
Vol.:(0123456789)

Distributed and Parallel Databases (2023) 41:467–488
https://doi.org/10.1007/s10619-023-07429-x

1 3

GTraclus: a novel algorithm for local trajectory clustering
on GPUs

Hamza Mustafa1 · Clark Barrus2 · Eleazar Leal1 · Le Gruenwald2

Accepted: 20 April 2023 / Published online: 13 May 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
Due to the high availability of location-based sensors like GPS, it has been possible
to collect large amounts of spatio-temporal data in the form of trajectories, each of
which is a sequence of spatial locations that a moving object occupies in space as
time progresses. Many applications, such as intelligent transportation systems and
urban planning, can benefit from clustering the trajectories of cars in each locality
of a city in order to learn about traffic behavior in each neighborhood. However, the
immense and ever-increasing volume of trajectory data and the concept drift present
in city traffic constitute scalability challenges that have not been addressed. In order
to fill this gap, we propose the first GPU algorithm for local trajectory clustering,
called GTraclus. We present a parallelized trajectory partitioning algorithm which
simplifies trajectories into line segments using the Minimum Description Length
(MDL) principle. We evaluated our proposed algorithm using two large real-life tra-
jectory datasets and compared it against a multicore CPU version, which we call
MC-Traclus, of the popular trajectory clustering algorithm, Traclus; our experiments
showed that GTraclus had on average up to 24× faster execution time when com-
pared against MC-Traclus.

Keywords  Trajectory · Clustering · GPU · Spatial data · Parallel computing

 *	 Eleazar Leal
	 eleal@d.umn.edu

	 Hamza Mustafa
	 musta067@d.umn.edu

	 Clark Barrus
	 clark.barrus@ou.edu

	 Le Gruenwald
	 ggruenwald@ou.edu

1	 Department of Computer Science, University of Minnesota Duluth, Duluth, MN, USA
2	 School of Computer Science, University of Oklahoma, Norman, OK, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-023-07429-x&domain=pdf

468	 Distributed and Parallel Databases (2023) 41:467–488

1 3

1  Introduction

Easily attainable GPS technology and cheap storage space have led to an unprece-
dented amount of trajectory data, where a trajectory is the time-ordered sequence
of positions, i.e., latitude and longitude, that a moving object occupies in space
as time passes. This provides a great opportunity for analyzing similar patterns
on time-varying data by clustering the trajectories into groups containing similar
trajectories. Such analysis has a broad range of applications in bird migration pat-
tern identification, location-based social networks [1], recommendation of travel
locations of interest based on common trajectories [2], finding users with similar
life experiences based on their trajectories [3], intelligent transportation systems,
and urban computing [4]. Trajectory clustering can also be used in trajectory-
based advertising, where a shopping mall, after tracking the movements of the
shoppers that have logged into its wireless network, can send personalized adver-
tising information to customers based on their paths inside the mall [5].

An important consideration for trajectory clustering is whether the elements to
be clustered are entire trajectories, in which case we say that we perform global
trajectory clustering, or whether they are sub-trajectories, which gives rise to the
problem of local trajectory clustering. In many applications, clustering entire tra-
jectories may not provide significant insights into the common shorter paths the
objects take, as real-world objects do not always take similar paths for the entirety
of their journeys. For example, when using trajectories for predicting a hurri-
cane’s landfall, meteorologists are more interested in clustering hurricane behav-
iors near the coastline or at sea rather than on the entire hurricane trajectories [6].
Similarly, when examining the effects of vehicular traffic on animal movement,
distribution, and habitat use, zoologists are more interested in common behaviors
of animal trajectories near roads [7]. These problems can be solved with Traclus,
a well-known local trajectory clustering algorithm for single-core CPUs [8].

Despite its wide range of applications, Traclus does not scale with large trajectory
datasets. This problem along with the very large and ever-increasing sizes of spatio-
temporal datasets and with the presence of concept drift in the previously mentioned
applications, gives rise to a need for parallel local trajectory clustering algorithms.
One way to address this problem is to utilize Graphics Processing Units (GPUs),
which are parallel processors that can provide efficient and massively parallel com-
putation with high instruction throughput and memory bandwidth, even when com-
pared to multicore CPUs [9]. However, developing algorithms for GPUs is not with-
out challenges, as the latter have several idiosyncrasies that need to be addressed in
order to attain the high-performance throughput for which GPUs are known [10].
Among these idiosyncrasies are the small memory space of GPUs and that the inter-
faces through which they are connected to the computer (e.g., the PCIe bus) have
low throughput when compared to their instruction throughput.

