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Abstract

Background The effectiveness of endoscopic ultrasound-

guided fine-needle aspiration increases with the number of

needle passes but needle passes are also associated with

increased risk of adverse events. The trade-off between

needle passes and adequacy has not been well-characterized.

Aims The purpose of this study was to compare the risk–

benefit tradeoff of different sampling protocols with and

without rapid onsite evaluation (ROSE).

Patients and Methods We used a discrete-event simula-

tion model to compare eight different sampling protocols.

Each sampling protocol was simulated 10,000 times to

obtain the average performance for each scenario. The

per-pass adequacy rates, ROSE, accuracy of the assessor and

sampling limits were varied to determine the impact of these

factors on the number of needle passes and adequacy rates.

Results Increasing per-class adequacy can be achieved at

a cost of increased needle passes. Sampling with ROSE

achieved higher adequacy with fewer needle passes than

policies using a fixed number of needle passes without

ROSE.

Conclusions Variable sampling policies using ROSE

generally achieve greater per-case adequacy with fewer

needle passes than non-ROSE sampling policies using a

fixed number of passes.

Keywords EUS � FNA � Pancreas � ROSE

Introduction

Endoscopic ultrasound-guided fine-needle aspiration

(EUS–FNA) is a widely performed procedure to acquire

tissue from extraluminal organs and structures such as solid

and cystic lesions of the pancreas, mediastinal and intra-

abdominal lymph nodes, and other lesions. EUS–FNA is a

complex multi-step process that can be performed using a

variety of sampling methods [1].

Two EUS–FNA approaches are commonly utilized. In

the first (fixed) method, endoscopists perform a fixed

number of needle passes after which samples are formally

evaluated. In the second (variable) method, endoscopists

perform a variable number of needle passes in a setting

where samples are evaluated after each needle pass by an

onsite cytologist to ensure diagnostic adequacy.

In either approach, additional needle passes increase

both the probability of obtaining an adequate sample and

the probability of adverse events. The variable approach,
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known as rapid onsite evaluation (ROSE), can increase

sample adequacy [2]. ROSE can also reduce the number of

needle passes and, potentially, reduce the risk of an adverse

event [3, 4]. On the other hand, ROSE is associated with

increased costs as it requires an onsite cytologist. Fur-

thermore, although ROSE is becoming increasingly popu-

lar, cytologists are still not available at all locations where

EUS–FNA is performed. Recent studies have shown that

the benefits of ROSE are context dependent [2, 5]. ROSE is

unlikely to be beneficial when the per-pass adequacy rate is

high because there is little opportunity for improvement.

As such, there is a need to further characterize the situa-

tions in which ROSE can benefit diagnosis.

Though EUS–FNA is commonly used, no gold standard

approach exists. Institutional practices vary widely both

between institutions and within single institutions. Pub-

lished studies lack uniformity and have predominately

focused on different needle sizes or technical issues of the

specifics of needle passes rather than a fixed versus variable

pass needle policy [6–12]. Although the tradeoff between

the risk of adverse events and successful EUS–FNA can be

modified by the use of ROSE, the relationship between the

per-case adequacy rate and the number of needle passes has

not been demonstrated in clinical studies.

Additionally, very few controlled studies of ROSE have

been performed, and comparisons between institutions are

complicated by factors such as sampling methodology

(needle size, protocol variation) and case mix. Therefore, it

is unlikely that a single study could obtain enough cases to

fully reveal these relationships, and the number of clinical

studies required to evaluate the comparative effectiveness

of ROSE on EUS–FNA would be difficult to obtain.

Endoscopic ultrasound-guided fine-needle aspiration

sampling can be viewed as a process with two outcomes:

success or failure. Each needle pass is associated with a

certain probability of success, and the overall success of a

case depends on obtaining at least one successful needle

pass among multiple trials.

