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Abstract
In the pursuit of graph processing performance, graph partitioning, as a crucial 
preprocessing step, has been widely concerned. Based on an in-depth analysis of 
Neighbor Expansion (NE) graph partitioning algorithm, we propose Parallel Expan-
sion based on Clustering Coefficient (PECC). Firstly, to address the partition distur-
bance caused by internal structural changes during the process of vertex neighbor-
hood expansion in the traditional NE algorithm, we perform a formal redefinition of 
the vertex state during the partitioning process and introduce the concept of cluster-
ing coefficient. Then, PECC uses the clustering coefficient as a metric to measure 
the closeness between vertices and potential partitions. Based on this metric, a novel 
parallel partitioning strategy in the distributed environment is proposed. This strat-
egy consists of two core steps: the expansion process and the allocation process. 
Through two steps, PECC can effectively improve the operating efficiency of pro-
grams and significantly reduce the partitioning time. In addition, to ensure data con-
sistency during parallel expansion, we adopt a distributed locking engine to solve 
concurrency management problems. Our evaluations on large real-world graphs 
show that in many cases, PECC achieves a balance between partitioning quality and 
computational efficiency. Finally, we show that PECC integrated on GraphX outper-
forms the built-in native algorithms.
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1 Introduction

With the advent of the big data era, the concept of graph-structured data has 
attracted attention. From online social networks to protein structure networks, it is 
natural to model and represent data as a graph structure. Due to the massive scale 
of graph data, it is difficult to use traditional algorithms to analyse it. According to 
statistics, as of April 2023, Facebook had 2.989 billion monthly active users.1 Tra-
ditional centralized algorithms often face challenges such as memory limitations, 
computing performance bottlenecks, and difficulty in achieving efficient parallelism 
when dealing with large and complex graph data. Therefore, based on the above 
challenges, graph partitioning, as a crucial preprocessing step, is important. Graph 
partitioning aims to partition a large-scale graph into several smaller subgraphs suit-
able for distributed environment processing, so as to alleviate the processing pres-
sure of a single machine. For example, in bioinformatics, graph partitioning is used 
to partition massive protein networks into subgraphs, helping the identification of 
protein complexes or predicting protein functions [1]. Furthermore, distributed 
graph computing systems, including Pregel [2], PowerGraph [3], GraphScope [4, 5], 
and Plato [6, 7], integrate efficient graph partitioning algorithms to achieve effec-
tive storage, management, and parallel computation of graph data. As a result, graph 
partitioning algorithms are a focal point of our research.

Based on the different partitioning objects, graph partitioning algorithms can be 
classified into vertex partitioning algorithms and edge partitioning algorithms [8, 9]. 
However, in the real world, most graphs, such as social networks and web graphs, 
follow a power-law distribution, where most vertices have relatively few neighbors, 
while a few vertices have many neighbors [10]. In distributed graph systems with 
vertex partitioning algorithms, power-law distribution can lead to load imbalance 
between worker machines. Due to the linear relationship between computational 
complexity and the number of cut edges, the execution time required for each parti-
tion may vary significantly. In recent years, researchers have demonstrated that the 
edge partitioning model performs better on many large real-world graphs, which has 
sparked great interest in edge partitioning algorithms [11]. In our study, we focus on 
studying the edge partitioning model in the distributed environment.

Recent researches have demonstrated that NE has been identified as the state-of-
the-art edge partitioning algorithm [12, 13]. NE is the first to provide such bound 
for edge partitioning algorithms on general graphs and applying this bound to ran-
dom power-law graphs greatly improves the previous bounds of expected replication 
factor. It uses a heuristic approach to optimally select vertices from the adjacency 
set of each partition, followed by an expansion of the neighborhood. However, even 
high-quality edge partitioning algorithms face the following challenges [14]. Firstly, 
NE causes internal structural changes during partition expansion, thereby increasing 
the difficulty of partitioning. Secondly, NE is poor in terms of scalability. Finally, 
ensuring synchronization and collaboration between partitions in a distributed 

1 https:// datar eport al. com/ social- media- users.

https://datareportal.com/social-media-users
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environment is another important consideration. To address these challenges, we 
propose PECC, a distributed graph partitioning algorithm. We introduce the cluster-
ing coefficient to measure the closeness between vertices and partitions. In a distrib-
uted environment, we expand partitions in parallel using heuristic strategies, which 
significantly improves program parallelism and reduces partitioning time. The main 
contributions of this work are as follows:

• We investigate the problem of the state-of-the-art distributed partitioning algo-
rithms and present Parallel Expansion based on Clustering Coefficient (PECC), a 
distributed graph partitioning algorithm. In many cases, PECC outperforms the 
state-of-the-art graph partitioning algorithms.

• To better understand the internal workflow of the algorithm, we perform a for-
mal classification of vertices based on states of vertices during partitioning pro-
cess. We introduce the clustering coefficient to perform a quantitative analysis of 
the partition structure, thereby identifying groups of vertices with similar local 
connectivity properties.

• We propose a novel parallel partitioning strategy that divides the partitioning 
process into two stages: expansion and allocation. In addition, by introducing 
a distributed lock engine, we effectively address the concurrency management 
problem that arise during the parallel expansion process.