Despite the advantages of GPUs, no algorithm exists that exploits this archi-
tecture for local trajectory clustering. To address this gap, we introduce GTraclus,
a novel GPU algorithm for local trajectory clustering. GTraclus includes a novel
trajectory partitioning algorithm for GPUs that uses the Minimum Description

469

1 3

Distributed and Parallel Databases (2023) 41:467–488	

Length principle (MDL) and a novel GPU algorithm for trajectory segment clus-
tering. The MDL principle allows compressing trajectories by minimizing the
approximation error and the total number of points resulting from the compres-
sion. We analyze the performance of GTraclus when applied to two large, real-
world datasets, Geolife [2] and Porto [11], and compare its performance with that
of a multicore CPU version of Traclus, which we call MC-Traclus. The contribu-
tions of this paper are the following: 1) A novel GPU algorithm, named GTraclus,
for trajectory partitioning according to the Minimum Description Length princi-
ple; 2) a GPU algorithm to cluster segments with a breadth-first search on a graph
whose nodes are the partitioned line segments; and 3) a comprehensive set of
experiments demonstrating the performance and scalability of GTraclus cluster-
ing hundreds of thousands of trajectories from real-world datasets.

A preliminary version of this paper was presented in 2021 at the Joint Interna-
tional Workshop on Big Data Management on Emerging Hardware and Data Man-
agement on Virtualized Active Systems (HardBD & Active), which is a part of
IEEE International Conference on Data Engineering Workshops (ICDEW) [12].
This paper extends the workshop version by providing the following additional
details and experiments: (1) we perform a study of the impact of the different stages
of GTraclus on its overall execution time performance; (2) we extend our proposed
GTraclus algorithm with a linear work complexity GPU algorithm for trajectory
cluster expansion; (3) we evaluate the impact of this algorithm on the overall exe-
cution time performance; and (4) we revise the presentation, adding more related
work.

The remainder of this paper is organized as follows: Sect. 2 presents background
concepts and related work; Sect. 3 contains the description of the proposed GTraclus
algorithm; Sect. 4 contains a thorough performance analysis; and finally, Sect. 5 pre-
sents conclusions and future work.

2 � Background and related work

In this section, we provide the background material necessary to follow the discus-
sions on GPUs, local trajectory clustering, and present related work.

2.1 � GPUs

GPUs are highly parallel processors connected to the main computer through an
interface like PCIe and can achieve up to an order of magnitude of higher through-
put than comparable multicore CPUs [9]. GPU programs are organized into kernels
[13], which are C-like functions called from within the CPU, also called the host.
Kernels launch a grid of thousands of simultaneously executing threads, which are
grouped into blocks. The GPU’s memory space is separated from the host’s, which
makes it necessary to send all input data through the PCIe bus to the GPU before
any processing can take place in the latter, and to send all output data from the GPU
back to the host. The memory space of GPUs is also hierarchical: threads can access

470	 Distributed and Parallel Databases (2023) 41:467–488

1 3

their own individual local memory registers; threads in a block can cooperate by
using the larger block-wide shared memory; and threads across different blocks all
have access to the slower but bigger global GPU memory.

In order to use GPUs to exploit the parallelism present in many algorithms, it is
necessary to address the research challenges of this architecture. Among these chal-
lenges are the following: 1) low global memory bandwidth relative to the number
of threads. Because of the large number of threads contending for global memory
access within a GPU, it is desirable to group those memory requests into as few
memory transactions as possible. This can be done by the memory coalescing unit
if those accesses respect memory coalescing, i.e., if consecutive threads access adja-
cent memory locations [14]; 2) low throughput of the GPU-host interface. Since
GPUs are connected to the host through relatively low throughput interfaces such
as PCIe, it is essential that communication through the GPU-host interface is mini-
mized; and 3) load balancing. GPU kernels must make sure that different threads
and blocks have an equal amount of work so that a single thread or block does not
dominate the total execution time.

The problem of trajectory clustering on GPUs is related to that of arbitrary data
clustering on the same architecture [15, 16]. In particular, our proposed algorithm,
GTraclus, is similar to general-purpose density-based clustering algorithms. None-
theless, existing work on GPU algorithms for the latter does not consider the spatio-
temporal correlation of trajectory data. This correlation impacts how this data type
is arranged in the GPU’s global memory and the calculation of the similarity meas-
ure. There are multiple works devoted to studying algorithms for density-based clus-
tering on GPUs: Thapa et al.’s algorithm [17], CUDA-DClust [18], CUDA-DClust+
[19], CudaSCAN [20], Prokopenko’s algorithm [21], and GPU-INSCY [15, 16]. Our
previous work [22] provides an experimental comparison among several of these
GPU algorithms for general data clustering.

2.2 � Trajectory clustering

The problem of trajectory clustering, also called global trajectory clustering, con-
sists in that given a dataset of trajectories D and a similarity measure between any
two trajectories s, find a collection of mutually disjoint subsets, also called clusters,
of D such that the trajectories belonging to any cluster c are more similar to each
other according to s than they are to trajectories in other clusters different from c.
Due to the importance of trajectory clustering applications, there are several works
devoted to the study of this problem [23–25].

