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Abstract The onset of severe acute pancreatitis (SAP) is

clinically harmful as it may rapidly progress from a local

pancreatic inflammation into proemial systemic inflam-

matory reactions. Patients with SAP have a high mortality,

with most cases of death resulting from complications

involving the failure of organs other than the pancreas. The

distinctive feature of SAP is that once it starts, it may

aggrevate the clinical condition of the patient continuously,

so that the levels of injury to the other organs surpass the

severity of the pancreatic lesion, even causing multiple

organ failure and, ulitmately, death. In clinical practice, the

main complications in terms of organ dysfunctions are

shock, acute respiratory failure, acute renal failure, among

others. The acute renal injury caused by SAP is not only

able to aggravate the state of pancreatitis, but it also

develops into renal failure and elevates patients’ mortality.

Studies have found that the injury due to massive inflam-

matory mediators, microcirculation changes and apoptosis,

among others, may play important roles in the pathogenic

mechanism of acute renal injury.
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Introductions

Acute pancreatitis (AP) is an acute abdominal disease

commonly encountered by surgeons. The courses of most

AP cases are auto-restricted, but the conditions of about

15–20% of all patients may become worse,with progres-

sion to multiple organ dysfunction or local complications

(including necrosis, pseudocyst and abscess) and, eventu-

ally, severe acute pancreatitis (SAP) [1]. The onset process

of SAP is hazardous, with a relatively high mortality [2–5],

but despite the rapid advances in modern medicine and the

many extensive studies that have focused on SAP, its

pathogenic mechanism has yet to be completely elucidated

[6–10], and the pathological process, prevention and

treatment of SAP are not yet completely understood.

Consequently, the morbidity and incidence of serious

complications of SAP have not been substantially reduced

to date. The main cause of early death is multiple organ

failure, and available data indicate that the mortality of

SAP patients with the complication of acute renal failure

has reached 45–50% [11]. Pathogenic mechanism studies

are of high clinical value. The aim of this article is to

summarize current knowledge on the main pathogenic

mechanism of SAP when complicated with renal injury,

based on published research material.

Participation of inflammatory mediators

Recent studies haves found that some inflammatory

mediators play important roles in SAP complicated with

multiple organ injury [12, 13]. Due to the co-action of

manifold inflammation transmitters, AP changes from local

pathological changes and rapidly develops into SAP. Sys-

temic multiple organ dysfunction occurs together with
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massive necrosis of pancreatic tissues [14–17]. The main

inflammatory mediators participating in SAP renal failure

are cytokine [18], phospholipase A2 [19], arachidonic acid

metabolite [20] and platelet activating factor, among

others.

Cytokine

During AP, especially SAP, some inflammatory cells and

pancreatic tissues release inflammatory mediators and

cytokine, which influence the whole process of pancreati-

tis. The most important cytokines are tumor necrosis

factor-a (TNF-a), interleukin (IL) and transforming growth

factor (TGF).

TNF-a

Lipsett [21] and Hirota et al. [22] independently proved

that the levels of inflammatory cytokines always increase

during AP and that the degree of the increase is closely

linked to the severity of the disease. Many other studies

have reported that self-tissue injured with over-activated

neutrophil leucocytes is an important causal factor of AP

systemic complications [23–36]. One proposal is that the

neutrophilic granulocyte may generate and release

inflammatory cytokines such as TNF-a following AP

inflammatory stimulation [37–39]. TNF-a is an important

species of inflammatory cytokines that participates in the

SAP pathomechanism. Christoph et al. [40] found that

injecting TNF-a antibody into SAP rats can markedly

improve the state and survival of rats with SAP, thereby

indicating the important role of TNF-a in the onset and

progression of SAP. A number of mechanisms have been

proposed for TNF-a-induced pancreatic and renal injury.