• We describe the implementation of the algorithm in detail. At the same time, we 
provide a comprehensive evaluation of the partitioning quality and running time 
in comparison with the state-of-the-art graph partitioning algorithms. Further-
more, we show that PECC integrated on GraphX outperforms the built-in native 
algorithms.

This paper is structured as follows. In the following Section we summarize the 
research work in recent years. In Sect. 3 we present a formulation of the problem. 
In Sect. 4 we outline the process of the NE algorithm. The proposed method is pre-
sented in Sect. 5. Section 6 provides a comprehensive evaluation. In Sect. 7 we con-
clude our study and look forward to future research.

2  Related work

This section first introduces notable distributed graph processing systems, and sub-
sequently provides an overview of existing partitioning algorithms.

Distributed graph processing systems: Single machine graph processing sys-
tems are unable to cope with the immense graph data encountered today, both com-
putationally and in terms of storage capacity. Therefore, several distributed large-
scale graph processing systems have emerged, such as Pregel [2], PowerGraph [3], 
GraphX [15], GraphBuilder [16], and PowerLyra [17]. Pregel adopts a vertex-cen-
tered model and utilizes user-defined functions to aggregate information and cal-
culate vertex values. It operates on the Bulk Synchronous Parallel (BSP) model, 
proceeding through a sequence of super-steps [18]. PowerGraph improves the par-
titioning quality for power-law distributed graphs by introducing vertex cutting. It 



 Distributed and Parallel Databases

1 3

replicates cut vertices across partitions, effectively tackling load imbalance from 
high-degree vertices. GraphX is an embedded graph computing framework based on 
Spark [19]. It effectively combines the computational models of Pregel and adopts 
the vertex-cut partitioning strategy. FBSGraph partitions graph data in a path-based 
manner on a distributed platform, thereby accelerating the propagation speed of ver-
tex states [20]. ReGraph attempts to speed up convergence and improve scalability 
in distributed graph computing, utilizing techniques like repartitioning and graph 
compression [21].

Balanced graph partitioning (BGP): The goal of the k-way balanced graph par-
titioning is to partition a graph into k subgraphs while minimizing the number of 
cuts. The classical graph partitioning algorithms, such as METIS [22], Scotch [23] 
and their parallel variants [24, 25] adopt multi-level partitioning strategy, which have 
been shown to achieve high partitioning accuracy, and satisfy the load balancing 
conditions. Zhang et al. [12] proposed NE, a heuristic edge partitioning algorithm 
based on neighbor expansion, which effectively utilizes the structural information of 
the local graph. Based on NE, Mayer R proposed HEP, a hybrid partitioning model, 
which introduces graph pruning and lazy edge removal to fine-tune the trade-off 
between memory consumption and partitioning quality [13]. However, these meth-
ods have been proven to lack scalability with increasing graph size, especially when 
dealing with skewed degree distributions. This is where distributed graph comput-
ing comes in. XtraPuLP [26] is the state-of-the-art distributed-memory graph parti-
tioner that extends PuLP [27] with a scalable label propagation technique. Spinner 
[28] is a large-scale graph partitioner, but it uses hash-based initial random alloca-
tion, resulting in poor quality of the final partition. Sheep [29] is a distributed graph 
partitioning algorithm, where transforms the input graph into the elimination tree 
via MapReduce [30] operations. In addition, it only works well on tree-like graphs. 
Strategic considerations regarding data placement and system architecture play a 
key role in improving the performance of algorithms when dealing with large-scale 
graphs in distributed environments. To support heterogeneous machines, Zeng et al. 
[31] proposed WindGP, a scalable framework of graph partitioning, which simpli-
fies the metric and balances the computation cost according to the characteristics of 
graphs and machines. At the same time, they proposed best-first search scheme to 
generate partitions with high cohesion.

Streaming algorithms for graph partitioning (SAGP): The aforementioned 
partitioning methods are primarily designed for offline scenarios and are too 
resource-intensive to partition a large graph. Recently, there has been a growing 
interest in designing algorithms and frameworks that can handle massive graph 
data in a streaming manner. Several noteworthy methods are summarized in this 
context. A streaming vertex-cut partitioning algorithm, High Degree Replicated 
First (HDRF), was proposed by Petroni et  al. [14]. It uses a greedy vertex-cut 
method that prioritizes replicating high-degree vertices to minimize unnecessary 
replication. Mayer et al. [32] proposed Adwise, which improves the partitioning 
quality by pre-buffering the local structural information of the graph and select-
ing the optimal edge for allocation. The partitioning strategy is based on HDRF 
and takes into consideration the clustering degree of the new edge neighbor-
hood, which tends to cluster the local edges in the same partition. Kong et  al. 
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[33] proposed CLUGP, CLUstering-based restreaming Graph Partitioning, which 
maps generated clusters to vertex-cut partitions by modeling the process by game 
theories.  Hajidehi et  al. [34] proposed CUTTANA, a streaming partitioner, a 
novel buffering technique that prevents premature assignment of vertices to par-
titions, allowing for more informed decisions based on a more complete view 
of the graph. It utilizes a scalable coarsening and refinement technique, which 
enhances the intermediate assignments. On the other hand, the conventional itera-
tive computing approach is not suitable for addressing the challenges of incre-
mental computation in dynamic graphs. To address this problem, Tang et al. [35] 
proposed IncGraph, an incremental computing model for dynamic graph. It oper-
ates in three stages: preprocessing, incrementing, and merging, focusing on itera-
tive updates based on vertex changes and prior graph iterations.