However, there are applications where clustering the entire trajectories may not
provide insights into the common shorter paths that the objects took because real-
world objects do not always take similar paths for the entirety of their journeys,
instead they take similar paths for only a portion of them. For example, when clus-
tering the trajectories of vehicles moving in a large city like Beijing, most people
do not have very similar trajectories because they live and work in different places.
However, if the trajectories are first broken into sub-trajectories and then clustered,
then it is possible to discover, for example, that many vehicles drive on a specific

471

1 3

Distributed and Parallel Databases (2023) 41:467–488	

highway. Based on this observation, the problem of local trajectory clustering [8]
was introduced, which consists in that given a dataset of trajectories D and a similar-
ity measure between any two line segments s, find a collection of mutually disjoint
sets, also called clusters, of sub-trajectories of trajectories in D such that the sub-
trajectories belonging to any cluster c are more similar to each other according to s
than they are to sub-trajectories in clusters different from c.

The Traclus algorithm [8] was proposed to solve the local trajectory clustering
problem and it works in two phases: it first partitions trajectories into line segments,
and then it clusters the line segments. Traclus uses the Minimum Description Length
(MDL) principle to approximate the best representation for a trajectory while losing
as little information as possible. Other works devoted to trajectory clustering are
TCMM [26], CenTra-I-FCM [27], NNCluster [28], and TSST-HDBC [29], none of
which can perform local trajectory clustering.

Despite the many advantages of GPUs, e.g. their availability in almost all kinds of
computing devices, none of the clustering algorithms has been developed to address
the issues of GPUs. To the extent of our knowledge, the only other GPU trajec-
tory clustering algorithms are G-Tra-POPTICS [30], a density-based point cluster-
ing algorithm for global trajectory clustering, not for local trajectory clustering like
ours, and the work by Gudmundsson and Valladares [31], which, unlike GTraclus,
finds clusters of similar sub-trajectories within a single trajectory and makes use of
the Fréchet distance and not MDL.

3 � Proposed algorithm

In this section, we present our proposed algorithm, GTraclus, for local trajectory
clustering on GPUs.

3.1 � Overview

GTraclus is a GPU algorithm for local trajectory clustering that receives as inputs
two numbers: minLines and Epsilon. This algorithm works in two stages executed in
succession: a partitioning stage and a grouping stage. Its pseudo-code is presented
in Algorithm 1. In its partitioning stage, GTraclus uses the Minimum Descrip-
tion Length (MDL) principle to partition trajectories into line segments, and in its
grouping stage, it uses a GPU density-based clustering algorithm to cluster similar
line segments. GTraclus also includes several optimization strategies for GPUs to
bring the computation time down. We now provide a brief overview of each of these
stages.

In its partitioning stage, GTraclus uses separate GPU threads to partition each
input trajectory by identifying characteristic points, which are the points belong-
ing to the trajectory that best partition it into line segments in terms of MDL cost
[8]. To discover the characteristic points of trajectory, a GPU thread traverses
each point of the latter while comparing the MDL cost of either including or not
including the current point. If the current point under consideration leads to a

472	 Distributed and Parallel Databases (2023) 41:467–488

1 3

greater overall MDL cost for the trajectory it belongs to, then the previous point
is classified as a characteristic point. This stage is called in Line 1 of Algorithm 1.

The grouping stage of GTraclus performs density-based clustering of the trajec-
tory segments on the GPU using a reachability graph. This graph has as vertex or
node set the set of all segments produced in the partitioning stage, and its edge set
is constructed by having an edge between any two vertices that lie within a segment
distance [8] of Epsilon. Then, it is possible to identify the core segments, i.e., those
nodes that have at least minLines many nodes within a segment distance of Epsilon,
then the border segments, i.e., those nodes that are not core, but such that there is a
path in the reachability graph from them to a core segment, and the noise segments,
which are all other segments that are neither core nor border. Then, by doing succes-
sive BFS traversals on the reachability graph starting from different core segments
p, it is possible to identify all the nodes reachable from p, which are the members of
the cluster to which p belongs. This stage is called in Line 2 of Algorithm 1.

We store this reachability graph in Compressed Sparse Row (CSR) format [32],
which has a low memory overhead that makes it very popular [33]. This format
stores a graph with two arrays: vertex and edge. The vertex array satisfies the follow-
ing property: for every integer i, an id of a vertex, vertex[i] contains the offset in edge
such that all elements in edge[vertex[i]] up to and including edge[vertex[i + 1] − 1]
are the ids of the vertices adjacent to i.