(1) TNF-a can directly injure pancreatic duct cells and

cause microthrombus, pancreatic acinus ischemia, hemor-

rhage, necrosis, inflammation and edema [41]; it also can

directly act on glomeruli and the renal tubule capillary,

causing ischemia and necrosis of the renal tubular epithe-

lial cell [42]. (2) When the quantity of produced TNF-a
exceeds that of the tissue TNF receptor, the excessive free

TNF-a will enter the blood circulation, activate neutro-

philic granulocytes and cause the aggregation of neutro-

philic granulocyte. It then stimulates the release of

cytokines, such as IL-1b, IL-8 and IL-6 [43], causing a

cytokine cascade reaction that promotes the systemic

inflammatory reaction syndrome (SIRS) and aggravates

pancreatic and renal injury. (3) The continuous existence of

TNF-a may enhance the expression of endothelium adhe-

sion molecule, which is necessary for the aggregation of

inflammatory cells. Numerous granulocytes invade the

pancreatic and renal tissues, increase granulocyte phago-

cytosis and degranulation, generate oxygen-derived free

radicals (OFR), lysosomes, elastin enzyme, among others,

and cause cell metabolic disturbances and renal failure [44].

Interleukin (IL)

IL-1 is a pre-inflammation cytokine generated by the

pancreas that plays an important role in the early stage of

SAP. In a SAP animal model, the IL-1 receptor antagonist

(IL-1r) has been found to decrease case fatality by 30%

[45]; in addition, the IL-1 receptor can markedly lower the

concentrations of IL-6 and TNF-a [46]. Fink et al. [47]

administered the IL-1 receptor antagonist before inducing

the pancreatitis model and found that the IL-1 receptor

block markedly lowered the release of amylopsin and

pancreatic necrosis in a dose-dependent manner.

The generation of IL-1b formed from IL-1 through the

mediation of IL-1 convertase (ICE). IL-1b and TNF-a have

many of the same biological activities, including pyrogen

functions, the promotion of cell catabolism, the production

of protein in the acute reaction period, effecting the

secretion of PGI2 by epithelial cells and platelet activating

factor, among others, that will cause the expansion of the

inflammation area and increase the levels of inflammatory

mediators, destructive enzymes and OFR secretion. IL-1b
can interact with TNF-a to induce or aggravate organ

injury. It also has chemotaxis and activating effects on

granulocyte and can stimulate the production of other

inflammatory mediators, such as IL-8, IL-6 and other

inflammatory cytokines, through autocrine or paracrine

mechanisms.

IL-6 is mainly generated by mononuclear macrophages,

which have extensive inflammation-promoting effects, such

as promoting the activation and proliferation of B cells and

their final differentiation into plasmocytes, increasing

immunoglobulin synthesis, promoting T cell differentiation

and proliferation, promoting the acute period reaction and

injuring tissue. The level of IL-6 in the serum can reflect the

state of SAP. There are marked differences between AP

patients without complications and SAP patients with

complications in terms of IL-6 levels. When present at

levels of over 40 ll, IL-6 is considered to be an indication

index of SAP [48]. Relevant data show that IL-1 and IL-6

can act on endothelial cells, causing them to lower their

thrombomodulin activity, aggravate renal ischemia, form

thrombus [49] and activate inflammatory cells to release

NO and OFR to directly cause renal injury.

IL-8 is a potent neutrophilic granulocyte chemotatic

factor and activating factor that is mainly generated by

neutrophilic granulocytes. Generated by mononuclear/

macrophages and endothelial cells, it can activate and

induce T and B cell differentiation, enhance NK cells for

killing target cells, promote phagocytosis and play an

important role in tissue injury mediated by neutrophilic
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granulocytes. It is currently believed that most inflamma-

tory reactions induced by TNF-a, IL-1 and IL-6 are real-

ized by inducing the generation of chemotatic factors,

mainly IL-8. Studies have shown that during SAP the

levels of IL-6 and IL-8 always increase concurrently and

that these positively correlate with the state of SAP [50].