Mathematical modeling is useful in understanding the

probability of success in sampling processes. Modeling has

several advantages; it is not subject to the site-to-site var-

iation that commonly complicates clinical studies, it can

reveal relationships that could not otherwise be examined,

and it provides the opportunity to explore complex pro-

cesses that cannot be expressed in simple mathematical

equations. We have previously developed mathematical

solutions for fixed sampling and for variable sampling with

an unlimited number of trials [13]. In real life, a limit is

often placed on the number of needle passes that can be

performed (due to time, manpower issues, etc.), and a

closed-form solution does not exist for this case.

The objective of this study was to compare the risk and

benefits of ROSE sampling policies relative to non-ROSE

sampling in the specific context of EUS–FNA for solid

pancreatic lesions. To that end, we used simulation mod-

eling to evaluate both fixed and variable (ROSE) sampling

policies (with and without a sampling limit) to assess the

risk–benefit tradeoff between needle passes and sample

adequacy for solid pancreatic lesions.

Methods

Model Overview

The model compared two categories of sampling policies

which we designated as fixed and variable. For a fixed

policy, samples are not evaluated for adequacy and sam-

pling is stopped when the predetermined number of

required samples is reached. In a variable policy using

ROSE, each sample is evaluated for adequacy by a

pathologist or cytotechnologist and sampling is stopped

after the required number of adequate samples is observed

or after reaching the maximum number of passes.

Adequacy can be defined on a per-pass or per-case basis.

In our model, the per-pass adequacy rate is an input. In a

fixed sampling policy, the per-case sample adequacy, aa, is

determined by the per-pass adequacy rate, p. In a variable

sampling policy (ROSE), there are two potential outcomes

associated with each sample: the actual adequacy, aa and

the observed adequacy, ao. The actual per-case adequacy is

the outcome of interest in this study. The assessor evaluates

the sample for adequacy, but may fail to correctly cate-

gorize the sample. For example, the assessor may catego-

rize an inadequate sample as adequate or vice versa. Given

an adequate sample, the probability of actually observing

an adequate sample is determined by the accuracy of the

ROSE assessor. The accuracy of the assessor is expressed

in terms of the sensitivity, Sn, and specificity, Sp.

Sn ¼ PðaojaaÞ ð1Þ
Sp ¼ PðaojaaÞ ð2Þ

An illustration of the ROSE component of the

simulation with model probabilities p, Sn and Sp is

shown in Fig. 1. As indicated, with each needle pass

there is probability (p) that the obtained sample will be

adequate (aa); alternatively there is probability (1 - p) that

the sample is not adequate (aa). After each sample is

collected, it is evaluated by an onsite assessor and observed

as either adequate (ao) or not adequate (ao). The

probabilities of an accurate assessment are represented by

Sn and Sp while inaccurate assessments by 1-Sn and 1-

Sp. The process is then repeated until the number of

required samples is observed or the maximum number of

needle passes is reached.
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Model Parameters

Model parameters are provided in Table 1. The per-pass

adequacy rate was estimated to be 60 % using a binomial

sampling model provided in Eq. 3, where PðSÞ is the

probability of success (the per-case adequacy rate), p is the

per-pass adequacy rate, and n is the number of needle

passes [4].

P Sð Þ ¼ 1� ð1� pÞn ð3Þ
Based upon a survey of EUS–FNA studies, P(S) and n

were set to 93 % and 3, respectively [2]. Solving for

p produced a per-pass adequacy rate of approximately

60 %. Based upon reported ranges of P(S) and n a plausible

range of 20–80 % was defined in which the parameter was

allowed to vary during the simulation. Based upon assessor

accuracy data in the literature, the baseline estimate for

assessor sensitivity and specificity was to set 95 % [14].

Analysis

The simulated sampling performance (the per-case ade-

quacy rate) is determined by the values of three input

parameters: the average per-pass adequacy rate, the aver-

age assessor sensitivity, and the average assessor specific-

ity. However, the true values of the input parameters may

vary by case and institution. Thus, the relative performance

of two sampling policies may be sensitive to variation in

these parameters. We used sensitivity analysis to examine

how parameter variation influenced model results. This

analysis involved variation of one model parameter while

holding all others constant at their baseline estimates. All

simulations were conducted using the TreeAge Pro 2012

software (Williamstown, MA).

