lower sigmoid and rectum, because the

frequency of CRC is higher in this region. (e) If dysplasia (of

any grade) is detected, the biopsies should be reviewed by a

second gastrointestinal pathologist, and if confirmed, then

colectomy is usually advisable. On the other hand, surveil-

lance of small bowel cancer is not recommended, because of

its low risk of small bowel cancer in CD [44].

Molecular Features

Genetic Alterations in Sporadic CRC

It is widely accepted that sporadic CRC result from the

sequential accumulation of alterations in genes that reg-

ulate the growth of colonic epithelial cells [45, 46]. The

multistep carcinogenesis concept resulted from correlative

analyses between the neoplastic lesions of the colon (ade-

nomas and carcinomas), and the genetic alterations found

in association with each of the steps in the progression [47,

48]. These alterations include activating point mutations of

K-ras [49, 50] and inactivation of specific tumor suppres-

sor genes (TSGs), most notably the adenomatous polyposis

coli (APC) gene on chromosome 5q21 [51], the p53 gene

on 17p13 [52], and one of several candidate TSGs on

chromosome 18q, most likely deleted in colon cancer

(DCC)or deleted in pancreatic cancer-4 (DPC4) gene [53].

Mutational activation of K-ras has been found in more than

50 % of adenomas and CRCs [50, 54]. A typical

mechanism for the inactivation of TSGs in colorectal

neoplasms is the sequential inactivating mutation on one

allele, followed by allelic loss, or loss of heterozygosity

(LOH), of the other allele [52, 54]. Inactivation of the DNA

mismatch repair (MMR) genes hMSH2 on chromosome 2p

or hMLH1 on 3p leads to the mutator phenotype, which

occurs in 10–15 % of CRCs [55, 56] by promoter

hypermethylation.

Genetic Alterations in Ulcerative Colitis-Associated

CRC and Dysplasia

Many of the molecular changes responsible for sporadic

CRC development also play a critical role in the carcino-

genesis of UC-CRC. There are similarities of the genetic

pathway between sporadic colon cancer and colitis-asso-

ciated CRC, including MSI, DNA methylation, and muta-

tion and eventual LOH of p53. However, distinguishing

features of UC-CRC are differences in the timing and

frequency of these alterations (Fig. 1). Chromosomal ab-

normalities are found in non-dysplastic, dysplastic, and

cancerous epithelia in the UC-CRC as follows.

K-ras

Most of the studies revealed a lower incidence of K-ras

mutation in UC-CRC compared with that in sporadic

CRC; K-ras mutation was detected in approximately

15 % of cases with inflamed mucosa (n = 100 [57];

n = 212 [58]; n = 18 [59]), and in 20–25 % of dysplasias

(n = 14 [57]; n = 61 [58]; n = 8 [59]; n = 13 [60]) and

of carcinomas (n = 4 [57]; n = 5 [58]; n = 9 [60]) in the
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IBD. The lower incidence of mutation indicated that

K-ras does not seem to play a significant role in the

development of UC-CRC. In contrast, mutational activa-

tion of K-ras has been reported to promote exophytic

growth of intestinal neoplasms and may favor develop-

ment of more differentiated intestinal type of intestinal

cancer [50, 61]. UC-CRC is often raised only minimally

above the level of the surrounding mucosa and grows in a

more diffuse fashion than sporadic CRC [62]. Therefore,

the infrequent mutational activation of K-ras might be

associated with the macroscopic flat morphology and the

histologic diffuse growth of UC-CRC.

Adenomatous Polyposis Coli (APC)

APC loss of function, considered to be an early event in

sporadic CRC, is relatively less frequent and usually occurs

as a late event in the colitis-associated dysplasia–carcino-

ma sequence [63–65]. Mutant APC proteins have been

detected in around 3–13 % of UC-associated dysplasia- or

carcinoma-bearing patients (n = 8 [63, 66]; n = 30 [63,

66]), while 26 % of sporadic cancers exhibited APC mu-

tation (n = 42 [63, 66]). Nearly 30 % of dysplastic lesions

and 50 % of cancers exhibited APC LOH (n = 21 [63, 66,

67]; n = 6 [68]). APC mutation may play a relatively

unimportant role in the development of UC-associated

dysplasia.

p53

The percentage of p53 mutation-containing samples is in-

creasing with the morphological progression to carcinoma.

