Distributed and Parallel Databases
https://doi.org/10.1007/s10619-024-07444-6

®

Check for
updates

zk-Oracle: trusted off-chain compute and storage for
decentralized applications

Binbin Gu' - Faisal Nawab'

Accepted: 11 August 2024
© The Author(s) 2024

Abstract

Blockchain and Decentralized Applications (DApps) are increasingly important for
creating trust and transparency in data storage and computation. However, on-chain
transactions are often costly and slow. To overcome this challenge, off-chain nodes
can be used to store and compute data. Unfortunately, this introduces the risk of
untrusted nodes. To address this, authenticated data structures have been proposed,
however, this ignores the compute of data from the raw data. We tackle this challenge
by introducing zk-Oracle, which provides an efficient and trusted compute and storage
off-chain. There is a challenge in using zero-knowledge proofs (zk-proof for short),
which is the large proof generation time. We aim to overcome it with novel designs in
zk-Oracle. zk-Oracle builds on zk-proofs technologies to achieve two goals. First, the
computation of data structures from raw data and the corresponding proof generation
is improved in terms of performance. Second, the verification on-chain is inexpensive
and fast. Our experiments show that we can speed up zk-proof generation by up to
550x faster than the baseline method.

Keywords Blockchain - IoT - DApps - zk-SNARKSs

1 Introduction

Blockchain is a distributed database that allows multiple parties to share and maintain
a single, tamper-evident ledger of transactions. It is the technology underlying cryp-
tocurrencies such as Bitcoin and Ethereum. DApps (decentralized applications) are
applications that are built on top of blockchain. They are not controlled by any single
authority, but rather operate on a decentralized network of computers. Blockchain and
DApps are important because they offer a way to conduct transactions and exchange
value without the need for a central authority. This not only has the potential to make

B Binbin Gu
binbing @uci.edu

Faisal Nawab
nawabf@uci.edu

Department of Computer Science, University of California, Irvine, CA 92697, USA

Published online: 28 August 2024 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-024-07444-6&domain=pdf

Distributed and Parallel Databases

transactions faster and more efficient, but also create new types of applications that
were not previously possible. For example, DApps can be used to create decentralized
markets [1], enable secure voting systems [2], or provide a platform for peer-to-peer
lending [3].

One of the challenges of blockchain-based DApps is the high cost and latency of
transactions. Because all transactions on a blockchain must be processed by every node
on the network, the more users a DApp has, the more computational power is required
to process transactions. This can lead to slow performance and high transaction fees.
For example, writing to a blockchain smart contract can take tens of minutes or more
to finalize [4]. Likewise, the cost of a smart contract operation/write is estimated to
be around 3 dollars [5].

To be practical for high-volume transactions, DApps now are built using a combina-
tion of on-chain and off-chain components to achieve the desired level of performance
and cost efficiency. The on-chain component of a DApp typically consists of a smart
contract that defines the rules and logic of the application, while the off-chain compo-
nent consists of the user interface and other supporting services that interact with the
smart contract. In this way, heavy-weight tasks like computation and data storage can
be performed with off-chain nodes, reducing the monetary and performance overhead
of performing actions on-chain.

However, this hybrid approach introduces security risks of utilizing off-chain nodes
that are outside of the blockchain network and are thus not governed by the same secu-
rity guarantees. For this reason, two kinds of techniques were often used to ensure that
off-chain nodes will not act maliciously. (1) The first type of methods use authenticated
data structures to provide trust in the outcome of off-chain nodes’ processing [6-9].
However, the problem with these methods is that a trusted entity is needed to guarantee
the integrity of such data structures. (2) The second type of methods relies on verifiable
computing techniques [10-12]. However, these methods could be quite expensive for
off-chain nodes. For example, the proving time of a CNN (Convolutional Neural Net-
work) model on the dataset VGG16 [13] (around 568 MB) takes about 10 years [14]
using state-of-the-art techniques such as zk-SNARKSs [15].

In this work, we propose zk-Oracle, an on-chain/off-chain solution that enables
efficient and cost-effective solutions for off-chain compute and storage. The main
contribution is to study approaches to speed up zk-based proof generation. We propose
a batching algorithm for zk-proof generation that utilizes two design patterns: (1)
horizontal batching, and (2) vertical batching. Specifically, horizontal batching refers
to splitting the whole input dataset (or workloads) into small ones, such that each batch
of data can be processed with the verification program sequentially. Vertical batching,
on the other hand, breaks up the complete program into multiple small modules such
that these modules can be performed sequentially or independently with the correct
logic and outcome. We optimize the size of zk-proofs such that the proposed batching
algorithm will not produce zk-proofs that are larger in size compared with that of the
baseline solution. In addition, the proposed batching algorithm can be performed in
parallel which further saves the zk-proof generation time. Lastly, the proposed batching
method can be implemented as a layer on top of existing state-of-the-art zk-SNARK
systems and tools, such as libsnark [16] and ZoKrates [17].

@ Springer

Distributed and Parallel Databases

Although zk-Oracle is applicable to general DApps, the focus in this paper is on
two classes of applications: (1) IoT/supply chain applications where the data sources
are small [oT devices that are not capable of compute/storage. (2) Gaming and social
DApps, where users use small or mobile devices that are not available all the time,
and may be limited in terms of compute due to energy preservation.

The contributions of this paper are as follows:

e We propose zk-Oracle, an on-chain/off-chain solution that enables efficient and
cost-effective solutions for off-chain compute and storage.

e We propose a batching algorithm that utilizes two design patterns—horizontal
and vertical batching—to speed up zk-proof generation. The proposed batching
method can be easily implemented with state-of-the-art zk-SNARK systems and
tools.

e We conduct a comprehensive evaluation to study the effectiveness of our solution.
Our experiments show that we can speed up zk-proof generation by up to 550x
faster than the baseline method.

The rest of the paper is organized as follows: We first present the preliminaries
in Sect. 2. Then, we introduce zk-Oracle design in Sect. 3 followed by the detailed
techniques of accelerating zk-proof generation in Sect. 4. In Sect. 5, we show our
experiments. In Sect. 6, we describe related work and conclude with a discussion of
future directions and challenges in Sect. 7.

2 Preliminaries
2.1 Blockchain and DApps

Blockchain technology is a decentralized and distributed ledger system that allows for
the secure and transparent storage and transfer of data. It is best known as the underly-
ing technology behind cryptocurrencies such as Bitcoin, but its potential applications
go far beyond that. One of the most promising use cases for blockchain technology
is decentralized applications (DApps). These are software applications that run on
a blockchain network and operate in a decentralized manner, meaning they are not
controlled by any single entity or authority. DApps have the potential to transform a
variety of industries, from finance and healthcare to supply chain management and
social media, by providing more secure, transparent, and efficient ways of exchanging
information and conducting transactions.

A major challenge for DApps is the high cost of transactions on many blockchain
platforms. This can make it expensive for users to interact with DApps especially
when the DApps require heavy computation and large storage. Instead of storing and
computing data on blockchain, zk-Oracle offloads the heavy computation processing
and stores a large amount of data on off-chain nodes. While zk-Oracle guarantees the
integrity of the computation and data, it significantly reduces the on-chain transaction
fees.