Results

The sampling policies are described here using a two-

character code consisting of a letter followed by a number

(e.g., F1). The first character indicates the type of policy; a

fixed policy is indicated by ‘‘F’’ and a variable policy by

‘‘V.’’ The second character indicates the required number

of samples. For a fixed policy, the number indicates the

number of needle passes. For a variable policy, the number

indicates the required number of samples that are required

to be observed as adequate before sampling is stopped. For

example, ‘‘F3’’ indicates a fixed policy that stops after

three needle passes. ‘‘V1’’ indicates a variable policy

(ROSE) that stops after the assessor observes one adequate

sample. Therefore the eight sampling policies compared in

the simulation can be summarized as F2, F3, F4, F5, F6,

V1, V2 and V3. In most cases, variable policies would stop

after observing the first adequate sample. There are rare

circumstances in which one might consider policies V2 or

V3 (e.g., low per-pass adequacy rate and inexperienced

assessor). We included policies V2 and V3 for reference.

Baseline results are provided in Fig. 2. A fixed sampling

policy with two, three, four, five, and six needle passes

would have per-case adequacy rates of 84.2 % (F2),

93.9 % (F3), 97.4 % (F4), 99.0 % (F5), and 99.6 % (F6).

ROSE sampling policies of V1, V2, and V3 have average

per-pass adequacy rates of 83, 97.2, and 99.42 % with an

average of 1.8, 3.8, and 5.5 needle passes, respectively.

Here variable sampling policies are said to strictly domi-

nate fixed polices since variable policies achieve higher

per-case adequacy rates with fewer needle passes.

Fig. 1 Simplified decision tree of ROSE component of micro-

simulation
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Fig. 2 Risk–benefit analysis fixed sampling versus variable sampling

(ROSE). The figure indicates the average adequacy rate and average

number of needle passes for different sampling policies. Each

sampling policy is designated by a letter (F or V) indicating fixed

or variable and a number. For fixed sampling policies, the number

indicates the required number of needle passes. For variable sampling

policies, the number indicates the required number of observed

adequate samples. Each point represents the average outcome

associated with a particular sampling policy

Table 1 Model parameters

Model parameter Baseline

estimate

Sensitivity

range

Maximum number of needle

passes for ROSE

10 n/a

Per-pass adequacy 60 % 20–80 %

Assessor accuracy 95 % 90–100 %
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One-Way Sensitivity Analysis

The base case analysis (Fig. 2) assumed a per-pass ade-

quacy rate of 60 %. As described in the methods, this value

was derived from the average per-case adequacy rate

(93 %) obtained in a recent meta-analysis [2]. The per-pass

adequacy rate is likely to vary between institutions. The

impact of the per-pass adequacy rate on the per-case ade-

quacy is shown in Fig. 3. The figure shows that the per-

case adequacy rate increases as the per-pass adequacy rate

increases. At low per-pass adequacy rates (p = 20 %), F2

and F3 are no longer strictly dominated by variable poli-

cies. Although F2 and F3 have lower per-case adequacy

rates than variable policies, these rates are achieved with

fewer needle passes when the per-pass adequacy rate is

low. At a per-pass adequacy rate of 40 % all fixed sampling

policies except F2 are dominated by variable policies.

When the per-pass adequacy rate is high (p = 80 %), V3 is

dominated by V2 since the average per-case adequacy rate

for both is 100 %; however, V2 averages 2.6 needle passes

while V3 averages 3.9 needle passes.

The impact of assessor accuracy is demonstrated in

Fig. 4. The per-case adequacy rate of policy V1 was quite

sensitive to assessor accuracy when accuracy varied

between 85 and 100 % but dominated all fixed sampling

over this range of accuracy. Policies V2 and V3 were rel-

atively insensitive to assessor accuracy.