3  Problem definition

Let G = (V ,E) be an undirected and unweighted graph with a set of verti-
ces V = {v1, v2,… , vn} and a set of edges E ⊆ V × V  . The vertex set involved 
in E is defined as V(E) . The goal of the edge partitioning is to divide the set 
of edges E into P partitions, where P > 1,P ∈ ℕ . Each partition also has an 
edge set Ek(k ∈ {1, 2,… ,P}) , such that ∪k=1,…PEk = E and Ei ∩ Ej = � where 
(i, j ∈ {1, 2,… ,P}, i ≠ j).

For edge partitioning, the workload (amount of computation) of a partition is 
roughly linear in the number of edges located in that partition, and the replicas of 
the vertices incur communication for synchronization. So the graph partitioning 
problem considers three factors: (i) The number of vertex replications are mini-
mized. (ii) The number of edges across partitions are balanced. (iii) The sum of 
the input graph loading time and the run-time required by partitioning algorithms 
is minimized. Let V

(
Ek

)
 be the set of partitions that each vertex is replicated. The 

number of vertex replication is normalized as follows:

By minimizing the replication factor, the amount of synchronization between the 
distributed machines is minimized. Therefore, the optimization problem of a bal-
anced |P|-way edge partition of G is defined by Eq. (2).

where ||Ek
|| and |P| are the size of the edge set of the partition and the number of par-

titions, respectively. And the imbalance factor, � ≥ 1.0 , is a constant parameter.
At the same time, we also consider edge balance (EB) and vertex balance (VB) 

as metrics to measure the load balance among partitions, as given by Eqs. (3) and 4.

(1)
1

|V|
∑

k∈P

|||V
(
Ek

)|||

(2)min
1

|V|
∑

k∈P

|||V
(
Ek

)|||, s.t. max
k∈P

||Ek
|| < 𝛼

|E|
|P|
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where, the smaller the EB and VB are, the more balanced the load among partitions 
is.

4  Neighbor expansion

NE is a heuristic edge partitioning algorithm based on neighbor expansion, which 
effectively utilizes the structural information of the local graph. NE classifies ver-
tices in each partition into two parts: the core set C and the boundary set S , where 
C ⊆ S . Vertices connected with external vertices in the partition belong to the 
boundary set S . The core idea of the algorithm’s heuristic strategy is to minimize 
the degree of connection between the vertices in the boundary set S and the external 
vertices during each partition expansion, thereby minimizing the replication factor. 
In summary, the heuristic formula of NE is formally defined by Eq. (5):

where, |N(v) ⧵ S| represents the number of vertex v connected to external vertices. 
The iterative nature of neighbor expansion is illustrated in Fig. 1. Initially, vertex a 
is randomly selected to be assigned to the current partition. Simultaneously, the set 
of the candidate vertices to be added to the partition is generated from the adjacent 
edges of the selected vertex. As shown in Fig. 1b, there is 1 vertex in the core set 
C , 3 vertices in the boundary set S . Next, we select the vertices from the boundary 
set S that have the least edges connected to external vertices to expand the neigh-
borhood. Now, among the candidate set S�C = {b, c} , vertex c is selected because 
|N(c) ⧵ S| = 2 < |N(b)�S| = 3 . Then, vertex c is added to C , and its neighbors g and 
h are added to S . The adjacent edges (c, g) and (c, h) are allocated to this partition as 
shown in Fig. 1b. These steps iterate until the partition reaches the upper bound of 
load.

NE has some noticeable shortcomings when performing heuristic edge parti-
tioning during neighbor expansion. Firstly, NE creates only one partition in each 
iteration and allocates only one edge to the partition during each expansion. This 

(3)EB ∶=
max �Ek�

Ē
, s.t.Ē ∶=

∑
�Ek�
�P�

(4)VB ∶=
max �V(Ek)�

V̄
, s.t.V̄ ∶=

∑
�V(Ek)�
�P�

(5)x ∶= argmin
v∈S⧵C

|N(v) ⧵ S|

Fig. 1  An illustration of expan-
sion step. a Is the initial parti-
tion state. b Is the state after 
partitioning expansion
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will lead to lower efficiency when dealing with large-scale graphs. Secondly, NE is 
highly sensitive to the structure of the graph. There are changes in the local struc-
ture, such as the emergence of fragmented or isolated subgraphs during the expan-
sion process, can result in a decline in the final partitioning quality. Finally, in a dis-
tributed computing environment, ensuring synchronization and collaboration among 
partitions, as well as effectively handling the transmission of global information, are 
important factors to consider for the algorithm to run efficiently. In summary, based 
on a detailed analysis of NE, we propose a distributed graph partitioning algorithm 
called Parallel Expansion based on Clustering Coefficient (PECC).

5  Parallel expansion based on clustering coefficient

In order to address the aforementioned problems, this section provides the definition 
of vertex states and introduces a new heuristic strategy. Following that, we elaborate 
PECC framework.