@ Springer

Distributed and Parallel Databases

2.2 zk-SNARK

zk-SNARK [18] stands for “Zero-Knowledge Succinct Non-Interactive Argument of
Knowledge”, and it refers to a proof construction where one can prove possession of
certain information, without revealing that information. For instance, a zk-SNARK
can be used to prove and verify this statement “Given a public predicate F and a
public input x, I know a secret input w such that F(x, w) = frue”. Given a statement
s, zk-SNARK is used in the following way by utilizing three components: the setup
component, the prover component, and the verifier component for DApps (Fig. 1):

e In the setup component, a setup node generates a proving key Pk and a verifica-
tion key Vk; that will be used to generate and verify proofs. Although these two
keys can be published, the computation work to generate these two keys should
remain a secret. Therefore, for zk-SNARK, the setup—which is a one-time process
before operation—must be performed by a trusted node or multiparty computa-
tion, MPC [19]. After setup, there is no need for trusted nodes. The generation
of the two keys is influenced by the type of computation that needs to be proven.
The user provides the program to be proven/verified as well as the inputs to such
computation. The user assigns which parts of the inputs are public and which parts
are secret. In zk-Oracle, for example, the program to prove/verify is the one that
updates the key—value pairs and produces a new state about the key—value pairs;
and the inputs to the program are the previous state and its digest as well as the
operations that are applied to the previous state to generate the new state.

e The prover node in the prover component is responsible for generating the cor-
rectness proof of the computation. It needs three parameters, the proving key Pk;,
the public information, Inf,,s, and the secret information, /7 fsecrer Which is
optional. After collecting these parameters, the prover node generates a proof 7y
of the computation outcome.

e In the verifier component, the verifier uses three parameters: the verification key
Vks, the public information /7 f),, and the proof m, to verify the proof s. After
collecting these parameters, the verifier node generates a decision (True or False).
In hybrid blockchains, the verifier can be a smart contract. Typical zk-SNARK
protocols are designed so that verification is fast at the expense of a more lengthy
proof generation process. This is suitable for hybrid blockchains, since generating
proofs is performed by off-chain nodes that do not have the constraints of smart
contracts, while verification is performed on-chain.

2.3 Use cases

To use zk-SNARK to do computation on raw data, the raw data would first need to be
sent to an off-chain node. This node would then perform the necessary calculations to
get the zk-proofs for such calculations, using the zk-SNARK proof construction. The
zk-proofs are then sent back to the original sender or to another party for verification.

In the IoT space, zk-SNARKS is used to verify the authenticity and integrity of
sensor data without revealing the actual data being collected [20]. This could be espe-
cially useful in applications where sensitive information is being collected, such as in

@ Springer

Distributed and Parallel Databases

o sttt el R
1 1
) Original | Asetof I
I Statement »1 Constraints _L> I
1 N Setup Node 1
1 1
| Secret] |
ISetup component Randomness !
| SRl I . T R g p—— J

______________________ -—== - 5

1

: \i !

Bl(.)c.kcham Deploy Smart 1

(Verifier Node Contract |< Verification Key | 1

1

>N __ J
________________________ ¥ - =
Proving Key | |
I
<+ . 1
Proof | Prover Node |<— Public Input |
4—l I

N——"

Secret Input | |
Jrovercomponent_ _ _ _ _ _ _ _ __ _ ___S————— J

Fig.1 The workflow of zk-SNARK for DApps

healthcare or financial services. In the supply chain space, zk-SNARKSs can be used
to verify the provenance of goods, ensuring that they have not been tampered with or
counterfeited [21]. This could be especially useful in industries where counterfeiting
is a major concern, such as in the pharmaceutical or luxury goods industries.

In the gaming industry, zk-SNARKSs can be used to verify the fairness of online
games, ensuring that the game results are truly random and not influenced by any
outside factors [22]. This could help to build trust and confidence among players and
increase the overall enjoyment of the gaming experience. In the social network space,
zk-SNARKS can be used to verify the authenticity of user accounts, ensuring that the
person behind the account is who they claim to be [23, 24]. This helps reduce the
prevalence of fake accounts and increase trust among users. It can also be used to
verify the authenticity of content posted on the network, helping to reduce the spread
of misinformation and fake news.

3 zk-Oracle design

In this section, we describe the design of zk-Oracle.

3.1 System model

zk-Oracle consists of the following components (Fig. 2):

@ Springer

Distributed and Parallel Databases

Blockchain

Block »| Block »| Block Block

\/

Smart

@ Contract @ l

Sources

Consumers

@ Off-chain @

nodes -
(Provers)

®

Fig.2 The framework of zk-Oracle

e Sources the sources collect or generate raw data. Examples are [oT devices that
use sensors to collect data from their environment.

e Off-chain provers the off-chain provers compute the data from the raw data and
perform zk-SNARK computation to generate proofs of their computation.

e Consumers the consumers send read and write requests to smart contracts and get
the response from smart contracts.

e Smart contracts on-chain smart contracts handle the verification and maintenance
of digests related to the computation results and zk-proof data. Also, the smart
contract handles the punishment strategy by verifying whether the zk-proof is
valid. If the zk-proof can not be proven to be valid, then the smart contract punishes
the off-chain prover by withdrawing funds from its escrow account.

Security model. The Off-chain prover is not trusted. It can deviate from the pro-
tocol in arbitrary ways, similar to byzantine failures [25]. Off-chain provers can
collude together and with consumers. The smart contract logic executes correctly—
without deviating from the protocol—due to running on blockchain. Write requests
are assumed to be authenticated by consumers, which prevents off-chain provers from
fabricating clients requests.

Network model. For safety we consider an asynchronous network model, meaning
that we do not make assumptions about the network to guarantee safety. However, for
liveness, since it cannot be guaranteed in asynchronous settings [26], we assume a
partially-synchronous model.

In a partially synchronous model [27], the network model assumes that there is
an upper bound on message delays and that the network switches between periods of
synchrony and asynchrony. During the synchronous periods, all messages are delivered
within the bound and the network behaves as if it were synchronous. During the

@ Springer

Distributed and Parallel Databases

asynchrony periods, messages may be delayed beyond the bound, and the network
behaves as if it were asynchronous.

System assumptions. We assume that the sources (see Fig. 2) have low compute/s-
torage capabilities that they cannot process raw data. The off-chain provers have high
compute/storage capabilities but are not trusted.

3.2 Overview

We now provide a description of zk-Oracle’s core design. We will describe the end-
to-end life-cycle of the zk-Oracle workflow.

Step @: A source s creates or collects the raw data D from its environment.

Step @: The source s sends the raw data D to an off-chain prover (node) p.

Step @: A consumer sends a request r to an off-chain prover (node) p. An example
of r can be “What is the logistic regression model trained based on D given some
pre-defined parameters?”.

Step @: After the prover p receives the raw data D and the request r, it performs two
steps to complete the computation task.

e Step @(a): The prover p first performs the computation on D according to the
requirement of the request . After the computation finishes, the prover p gets the
final output of the computation (possibly with many intermediate outputs).

e Step @(b): Next, the prover p performs zk-SNARK computation to get the corre-
sponding zk-proof 7 for the computation. Although generating the corresponding
zk-proof m also provides the prover p with the final output of the computation, we
will show why Step @(a) is necessary for the performance of zk-Oracle in Sect. 4.