The effect of the maximum limit of the number of

needle passes (noted as M) is presented in Fig. 5. The

average number of needle passes and per-case adequacy

rates increase when M increases in variable policies. Var-

iable policies dominate fixed policies at all levels of M;

however, the advantage of ROSE is small when the
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Fig. 3 The effect of the per-pass adequacy rate on the efficient

frontier. The figure demonstrates the impact of the per-pass

adequacy rate. The per-pass adequacy rate varied between 20 and

80 % as shown in the legend. Variable sample policies (using

ROSE) are indicated by V followed by the number of observed

adequate samples required to stop sampling (e.g., V1). Fixed

sampling policies are indicated by F followed by the number of

needle passes (e.g., F3)
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Fig. 4 The effect of assessor accuracy on outcomes. The figure

shows the influence of assessor accuracy. Accuracy (sensitivity and

specificity) varied from 85 to 100 %. Variable sample policies (using

ROSE) are indicated by V followed by the number of observed

adequate samples required to stop sampling (e.g., V1). Fixed

sampling policies are indicated by F followed by the number of

needle passes (e.g., F3)
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maximum number of needle passes is limited to two. V1

clearly dominates F2 when M increases to four. The sam-

pling limit has little impact above six needle passes.

Discussion

Our results demonstrate variable sampling policies (ROSE)

achieve higher per-case accuracy rates with fewer needle

passes than non-ROSE sampling. As demonstrated by

Fig. 2, a fixed policy of four needle passes (F4) would be

needed to achieve approximately the same level of per-case

accuracy (97 %) as policy V1 which averaged 2.2 fewer

needle passes. More than six fixed needle passes would be

required to achieve the per-case adequacy of V2. Our

results contribute to the existing literature by quantifying

the tradeoff between per-case adequacy and needle passes.

The relative advantage of ROSE depends on the context.

As shown in Fig. 2, the relative advantage of ROSE

decreases when the per-pass adequacy rate is high. The

effect of the per-pass adequacy rate on the relative

advantage of ROSE has also been observed in two recent

meta-analyses [2, 5]. Thus, ROSE may only be cost-

effective in situations where the per-pass adequacy rate is

low. This might occur in situations with an inexperienced

endoscopist, particular types of lesions that are difficult to

sample, or at low volume centers. ROSE may confer

additional benefits such as expediting patient care, reducing

endosonographer workload, and reducing costs associated

with repeat procedures (Table 2). ROSE has also been

shown to increase accuracy of EUS–FNA for pancreatic

adenocarcinoma [15].

Sampling limits would be expected to reduce the

advantage of ROSE; however, our results show that sam-

pling limits have relatively low impact on ROSE perfor-

mance if the limit, M, is greater than or equal to four. The

impact of limits on needle passes has not been previously

reported.

In general, the optimal policy will depend on the per-

case adequacy rate. A decision-maker would use an insti-

tution-specific estimate of the per-pass adequacy rate as an

input to the model to predict sampling policy performance

and to select the best sampling policy at a particular

institution. Bayesian methods (see Appendix) can be used to

update the estimates of the per-pass sample rate [13].
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Fig. 5 The effect of a sampling limit on outcomes. The figure shows

the results at different sampling limits (M). The limit varied between

two and eight as shown in the legend. Variable sample policies (using

ROSE) are indicated by V followed by the number of observed

adequate samples required to stop sampling (e.g., V1). Fixed

sampling policies are indicated by F followed by the number of

needle passes (e.g., F3)

Table 2 Settings where ROSE is likely to have the greatest impact

Settings and descriptions

Settings with low per-pass adequacy

Poor endoscoper skill (e.g. low volume center, trainee)

Lesion characteristics

Settings with a need to limit needle passes

Due to patient morbidity

Due to cost considerations

Settings with high assessor accuracy
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Alternatively, one might correlate the per-pass adequacy rate

with lesion characteristics to determine the best sampling

policy for specific lesions. For example, the per-pass prob-

ability of success may depend on the lesion size [16, 17] and

ROSE may be employed only for certain kinds of lesions.

Limitations and Strengths

Studies do not report per-pass adequacy rates and rarely

adhere to a fixed sampling protocol over a set of cases.

Thus, we based our model on the average performance

obtained in a meta-analysis of sampling without ROSE [2].