5.1  Formalized definition

Definition 1 (core vertex). Given a vertex v ∈ Pk , with its set of adja-
cent vertices denoted as N(v) = {v1, v2,⋯ , vn} , if it satisfies 
C(Pk) =

{
v|∀(v, vi) ∈ Pk, i ∈ [1,⋯ , n]

}
 , then C(Pk) is referred to as the core vertex 

set of partition Pk . As shown in Fig. 1, vertex a is considered as the core vertex and 
belongs to the core set.

Definition 2 (boundary vertex). Given a vertex v ∈ Pk , with its set 
of adjacent vertices denoted as N(v) = {v1, v2,⋯ , vn} , if it satis-
fiesS(Pk) =

{
v|∃(v, vi) ∉ Pk, i ∈ [1,⋯ , n]

}
 , then S(Pk) is referred to as the boundary 

vertex set of partition Pk . As shown in Fig. 1, vertex b and c are considered as the 
boundary vertex.

Definition 3 (external vertex). Given a vertex v , if it satisfies 
O(Pk) = {v|v ∉ Pk, k ∈ [1,⋯ ,P]} , then O(Pk) is referred to as the external vertex 
set of partition Pk . As shown in Fig. 1, vertex d,e,f,g and h are considered as the 
external vertex.

In the field of graph partitioning, what we pay more attention to is the degree of 
connection between vertices and the whole partition, rather than their local neigh-
borhood. Therefore, we introduce the concept of clustering coefficient. Given the 
definitions of the core vertex set C(Pk) and the boundary vertex set S(Pk) , the clus-
tering coefficient is defined as follows.

Definition 4 (clustering coefficient). Given a vertex v ∈ Pk , with its set of adja-
cent vertices denoted as N(v) = {v1, v2,⋯ , vn} and the core vertex set denoted as 
C(Pk) =

{
v|∀(v, vi) ∈ Pk, i ∈ [1,⋯ , n]

}
 . To represent the degree of closeness 

between vertex v and partition Pk , the cluster efficient is defined by Eq. (6):
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Based on clustering coefficient, we propose a new heuristic strategy to add unal-
located edges to Pk without increasing the number of replication. The formula for 
selecting the best exploration vertex vbest is as follows:

This formula explains the decision-making process for selecting boundary verti-
ces with higher Clustering_Coefficient as the best exploration vertex. Given a ver-
tex v belonging to the boundary vertex and its adjacent vertex set N(v) , if there 
are only a few edges connected between vertex v and core vertex set C(Pk) in the 
partition, then Clustering_Coefficient of vertex v will be close to 0. This reflects a 
relatively sparse connection environment in the partition. When selecting the best 
exploration vertex, the algorithm gives priority to boundary vertices with a higher 
Clustering_Coefficient , so as to ensure that the allocated edges help to improve the 
connection tightness of the whole partition and reduce the number of replication.

An example of selecting the best exploration vertex through Eq.  (7) is 
shown in Fig.  2. During the expansion process, based on the principle of 
Eq.  (7), we select the best exploration vertex from the set of candidate vertices 
S(p)�C(p) = {a, b, c} to strengthen the structural compactness of the partition 
p . The calculation results show that the score of each candidate vertex follows: 
Clustering_Coefficient(a|p) = 1

16
= Clustering_Coefficient(b|p) = 1

16
< Clustering_

Coefficient(c|p) = 1
8
 , so the vertex c is selected as the best exploration vertex and 

add it to the core vertex set C(p) , and at the same time allocate the edge (c,h) and 
edge (c,o) connected with it into the current partition p . However, if it is partitioned 
based on Eq. (5), that is |N(a) ⧵ S(p)| = 2 = |N(c) ⧵ S(p)| < |N(b) ⧵ S(p)| = 3 . If it 
is only based on the indicator for the number of out-of-partition vertices, it is 
necessary to randomly choose one of the vertices a and c as the best explora-
tion vertex. However, this strategy that only depends on the number of out-of-
partition vertices has certain limitations. Although vertex a and vertex c have the 
same number of out-of-partition vertices in absolute terms, the structural tight-
ness between vertex c and partition p is significantly better than that of vertex a , 
as shown in Fig. 2. This means that only relying on Eq. (5) may ignore the cor-
relation and connectivity between vertices and the whole structure of the parti-
tion, thus leading to the failure of the selected exploration vertex to maximize the 
internal stability of the partition.

(6)Cluster_Coefficient
(
v|Pk

)
=

N(v) ∩ C
(
Pk

)

N(v)2

(7)vbest ∶= argmax
v∈S(Pk)⧵C(Pk)

Cluster_Coefficient(v|Pk)

Fig. 2  An illustration of heu-
ristic strategy for selecting best 
exploration vertex



1 3

Distributed and Parallel Databases 

In the following sections, we will explain in detail how to effectively utilize these 
theoretical analysis for optimizing graph partitioning process.