Transforming growth factor (TGF)

Kimura et al. [51] studied the expression of TGF-b1 by

means of immune electron microscopy and found that a

marked effusion of the polymorphonuclear leukocyte and

deposition of fibronectin and TGF-b1 among pancreatic

lobules and inside lobules within 12–24 h after inducing

pancreatitis. They therefore believed that this kind of

change at the early stage of pancreatitis is related to the

generation of fibronectin and type III collagen in the

extracellular matrix during the reparative process of pan-

creatic tissues. Konturek et al. [52] proposed that TGF-b
can induce non-inflammatory apoptosis to repair injured

pancreatic tissues.

Phospholipase A2 (PLA2)

As a result of the increased quantities of inflammatory

mediators released in SAP, PLA2, as an important

inflammatory mediator, will also be generated in large

quantities [53]. Studies have shown that the level of PLA2

is consistent with the state of SAP and also related to

prognosis [54]. PLA2, which is one of major body lipases,

is widely distributed in the plasma and in the organelle

membrane of various cells. The PLA2 in the plasma is

secreted mainly by the pancreas and only slightly by sali-

vary gland, the prostate, and a number of other organs.

Serum PLA2 mainly originates from neutrophilic granulo-

cytes, macrophages and platelets in the pancreatic acinus

and various other tissues outside of the pancreas [55].

When SAP occurs, polymorphonuclear leukocytes and

mononuclear macrophages that are stimulated by endo-

toxin can release numerous PLA2 into the blood to attack

and decompose the phospholipidic part of the membrane.

PLA2 not only destroys the stability of the cell membrane,

resulting inthe massive leakage of lysosome enzyme out of

the cell, but it also generates bioactive free fatty acids and

soluble lecithin to destroy the function and structure of the

systemic cell and organ system. One proposal is that PLA2

is the important mediator for mediating viscera injury of

pancreatic and other tissues after pancreatitis [56, 57]. In

renal injury due to SAP, the level of PLA2 rises, and it can

hydrolyze the renal tubular epithelial cell membrane leci-

thin, leading to the generation of free fatty acid and

hemolytic lecithin. This hemolytic lecithin can dissolve the

renal tubular epithelial cell membrane.

Arachidonic acid metabolite thromboxane (TXA2) and

prostacyclin (PGI2)

As the rate-limiting step of the arachidonic acid biosyn-

thetic pathway, the secretion of PLA2 can be increased to

accelerate the generation of arachidonic acid under the

pathological state. Under the effect of epoxidase, prosta-

glandin synthetase and thromboxane synthetase, arachi-

donic acid can produce a large quantity of TXA2 and PGI2.

TXA2 is a potent capillary vasoconstrictor substance and

platelet aggregation promoter that is able to induce platelet

deformation, release and secretion, cause local and/or

systemic disturbance of hemorrhage blood coagulation and

destroy the cell-protection mechanism [58, 59]. It also can

promote neutrophilic granulocyte activation, release OFR

and cause injury to the blood vessel endothelium [60]. Due

to its extremely potent TXA2 antagonist function, PGI2 can

greatly inhibit platelet aggregation and activation, inhibit

leukocyte activation, protect lysosomes and prevent lyso-

somes from being released into the tissue [61, 62]. The

concentration of TXA2 in the plasma of SAP patients is

markedly elevated, as is PGI2. However, the increased

level of PGI2 is short term, and it soon drops back to

normal, leading to an increase in the TXA2/PGI2 ratio. The

absolute change in the level of either of these factors is not

important, but the proportional balance is. Because both of

these substances function in angiotasis regulation, the

proportional imbalance of TXA2/PGI2 can cause vasomo-

tion disturbance, the formation of microthrombus, vascular

occlusion and other pathological changes [63], which must

result in the abnormal contraction of vessels of the kidney,

the decline in renal blood flow and nephridial tissue

perfusion. These changes can cause serious injury to the

kidney.

Platelet activating factor (PAF)

PAF is a phospholipidic inflammatory mediator with

extensive bioactivities. It is considered to be the key

inflammatory mediator in SAP external secretion and local/

systemic inflammatory reactions [64]. The primary actions

of PAF [65–68] include the activation of platelets, pro-

motion of platelet adhesion and aggregation and formation

of thrombus. Secondary actions include the elevation of

adhesion factor b2-integrin, changes in the endothelial cell

skeleton, increases in capillary permeability, massive

effusion of plasma, increase in blood viscosity and a

slowdown of blood flow. It also participates in ischemia-

reperfusion injury and stimulates other vasoactive

substances, including the generation of cytokine and

inflammatory mediators.