Up to 6 % of normal cases (n = 14); 9 % in the category

‘‘indefinite for dysplasia,’’ 33 % with low-grade dysplasia

(n = 13 [60]; n = 22 [68]), 63 % with high-grade dys-

plasia (n = 12 [69]), and 50–85 % of cases with cancer

(n = 18 [70]; n = 10 [71]; n = 9 [60]) have been found to

have a deletion of p53. p53 LOH was also observed in

nearly 70 % of CRC (n = 8 [68]; n = 17 [67]) and 45 %

of dysplastic lesions (n = 33 [72]; n = 19 [68]). p53

analysis might contribute to the accurate pathological di-

agnosis of UC-associated dysplasia [72]. Thus, the early

appearance of p53 alteration might make it a clinically

useful marker in the screening for UC-associated dysplasia

and in the assessment of cancer risk. In contrast to the

reported gatekeeper properties of p53 in sporadic CRC,

which in colon adenoma is frequently altered to yield

carcinoma [54], p53 might not contribute as a gatekeeper

for cancer progression in UC-CRC.

Deleted in Colon Cancer (DCC) or Deleted in Pancreatic

Cancer-4 (DPC4)

LOH of 18q, the site of the putative deleted in colon cancer

(DCC), was observed in 12 % of eight cancers and 33 % of
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Fig. 1 Molecular alteration of colitis-associated colorectal cancer

and sporadic colorectal cancer. Genetic events of MSI, DNA

hypermethylation, and p53 are common in malignant degeneration

of both colitis-associated colorectal cancer and sporadic colorectal

cancer of the genetic pathway between sporadic colon cancer and

colitis-associated colorectal cancer. In contrast, frequency and

sequence of APC, K-ras, and DCC/DPC4 differ between the two

types. ROS reactive oxygen species, COX-2 cyclooxygenase-2, Rb

retinoblastoma gene, MSI microsatellite instability, TGF transforming

growth factor, APC adenomatous polyposis coli
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30 dysplasia lesions and was not detected in non-dysplas-

tic, inflamed epithelia [73]. Deleted in pancreatic cancer-4

(DPC4)/SMAD2 at 18q was not detected in 10 case of UC-

CRC [74]. LOH of 18q is relatively a rare event and may

not be important in UC-associated carcinogenesis.

Retinoblastoma Gene (Rb)

Wild-type retinoblastoma gene (Rb) suppresses neoplastic

phenotypes and is frequently mutated or lost in malignant

tumor [75, 76]. Rb LOH was found in about 50 % of UC-

associated carcinoma or dysplasia (n = 27 [67]).

Cyclin-Dependent Kinase Inhibitor p16 (p16INK4a)

The cyclin-dependent kinase inhibitor p16 is a component

of the Rb tumor suppressor pathway [77, 78]. LOH studies

of the p16 locus at 9p showed a high rate of p16 loss in

50 % of dysplasia (n = 14) [68], and hypermethylation of

the p16 promoter region is early occurring event during the

process of neoplastic progression in UC as described below

[79]. Alterations of p16 may be important early markers of

carcinogenic progression in UC patients.

Microsatellite Instability (MSI) and DNA Repair Genes

Inactivation of the DNA MMR system leads to widespread

somatic mutations at microsatellite loci. MSI tumors have

been found to display microsatellite alterations not only in

introns but also in coding exons. Genetic targets of this

type of genomic instability include the exons in trans-

forming growth factor b receptor type II (TGFbRII), in-

sulin-like growth factor II receptor (IGFIIR), BAX,

hMSH3, and hMSH6, all of which contain mononucleotide

repeats in coding sequences [80]. The frequency of MSI in

UC-associated neoplasia varies from 2.4 to 50 %, mostly

30 % [81–86]. Fujiwara et al. [81] analyzed the MSI status

in fifty-seven patients with UC and found that high-fre-

quent MSI was found in four of 11 cancer cases (36 %);