5.2  Parallel expansion

For the balanced |P|-way edge partitioning of G = (V ,E) , the key consideration is to 
ensure that there are as many partitions as there are machines available. We assume 
that it is most efficient for each partition to be assigned to one machine [36]. In 
addition, the parallel expansion is classified as an offline algorithm, which requires 
full access to the whole input graph from the beginning. Therefore, it is essential to 
effectively initialize the deployment of the input graph in a distributed main memory 
system to achieve scalability and efficiency. In our study, map all edges to their cor-
responding machines by hash function to ensure that adjacent edges are assigned to 
the same machine [37]. This approach can reduce the possibility of load imbalance 
and improve the overall performance of the algorithm. At the same time, we use the 
compressed sparse row (CSR) graph representation [38, 39], which stores the adja-
cency lists of vertices in the column array. In the CSR representation, the neighbor-
hood information of each vertex is stored in a compact form, with the aim of mini-
mizing memory consumption and improving the efficiency of the algorithm. CSR 
consists of vertex IDs, an index array, and a column array. The vertex ID serves as 
a unique identifier for each vertex and is used to locate and identify specific vertices 
in the graph. Each element in the index array indicates the starting position of each 
corresponding vertex’s neighborhood in the column array. The column array stores 
the neighborhood information of each vertex in the graph.

Main workflow. The main workflow of PECC is illustrated as Fig.  3. Each 
expansion and allocation process is assigned to one of the |P| machines. First, the 
input graph is distributed to some computing nodes by hash function (Step 1.1). 
Then, based on the initial vertex selection strategy, an initial exploration vertex 
is selected and added to the core vertex set to ensure that the selected vertex can 
effectively guide subsequent expansion processes (Step 1.2). During the expan-
sion process, the algorithm selects the best exploration vertex based on a heuristic 

Fig. 3  The workflow of our 
PECC
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strategy and broadcasts it to the allocation process, waiting for the corresponding 
allocation process to distribute the edges (Step 3). The allocation process concur-
rently synchronizes the allocated edges to the corresponding expansion process, 
and the expansion process expand the partitions in parallel (Step 4). Finally, the 
iteration termination condition is verified (Step 5–6). At the end of the computa-
tion, each edge is assigned to the |P| partitions.

Selecting initial exploration vertices. Initially, the expansion process in each 
iteration starts with the selection of a vertex based on the new rule. Algorithm 1 
shows the details of the selection strategy. The following operations are per-
formed: firstly, an examination is conducted to determine whether S

(
Pk

)
 is empty. 

If it is, it means that the partition has not yet started, so a vertex will be ran-
domly chosen as the initial vertex. In the event that S

(
Pk

)
 is not empty, the ver-

tex with the highest Cluster_Coefficient is selected, added to the current partition, 
and considered as the next exploration vertex. In this context, Cluster_Coefficient 
refers to the closeness between the vertex and the partition itself. A higher 
Cluster_Coefficient implies that the vertex is closer to the partition, making its 
selection beneficial to further expanding of the partition.

Algorithm 1  Selecting exploration vertices

Input: core set C(Pk), boundary set S(Pk)
Output: vbest
1: if S(Pk) = ∅ then
2: vbest ← RandomSelect(O(Pk))
3: else
4: vbest ← argmax

v∈S(Pk)\C(Pk)
Cluster Coefficient(v)

5: end if

Each expansion process in parallel selects a new vertex from the boundary 
vertex set S(Pk) to expand the edge set E(Pk) . The specific execution process is 
detailed in Algorithm 2. Each partition undergoes iterative computation, includ-
ing the selection of the best exploration vertex (lines 5), the request allocation 
process (line 6), and the synchronization and updating of the boundary vertex set 
and edge set (lines 7-8). In the exploration vertex selection phase, if the partition 
capacity could not exceed the upper load limit and the boundary vertex set S(Pk) 
is not empty, the best exploration vertex vbest is selected from S(Pk) by Eq.  (7). 
Otherwise, vbest is randomly selected from the external vertex set O(Pk) of unal-
located edges. Subsequently, during the request allocation phase, each expansion 
process propagates vbest to the corresponding allocation process and awaits the 
allocation process for edge distribution. Once the edge partition is completed, 
each expansion process receives new edges and adds Enew to E(Pk) . Finally, the 
expansion process verifies the termination condition.
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Algorithm 2  PECC algorithm

Input: input Graph G, partition set P , load
threshold = α |E| / |P |
Output: final partition Pnew

1: E(Pk) ← ∅, S(Pk) ← ∅
2: for Pk in P do
3: vbest ← ∅
4: while |E(Pk)| ≤ δ do
5: SelectExplorationV ertex()
6: AllocateEdges(vbest)
7: Enew ← ReceiveNewAlloEdges()
8: E(Pnew) ← E(Pk) ∪Enew

9: |E|sum ← GatherSum(E(Pk))
10: if |E|sum = |E| then
11: break
12: end if
13: end while
14: end for

5.3  Allocation process

The allocation process uses a distributed approach to manage the input graph 
and is responsible for the assignment of edges. Algorithm 3 provides a detailed 
description of the execution steps of the allocation process. In the initial state, 
the unallocated edge set Enew is initialized as an empty set. At the same time, 
the union of the core vertex set C(Pk) of partition Pk and the best exploration 
vertex vbest is set as a new variable Cnew , while the union of the boundary ver-
tex set S(Pk) of partition Pk and the best exploration vertex vbest is set as a new 
variable Snew . Upon receiving the best exploration vertex vbest , the allocation pro-
cess considers vbest as a core vertex and its adjacent vertices as boundary vertices. 
Then, by calculating the total number of edges between core vertices, between 
boundary vertices, and between core vertices and boundary vertices, denoted by 
|ECnew−Cnew

| + |ECnew−Snew
| + |ESnew−Snew

| , the allocation process evaluates whether it 
exceeds the load threshold. If the condition is met, these edges are considered 
assignable and added to the Enew . Otherwise, if the condition is not satisfied, the 
allocation process selects the vertex with the highest Clustering_Coefficient from 
the boundary vertex set and adds the edges between the core vertices and that 
selected vertex to Enew . Assigning multiple unallocated edges at once effectively 
improves the iterative efficiency of the algorithm. At the end of each allocation 
process, the process sends the edge set Enew to the corresponding expansion pro-
cess, ensuring cooperation among the processes.
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Algorithm 3  Allocate edges