Our model assumes a constant per-pass probability of

success, p. We believe that this is a reasonable model;

however, it is possible that the average per-pass probability

changes with the number of needle passes. For example,

each needle pass could damage the tissue, promote bleed-

ing, and thereby decrease the probability of success on

subsequent passes. We are not aware of any evidence

showing that p varies with the number of needle passes

and, lacking such evidence, we chose the simplest model.

The impact of a pass-dependent success rate could be

investigated in future work. This study is also limited

because it only captures the tradeoff between effectiveness

and needle passes. A more complete study would include

the monetary costs associated with failed sampling (cost of

open biopsy, resampling, or surgery), adverse events, and

service provision (e.g., variable cost per needle pass, fixed

cost of FNA session) in a cost-effectiveness analysis.

Despite the mentioned limitations, the study has several

strengths. By using simulation, we were able to eliminate

unwanted sources of variation (patient-to-patient variation,

site-to-site variation). This enabled us to demonstrate the

tradeoff-curve between per-case FNA effectiveness and

needle passes for a range of different sampling policies. It

is unlikely that a clinical study would be able to obtain

enough cases or control variation sufficiently to reveal

these relationships. Also, our study expresses the outcomes

in terms of variables (per-case adequacy, needle passes)

that are familiar to clinicians.

The validity of our model is supported by several

qualitative and quantitative results. FNA sampling is

known to yield diminishing returns with increasing needle

passes. Our binomial sampling model predicts diminishing

returns and shows a close fit to empirical data on the

relationship between needle passes and adequacy for EUS–

FNA in solid pancreatic lesions [18, 19]. The findings show

that variable sampling (V1) will generally require fewer

needle passes than fixed sampling as demonstrated in two

previous studies [3, 20]. The model predicts that the rela-

tive advantage of ROSE increases as the per-pass adequacy

rate decreases, as has been shown in pancreas [2] and a

variety of other tissues [5, 21]. The model also predicts that

per-case adequacy will increase as a function of assessor

accuracy as shown by Petrone et al. [14].

Conclusion

Our study demonstrates that modeling is a powerful

approach for investigating questions related to EUS–FNA

sampling. It also demonstrates that variable sampling pol-

icies with ROSE achieve higher adequacy rates with fewer

needle passes than sampling without ROSE. The relative

advantage of ROSE decreases when the per-pass adequacy

rate is high or when a strict limit is placed on the number of

needle passes.

Conflict of interest None.

Appendix: Bayesian Estimation of the Per-Pass

Adequacy Rate

The per-pass adequacy rate is an important input to our

model. We assume that the per-pass adequacy, p, is con-

stant; however, the per-pass probability of success depends

on many factors that vary from case to case (e.g., size of

tumor, experience of the aspirator, etc.). The sampling

experience in a single case can be used to revise the esti-

mated per-pass probability [13].

The imprecision of the initial estimate of p, can be

represented by providing a probability distribution for p. It

turns out that the beta distribution

g pja; bð Þ ¼ Cðaþ bÞ
CðaÞCðbÞ p

a�1ð1� pÞb�1 ð4Þ

is a flexible prior distribution for p and is the conjugate

prior distribution of the binomial distribution. The average

of the beta distribution is given by:

p ¼ a

aþ b
ð5Þ

Given y successes out of n needle passes, the revised

distribution for p (i.e., the posterior probability

distribution) is given by:

g pja;b;y;nð Þ ¼ Cðnþ aþ bÞ
Cðyþ aÞCðn� yþ bÞp

yþa�1ð1� pÞn�yþb�1

ð6Þ

and the revised estimate for p, p0, is given by:

p0 ¼ yþ a� 1

yþ a� 1þ n� yþ b� 1
¼ yþ a� 1

nþ aþ b� 2
ð7Þ

Thus, with every needle pass, the estimate is revised to

become more case-specific. This information could be

Dig Dis Sci (2013) 58:3280–3286 3285
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used, for example, to estimate the number of additional

passes that would be required to obtain an adequate

sample.
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