five of 15 dysplasia cases (33 %); five of 11 indefinite

cases (45 %); and none of 20 normal cases (0 %). The

relatively high frequency of MSI in non-dysplastic, in-

flamed epithelia, as compared with dysplasia, suggests that

MSI may be associated with the pathogenesis of IBD. A

frameshift mutation of TGFbRII was significantly corre-

lated with worsening histologic glade. High-frequent MSI

was significantly associated with hMLH1 hypermethylation

and loss of hMSH2 expression. The carcinogenesis process

in UC-CRC was closely associated with the MSI pathway

through TGFbRII mutation by a dysfunction of the MMR

system [81, 82, 87]. In colorectal epithelial cells, TGFb
signal is involved mainly in the suppression of cell pro-

liferation [88]. Microsatellite mutations of the IGFIIR gene

have also been detected in UC-associated neoplasms with

MSI [89]. Genetic or epigenetic alterations of mismatch

repair proteins, including MLH1 promoter hypermethyla-

tion and loss of MSH2 expression, may lead to high-fre-

quent MSI in UC-associated lesions [81, 90]. MiR-155

overexpression being particularly associated to MSI in CA-

CRC [91].

Aberrant Methylation

It is well recognized that hypermethylation of CpG islands

in the gene promoter regions is associated with silencing of

the genes in various tumors. The density of CpG methyla-

tion increased from morphologically normal epithelia to

dysplasia and carcinoma in UC [92]. The methylation of

CpG islands can contribute to genomic instability and ap-

pears to be exist in the mucosa of patients with IBD car-

cinogenesis [81, 92]. Hypermethylation may be due to the

elevated rate of cell turnover and oxidative stress charac-

teristic of long-standing UC [92]. Promoter hypermethyla-

tion and possible silencing of the p16INK4a gene occurred

in 70 % of UC-CRC and 40 % of dysplasia lesions in UC

colectomy specimens (n = 89) [79], whereas it was 12.7 %

of negative for dysplasia, which suggested that hyperme-

thylation of the p16INK4a promoter region is a frequent and

early occurring event during the process of neoplastic pro-

gression in UC. Methylation of p16 exon 1 was also found in

the regions of normal mucosa in UC patients with dysplasia

[92]. Hypermethylation of p14ARF, encoding a modulator

of p53 protein levels via MDM-2, was also detected in 19 of

38 (50 %) UC-CRC, four of 12 (33 %) dysplasia lesions,

and three of the 5 (60 %) non-cancerous, but only three of

40 (3.7 %) non-dysplastic lesions. Promoter hypermethyla-

tion leads to the loss of alternate reading frame product of

the CDKN2A locus (p14ARF) [93]. Methylation of p14ARF

is a relatively common early event in UC-associated car-

cinogenesis [94]. Hypermethylation is a frequent mechanism

of MLH1 silencing in the subset of UC-associated dysplasias

and carcinomas with high-level MSI as described above. E-

cadherin promoter methylation was detected in about half of

UC-CRC, while there was no difference between the UC-

CRC and sporadic CRC [95]. Methylation of these genes

offers potential as a biomarker for the early detection of

cancer or dysplasia in UC. On the other hand, Issa et al.

reported that DNA methylation alterations are uncommon in

UC-CRC [96]. It will be necessary to clarify the significance

of aberrant methylation in the pathogenesis of UC-CRC.

Crohn’s Disease-Associated CRC

Mutations in CARD15/NOD2 gene that activate nuclear

factor NF-kB might be associated with the pathogenic

mechanism of Crohn’s disease [97, 98]. Associations have
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also been found between Crohn’s disease and SNP in the

Toll-like receptor 4 [99] or interleukin 23 receptor (IL-

23R) [100]. In contrast, few studies in the pathogenesis of

Crohn’s disease-associated CRC are available [101]. K-ras

and p53 alterations occur early during inflammatory tumor

development, while APC, DCC, and TGFbRII mutations

are rare in CD-associated CRC [31, 102].