Step ®: The prover p sends the corresponding zk-proof to the smart contract sc on
blockchain. The sc verifies whether the zk-proof r is valid. If 7 is not valid, the prover
will be punished.

Step ®: The consumer reads the output and the transformed data after the smart
contract successfully verifies . We store the transformed data with auxiliary data
structures. For example, we build the key—value pairs with a Merkle tree structure.
When a consumer wants to read a specific value, they will receive the hash values
of the Merkle tree nodes instead of the whole Merkle tree structure. In this way, the
consumer can verify the integrity of the value without receiving a large data structure.

4 Accelerating zk-proof generation

While zk-proof generation takes a long time with the zk-SNARK baseline method,
we propose a solution to speed up the zk-proof generation process. Our method works
for any zk-SNARK-based method since it does not rely on specific zk-SNARK con-
structions.

zk-Oracle focuses on the method based on the Groth16 [15] schema. The proof size
of Grothl16 is relatively small which makes Groth16 popular for blockchain-based
applications since verifying the Groth16 proof is cheap.

@ Springer

Distributed and Parallel Databases

4.1 Motivation

We observe that the zk-proof generation time significantly increases when the com-
plexity of the computation task grows. For example, the zk-proof generation time
for training a logistic regression model is 1 second with 100 training data samples;
however, the zk-proof generation time becomes more than 6000 s when training with
10,000 data samples. We notice that the total time for zk-proof generation is only 100
s when we train a logistic regression model on 100 batches with each batch containing
100 data samples (the total number of samples is still 10,000 in this case).

From this analysis, the state-of-the-art zk-SNARKS transform the computation of
a circuit into an equivalent representation called a Quadratic Arithmetic Program,
QAP [28]. Assuming that a circuit with N wires and M gates is a computational
structure that represents the sequence of logical operations to be performed. In the
QAP approach, this circuit is transformed into a set of polynomials. Specifically, O(N)
polynomials are generated, each with a degree of O(M). These polynomials represent
the relationships and computations within the circuit. The complexity of evaluating
these O(N) polynomials depends on both the number of polynomials and the degree
of each polynomial. So the evaluation complexity is O(MN), where M represents the
degree of the polynomials, and N represents the number of wires (variables) in the
circuit.

While the more complex computation tasks have both larger M and N, they often
need much more time to generate zk-proofs.

The experimental results and analysis motivate us to split large computation tasks
into small ones which we refer to as batches in this paper. By using the batch techniques,
the zk-proof generation time for each subtask becomes shorter and thus leads to a lower
zk-proof generation time in total. In the following, we first present a formal definition of
the batching approach used in this work. After that, we present two batching techniques
that divide large computation tasks into small ones. Finally, we describe the methods
for optimizing the size of zk-proofs.

Definition 1 (zk-Batch) Given a set of datasets D = {Dy, D, ..., D,,} and a set of
programs P = { Py, P, ..., P,}, where D; is adataset and P; is a program, a zk-batch
B(D;, Pj) is a program where the program P; is performed on the dataset D;.

Example 1 Suppose we are training a logistic regression model on a dataset D =
{D1, D>, ..., Dy} with a training program P = {Py, Pa, ..., P,}. Denote P; as the
program for the first epoch of training, then a zk-Batch B(Dj, P1) means that we train
the logistic regression model for 1 epoch on the dataset D. And P; training on D; is
the ith epoch of training on D ;. We apply all m x n components to mimic training for
n epochs on m datasets.

While the batching methods are often used in many contexts, there are new chal-
lenges when applied to zero-knowledge proofs. These challenges include how to deal
with the inputs and outputs of the batches so that the proof generation can be done
in parallel and its cost can be significantly reduced without increasing the verification
cost significantly.

@ Springer

Distributed and Parallel Databases

Baseline method Our proposed horizontal

batching method
Dataset Dataset
Al Al
r A} r A}
zk-Batchl zk-Batch n
Y
Program
Program Program

Fig.3 The illustration of horizontal batching

4.2 Horizontal batching for zk-proof generation

Horizontal batching for zk-proof generation aims to split the whole input dataset
(or workloads) into smaller ones, such that each batch of data can be performed
with the program sequentially. Figure 3 shows an illustration of horizontal batching.
Essentially, the program should be able to process a batch of data either independently
or sequentially without affecting the final outcome of the computation task. The zk-
batch B; can be processed for proof generation before B;_; when the programs are
processed independently.

Formally, given a dataset D = {Dj, D3, ..., Dy} and a program P, horizontal
batching works when P (D) is equivalent to the result of executing P in the order of
P(Dy), P(Dy), ..., P(Dy,,), where P(D) represents the outcome obtained by exe-
cuting P on D. The property also holds if P(D;) is independent of P(D;) where
i # j.More precisely, horizontal batching requires that the computation task can be
executed on a subset of D in a sequential or parallel way.

Example 2 Suppose that we are training a machine learning (ML for short) model on
a dataset D = {D1, Dy, ..., D;,} with a training program P. And P uses the batch
gradients to update the model. That is, the gradients are computed for a single batch
to update the model each time. In the scenario, the whole process can be represented
in the following order: P(Dy1), P(D>), ..., P(Dy,). Therefore, horizontal batching
works naturally for such a task.

4.3 Vertical batching for zk-proof generation
Vertical batching for zk-proof generation breaks up the complete program into multiple

small modules such that they maintain the same correct logic and outcome. Figure 4
illustrates the vertical batching workflow. In principle, any program can be split into

@ Springer

Distributed and Parallel Databases

Our proposed vertical

Program m
(zk-batch m)

Baseline method batching method

r—-—=-—----]
| 1

Program 1 1
| (zk-batch 1) |
I 1

ouput of the
| F=" program 1
I I
1 I
Dataset > Program Dataset | [T

I 1
| l‘ ________ L. ouput of the
| | program m-1
| 1
I 1
I |

Complete program

Fig.4 The illustration of vertical batching

multiple small modules as long as the program has more than one computation oper-
ation.

Formally, given a dataset D and a program P = {Py, P>, ..., P,}, vertical batch-
ing can work when P (D) is equivalent to the result by executing Py, P>, ..., P, in
the order of Pi(D), P,(P1(D)), ..., P,(P,—1(---(D))) where P;(D) represents the
outcome obtained by executing P; on D. The property also holds if P;(D) is inde-
pendent of P;(D) where i # j. The intermediate states P,_1(P,—2(--- (D))) can be
precomputed without using zero-knowledge proofs as the cost of precomputing these
intermediate states is negligible than generating zero-knowledge proofs.

To make the outcome of each zk-batch more interpretable, we make each zk-batch
have the same programming structure. For example, in ML training tasks, a zk-batch
can be the program that trains the ML model for one epoch. A complete ML algorithm
involving 20 epochs for training a ML model would lead to 20 zk-batches using the
vertical batching method. All 20 batches have the same programming structure and
thus we are able to perform vertical batching.

While a zk-batch means a partial dataset in horizontal batching, it represents
a partial program in vertical batching. We describe the representations of base-
line, horizontal and vertical batching methods for comparison with the Definition
1. Denote D = {Dy, D>, ...,D,,} and P = {Py, P5, ..., P,} as the whole dataset
and the complete program respectively. The task with the baseline method can
be represented as B(D, P), the task with horizontal batching can be represented
as B(Dy, P), B(Da, P), ..., B(D,,, P) and the task with vertical batching can be
denoted as B(D, P1), B(D, P»), ..., B(D, P,).