In SAP, PAF levels rise due to the cytokine cascade

reaction activated by elevated levels of TNF-a [69]. On the
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one hand, PAF promotes granulocyte aggregation and

aggravates inflammatory reactions; on the other hand, it

increases capillary permeability and aggravates renal

tubule injury. The imbalance between PAF and vasoactive

substances can initiate a vicious cycle that leads to a series

of chain reactions and amplifying reactions—the cascade

reaction. This reaction can increase tissue and organ injury,

cause systemic inflammatory reaction syndrome (SIRS)

and, eventually, multiple organ dysfunction syndrome

(MODS) and/or multiple organ failure (MOF), or even

death [70, 71]. Clinical studies have found that PAF

antagonist Lexipafant has clear treatment effects on mul-

tiple organ failure of SAP patients and also lowers the

serum levels of inflammatory mediators such as IL-8 and

IL-6 [72].

The role of NF-jB and its regulation of ICAM-1

expression in SAP complicated with kidney injury

Nuclear factor jB (NF-jB) is a transcription factor that

mainly participates in the regulation of inflammatory

molecule expression [73, 74]. As a protein capable of

bonding the jB sequence of a genetic initiator and

enhancer region, it can start or enhance genetic transcrip-

tion [75–78]. In silent cells, NF-jB exists in an inactive

form in the cytoplasm; it can be activated by stimulation

with nuclear translocation. It can then bond with the jB

site of the target gene initiator or enhancer to start or

enhance genetic transcription [79–82], and it can also

participate in the injury process of the tissue [83–85]. The

activation of renal NF-jB also plays an important role

during the manifestation of AP renal injury. Satoh et al.

[86] found that NF-jB activation increases markedly

following the manifestation of SAP. The time-dependent

NF-jB activation increases with time. The abnormal acti-

vation of NF-jB can promote the genetic transcription of

pre-inflammatory factors (TNF-a, IL-1, IL-6). TNF-a and

IL-1 are extracellular stimulation signals that are also able

to activate NF-jB as well as enlargen the inflammatory

reactions. NF-jB is capable of regulating body inflamma-

tory reactions, and the genetic transcription of cytokines

and inflammation transmitter-related immunization, stress,

among others, has been recognized [73].

There is a NF-jB bonding site on the intercellular

adhesion molecule (ICAM-1) initiator [87]. ICAM-1 is a

member of the cell adhesion molecule immunoglobulin

super family and mainly mediates the adhesion between the

polymorphonuclear granulocyte (PMN) and vascular

endothelial cells, playing an important role in the aggre-

gation process of PMN with tissue. The aggregated PMN in

the tissue can cause cell and organ injury. Due to the

presence of the NF-jB binding site on the ICAM-1

initiator, renal NF-jB activation in SAP can promote the

expression of ICAM-1 and make the neutrophilic granu-

locyte adhere to the endothelial cell, which results in the

aggregation of neutrophilic granulocytes toward the

inflammation focus. The aggregated inflammatory cells in

glomeruli can induce direct toxic effects that cause cell

morphological changes, proliferation, capillary injury and

the formation of crescents. TNF-a can also activate the

cytokine cascade reaction, cause the massive release of

inflammatory mediators, and inflict further injury to the

glomeruli.