Input: best exploration vertex vbest

1: Enew ← ∅
2: Cnew ← C(Pk) ∪ vbest
3: Snew ← S(Pk) ∪N(vbest)
4: if |ECnew−Cnew | + |ECnew−Cnew | +

|ECnew−Cnew | < δ then
5: Enew ← ECnew−Cnew ∪ECnew−Snew

∪ESnew−Snew

6: else
7: x ← argmax

v∈Snew\Cnew

Cluster Coefficient(v)

8: Enew ← ECnew−x

9: end if
10: SynchronizeV ertex()
11: SendNewAllocatedEdges(Enew)

Distributed lock. During the edge allocation process, there is a synchronization 
of global information between partitions. The synchronization process plays a cru-
cial role in ensuring the consistency of allocated edges in a distributed environment. 
However, unlike in a single-machine environment where edges can be directly allo-
cated, edge allocation in a distributed environment leads to concurrency manage-
ment problems. When multiple partitions attempt to allocate the same edge simulta-
neously, conflicts arise and must be solved to determine which partition successfully 
allocates the corresponding edge.

Since the allocated edges in the edge partitioning model are unique to each parti-
tion, we only need to synchronize the globally shared information of the replicated 
vertices. Therefore, we propose the use of a distributed lock engine to effectively 
synchronize vertex information between partitions, ensuring the consistency and 
integrity of data in each process.

Distributed locks play a crucial role in coordinating access to shared resources 
among multiple processes or threads in a distributed system. Specifically, when an 
allocation process requires access to and modification of a vertex’s information, it 
must first acquire the distributed lock associated with that vertex. Only the process 
that successfully acquires the lock can perform the corresponding operation, while 
other processes waiting for the lock will be blocked until the lock is released.

The execution process of distributed lock is illustrated as Fig. 4. Taking four par-
titions P1 , P2 , P3 , and P4 as an example, in the allocation process, processes A1 and 
A3 simultaneously attempt to expand vertex v . Without distributed locks, A1 and A3 
may modify the information of vertex v at the same time, leading to data conflicts. 
However, by introducing distributed locks, this situation can be avoided. When A1 
starts processing v , it first tries to acquire the shard lock associated with vertex v . 
After successfully obtaining the lock, A1 attempts to add the edge (x, v)) to partition 
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P1 while updating the vertex-partition relationship (v,P1) on vertex v , making vertex 
v a new boundary vertex. Meanwhile, when A3 tries to acquire the same lock during 
this time, it is blocked until A1 completes its operations on vertex v and releases the 
lock. This way, A1 can only start processing vertex v after A1 completes its opera-
tions, ensuring the serialization of operations on vertex v are serialized and avoiding 
data conflicts. During the processing of A3 , the vertex-partition relationship (v,P3) 
on vertex v is updated. Once all operations are completed, the vertex-partition rela-
tionships of the duplicated vertex v are synchronized across each process. Follow-
ing the synchronization process, the newly allocated edge set Enew is sent back to 
the expansion process. The expansion process then calls |ReceiveNewAlloEdges()| 
(Line 7 of Algorithm 2) to add Enew to the partition.

6  Evaluation

6.1  Experiment setting

Graph datasets. We evaluate the performance of our partitioning algorithm through 
a lot of real-world graphs obtained from the Stanford Network Analysis Platform 
(SNAP) website [40]. Table 1 presents the fundamental characteristics of the data-
sets used in our experiments. We choose graphs of different sizes to comprehen-
sively evaluate the partitioning performance of algorithms. Different structure and 

Fig. 4  The workflow of distributed locks. Each allocation flow (A1,A2,A3,A4) handles one partition, and 
each color (blue, green, yellow, red) represents a partition, and each line (solid, dashed) represents a 
request (Color figure online)
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volumes of data lead to subtle variations in partitioning behavior and performance. 
These datasets are randomly ordered.