@ Springer

Distributed and Parallel Databases

4.4 Limitations of horizontal batching and vertical batching

Horizontal batching only works for data-independent computations. One example is
the machine learning algorithm with Stochastic Gradient Descent, SGD [29]. SGD
is an iterative optimization algorithm that updates the model’s parameters based on
the gradient of the loss function computed on a single randomly sampled training
example at a time. Unlike batch gradient descent, which computes the gradient of the
loss function for all training examples in the dataset, SGD updates the parameters
on a small subset of the data at each iteration, which can lead to faster convergence.
However, horizontal batching does not work for tasks that need to load the whole input
dataset into memory for computation, such as the computation with batch gradient
descent.

Vertical batching only works for program-divisible computations. Most programs
can be divisible regardless of their expressiveness. For example, we can take each line
of code as a batch in the extreme case. In practice, it is better to make each zk-batch
have the same programming structure to achieve good expressiveness in the types of
statements we can prove as described in Sect. 4.3.

4.5 Optimizing the proof size

The solution to generating zk-proofs with horizontal and vertical batching can signif-
icantly reduce the zk-proof generation time. However, producing a zk-proof for each
zk-batch results in a large final zk-proof size. To solve this problem, we propose a way
to reduce the redundant content in the zk-proofs. Before introducing our solution, we
first review the components of a zk-proof. A zk-proof for a zk-batch B(D, P), denoted
as wp(p, p), is made up of the public input dataset D, the output of the computation
Out and the cryptographic commitment C. The size of 7g(p, p) then equals the sum
of the size of the input, output, and cryptographic commitment. The equation is shown
below.

l7B(p,P)| = |D| + |Out| + |C], ey

where | - | denotes the size of the enclosed set. The following pseudocode shows the
function F(-) that we want to prove.

def F(public D, private w) — output data type{
output = P(D, w)
return output

F (-) is the function to be proven rather than the one used to generate the proof. We
denote Proof (F(-)) as the proof generation function for generating a proof for the
function F(-). At a high level, the function F(-) proceeds in three steps to generate a
zk-proof. First, F(-) takes the public input D and private input w as inputs. Second,
it performs the computation program P (D, w) to get the output. Third, it returns the

@ Springer

Distributed and Parallel Databases

desired computation result obtained from P (D, w). After running F (D, w) with a
zk-SNARK tool, a zk-proof 7 g(p, p) is generated which is used to prove that F'(D, w)
is run correctly.

To reduce the size of the proofs, we relate and chain the proofs of different batches
together. This creates three types of batches in a chain of batches: the head zk-batch,
middle zk-batch, and tail zk-batch. The proposed three kinds of zk-batches work for
both horizontal and vertical batching. The following pseudocode Fjeqq(-) shows the
function that we want to prove for the head (first) zk-batch:

def F_head(public D;, private w) — bool{
output = P(Dy, w)
res = Ry
return (output == res)

where R; is the output obtained by pre-computing P (D1, w) (see the step @(a) in
Fig. 2) without generating zk-proofs. R, like the function P (-), must be public to the
other users to guarantee the validity of the zk-proof for 7w g(p,,w). Freaa Only returns
a bool type instead of the real output of P (D1, w) because this makes the 75(p,,u)
much smaller (recall the components of a zk-proof at the beginning of this section)
when the size of the output of P (D1, w) is large.
Assuming that there are k zk-batches, to generate the zk-proofs for the 2nd to
(k—1)th zk-batches, i.e. middle zk-batches, we define the following function Fj;g41e ()
that we want to prove for the middle batches.

def F_middle(private w) — bool{
// i denotes the i—th zk—batch

input = R

output = P(input, w)
res = R;

return (output == res)

Fidadie(+) takes no public inputs. Instead, it initializes an input inside F;gq1¢(-) as
R;_1 which is the output of the (i — 1)-th zk-batch. Similar to the strategy in Fjeqd,
Friadle returns a bool type instead of the real output of P(input, w) to reduce the
size of its zk-proof. Also, R;_1 and R;, like the function P(-), should be public to the
other users to verify the validity of the generated zk-proofs.

To generate the zk-proof for the tail (last) zk-batch, we define the following function
Fi4i1(+) that we want to prove for the tail batch.

@ Springer

Distributed and Parallel Databases

def F_tail(private w) — desired data type{
input = Ry
output = P(input, w)
return output

Fi4i1(+) takes no public inputs. Instead, it initializes an input inside Fy,;;(-) as R,—1
which is the output of the (k — 1)th zk-batch. Different from Fj.qq(-) and Fnigaqie(:),
Fi4i1(+) returns the desired output instead of a boolean value because the output is to
be included in a zk-proof such that the other users can verify the final output of the
computation task.

Algorithm 1 shows the full algorithm of how the zk-proofs are generated with the
proposed batching method. To enable users to verify the validity of these zk-proofs,
the programs P, the set of datasets D = {D1, D3, ..., Dy}, the set of programs
P = {P1, P, ..., P,}, and the set of generated outputs R = {R1, R2, ..., Ryyn—1}
on B(D;, Pj) (i € [1,m], j € [1,n]) are all public. The full algorithm generates
a zk-proof for each zk-batch (lines 5-18). For the first and last zk-batch, it adopts
Fheaa(+) and Fy4i1(-), as described before, to generate zk-proofs (lines 7—11). For
the middle zk-batches, we generate the proofs for the computation tasks described
in the functions Fj;;q41.(-) (lines 12—14). The batching algorithm finally returns mn
zk-proofs i.e mg(p,,p1) 10 TB(D,,, P,) (line 18).

In the Algorithm 1, we assume that both the horizontal and vertical batching methods
are applied for zk-proof generation. However, this algorithm also works for the scenario
when only one of the horizontal and vertical batching methods works.

Algorithm 1 Batching method for zk-proof generation

Require: (Public information)

1: The program P;

2: The set of datasets D = {Dy, D3, ..., Dp};

3: The set of programs P = {Py, Pa, ..., Py};

4: The set of generated outputs R = {Ry, Ra, ..., Ryyp—1} on B(D;, Pj) (i € [1,m], j € [1,n]).
Require: (Input) The private input x and public input D;

Ensure: (Output) zk-proofs for mn zk-batches;

5: fori < 1ton do

6: for j < 1tomdo

7: if i ==1and j == 1 then

8: TB(Dy,Py) = Proof (Fpead(Di, w));
9: else

10: if (# land j # 1)and (i # n and j # m) then
11: 7B(D;.Pj) = Proof (Fuiddie(w));
12: else

13: TB(Dy, Py) = Proof (Fyait(w));
14: end if

15: end if

16: end for

17: end for

18: return all proofs;

@ Springer

Distributed and Parallel Databases

Algorithm Properties. The batching algorithm for zk-proof generation owns two
properties: (1) The algorithm can be performed in parallel. All the three functions
Fread(:)s Fmiddie(:) and Fygi(-) take some known inputs such as D and R, meaning
that none of them will interact with each other. Therefore, all the three functions can
be performed independently. This property is good for improving performance as it
allows for parallel execution. (2) The size of zk-proofs is O(|D| + |Out| + k|C|)
where Out and C are the final output and the cryptographic commitment for each
zk-proof respectively, k is the number of zk-batches and | - | denotes the size of the
enclosed set. Because the size of each commitment of a zk-proof is constant (with the
state-of-the-art and commonly used Groth16 schema [15]), we conclude that the sizes
of the zk-proofs for the head, middle and tail zk-batches are O (|D| + |C|), O(|C])
and O(]Out| + |C]) respectively. Consequently, the total size of these zk-proofs is
O(|D| 4 |Out| + k|C]). The size of C is often quite small. When the sizes of D and
Out are large, the zk-proof size of our batching algorithm becomes close to that of
the baseline O (|D| + |Out| + |C|).