Dysplasia in UC

Dysplasia arising on the grounds of UC may precede the

development of carcinoma [62]. Classification of polypoid

mucosa of UC is important with respect to clinical treatment

for dysplasia. The dysplasia found in IBD is categorized as

follows: low-grade dysplasia (LGD), high-grade dysplasia

(HGD), dysplasia-associated lesion or mass (DALM), ade-

noma-like mass (ALM), and adenoma-like DALM. UC with

HGD usually leads to a total colectomy because of the high

incidence of adenocarcinoma [41, 103, 104]. When HGD in

flat mucosa was the initial discovery, surgery or polypec-

tomy is done [41]. In contrast, the management of LGD is

controversial [105]. There is evidence that an unrecognized

synchronous CRC may already be present in up to 20 % of

individuals who undergo colectomy for LGD [8, 103]. In

contrast, some studies have shown that patients with LGD

have a lower rate of CRC than previously thought [106].

Dysplasia found in DALM is believed to be the origin CRC

[107, 108]. DALM has been reported to be associated with

CRC in up to 46 % of CD specimens and 62.1 % of UC

specimens, supporting the requirement for surgical resection

[109, 110]. In contrast, ALM, a lesion found in an area

without inflammation, is tend to be treated by standard

polypectomy. A strong correlation between p53 mutations

and the histologic progression from LGD to invasive car-

cinoma in patients with IBD has been shown [111]. DALM

or areas without any macroscopically visible mucosal al-

teration are considered to be the origin CRC [107, 108].

Mutations of p53 occur more frequently in DALM. Rb LOH

was detected in 25 % of UC patients with DALM, or dys-

plasia [67]. The guidelines for surveillance colonoscopy also

state that particular attention should be paid to DALM [37],

because the occurrence of DALM is frequently associated

with synchronic or metachronic CRC. Therefore, patients

with DALM are recommended to undergo prophylactic

proctocolectomy with ileoanal pouch. Recently, raised dys-

plastic lesions or DALMs with the appearance of sporadic

adenomas have been termed adenoma-like DALM. UC-

associated non-adenoma-like DALMs have a different

molecular genotype than UC-related adenoma-like DALMs

and non-CRC sporadic adenomas [112]. Serrated adenomas

are polypoid lesions present in the colon that are charac-

terized by saw-toothed or serrated crypts with dysplasia, and

the serrated neoplasia pathway was recently proposed in

CRC [61]. Bossard et al. [113] found that serrated lesions,

such as hyperplastic polyps and sessile serrated polyps/

adenomas, accounted for approximately 7 % of premalig-

nant lesions in the inflamed mucosa in patients with IBD.

The serrated lesions contained BRAF mutations. It has been

reported that LOH of APC, chromosome 3 (chromosome

3p), p53 locus, and K-ras mutations were present in 0 % (0/

11), 20 % (2/10), 0 % (0/11), and 37 % (4/11) of sporadic

hyperplastic polyps [61]. In contrast, Odze et al. [114] re-

ported that LOH of APC, chromosome 3p, p53, and K-ras

mutations were present in 21, 40, 27, and 19 % of UC-associ-

ated hyperplastic polyps. UC-associated hyperplastic polyps

aremore likely to have anLOHevent on atAPC and p53 locus,

compared with sporadic hyperplastic polyps. Hyperplastic

polyps are generally regarded as non-neoplastic lesions; how-

ever, UC-associated hyperplastic may evolve through a dif-

ferent genetic pathway than sporadic hyperplastic polyps.