Role of endotoxin

Endotoxin , which is mainly produced by Gram-negative

bacteria, is a component of the lipopolysaccharide present

in cell walls. Clinical studies show that endotoxemia occurs

in AP and particularly in SAP, and that it is closely related

to the onset, progression and complication of multiple

organ failure in SAP. Windsor et al.’s [88] study demon-

strated the link between endotoxin and the state of pan-

creatitis. Other researchers studying the relation between

plasma endotoxin levels of AP patients and multiple organ

injury have found that endotoxin has an important pro-

moting effect during the progression of multiple organ

injury. As the most potent stimulant of endothelin, endo-

toxin can elevate the endothelin level in vivo and in blood,

potently contracting medium-sized arteries and arterioles,

especially the renal artery and vein. This effect may be due

to the high-affinity receptor on the renal artery and vein,

which will greatly lower renal blood flow and cause renal

ischemia, necrosis, dysfunction, or even failure. Increased

endothelin levels will also aggravate ischemia in other

tissues, enhance bacterial translocation, raise blood endo-

toxin and renin-angiotensin levels and form a vicious cycle

chain of tissue ischemia and endothelin that aggravates

tissue ischemia endlessly [89].

Role of oxygen-free radicals

The OFR is an oxygen-containing chemical group with

high chemical reaction activities, mainly those involving

the peroxide anion-free radical (O2
–) and the hydroxy rad-

ical (OH�). By causing lipid oxidation, it can increase

mucosa permeability, further enhance phagocyte activity,

generate more OFRs and finally cause histiocyte injury.

Scott et al. [90] demonstrated that in the pathological state,

excessive OFRs can cause tissue and cell injury. OFRs can

also participate in the formation of AP pancreatic edema

and, possibly, in pancreatic necrosis and mediate leuko-

cytes and platelets activated by TNF-a in all organs to
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release lysosome, OFRs and lipid inflammatory mediators.

OFR can react with protein and enzymes, leading to protein

denaturation and enzyme inactivation.

The OFR peroxidation product lactoperoxidase (LPO)

can cause the inactivation of membrane-bound enzymes

and cell membrane injury, and increase vascular perme-

ability. When the generation rate of OFRs greatly exceeds

the anti-oxidation capacity of the body or the anti-oxidation

capacity of the body has been exhausted and therefore

incapable of clearing OFR in time, a serious oxidation

storm will result in the lipid peroxidation of the cell and

organelle plasma membrane and direct cell injury.

Luo Jun et al. [91] who synchronously measured the

levels of superoxide dismutase (SOD), malonaldehyde

(MDA) from lipid peroxidation in kidney as well as plasma

MDA level during AP found that the pathological changes

progress with disease course. Accompanied by a gradual

decline in SOD level, MDA will elevate and inflict heavier

renal injury. This proves that OFR and lipid peroxidation

participate in the whole renal injury process in AP.

Nitrogen monoxidum (NO)

NO can regulate microcirculation, maintain capillary inte-

grality, inhibit leukocyte adhesion, among others. The

kidney is the earliest organ affected in SAP, and under

pathological conditions, NO has completely different bio-

logical functions [92]. Molero et al. [93], who studied the

relation between NO and pancreatic basal secretion in

pancreatitis, recently found that NO synthetase inhibitor

(L-NAME) can increase the formation of amylase and

lipoidase and the activities of MPer to aggravate pan-

creas injury, which can be reversed by an NO donator

(L-arginine). As such, NO can improve AP and its patho-

logical changes by decreasing pankrin release and regu-

lating microcirculation perfusion. The possible roles of NO

in SAP renal injury are: (1) synergism of NO and cytokine.

such as TNF-a induced by endotoxin to injury kidney [94];

(2) with the increase of systemic NO, it lowers the reaction

of the blood vessel to stagnated substances and causes renal

ischemia; (3) local excessive NO and OFR interact to have

a toxic effect on renal cells directly [95].

Microcirculation disturbances

Microcirculation disturbances are those disturbances in

both the form and function of the blood and blood

vessels at the microcirculation level that arise mainly

from abnormal rheology and blood components. Plusczyk

et al. [96] believe that in SAP, injured endothelial cells

can release ET-1 to promote disturbances in pancreatic

microcirculation, which is an important causal factor in

pancreatic cell necrosis. Cheng Guozuo et al. [97], who

studied the dynamic changes in renal microcirculation and

its relation with renal injury in SAP, have proven that renal

injury occurs during the early stage of SAP and that it is

possibly mainly due to disturbances in the renal microcir-

culation caused by renal ischemia and ischemia reperfusion

injury. During SAP with SIRS, a large great quantity of

inflammatory mediators and activated leukocytes can

release numerous OFRs and lysosome enzymes, resulting

in injury to the cell membrane. Concurrently, a large

number of leukocytes adhere to the blood vessel endothe-

lium to cause severe injury to the renal capillaries, platelet

activating factor (PAF), release of the TXA2 agglutinate,

the formation of microcirculation thrombus and ischemia-

reperfusion injury (IRI).