Generating a single zk-proof of zk-proofs. To further optimize the size of zk-
Oracle’s k zk-proofs, we can generate a zk-proof for proving that the k zk-proofs are
valid. In this way, the number of cryptographic commitments is reduced to 1. And the
optimized zk-proof size becomes O (|D| 4 |Out| 4+ |C|) which equals to that of the
baseline. The following pseudocode shows how to do it.

def zk-G(public D, private w) — desired data type{
zk_proof = [zk—proofs for k zk—batches]
for I to k:
Verify(zk_proof, w)
return output
// output could be a boolean value to indicate
// whether these zk—proofs are valid or not

In this way, verifying the k zk-proofs can be done with off-chain machines, and only
a single zk-proof need to be verified on blockchain.

The way to generate a single zk-proof of zk-proofs here is more like a proof aggre-
gation method [30]. This method takes multiple zk-proofs as inputs and outputs a
single proof.

Another way to generate a single proof is called recursive zero-knowledge
proofs [31, 32]. While recursive zero-knowledge proofs allow chained logical reason-
ing, they allow more expressiveness in the types of statements we can prove. However,
it is quite expensive to generate the zk proof in a recursive way. The reason is that
verifying a zk proof still takes millions of gates that will enlarge the size of the circuits
of the sub-programs except for the first one.

Due to the drawback of the aggregation methods, we verify all the proofs instead
of the proof generated in the aggregation method to improve the expressiveness of the
types of statements we are proving. We show the extra cost of doing all the zk-proofs
verification on-chain compared with a single proof verification in the experiment

@ Springer

Distributed and Parallel Databases

section. Also, we compare our method with the recursive method with respect to the
proof generation overhead.

5 Experiment

In this section, we perform an experimental evaluation of the performance of zk-Oracle.

5.1 Setup

Experimental setup. Our experiments are performed on the Ethereum Goerli test
network, which has recently switched to proof-of-stake (PoS). We implement the
on-chain components using solidity smart contracts, and implement off-chain com-
ponents using Javascript and Python. Software and libraries that we use for specific
approaches are mentioned later in the section. The experimental environment is a
computer with a Quad-Core Intel Core i5 processor, 8 GB memory, running macOS
Catalina. We use ZoKrates [17], a toolbox for zk-SNARKSs on Ethereum. ZoKrates
supports automatically generating the verifier smart contract in solidity, to implement a
zk-SNARKs-based approach. The implementation of ZoKrates is based on libsnark," a
cryptographic library that implements zk-SNARK schemes. And we use Groth16 [15]
scheme to derive proofs with a small size with ZoKrates.

Datasets: we use the Yahoo! Cloud Serving Benchmark, YCSB [33] to generate the
workload for database experiments. The second dataset, 3D Road Network (Road for
short) [34], includes 3D road network with highly accurate elevation information. It
contains 430K data samples. We use this dataset for Logistic Regression training and
Neural Network inference tasks.

Tasks: we show the effectiveness of our solution on three common tasks.

e Key-value updates. This task takes key—value pairs as the input and outputs the
inclusion proof for the key—value pair and the sequence number where it is added.
We use the Merkle tree structure [35] to construct the pairs. The inclusion proof
includes the sibling node of every node in the path from the data item to the root of
the Merkle tree. A client receiving the proof calculates the root of the Merkle tree
using the provided hashes. If the calculated MMR root matches the original MMR
root, then the client knows that the received item is correct. This task is common
in databases, blockchain and many other areas. Horizontal batching is used to
evaluate our method on this task. Specifically, we partition all the key—value pairs
into k disjoint batches while preserving the order of the batches and the elements
within each batch. And then we generate the proofs for each batch sequentially.

e Logistic Regression model training. We train a Logistic Regression model and
send the model to the blockchain. We use vertical batching in this task. As the
algorithm takes multiple epochs for training, we take the process of one epoch as
a batch. And we adopt the batch gradient descent algorithm to update the model’s
parameters based on all the training dataset for each batch. We run the epochs of

1 https://github.com/scipr-lab/libsnark.

@ Springer

https://github.com/scipr-lab/libsnark

Distributed and Parallel Databases

16000 7000

8 Baseline 3 6000

—=— Batching s
5000
<

< 4000,

E 3000;

Baseline
—=— Batching

Baseline

" 8000
—=— Batching

6000

4000

<
S 4000 § 2000

ti

N
S
3
3

S 2000 31000

executionz time (in seconds)

exe

o 0: 0
G 20000 40000 60000 80000 100000 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
of data samples # of data samples # of data samples

(a) Key-value updates (b) Logistic Regression training (c) Neural Network inference

Fig.5 zk-Proof generation time (each zk-batch contains a fixed number of instances/samples)

training sequentially so that the final parameters of the Logistic Regression model
are not changed.

e Neural Network inference. We use a Neural Network model to do inference tasks
and send the predictions to the blockchain. We use both horizontal and vertical
batching in this task. Specifically, we partition the dataset into multiple subsets.
Each time, we use the Neural Network model on a subset of the dataset to do
inference. As the inference on the data samples is independent of each other,
horizontal batching will not change the final inference results. For each subset, we
take the computation of each layer as a batch using vertical batching.

We call the method proposed to speed up zk-proof generation as the Batching
method and the method for generating a zk-proof for a monolithic task as the Baseline
method in the experiment.

Default parameters. Unless we mention otherwise, the number of features is set to 10
for the logistic regression model training. The neural network used for ML inference
task has three layers.

Cost. In Ethereum, on-chain execution and verification cost is calculated in a unit
called gas. For ease of exposition in the rest of this section, we also present the cost
in dollars. Because the gas-dollar conversion rate fluctuates, we make the following
assumption about the price of gas. We assume the base gas price as 20 Gwei? according
to recent approximate pricing on Ethereum Mainnet at the time of writing this paper.
We also assume that the price of one ether is equal to 1500 dollars.

5.2 zk-Proof generation time evaluation

The executing time for generating zk-proofs mainly includes the time of compiling
a circuit, key generation and witness computation (i.e. the normal computing for the
task without zk-proof generation). While the time for key generation and witness
computation is less than one second, the executing time is dominated by compiling a
circuit. Because state-of-the-art zk-SNARK systems [16] can only support statements
of up to 10-20 million gates, we can not generate the zk-proof for the whole YCSB and
Road datasets. Therefore, in each round of zk-proof generation, we select 100K as the
maximal amount of workload for the key—value updates, 10K for Logistic Regression
model training and 10K for Neural Network inference tasks. We calculate the average
executing time of the above-specified number of data samples or operations in the
evaluation.