The Interactions Between Environmental
Component and Molecular Alterations
in the Inflammatory Bowel Disease

IBD and cancer are complex disease processes driven by

multiple interacting genes in concert with environmental

influences [115]. A gene–environment interaction might

contribute to the progressive process of cancer with genetic

and epigenetic dysfunction in multiple systems including

DNA repair and immune functions [116]. The etiopathol-

ogy of IBD might be also associated with the gene 9 en-

vironment interactions [117–119]. Some of environmental

factors, including inflammation, lifestyle, psychological

stress, and prior appendectomy, have been suggested to be

associated with IBD [120, 121]. Mucosal inflammatory

mediators such as oxidative stress, nitric oxide, cytokines,

receptors on the epithelial cells, COX-2, and luminal mi-

crobiota might be mainly responsible for the molecular

alterations in the development of CA-CRC.

Inflammation

Oxidative Stress

One of major mechanisms, which link inflammation to pro-

neoplastic genetic alterations, is oxidative stress [122–

124]. IBD has been considered to be an ‘‘oxyradical

overload’’ disease, in which chronic inflammation in-

creases the risk of cancer [125]. Oxidative stress is mainly

produced by inflammatory immune cells such as macro-

phages and granulocytes and includes the generation of

various reactive oxygen and nitrogen species such as re-

active oxygen species (ROS) and nitric oxide synthase

(NOS) that pose a constant mutational challenge for the
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intestinal epithelium [126]. This results in DNA breaks,

DNA adducts, and damage to cellular lipids and proteins

[126]. Oxidative stress secondary to chronic inflammation

also plays a pivotal role in IBD-associated colorectal car-

cinogenesis [124, 125, 127]. ROS, reactive nitrogen free

radicals, releases a cascade of inflammatory mediators such

as inflammatory cytokines including interleukin (IL)-1, IL-

6, tumor necrosis factor-a (TNFa), and interferon-c (IFN-

c) [8, 128, 129]. These cytokines bind DNA, RNA, pro-

teins, or lipid [130], supposed to cause gene alterations,

genetic instability, and aberrant methylation. Telomere

damage [131, 132] in UC has been linked with the devel-

opment of dysplasia [133, 134]. Lipid peroxidation occurs

when ROS and NOS interact with cell membranes, causing

DNA adducts leading to transition mutations [135] and

frequently involving the p53 TSG [136]. In addition, these

free radicals inhibit DNA repair proteins and are believed

to be initiators of MSI [137]. The oxidative stress also

increases the mutation of mitochondrial DNA and possibly

correlates with the pathogenesis of UC-CRC [138]. The

therapeutic effects of 5-aminosalicylic acid (5-ASA) have

been attributed to antioxidant, iron-chelating, and radical

scavenging effects [28, 139–144].

Nitric Oxide (NO)

Serum nitrite levels, a measure of NOS activity, are increased

in active UC and CD patients and correlate with their disease

activity [145–147]. NOS is induced in the inflamed human

colonic epithelium and is associated with the formation of

peroxynitrite and the nitration of cellular proteins [148]. High

activity of the inducible NOS contributes to early onset IBD,

which may contribute to colon carcinogenesis [149]. It has

been suggested that ursodesoxycholic acid acts antioxidative

and thereby reduces mutational stress by NOS [150, 151],

and NO level suggested to be a useful biomarker of treatment

response in IBD [152].

Cytokines

The chronic inflammatory changes in IBD are associated

with increased levels of inflammatory cytokines from im-

mune cells. It is now becoming clear that cytokines and

growth factors released during inflammation may influence

the carcinogenesis process [153]. IL-6 and IL-23, which play

significant roles in the induction and maintenance of gut

inflammation in IBD, have been recently shown to influence

the development and growth of CA-CRC [153–157]. Also,

cytokines activate receptors on intestinal epithelial cells that

activate oncogenic transcription factors such as nuclear

factor-kappaB (NF-jB) and Stat3 in the development of

UC-CRC [156, 158]. TNFa increased gene mutations, gene

amplification, micronuclei formation, and chromosomal

instability [159], and a close relationship between the

polymorphism of TNFa-308 G[A and the gene instability in

UC-CRC [160]. NF-jB regulates the expression of various

cytokines, modulates the inflammatory processes in IBD

[161], and controls apoptosis, cell cycle progression and

proliferation, and cell differentiation [162, 163]. NFjB is

activated not only in sites of inflammation, but also in many

solid tumors [164]. 5-ASA, the NFjB pathway inhibitor, is

the first line agent for anti-inflammatory therapy [142, 144].