Algorithm 1 GTraclus (Trajectory Set D, Double Epsilon, Double
minLines)
Performs local trajectory clustering on D in the GPU using the values of
Epsilon and minLines

1: segments ← GPU -Partition(D) � Partitioning Stage
2: labels ← G-TrajScan(segments, Epsilon,minLines) � Grouping Stage
3: return (segments, labels)

3.2 � Partitioning stage

The first stage of GTraclus partitions the input trajectory dataset D using the GPU-
Partition function called in Line 1 of the function GTraclus in Algorithm 1. Given
a trajectory T = T1, T2,… , Tsize(T) , partitioning T according to the MDL principle
consists in finding a subsequence {Tc0 , Tc1 ,… , Tcl−1} of points of T, each of which is
called a characteristic point, such that the MDL cost, defined as L(H) + L(D ∣ H) is
minimized, where L(H) and L(D ∣ H) are defined as:

473

1 3

Distributed and Parallel Databases (2023) 41:467–488	

where TcjTcj+1 denotes the segment from Tcj to Tcj+1 and Length(TcjTcj+1) is the Euclid-
ean distance between its endpoints, d

⟂
 is the orthogonal distance [26] between two

segments Li and Lj where ‖Li‖ ≥ ‖Lj‖ , and it is defined as follows:
d
⟂
(Li, Lj) = (l2

⟂1
+ l2

⟂2
)∕(l

⟂1 + l
⟂2) , where l

⟂1 is the distance from one of the
endpoints of Lj to Li , l⟂2 is the distance from the other endpoint of Lj to Li , and d

�
 is

the angular distance between those two segments and is defined as:

To solve the MDL trajectory partitioning problem, we follow Traclus’s approxi-
mate partitioning algorithm [8]. We parallelize the problem on the GPU by assign-
ing different trajectories to different threads. The first step in GTraclus’s partitioning
stage is to calculate the number of segments for each trajectory, which is done by
the CountPartitions kernel. In this kernel, each thread is in charge of sequentially
traversing the points of its assigned trajectory, seeking for characteristic points. The
number of characteristic points determines the number of segments of a trajectory.
This kernel, called in Line 2 of the Function GPU-Partition in Algorithm 2, returns
the array dSegs containing the number of segments for each trajectory.

Algorithm 2 GPU-Partition (Trajectory Set D)
Each trajectory in D is partitioned in parallel according to the MDL principle
1: for trajectory t ∈ D do in parallel
2: dSegs[t] ← CountPartitions(t)
3: end for
4: dSegs ← InclusivePrefixSum(dSegs)
5: for trajectory t ∈ D do in parallel
6: segments ← FillPartitions(t, dSegs)
7: end for
8: return segments

Once the number of segments for each trajectory is known, it is possible to
actually allocate space in the GPU’s global memory to hold the trajectory seg-
ments. To accomplish this, an inclusive scan is executed over the array dSegs,
as shown in Line 4 of the Function GPU-Partition in Algorithm 2. This opera-
tion can be performed efficiently on GPUs and is used in this case to compute

L(H) =

l−2∑

j=0

log2

(
Length(TcjTcj+1)

)

L(D ∣ H) =

l−2∑

j=0

cj+1−1∑

k=cj

[
log2

(
d
⟂
(TcjTcj+1 , TkTk+1)

)

+ log2

(
d
�
(TcjTcj+1 , TkTk+1)

)]
,

d
�
(Li, Lj) =

�
‖Lj‖ ⋅ sin(�), if 0 ≤ � ≤ �∕2

‖Lj‖, if �∕2 ≤ � ≤ �.

474	 Distributed and Parallel Databases (2023) 41:467–488

1 3

the offsets in the segments array in which each trajectory’s segments will reside.
The original dataset is then discarded to free GPU memory. As mentioned, the
segments are computed and stored using Traclus’s approximate partitioning algo-
rithm in parallel, as shown in Lines 5–8 of GPU-Partition.

By first counting the number of partitions, allocating space for the results on
the host, and then calculating and saving those partitions in GPU memory, the
partitioning stage can take place entirely in GPU memory. If each thread allo-
cated its own separate space for the segments of its trajectory, each partition
would be in an independent location in memory and the host, and future ker-
nels would have to deal with different data locations. The strategy of maintaining
all of the segments in one array indexed by dSegs ensures that the partitions are
aligned in one array and in contiguous memory for use in the following kernels.

As mentioned, the GPU-Partition algorithm (Algorithm 2) is parallelized by
having GPU threads partition different trajectories. The disadvantage of this
approach is that warps load points located in non-adjacent memory locations; this
decision stems from the fact that trajectories are not guaranteed to have the same
number of points. However, as we will see in Sect. 4.5.3, this potential lack of
global memory coalescing does not have a significant impact on the overall exe-
cution time of GTraclus for a large number of trajectories because the partition-
ing stage does not necessarily dominate the execution time of our algorithm.