2 Gwei is a denomination of Ethereum’s ether (ETH). A gwei is one-billionth of one ETH.

@ Springer

Distributed and Parallel Databases

LT a91S1 I (24N SL 861°C1 0s
91 1L6°€ET 89 609°¢T SL PLSET Sy
Ll 8LICI 66 601°C1 €L 990°C1 oy
91 ¥99°01 911 879°01 69 129°01 33
81 L6T6 161 10C6 L9 LL16 0¢
0¢ 6¢8L L6l 88L SL SY8L 4
el 1629 08¢ 679 08¢ 86¢€9 0C
£ee 18vS LlE IL6Y 0€6 9Trs Sl
0911 vL6V 0lv 8L9¢ (3! L96¥ ol
099¢ LILY 26 6£9¢C 0lce ClLy S
Sumyoreq QATSINONY Sumyoreq QATSINONY Sumyoreq QATSINONY (soY0Ieq-yZ JO #)

(3[01) 22UIJU] JI0MION [BINON

(3101) Sururea], uorssaI3ay onsISo|

(31001) Sunepdn onfea—Aay|

LE68

T6L9

€68°C1

aurpaseg

(3[01) @ouIOJU] SHOMION] [EINAN

(3101) Surure1], uorssaI3oy oNsISo]

(31001) Sunepdn anfea—Aay]

SOUIIEQ-YZ JO SIAQUINU JUIIIIP [PIM (SPUODIS UT) W) UONLIAUAF JOOId-YZ | d|qel

pringer

As

Distributed and Parallel Databases

Figure 5a—c illustrate the executing time for the three tasks. For all three tasks,
each zk-batch contains 500 data samples or operations. Compared with the Baseline
method, the batching method performs similarly in terms of executing time for all
three tasks when the amount of workload is small (i.e. with a small number of zk-
batches). However, the batching method reduces the execution time significantly when
the size of the workload increases. Specifically, the batching method saves more than
4 h, 2 h, and 2 h for the key—value updates, Logistic Regression model training, and
Neural Network inference tasks. This also implies that the batching method can save
even more time when the workload increases, which is the case for DApps that would
generate large amounts of data continuously.

We evaluate the zk-proof generation time by varying the number of zk-batches for
a fixed amount of workloads (and datasets). The experimental results of the baseline,
batching and recursive [32] methods are shown in Table 1. The fewer the number of
zk-batches, the larger the size of each zk-batch as the total number of data samples
is fixed. For the recursive method, the proof generation time of the recursive method
increases when the number of batches increases. This is because each proof, except for
the first proof, involves the circuit for verifying the previous proof. More batches lead
to more proof generation time to verify the previous proof. For the batching method,
the results show that using the smaller size of a zk-batch usually saves more time than
that of a zk-batch with a larger size. The best choice of the number of zk-batches
is not always the larger number of zk-batches. 30 is the best one for the key—value
updates task. 50 is the best choice for the Logistic Regression training. 35 and 45
are the best choices for the Neural Network inference task. The reason is that the zk-
proof generation involves (constant) “preparing” time for each zk-batch. In addition,
we observe from Table 1 that the zk-proof generation time fluctuates in only a small
range when the number of zk-batches is larger than a threshold. However, the larger
number of zk-batches will produce extra time for verifying more zk-proofs. Therefore,
choosing the largest number of zk-batches is not the best choice.

5.3 On-chain cost evaluation

The generated zk-proofs need to be sent to the smart contract for verification. Figure 6
illustrates the on-chain cost with different numbers of zk-batches for the Logistic
Regression model training task. The basic on-chain cost for verifying a zk-proof is
around 7 dollars and the extra cost for verifying the 5 to 20 zk-proofs generated by
the batching method is around 1 to 4 dollars. The main on-chain cost is for storing the
parameters of the Logistic Regression model rather than the verification computing.
Therefore, the extra on-chain cost with more numbers of zk-batches is not linear with
the number of zk-batches.

We show the on-chain cost with different numbers of zk-batches for the key—value
updating and Neural Network inference tasks in Table 2. The on-chain cost of the
Baseline method for Neural Network inference is high because it is expensive to store
100 (note that it is not 10K) predictions on blockchain. One possible way to reduce this
cost is to choose a more efficient structure to store these predictions. The computing

@ Springer

Distributed and Parallel Databases

7 12 Basic on-chain cost
[e] .
© 10|/ EEE Extra on-chain cost
[
-9 ’a .
g5 o L]
o ||

@]
\'q:) T 6
> c
c<
5 4
S
& 2
(@]

0 BaselineBatching BaselineBatching BaselineBatching BaselineBatching
(with 5 batches) (with 10 batches) (with 15 batches) (with 20 batches)

Fig. 6 On-chain cost (in dollars) with different numbers of zk-batches for the Logistic Regression model
training task

Table2 On-chain cost (in dollars) with different numbers of batches for the key—value updating and Neural
Network inference tasks

Key-value updating (100K) Neural Network Inference (100)
(# of zk-batches) Baseline Batching Baseline Batching
5 3.015 4.020 30.725 31.730
10 3.015 5.025 30.725 32.735
15 3.015 6.030 30.725 33.740
20 3.015 7.035 30.725 34.745
25 3.015 8.040 30.725 35.750
30 3.015 9.045 30.725 36.755
35 3.015 10.050 30.725 37.760
40 3.015 11.055 30.725 38.765
45 3.015 12.060 30.725 39.770
50 3.015 13.065 30.725 40.775

cost for verifying the zk-proofs is small relative to both the key—value updates and
Neural Network inference tasks.

zk-Oracle makes trade-offs between the proof generation time and the on-chain
cost via the batching method. The more number of batches, the higher on-chain cost.
However, the proof generation time may not decrease when the number of batches
increases as shown in Table 1.

5.4 Scalability evaluation
We evaluate the scalability of the Batching method with multiple off-chain provers

(nodes). As can be seen from Table 3, the zk-proof generation time is reduced when
the number of off-chain provers increases. The zk-proof generation time can be scaled

@ Springer

Distributed and Parallel Databases

Table 3 zk-Proof generation time (in seconds) with different number of off-chain provers (nodes)

of off-chain provers (nodes) 1 3 5 7 9
Key—value updating (100K) 67 24 15 11 9
Logistic Regression training (10K) 151 53 32 23 18
Neural Network Inference (10K) 18 8 5 4 3

We set the number of zk-batches to 30 for this evaluation

quasilinearly by adding more off-chain provers, indicating the parallel nature and
scalability of our proposed batching method.

6 Related work

We discuss existing systems for scaling DApps and the efficient zk-SNARK-based
systems.

Existing systems for scaling DApps. Layer-2 solutions are methods for increasing
the capacity of a blockchain beyond its current limits. Layer-2 solutions [36-38]
are built on top of the main (or layer-1) blockchain. State-of-the-art layer-2 solutions
include Plasma [39], sidechain [40], state channels [41], Rollups [42], and TrueBit [43].
While each of these is solving a different problem, these layer-2 solutions combine
both off-chain state and off-chain computations in arbitrary ways. While zk-Oracle
builds on advances in zk-SNARK proof systems [44], we propose an efficient solution
to speeding up the zk-proof generation process.