Benchmark partitioning algorithms. First, we compare with state-of-the-art 
offline and streaming algorithms on large-scale real-world graphs. NE [12] is the 
offline algorithm, whereas DBH [41], HDRF [14], SNE [12] and 2PS [42] are the 
streaming algorithms. DBH is fast streaming partitioner based on hashing for power-
law graphs. HDRF achieves a lower replication factor with moderate runtime and 
memory overhead. NE is currently the edge partitioning algorithm with the best 
partitioning quality. SNE extends NE to a streaming partitioning algorithm, which 
takes into account both the partition quality and memory consumption. 2PS adopts 
a two-phase out-of-core model to achieve a trade-off between partitioning quality 
and running time. Second, we compare PECC with some distributed partitioning 
algorithms, including XtraPuLP [26] and Sheep [28]. XtraPuLP is the state-of-the-
art distributed-memory graph partitioner. Sheep is a distributed edge partitioning 
algorithm that produces high partitioning quality. It is based on the construction 
of the distributed elimination tree. Finally, we compare our PECC integrated on 
GraphX with the built-in native algorithms, including RandomVertexCut (RVC), 
EdgePartition1D (EP1D), EdgePartition2D (EP2D) and CanonicalRandomVertex-
Cut (CRVC). RVC achieves a randomized vertex-cut distribution by hashing the ID 
of source and destination vertices. EP1D allocates edges to corresponding partitions 
based only on the source ID. EP2D uses a two-dimensional partitioning strategy 
of the sparse edge adjacency matrix for edge allocation. CRVC allocates duplicate 
edges connecting any two specific vertices to the same partition using a standardized 
random vertex-cut method.

Evaluation scenario. We implement all methods in C++. All graph partitioning 
algorithms are evaluated in the distributed environment. We assume that it is most 
efficient for each partition to be assigned to one machine. Each machine in the clus-
ter has the following specifications: Ubuntu 20.04 LTS operating system, Intel Ice 
Lake(2.7GHz/3.3GHz) with 8 cores Cpu, 32GB memory. To ensure reliable results, 
each evaluation result is an average of 10 runs and the differences from the mean are 
below 5%. For the sake of clarity, these minor deviations have been omitted from the 
presented results. At the same time, for HDRF, � is also set to 1.1 [14].

Table 1  Graph datasets used in this evaluation

Dataset Vertices Edges Type

Wiki-Talk(WT) 2,394,385 5,021,410 Communication network
soc-LiveJ(LJ) 4,847,571 68,993,773 Social network
com-Orkut(OK) 3,072,441 117,185,083 Social network
com-Friendster(CF) 65,608,366 1,806,067,135 Social network
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6.2  Performance evaluation

Replication Factor (RF). All graph partitioning algorithms are tested on 4 differ-
ent graph datasets with the number of different partitions (e.g. 4, 8, 16, 20). We first 
conducted a performance analysis of PECC and some classical offline and streaming 

Fig. 5  Replication factor of WT on different partitions

Fig. 6  Replication factor of LJ on different partitions

Fig. 7  Replication factor of OK on different partitions
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partitioning algorithms. From the experimental results shown in Figs. 5, 6, 7 and 8, 
it can be demonstrated that the RF of DBH and HDRF perform poorly on all four 
datasets. DBH and HDRF are graph partitioning algorithms specifically designed for 
power-law graphs, with the main idea of replicating high-degree vertices as much as 
possible to reduce the replication factor generated by low-degree vertices. Both of 
two algorithms, however, are classified as streaming partitioning algorithms because 
they partition the edges only once during partitioning process. However, they fail 
to take into account the subsequent impact of incoming vertices on the partitions, 
resulting in relatively higher replication factors. 2PS yields a lower replication factor 
than DBH and HDRF, but it is far from the quality of PECC. On the other hand, NE 
consistently produces relatively lower replication factors, and SNE, as the stream-
ing partitioning version of NE, also demonstrates good performance. According to 
literature [12], NE is currently regard as the best graph partitioning algorithm, while 
PECC achieves competitive partitioning performance on the four datasets.

Furthermore, we measured the performance of Sheep and XtraPuLP partitioning 
algorithms in a distributed environment, assuming that each partition is assigned to 
a separate machine for optimal efficiency. By comparing these algorithms, PECC 
consistently produces the lowest replication factors. In contrast, XtraPuLP produces 
poorer replication factors. This is because XtraPuLP prioritizes optimizing the par-
tition balance during the iterative process and then considers minimizing the edge 
cutting ratio. Additionally, it only stops the algorithm execution based on the maxi-
mum number of iterations, which can result in poorer replication factors. However, 
on the OK dataset, PECC produces larger replication factors, reaching a value of 3.9 
on 32 partitions. This is mainly because it is more challenging to generate high-qual-
ity partitions with the increase of graph size. Additionally, the OK dataset follows 
a power-law distribution, where the degree distribution of vertices is highly uneven 
and a few vertices have extremely high degrees. In summary, PECC demonstrates 
relatively good partition quality on real-world graphs with different scales.

Running Time (RC). As shown in fig.9, we compare the RC of PECC with the 
aforementioned algorithms on 16 partition. It is evident that PECC is significantly 
faster than offline and streaming algorithms. Compared with distributed graph par-
titioning algorithms, PECC outperform Sheep in terms of efficiency. These results 

Fig. 8  Replication factor of CF on different partitions
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highlight the efficiency of the PECC algorithm in diverse real-world graph scenar-
ios. it is important to note that PECC consistently demonstrates competitive perfor-
mance with other state-of-the-art algorithms, such as XtraPuLP. On LJ and CF data-
sets, XtraPuLP takes less time than PECC because XtraPuLP speeds up algorithm 
convergence at the expense of sacrificing partition quality. Understanding these 
variations in algorithm performance across different datasets and scenarios is essen-
tial for making informed decisions when selecting a distributed graph partitioning 
algorithm.