Toll-like receptors (TLR) play an important role in the in-

teraction between the intestinal microflora and the mucosal

immune defense via NFjB activation [165]. The potential

association between TLR4 and chitinase 3-like 1 signaling

has been reported, which seems to contribute to the prolif-

eration, migration, and neoplastic progression of colonic

epithelial cells under inflammatory conditions [166, 167].

Cyclooxygenase-2 (COX-2)

COX-2 is only induced by inflammation. COX-2 is trig-

gered by inflammatory stimuli such as IL-1, IFN-c, and
TNFa and develops neoplastic changes [168–170]. Over-

expression of COX-2 in epithelial, mesenchymal, and in-

flammatory cells results in the production of prostaglandins

(PGs). PGE2 induced by COX-2 transactivates PPARd
through b-catenin and P13K/Akt signaling, which pro-

motes cell survival and tumor growth [171]. PPARd acts as

a focal point of crosstalk between the PGs and Wnt/b-
catenin pathways, which results in a shift from cell death to

cell survival and consequently increased tumor growth

[171]. Wnt/b-catenin signalings with downstream events

including c-Myc and Cyclin-D1 represent the connection

between IBD and increased risk of developing CRC [172].

Selective COX-2 inhibitor and PGE2 receptor inhibitor

exert the cancer chemopreventive effects through the sup-

pression of cell proliferation [173, 174].

Luminal Microbiota

Many studies have found a link between alterations in the

commensal bacteria of the gut, termed the microbiota, and

the pathogeneses of IBD [120, 175, 176]. Diet, such as

Western diet and vegetarianism, and genetic factors might

influence the changes in the microbiota composition [177].

The intestinal microbiota makes a significant contribution

to the development of not only colitis, but also neoplasia by

production of toxic and genotoxic bacterial [125]. Mice

colonized with enterotoxigenic B. Fragilis exhibit colonic

Th17 inflammatory infiltrates that are involved in induction

of colon tumors by activating Stat3 [178]. Dysbiosis of gut

microflora may also cause alterations in the immune re-

sponse and increase risk of cancer [179, 180]. Ghadimi

et al. [181] described that the commensal bacteria inhibited
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the production of the IBD-causing cytokines, IL-17 and IL-

23, thereby reducing histone acetylation and enhanced

DNA methylation, suggesting that an imbalanced intestinal

microbiota might be associated with the increased risk of

CRC development in IBD. The microbiota might regulate

the expression of heat shock protein (Hsp) that is associ-

ated with the immune system by folding, refolding,

translocation, and degradation of intracellular proteins

under normal and stress conditions. Studies conducted on

patients affected by IBD showed a decrease in Hsp60,

Hsp10, and Hsp70 in epithelium and lamina propria after a

combined therapy of 5ASA [182].

Lifestyle Factors

The epigenetic changes are influenced by lifestyle factors,

such as diet, smoking, and physical inactivity [183]. These

factors might drive changes in gene expression and increase

cancer risk. Poullis et al. [184] found a significant positive

relationship between risk factors for CRC and increasing age,

obesity, and physical inactivity, and an inverse relationship

with fiber intake and vegetable consumption. Huxley et al.

reported that the risk of CRC based on 103 cohort studies was

significantly associated with alcohol, smoking, diabetes,

obesity and high meat intakes, and physical activity.

Dietary

Amre et al. [185] hypothesized that interactions between

dietary substrates (fats, vegetables, and fruits) and DNA

variants in the xenobiotic metabolizing enzymes would

modify risk of IBD. Slattery et al. suggest that diet may be

involved in disease pathways represented by p53 loss

[186], Ki-ras mutations [187], and MSI [188]. Some studies

suggest that vitamin D is associated with IBD [189, 190].