3.3 � Grouping stage

In the grouping stage, called in Line 2 of the GTraclus function in Algorithm 1,
the line segments produced by the partitioning stage are clustered. To do this,
we present a new density-based segment clustering algorithm for GPUs. Unlike
the existing G-DBSCAN [34], which is designed for density-based clustering of
points, the algorithm proposed here clusters trajectory segments, which poses a
different challenge concerning the arrangement of data in memory in order to
guarantee global memory coalescing in the GPU.

The grouping stage has two sub-phases: making of the density connected graph
of segments and the identification of segment clusters. We know explain each of
these.

Algorithm 3 GPU-TrajScan (Segment Set D, double Epsilon, double
minLines)
Performs the grouping stage of GTraclus on D in the GPU using the values of
Epsilon and minLines

1: graph ← Make-Graph(D,Epsilon,minLines)
2: labels ← Identify-Clusters(graph,Epsilon,minLines)
3: return labels

475

1 3

Distributed and Parallel Databases (2023) 41:467–488	

3.3.1 � Making the density connected graph

In Line 1 of the procedure G-TrajScan in Algorithm 3, our proposed algorithm
creates a density-connectedness graph whose vertices are the segments of all
trajectories. There exists an edge between any two vertices in this graph if and
only if their corresponding segments lie within an Epsilon distance of each other,
measured according to the segment distance of Traclus [8]. Once this graph is
created, GTraclus performs a sequence of parallel breadth-first searches (BFS)
on the segments in order to find segment clusters; each separate BFS search gives
rise to a different trajectory cluster. This strategy is highly efficient on GPUs
because the large amount of distance calculations between trajectory segments
can be parallelized. Given any vertex, all other vertices that are reachable from it,
meaning that there is a path in the graph between them, are labeled as members
of the same cluster. All the segments that are not part of any cluster are labeled as
noise.

Since our proposed segment clustering algorithm clusters line segments, it
stores for each segment the coordinates of its start and end points, the index of
the trajectory to which it belongs, and the identifier of the cluster to which it will
belong. To this end, Lines 1–8 of the Make-Graph function in Algorithm 4 count
the number of segments within an Epsilon distance of each segment, then Line
9 computes a prefix sum over the number of neighbors of each segment with the
purpose of allocating space for the CSR representation of the graph. Lines 10–15
then compute the edge_array by checking in parallel which segments are within
an Epsilon distance for each node.

Algorithm 4 Make-Graph (Segment Set D, double Epsilon, double
minLines)
Constructs the reachability graph on the set of segments D
1: for p ∈ D do in parallel
2: numNeighbors[p] ← 0
3: end for
4: for each pair (p, q) of segments in D do in parallel
5: if dist(p, q) < Epsilon then
6: numNeighbors[p]++
7: end if
8: end for
9: edge array ← ExclusivePrefixSum(numNeighbors)

10: for each pair (p, q) of segments in D do in parallel
11: if dist(p, q) < Epsilon then
12: Add q to the list vertex array of neighbors of p and vice versa
13: end if
14: end for
15: return new Graph(vertex array, edge array)

476	 Distributed and Parallel Databases (2023) 41:467–488

1 3

The Make-Graph Algorithm (Algorithm 4) is designed to exploit global mem-
ory coalescing because all segments of all trajectories are represented as four
arrays: startx, starty, endx, endy , allowing the threads in a warp to access their own
points in a coalesced manner in Lines 4–8 and 10–14; the fact that segments are
represented using those four arrays is not purposely shown in the pseudo-code of
Algorithm 4 so that the presentation is cleaner. Using the array numNeighbors to
store the number of neighbors of each segment allows coalesced global memory
accesses on two different occasions: first, after the threads have computed these
values on their own and write to the numNeighbors array (after Line 8), and sec-
ond, during the exclusive prefix sum computation (Line 9). The Make-Graph is
load balanced in Lines 1–9, except during the writing of the neighbors (Lines
10–14) because different segments will have different numbers of neighbors.

3.3.2 � Identifying the segment clusters

Once the reachability graph is created, a GPU-based BFS is initiated in Line 2
of the GPU-TrajScan procedure in Algorithm 3 by calling the Identify-Clusters
function in Algorithm 5. This algorithm begins with marking all nodes as not vis-
ited (Lines 2–4 of Algorithm 5). Then, in Lines 5–10, it starts a BFS search from
each unvisited core segment, where a core segment is one with at least minLines
many segments within a segment distance of Epsilon.

Algorithm 5 Identify-Clusters (Graph G, double Epsilon, double minLines)
Performs a BFS on the graph G in order to discover clusters
1: clusterID ← 0
2: for all node v do
3: visited[v] ← false
4: end for
5: for each node v ∈ G do
6: if visited[v] = false and v is a core segment then
7: visited[v] ← true
8: labels[v] ← clusterID
9: GPU-BFS(v,G,Epsilon,minLines, clusterID); clusterID++

10: end if
11: end for
12: return labels

During a BFS search from a core segment, shown in Algorithm 6, each thread
goes into the adjacency lists of density-connected line segments and marks them
as visited (Lines 5–11 in the Identify-Clusters procedure of Algorithm 5). All
density-connected line segments [35] get the same cluster label, and the process
is conducted in parallel. Once all segments are marked as visited, the algorithm
concludes, and clustering data is provided as output.