Efficient zZk-SNARK-based systems. There are mainly two kinds of methods for
improving the efficiency of the zk-SNARK-based systems. The first one focuses on
customizing zk-SNARK constructions for specific tasks and/or structures. Examples
include the methods for decision trees [45], Neural Network inference [46—49], fair-
ness degree of a ML model [50] and boolean circuits [51] tasks. The second one aims
to make zk-SNARK constructions distributed and/or incremental. They concentrate
on singling out basic computational tasks for achieving efficient distributed realiza-
tions [52-54] or using proof bootstrapping to recursively composing proofs: proving
statements about [55-57] acceptance of the correctness of the latest step of the pro-
gram. However, these systems are not easy to be implemented for general computations
tasks due to their high complexity or they still suffer from enormous computational
cost.

Although some work [32, 57, 58] also proposes to break up the generic computation
into sub-computations while proving each correct, they focus more on finding a pair
of elliptic curves that provide larger bits of security or better gadgets using a modular
approach [58-60]. Also, it is not clear how these methods can be easily implemented
for general computations tasks in DApps. Our work, however, builds an effective,
economic and trusted system zk-Oracle that can be easily implemented with existing
zk-SNARK systems and tools, such as lisnark [16] and ZoKrates [17], for general
computation tasks in DApps.

@ Springer

Distributed and Parallel Databases

7 Conclusion

In this paper, we builds zk-Oracle, an efficient and trusted compute and storage off-
chain for DApps. zk-Oracle is built on zk-SNARK systems and is compatible with
existing state-of-the-art zk-SNARK systems. To speed up the zk-proof generation
process, we propose two batching patterns, namely horizontal and vertical batching,
for efficient zk-proof generation scaling. Our solution optimizes the size of zk-proofs
so that the on-chain cost for verifying the zk-proofs can be minimized. Our experiments
show that we can speed up zk-proof generation by up to more than 550x faster than
the baseline method.

Acknowledgements This research is partly supported by the NSF under Grants CNS1815212 and SaTC-
2245372.

Author Contributions Binbin Gu wrote the main manuscript text. Faisal Nawab provided important sug-
gestions to the technical details and reviewed the manuscript.

Declarations

Conflict of interest The authors declare no Conflict of interest.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Morstyn, T., Teytelboym, A., McCulloch, M.D.: Designing decentralized markets for distribution
system flexibility. IEEE Trans. Power Syst. 34(3), 2128-2139 (2018)

2. Hjalmarsson, E.P., Hreidarsson, G.K., Hamdaqa, M., Hjdlmtysson, G.: Blockchain-based e-voting
system. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), 2018, pp. 983—
986. IEEE (2018)

3. Uriawan, W., Hasan, O., Badr, Y., Brunie, L.: Collateral-free trustworthiness-based personal lending
on a decentralized application (DApp). In: SECRYPT, 2021, pp. 839-844 (2021)

4. Croman, K., Decker, C., Eyal, 1., Gencer, A.E., Juels, A., Kosba, A., Miller, A., Saxena, P., Shi, E.,
Giin Sirer, E., et al.: On scaling decentralized blockchains. In: International Conference on Financial
Cryptography and Data Security, 2016, pp. 106—125. Springer (2016)

. Ethereum Charts and Statistics (2022). https://etherscan.io/charts

6. Zhang, C., Xu, C., Wang, H., Xu, J., Choi, B.: Authenticated keyword search in scalable hybrid-
storage blockchains. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE), 2021,
pp. 996-1007. IEEE (2021)

7. Xu, C.,Zhang, C., Xu, J., Pei, J.: SlimChain: scaling blockchain transactions through off-chain storage
and parallel processing. Proc. VLDB Endow. 14(11), 2314-2326 (2021)

8. Wang, H., Xu, C., Zhang, C., Xu, J., Peng, Z., Pei, J.: vChain+: optimizing verifiable blockchain
boolean range queries. In: 2022 IEEE 38th International Conference on Data Engineering (ICDE),
2022, pp. 1927-1940. IEEE (2022)

W

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://etherscan.io/charts

Distributed and Parallel Databases

10.

11.

12.

13.

14.

15.

16.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

. Zhang, C., Xu, C., Xu, J., Tang, Y., Choi, B.: Gem” 2-tree: a gas-efficient structure for authenticated

range queries in blockchain. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE),
2019, pp. 842-853. IEEE (2019)

Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to
untrusted workers. In: Annual Cryptology Conference, 2010, pp. 465-482. Springer (2010)
Eberhardt, J., Heiss, J.: Off-chaining models and approaches to off-chain computations. In: Proceedings
of the 2nd Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers, 2018, pp. 7-12
(2018)

Eberhardt, J.: Scalable and privacy-preserving off-chain computations. Thesis, Technical University
of Berlin (2021)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition
(2014). arXiv preprint. arXiv:1409.1556

Lee, S., Ko, H., Kim, J., Oh, H.: vCNN: verifiable convolutional neural network based on zk-SNARKSs.
IEEE Trans. Depend. Secure Comput. 21(4), 4254-4270 (2020)

Groth, J.: On the size of pairing-based non-interactive arguments. In: Annual International Conference
on the Theory and Applications of Cryptographic Techniques, 2016, pp. 305-326. Springer (2016)
SCIPR Lab: libsnark: a C++ library for zk-SNARK proofs (2017). https://github.com/scipr-lab/
libsnark

. Eberhardt, J., Tai, S.: ZoKrates-scalable privacy-preserving off-chain computations. In: 2018 IEEE

International Conference on Internet of Things (iThings) and IEEE Green Computing and Commu-
nications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart
Data (SmartData), 2018, pp. 1084-1091. IEEE (2018)

Petkus, M.: Why and how zk-SNARK works (2019). arXiv preprint. arXiv:1906.07221

Cramer, R., Damgérd, 1., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryp-
tion. In: International Conference on the Theory and Applications of Cryptographic Techniques, 2001,
pp. 280-300. Springer (2001)

Wu, W, Liu, E., Gong, X., Wang, R.: Blockchain based zero-knowledge proof of location in IoT.
In: ICC 2020-2020 IEEE International Conference on Communications (ICC), 2020, pp. 1-7. IEEE
(2020)

Sahai, S., Singh, N., Dayama, P.: Enabling privacy and traceability in supply chains using blockchain
and zero knowledge proofs. In: 2020 IEEE International Conference on Blockchain (Blockchain),
2020, pp. 134-143. IEEE (2020)

Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: Providing
Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pp. 329-
349. ACM, New York (2019)

Sanchez, D.C.: Zero-knowledge proof-of-identity: Sybil-resistant, anonymous authentication on per-
missionless blockchains and incentive compatible, strictly dominant cryptocurrencies (2019). arXiv
preprint. arXiv:1905.09093

Gu, B., Li, Z., Liu, A., Xu, J., Zhao, L., Zhou, X.: Improving the quality of web-based data imputation
with crowd intervention. IEEE Trans. Knowl. Data Eng. 33(6), 2534-2547 (2019)

Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang.
Syst. 4(3), 382-401 (1982)

Lamport, L.: Lower bounds for asynchronous consensus. In: Future Directions in Distributed Com-
puting: Research and Position Papers, pp. 22-23. Springer, Berlin (2003)