6.3  Experiments on GraphX

We compares our PECC algorithm against four native partitioners, including 
RVC, CRVC, EP1D and EP2D, in GraphX, in terms of replication factor (RF), 
edge balance (EB), and vertex balance (VB) on a cluster of 20 machines. Each 
result is an average of ten runs to ensure that their relative standard error is less 
than 5%. As shown in Table 2, 3, 4 and 5, RVC and CRVC, based on hash func-
tions, randomly select and cut vertices, which to some extent limits their random-
ness due to the graph’s structural characteristics. While they achieve load bal-
ance, the randomness leads to instability in partitioning results. In term of RF, 

Fig. 9  Running time of different partitioning algorithms on 16 partitions

Table 2  Partitioing quality on GraphX

The number of partitions is 4

Wiki-Talk Soc-LiveJ Com-Orkut Com-Friendster

RF EB VB RF EB VB RF EB VB RF EB VB

RVC 1.4 1 1 3 1 1 3.8 1 1 7.6 1 1
CRVC 1.3 1 1 2.8 1 1 3.8 1 1 7.6 1 1
EP1D 1.3 1.1 1.1 2.8 1 1 3.7 1 1 7.6 1 1
EP2D 1.2 1.1 1.1 2.4 1 1.3 2.8 1 1.3 5.3 1.1 1.1
PECC 1 1.3 1.3 1.8 1.3 1.3 2.3 1.3 1.3 2.5 1 1
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EP1D slightly improves partitioning quality by placing edges of source vertices 
in the same partition, effectively reducing the number of cut vertices. EP2D fur-
ther optimizes partitioning quality by dividing edges in a two-dimensional space, 
but EP1D and EP2D lack effective heuristic strategies, resulting in lower partition 
quality. Compared with the above algorithms, PECC achieves better partitioning 
quality. However, in the LJ dataset with 20 partitions, VB is relatively poor. This 

Table 3  Partitioing quality on GraphX

The number of partitions is 8

Wiki-Talk Soc-LiveJ Com-Orkut Com-Friendster

RF EB VB RF EB VB RF EB VB RF EB VB

RVC 1.5 1 1 5 1 1 7.2 1 1 11.6 1 1
CRVC 1.5 1 1 4.3 1 1 7.2 1 1 11.6 1 1
EP1D 1.5 1.2 1.2 4.3 1 1 6.8 1 1 11.3 1 1
EP2D 1.3 1 1 3.4 1 1 4.3 1 1.1 6.4 1.2 1.2
PECC 1.1 1 1 2.5 1 1 2.7 1 1 2.8 1 1

Table 4  Partitioing quality on GraphX

The number of partitions is 16

Wiki-Talk Soc-LiveJ Com-Orkut Com-Friendster

RF EB VB RF EB VB RF EB VB RF EB VB

RVC 1.7 1 1 7.7 1 1 13.1 1 1 15.1 1 1
CRVC 1.6 1 1 6.4 1 1 13.1 1 1 15.1 1 1
EP1D 1.6 1.3 1.3 6.2 1 1 11.4 1.1 1.1 14.7 1 1
EP2D 1.4 1.1 1.1 4.5 1 1.1 6.1 1 1.1 7.5 1.1 1.1
PECC 1.2 1 1 2.7 1 1 3.1 1 1 3.2 1.1 1.1

Table 5  Partitioing quality on GraphX

The number of partitions is 20

Wiki-Talk Soc-LiveJ Com-Orkut Com-Friendster

RF EB VB RF EB VB RF EB VB RF EB VB

RVC 1.7 1 1 8.8 1 1 15.6 1 1 17.8 1 1
CRVC 1.7 1 1 7.1 1 1 15.6 1 1 17.8 1 1
EP1D 1.6 1.3 1.3 6.8 1 1 13.2 1 1 16.4 1 1
EP2D 1.4 1.1 1.1 4.9 1 1 6.9 1 1 8.6 1 1
PECC 1.2 1.1 1.1 3.2 1.3 1.3 3.2 1 1 3.5 1.3 1.1
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is because PECC uses a heuristic strategy during iterations, where each partition 
selects the best exploration vertex based on its current state. This helps control 
the growth rate of vertices in each partition, ensuring high-quality partitions are 
achieved. Consequently, PECC consistently outperforms the native graph parti-
tioning algorithms of GraphX in terms of partitioning quality and load balance.

7  Conclusion

In this paper, we firstly conducted a comprehensive study of NE and analysed its 
shortcomings during the partitioning process. On the one hand, the internal struc-
tural changes during the expansion of vertex neighborhood causes partition distur-
bance. To address this problem, we proposed a heuristic partitioning strategy based 
on clustering coefficient to improve the quality of algorithm. On the other hand, in 
a distributed environment, multiple processes partitioning the same graph element 
simultaneously leads to concurrency management problems. To address this prob-
lem, we introduced a distributed lock engine to ensure the consistency of global syn-
chronization information. Based on the above challenges, we presented the parallel 
extension version of NE, called PECC. Finally, experimental results on four datasets 
demonstrated that PECC can achieve a balance between partition quality and com-
putational efficiency.

Nevertheless, the scope of this study is limited to homogeneous computing envi-
ronment. In future work, we aim to reconstruct and optimize the proposed algorithm 
in heterogeneous computing environment.
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