477

1 3

Distributed and Parallel Databases (2023) 41:467–488	

The GPU-BFS Algorithm is designed as a sequence of BFS kernel calls where each
thread is assigned a node on the frontier, which consists of the nodes in the adjacency
list of the previous frontier, until the entire frontier is explored. This allows the GPU to
explore the entire frontier of the breadth-first search at the same time.

In Lines 1–3 of Algorithm 6, we initialize two arrays, frontier and V of length
G.numNodes with false values, indicating that no vertex is in the frontier and no vertex
has been visited, and then place the vertex v in the frontier before calling, in Lines 4–6,
the GPU-BFS-Kernel of Algorithm 7.

This kernel has different threads check in parallel if each node in the graph belongs
to the frontier, and if it does, it removes the node from the frontier, marks it as visited
(Lines 1–3 of Algorithm 7), and adds its unvisited neighbor nodes to the frontier (Lines
4–9). In Algorithm 6, since each thread performs each one of the calculations in paral-
lel, the threads can make full use of their local thread registers to store and sum the
distance and vector calculations. These calculations are designed to contain no branch-
ing logic so different thread instructions will not diverge, allowing the GPU to achieve
high performance. Since all of the partitioned line segments are stored in a single array
and threads access this array in a serial fashion when loading the partitions to perform
distance calculations, the GPU is able to coalesce the data transfers from the global
memory.

Algorithm 6 GPU-BFS (Graph G, Node v, double Epsilon, double
minLines, integer clusterID)
Performs a BFS on the graph G in order to discover clusters
1: Initialize local array frontier[1 . . . G.numNodes] with false values
2: Initialize local array V [1 . . . G.numNodes] with false values
3: frontier[v] ← true // Put node v in the frontier
4: while frontier has some node with a value of true do
5: GPU-BFS-Kernel(G,Epsilon,minLines, frontier, V)
6: end while
7: Bring the V array from the GPU to the host
8: for each node n in the graph G do
9: if V [n] then

10: label[n] ← clusterID
11: visited[n] ← true
12: end if
13: end for

478	 Distributed and Parallel Databases (2023) 41:467–488

1 3

Algorithm 7 GPU-BFS-Kernel (Graph G, double epsilon, double minLines,
Array of boolean frontier, Array of boolean visited)
GPU Kernel that assists GPU-BFS in performing a BFS search
1: if frontier[threadID] then
2: frontier[threadID] ← false
3: visited[threadID] ← true
4: for each neighbor n of the node with identifier threadID do
5: if visited[n] = false and n is a Core segment then
6: frontier[n] ← true
7: end if
8: end for
9: end if

3.4 � Further enhancements to GTraclus

As can be seen from our description in Sect. 3.3, Algorithm 6, originally pre-
sented in our paper [12], has quadratic work complexity because every GPU
thread checks if its assigned elements belong to the frontier of the graph in Line
1 of Algorithm 7, regardless of the size of the frontier. In this section, we pre-
sent an improved, linear complexity version of this algorithm: GPU-BFS-Linear
(see Algorithm 8) and its associated kernel, GPU-BFS-Linear-Kernel (see Algo-
rithm 9), adapted from [36, 37]. These two algorithms are drop-in replacements
for Algorithms 6 and 7. Algorithm 8 initializes two queues, queue1 and queue2 ,
and a V array, all with a capacity equal to the number of nodes in the segment
graph (Lines 1–2 of Algorithm 8). Then, it places the starting node v in queue1
before calling the linear algorithm GPU-BFS-Linear-Kernel (Line 11). This ker-
nel, unlike the quadratic one, does not check each node for containment in the
frontier; instead, each GPU thread takes an element v from the queue (Line 2
of Algorithm 9) and adds to the next_queue all the unvisited core neighbors of
v (Lines 4–9 of Algorithm 9). This last operation is done with an atomic add to
make sure that the writes to the globally shared next_queue are coordinated. The
next_queue will be the queue used the next time that the GPU-BFS-Linear-Ker-
nel is called. This alternation between queue and next_queue is accomplished by
keeping track of the parity of the number of calls to the GPU-BFS-Linear-Kernel.

This kernel addresses the issue of low global memory bandwidth relative to
the number of threads by having threads by consecutive thread ids access adja-
cent elements of the queue array (Line 2 in Algorithm 9); nonetheless, accessing
the neighbors of those nodes might not guarantee global memory coalescing.