Driégoi, C., Henzinger, T.A., Zufferey, D.: PSync: a partially synchronous language for fault-tolerant
distributed algorithms. ACM SIGPLAN Not. 51(1), 400415 (2016)

Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation.
Commun. ACM 59(2), 103-112 (2016)

Ketkar, N., Ketkar, N.: Stochastic gradient descent. In: Deep Learning with Python: A Hands-on
Introduction, pp. 113-132. Apress, Berkeley (2017)

Gailly, N., Maller, M., Nitulescu, A.: SnarkPack: practical SNARK aggregation. In: International
Conference on Financial Cryptography and Data Security 2022,, pp. 203-229. Springer (2022)
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKs
and proof-carrying data. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of
Computing, 2013, pp. 111-120 (2013)

Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic
curves. Algorithmica 79(4), 1102-1160 (2017)

@ Springer

http://arxiv.org/abs/1409.1556
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
http://arxiv.org/abs/1906.07221
http://arxiv.org/abs/1905.09093

Distributed and Parallel Databases

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serving
systems with YCSB. In: Proceedings of the 1st ACM Symposium on Cloud Computing, 2010, pp.
143-154 (2010)
https://archive.ics.uci.edu/ml/datasets/3D+Road+Network+(North+Jutland,+Denmark)

Merkle, R.C.: A digital signature based on a conventional encryption function. In: Conference on the
Theory and Application of Cryptographic Techniques, 1987, pp. 369-378. Springer (1987)

Stark, J.: Making sense of Ethereum’s layer 2 scaling solutions: state channels, Plasma, and Truebit.
Medium.com (2018)

Lin, Q., Gu, B., Nawab, E.: RollStore: hybrid onchain—offchain data indexing for blockchain applica-
tions. IEEE Trans. Knowl. Data Eng. 01, 1-16 (2024)

Gu, B., Kargar, S., Nawab, F.: Efficient dynamic clustering: capturing patterns from historical cluster
evolution (2022). arXiv preprint. arXiv:2203.00812

Poon, J., Buterin, V.: Plasma: Scalable Autonomous Smart Contracts. White Paper, pp. 1-47 (2017)
Garoffolo, A., Viglione, R.: Sidechains: decoupled consensus between chains (2018). arXiv preprint.
arXiv:1812.05441

Miller, A., Bentov, I., Kumaresan, R., McCorry, P.: Sprites: payment channels that go faster than
lightning. CoRR (2017). arXiv:1702.05812

Sguanci, C., Spatafora, R., Vergani, A.M.: Layer 2 blockchain scaling: a survey (2021). arXiv preprint.
arXiv:2107.10881

Teutsch, J., ReitwieBner, C.: A scalable verification solution for blockchains (2019). arXiv preprint.
arXiv:1908.04756

Pinto, A.M.: An introduction to the use of zk-SNARKSs in blockchains. In: Mathematical Research for
Blockchain Economy, 2020, pp. 233-249. Springer (2020)

Zhang, J., Fang, Z., Zhang, Y., Song, D.: Zero knowledge proofs for decision tree predictions and
accuracy. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 2039-2053 (2020)

Ghodsi, Z., Gu, T., Garg, S.: SafetyNets: verifiable execution of deep neural networks on an untrusted
cloud. In: Advances in Neural Information Processing Systems, 2017, vol. 30 (2017)

Zhao, L., Wang, Q., Wang, C., Li, Q., Shen, C., Feng, B.: VeriML: enabling integrity assurances and
fair payments for machine learning as a service. IEEE Trans. Parallel Distrib. Syst. 32(10), 2524-2540
(2021)

Feng, B., Qin, L., Zhang, Z., Ding, Y., Chu, S.: ZEN: efficient zero-knowledge proofs for neural
networks. IACR Cryptol. ePrint Arch. 2021, 87 (2021)

Gu, B., Singh, A., Zhou, Y., Fang, J., Nawab, F.: Ml on chain: the case and taxonomy of machine
learning on blockchain. In: 2023 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), 2023, pp. 1-18. IEEE (2023)

Segal, S., Adi, Y., Pinkas, B., Baum, C., Ganesh, C., Keshet, J.: Fairness in the eyes of the data:
certifying machine-learning models. In: Proceedings of the 2021 AAAI/ACM Conference on Al,
Ethics, and Society, 2021, pp. 926-935 (2021)

Giacomelli, 1., Madsen, J., Orlandi, C.: {ZKBoo}: Faster {Zero-Knowledge} for boolean circuits. In:
25th USENIX Security Symposium (USENIX Security 16), 2016, pp. 1069-1083 (2016)

Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: {DIZK}: a distributed zero knowledge proof
system. In: 27th USENIX Security Symposium (USENIX Security 18), 2018, pp. 675-692 (2018)
Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and universal common
reference strings with applications to zk-SNARKS. In: Annual International Cryptology Conference,
2018, pp. 698-728. Springer (2018)

Ozdemir, A., Wahby, R.S., Whitehat, B., Boneh, D.: Scaling verifiable computation using efficient set
accumulators. In: Proceedings of the 29th USENIX Conference on Security Symposium, 2020, pp.
2075-2092 (2020)

Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles.
J. ACM 62(4), 1-64 (2015)

Setty, S., Angel, S., Gupta, T., Lee, J.: Proving the correct execution of concurrent services in zero-
knowledge. In: 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), 2018, pp. 339-356 (2018)

Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M., Parno, B., Zahur, S.:
Geppetto: versatile verifiable computation. In: 2015 IEEE Symposium on Security and Privacy, 2015,
pp. 253-270. IEEE (2015)

@ Springer

https://archive.ics.uci.edu/ml/datasets/3D+Road+Network+(North+Jutland,+Denmark)
http://arxiv.org/abs/2203.00812
http://arxiv.org/abs/1812.05441
http://arxiv.org/abs/1702.05812
http://arxiv.org/abs/2107.10881
http://arxiv.org/abs/1908.04756

Distributed and Parallel Databases

58. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: modular design and composition of succinct
zero-knowledge proofs. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 2075-2092 (2019)

59. Kosba, A., Papamanthou, C., Shi, E.: xJsnark: a framework for efficient verifiable computation. In:
2018 IEEE Symposium on Security and Privacy (SP), 2018, pp. 944-961. IEEE (2018)

60. Singh, N., Dayama, P., Pandit, V.: Zero knowledge proofs towards verifiable decentralized Al pipelines.
In: Financial Cryptography and Data Security: 26th International Conference, FC 2022, Grenada, 2-6
May 2022, Revised Selected Papers, pp. 248-275. Springer (2022)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	zk-Oracle: trusted off-chain compute and storage for decentralized applications
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Blockchain and DApps
	2.2 zk-SNARK
	2.3 Use cases

	3 zk-Oracle design
	3.1 System model
	3.2 Overview

	4 Accelerating zk-proof generation
	4.1 Motivation
	4.2 Horizontal batching for zk-proof generation
	4.3 Vertical batching for zk-proof generation
	4.4 Limitations of horizontal batching and vertical batching
	4.5 Optimizing the proof size

	5 Experiment
	5.1 Setup
	5.2 zk-Proof generation time evaluation
	5.3 On-chain cost evaluation
	5.4 Scalability evaluation

	6 Related work
	7 Conclusion
	Acknowledgements
	References