Vegetable consumption has long been hypothesized to be

protective against CRC. Hutter et al. [191] reported that

vegetable consumption is closely associated with CRC by a

gene–environment interaction across studies. A meta-ana-

lysis reported that vegetable consumption of fruit and

vegetable intake showed a significant inverse association

with CRC risk [192]. Chen et al. reported that high intake

of red and processed meat is associated with significant

increased risk of CRC [193]. In contrast, several studies

have failed to find a relationship [194, 195]. The ability of

fruits and vegetables confers clearly that the ROS might be

responsible for the mechanism [196]. Slattery et al. [197]

suggest that alcohol contributes to rectal cancer risk.

Smoking

Smoking habit is an important environmental factor in UC

[176, 198, 199]. Wang et al. examined the predictive value of

combining the133UCrisk lociwith genetic interactions using

genome-wide association studies and identified interactions

between genes (HLA-DQA1, CALM3, TRIB1, and IL-2/IL-

21) and smoking in the discovery cohort [119],while the exact

mechanisms bywhich smoking influences the development of

IBD are unknown. Slattery et al. suggest that smoking statis-

tically significantly contributes to MSI in colon tumors [200]

and that significant interactions were observed between

MLH1 polymorphisms and smoking [201].

Psychological Stress

Psychosocial stress increases the likelihood of developing

IBD and multiple types of malignant neoplasms [202]. Peters

et al. suggested that chronic psychosocial stress increases the

risk of inflammation-related CRC using azoxymethane/dex-

tran sodium sulfate CRC mouse model, and colonic liver

receptor homolog-1, COX-2, tumor necrosis factor, forkhead

box P3 mRNA as well as colonic ß-catenin were also in-

creased in CSC [203]. Acute psychologic stress induces

systemic and mucosal proinflammatory responses, which

could contribute to exacerbations of UC [204]. The effects of

stress on inflammation in IBD are likely to be mediated

through changes in hypothalamic–pituitary–adrenal function,

alterations in bacterial-mucosal floral interactions, activation

of mucosal mast cells, and peripheral release of corti-

cotrophin releasing factor [202]. Soderholm et al. [205] re-

ported that chronic psychological stress can be an initiating

factor in intestinal inflammation by impairing mucosal de-

fenses against luminal bacteria and highlight the importance

of mast cells in this process. In contrast, Timmer et al. [206]

reported that there was no evidence for efficacy of psycho-

logical therapy in adult patients with IBD in general.

Appendectomy

Prior appendectomy for appendicitis has been linked to a

lower risk of UC [207], particularly among children expe-

riencing appendicitis before 20 years of age [208, 209],

while the effect of appendectomy on UC disease course

remains inconclusive [210]. The appendix may act as a

reservoir of enteric bacteria and may be involved in antigen

sampling that regulates the immunologic response to host

microflora [209]. Andersson et al. [211] suggest that ap-

pendicitis is mediated by T-helper 1 cells, which may ex-

plain the inverse associations between appendicitis and UC.

Future Perspectives

To clarify the pathogenesis of CRC in IBD, the resolution

of complex gene–environmental interactions might be

important.
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New Biomarkers

Biomarkers for early detection of CRC in IBD are desired.

Analysis of the correlation between these genetic features

and clinicopathologic features might be useful to determine

new biomarkers that can help in the early detection and

predictive values of CRC in patients with IBD. The com-

bination of the endoscopic and molecular screening ap-

proaches may be useful tools for the surveillance of

patients with IBD.

Chemoprevention

The inflammatory stresses, such as ROS and some free

radicals, have been considered to cause genetic damages to

UC epithelium. The control of long-term inflammation and

mucosal damage over time might be a potentially important

strategy for reducing CRC risk in UC patients. Development

of a new anti-inflammatory reagent might be useful to pre-

vent and treat UC-CRC. Further clinical studies would be

needed to develop useful drugs and validate potential mod-

alities for the prevention of UC-associated carcinogenesis.

Crohn’s Disease

Genetic alteration of CRC with CD remains unclear in

comparison with that of UC. Further studies are needed to

evaluate similarities and differences in genetic alterations

of UC-CRC and CD-associated neoplasia.
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