479

1 3

Distributed and Parallel Databases (2023) 41:467–488	

Algorithm 8 GPU-BFS-Linear (Graph G, Node v, double Epsilon, double
minLines, integer clusterId)
Performs a BFS on the graph G in order to discover clusters
1: Create two empty queues queue1, queue2 with capacity G.numNodes in

the GPU
2: Initialize local array V [1 . . . G.numNodes] with false values
3: level ← 0
4: queue1.insert(v) // Put node v in queue1
5: repeat
6: if level mod 2 = 0 then
7: queue, next queue ← queue1, queue2
8: else
9: queue, next queue ← queue2, queue1

10: end if
11: GPU-BFS-Linear-Kernel(G,Epsilon,minLines, V, queue, next queue)
12: level ← level + 1
13: until next queue = ∅
14: for each node n in the graph G do
15: if V [n] then
16: label[n] ← clusterID; visited[n] ← true
17: end if
18: end for

Algorithm 9 GPU-BFS-Linear-Kernel (Graph G, double epsilon, double
minLines, Array of boolean visited, Queue of Node queue, Queue of Node
next queue)
GPU Kernel that assists GPU-BFS in performing a BFS search
1: if threadID < queue.size then
2: v ← queue[threadID]
3: visited[v] ← true
4: for each neighbor n of the node v do
5: if visited[n] = false and n is a Core segment then
6: position ← atomicAdd(next queue.size, 1)
7: next queue[position] ← n
8: end if
9: end for

10: end if

480	 Distributed and Parallel Databases (2023) 41:467–488

1 3

4 � Performance analysis

In this section, we describe the datasets, the hardware, and the setup used in the
experiments presented in this paper. We compare GTraclus against MC-Traclus,
a multicore algorithm based on Traclus that we wrote for this purpose and that in
these experiments we run with 24 threads. MC-Traclus is identical to Traclus, except
it parallelizes the distance computation between segment pairs by assigning different
threads to different pairs.

4.1 � Datasets

For our experiments, we used two real datasets: Geolife [2] and the Taxi Service
Trajectory Prediction Challenge dataset [11], which we will refer to as Porto.
Geolife contains the trajectories of people and cars as they move through the city of
Beijing in China, while the Porto trajectories log taxis as they move through the city
of Porto in Portugal. Both datasets contain a considerable amount of data; Geolife
has 17,621 trajectories, which were broken down into over 100,000 trajectories after
stay-point detection [24], and Porto has 1.7 million trajectories. Geolife occupies
700 MB and Porto 1.8 GB. Each dataset is kept in the GPU’s global memory.

We have chosen these two datasets because they are well-known and have been
used in recent years in research studying the scalability of clustering algorithms
on Apache Spark [38] and GPUs [19]. This is because these are real-life trajectory
datasets with significant noise and skew that test the limits of indexing and cluster-
ing algorithms.

4.2 � Hardware

Our experiments were performed on a machine with Ubuntu 18.04 using CUDA 10
and compiled with gcc v11.3 with -O3 optimizations. The hardware used was two
Intel Xeon®6136 processors, an Nvidia A4500 GPU with 20 GB, and an Nvidia
Tesla V100 GPU with 16 GB.

4.3 � Parameters

As the minLines parameter decreases and the Epsilon parameter increases, the num-
ber of resulting clusters approaches one. We employ realistic measurements for both
as default parameters for our tests. The parameters used in our experiments are pre-
sented Table 1 along with their default values indicated in bold.

4.4 � Performance measure

In our experiments, the performance measure is the total execution time of the algo-
rithm measured from the moment when it starts executing until the moment when

481

1 3

Distributed and Parallel Databases (2023) 41:467–488	

the results are available in the host. Each query was run five times, and we report the
average of these five executions. In these experiments, the standard deviations of the
execution times are not shown, because they are very small and not noticeable in the
figures.

4.5 � Experimental results

In this section, we describe the impact of the parameters on the performance meas-
ures of the competing algorithms.

4.5.1 � Impact of the number of trajectories

In this section, we describe the impact of the number of trajectories to cluster on
the performance of each algorithm. Increasing the number of trajectories affects the
processing time of both MC-Traclus and GTraclus, and while MC-Traclus outper-
forms GTraclus for a small number of trajectories, GTraclus performs much bet-
ter for large trajectory datasets, regardless of whether GTraclus runs on the Nvidia
A4500 (A4500) or the Nvidia V100 (V100).