At the early stage of SAP, inflammatory mediators cause

potent contractions of the abdominal viscera capillaries,

and changes in the neuroendocrine system cause visceral

bloodflow redistribution and a rapid decline of renal blood

flow. With the progression of the disease, the renal blood

flow is further decreased, and renal function and renal

pathologic injury become worse due to the decrease in the

volume of the circulation and excessive activation of

inflammatory mediators. Studies have shown that there is a

close negative correlation among renal blood flow, renal

function and renal pathologic injury, indicating that

microcirculation disturbances may cause SAP renal injury

directly. Foitzik et al. [16] found the improvement of renal

and lung microcirculation can markedly alleviate the

pathological injury and lower mortality in animals, which

also indicates the significance of microcirculation distur-

bances in renal injury.

Renal hemodynamics dropout

In SAP, the blood sedimentation equation K value, red

blood cell (RBC) aggregation index and whole blood

viscosity rise markedly, indicating an increase in blood

viscosity and a decline in blood liquidity. As a systemic

change, the abnormal hemorheology affects not only pan-

creatic microcirculation, lowers pancreatic blood priming

volume, aggravates ischemia and causes hypoxia, and

pancreatic necrosis, but it also causes microcirculation

disturbance in other important organs. It is the pathological

and physiological basis of pancreatic and other organ

injury, with a decline in renal microcirculation blood flow,

an increase in renal vascular resistance and abnormal

renal artery hemorheology. The whole blood viscosity

and afferent vessel contraction here may directly cause an

increase in glomeruli resistance to lower renal blood flow.

The increase in whole blood viscosity and the decline in
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RBC deformation, among others, can affect the microcir-

culation of the renal tubule capillary and cause renal cortex

and medulla microcirculation disturbance, followed by

renal failure [98].

The presence of active trypsin in the AP patient can

markedly activate the renin-angiotensin system [99] to

cause a temporary elevation in blood pressure under

hypotension and hypovolemia, and cause an elevation of

renal vascular resistance and a marked decline in

glomeruli filterability and effective renal blood flow due

to its potent action on the renal vascular system. In

addition, SAP patients always manifest hyperlipemia,

with lipids easily deposited around renal tubules and

blood vessels; this factor can also not be neglected

in terms of promoting renal blood vessel resistance.

Nishiwaki et al. [100] also found a decline in renal

microcirculation blood flow and an increase in renal blood

vessel resistance at the early stage of AP in their exper-

iments. It would therefore appear that renal hemody-

namics dropout also causes injury.

Pancreatic nephrotoxin

Over the long term, it is the hypovolemia and hypotension

due to AP that are considered to be the constant factors

causing renal injury. Recent studies have shown these are

potent renal toxic reactions that result from the kallikrein-

kinin system activated by trypsin. In AP, increased pankrin

is released into blood, including PLA2, which can

decompose the phospholipids and lecithin of the cell

membrane. Abnormal lipid metabolites, such as free fatty

acids, acylcarnitine, acyl-coenzyme and lysophosphatide,

are all membrane-active factors that can destroy the cell

membrane. The free fatty acid can also cause mitochondria

oxidative phosphorylation and block the activity of the cell

Na+-K+-ATP enzyme. The activated complement system

can produce C5b and C5b and combine C6, C7, C8 and C9

to generate a ‘‘membrane attack complex’’ that destroys

the cell membrane and results in irreversible cell injury

[101].

The elevation in the blood trypsin levels can activate the

kallikrein-kinin system, releasing the vasoactive polypep-

tide to cause an intense renal toxic reaction. At the same

time, the pancreatic resolvase can release polypeptide

during the degradation of the plasma protein to cause the

increase in glomeruli permeability and the injury to renal

tubule and interstitial tissue. High concentrations of trypsin

can cause a systemic hypercoagulabale state; the renal

function may the be destroyed by coagulation, and

thrombus consisting of fibrin, platelet and cell debris may

be formed in the blood vessels.

Electrolyte disturbances

In AP, the activated pankrin and numerous toxic substances

not only digest pancreatic tissues, but they also injure

viscera around the pancreas and abdominal viscera. Large

quantities of inflammatory effusion and tissue fluid enter

the third space to cause hypovolemia or even shock. At the

same time, the body will release various tissue factors to

aggravate the shock state and cause renal vasoconstriction,

resulting in a declining renal blood flow, filterability and,

ultimately, hypourocrinia. The decline of renal water dis-

charge, increase of catabolism in vivo and endogenous

water only causes water intoxication, but also results in

dilutional hyponatremia. In AP, body catabolic and acid

metabolites increase endlessly, but the kidney cannot dis-

charge these in time, which causes metabolic acidosis. The

acidosis can result in kalium ions being moved from inside

the cell to outside the cell, decrease glomeruli filterability

and kalium ion discharge and cause tissue injury, all of

which result in an increase of kalium ion generation and,

ultimately, lethal hyperpotassemia [102].

Hyperuricemia

When the level of blood uric acid increases, the increased

discharge capacity of urine uric acid can injure the kidney.

It is currently believed that the excretion of uric acid by the

kidney can be regulated by three mechanisms—glomerular

filtration, tubular reabsorption and tubular secretion.

Almost all of the uric acid filtered by glomeruli is absorbed

at the proximal-convoluted tubule; secreted uric acid isalso

partially reabsorbed. Therefore, the uric acid excreted with

urine is only that portion which remains after uric acid

reabsorption. Many different organic acids, such as lactic

acid, alcohol and ketones, can inhibit uric acid excretion by

the renal tubule. However, the lactic acid content measured

by some reports falls within the normal range. Therefore, it

is believed that the release of toxic substances, the accel-

eration of histodialysis and the increase of the uric acid

precursor after pancreatic injury are all related. This kind

of hyperuricemia does not directly harm renal function

recovery [103].

Others

Secondary lesion

Gallstone AP is often complicated with serious obstructive

jaundice. Bilirubin can directly block the glomeruli cap-

sular space and renal tubule to affect the excretion of urea
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nitrogen. Jaundice can increase renal sensitivity to hypo-

tension and hypoxia, and make kidney more injury-prone

[104].

Apoptosis

Apoptosis is an initial step in the cellular death process that

is regulated by genes in accordance with the cell’s own

procedures. There are two notable characteristics of

apoptosis—the controlled degradation of chromatin and the

synthesis of new protein [105]. Kaiser et al. [106] applied

various methods to induce the AP model and observed a

negative correlation between the state of pancreatitis and

the incidence of pancreatic apoptosis.

Genes

Recent studies have proven that, during the progression of

SAP, the expressions of the pancreatitis-associated protein

(PAP) [107] gene, glutamic acid synthesis (GS) gene,

intra-pancreas IL-1b gene [108] and TNF gene [109] are

elevated and that all of these genes show trends towards

continuing increased expression and tissue specificity. This

increased expression is also related to pancreatic injury and

the inflammation state.

Immune complex injury

Renal biopsies on AP patients complicated with glomerular

nephritis reveal the presence of the sediment of comple-

ment systems C and IgM under the glomeruli intramem-

brane cells and in the immune complex, which may be the

cause of renal injury.

Local factors

Because the anatomic site of the pancreas is close to kidney,

the inflammatory pathological changes of and around the

pancreas can constantly affect kidney.

In conclusion, SAP complicated with renal injury is

caused by manifold factors. During the progression of SAP,

these factors interact and mediate the occurrence and

development of SAP, which ultimately result in renal

injury.
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