Figure 1a shows the results of MC-Traclus and GTraclus executed on the Geolife
taxi dataset. In this figure, it is possible to see that the performance improvement of
GTraclus (both V100 and A4500) over MC-Traclus is more pronounced than for the
Porto dataset: GTraclus (V100) performs better starting from 100 trajectories instead
of 1000, achieving up to 186× faster execution time than MC-Traclus for 100,000
trajectories. This is because the trajectories in the Geolife dataset have fewer points
than in the Porto dataset, improving the execution time of the partitioning step on
GPU, which is sensitive to trajectories with many points. A similar behavior is seen
for GTraclus (A4500) except that it performs better than MC-Traclus starting from
around 700 trajectories, achieving up to 28× faster execution time than MC-Traclus
for 100,000 trajectories. The gap between the execution times of GTraclus (V100)
and GTraclus (A4500) with 100,000 trajectories is around 6.7×.

Figure 1b shows the results of MC-Traclus and GTraclus executed on the Porto
taxi dataset. The results are similar to those seen with the Geolife dataset. In this fig-
ure, we see that for fewer than 1000 trajectories, the multicore CPU MC-Traclus per-
formed faster than GTraclus (V100), the latter performing 7.8× slower (5 ms versus
39 ms) for 100 trajectories. However, GTraclus (V100) started having an advantage

Table 1   Experimental
parameters

The default parameter values are bolded

Parameter name Values

Epsilon 10
−4
, 10

−3
, ��−�, 0.1, 1, 10, 102

minLines 100, 200, 300, 400, 500, 600

Num. of trajectories 10
1
, 10

2
, 10

3
, ���, 105

GPU threads per block (GTraclus) 512

Num. of CPU threads 24

482	 Distributed and Parallel Databases (2023) 41:467–488

1 3

over MC-Traclus for datasets with over 1000 trajectories, performing 5.5× faster
for 10,000 trajectories and 22× faster for 100,000 trajectories. A similar behavior is
observed between GTraclus (A4500) and MC-Traclus, except that it takes slightly
over 1000 trajectories for GTraclus (A4500)’s execution time to improve upon MC-
Traclus’s. The reason for this is that the GPU’s parallel architecture can effectively
support the independent distance calculations of GTraclus. Every thread measures
the parallel, perpendicular, and angular distances [8] independently and using hun-
dreds of threads and overcomes the overheads produced by the memory transfers
between main memory and device memory.

The partitioning stage on the GPU for 1000 trajectories takes three times longer
than with MC-Traclus. At 10,000 and 100,000 trajectories, it closes this gap and
starts to perform about as well as the original MC-Traclus partitioning implementa-
tion. This is because partitioning trajectories is semi-sequential.

In our experiments, we verified that one of the main challenges for scalable tra-
jectory clustering on GPUs is fitting the data structure used by the algorithm during
the Make-Graph stage, which requires more memory (around 12 GB for Porto) than
the data itself. GTraclus addresses this issue in part thanks to its CSR representation
(See Sect. 3.3), which avoids using explicit pointers, keeping a compact data struc-
ture. However, to scale several orders of magnitude beyond the number of trajecto-
ries in these datasets, future research needs to be done to eliminate the assumption
that the data structures must fit entirely in global memory.

4.5.2 � Impacts of Epsilon and minLines

In this experiment, we assess the impact of the Epsilon and minLines parameters
on the performance of the competing algorithms. On one hand, we find that there
is a significant impact of the Epsilon parameter on the total execution time, as
seen in Fig. 2a and b. As Epsilon becomes larger, this leads to the creation of a

GTraclus (A4500) GTraclus (V100) MC Traclus

Geolife

100

101

102

103

104

105

106

101 102 103 104 105

Number of Trajectories

Av
g.

 T
ot

al
 E

xe
cu

tio
n

Ti
m

e
(m

s)

(a)

Porto

100

101

102

103

104

105

106

101 102 103 104 105

Number of Trajectories

Av
g.

 T
ot

al
 E

xe
cu

tio
n

Ti
m

e
(m

s) (b)

Fig. 1   a Impact of the number of trajectories to cluster on the average total execution time in milliseconds for
the Geolife dataset. b Impact of the number of trajectories to cluster on the average total execution time in mil-
liseconds for the Porto dataset. In all experiments, 24 threads were used for MC-Traclus

483

1 3

Distributed and Parallel Databases (2023) 41:467–488	

single large trajectory cluster and to an execution time increase of up to two orders
of magnitude. This is due to the overhead in computing extremely large neighbor-
hoods and performing very large graph searches for huge numbers of results. At
the extreme parameter values tested, many segments that would be classified as
noise are included in clusters, and many clusters which would be differentiated are
merged. In Fig. 2a and b we also see that for low values of Epsilon, the perfor-
mance of GTraclus (A4500) becomes competitive with that of MC-Traclus; this is
expected because the performance of the A4500 is around 6× slower than the V100,
corresponding to shifting upwards the execution time curve of the V100; the net
impact of low Epsilon values is that it increases the number of trajectories required
for the A4500’s execution time to improve upon MC-Traclus’s. On the other hand,
varying the minLines parameter within the range specified has little impact on the
performance of GTraclus, as seen in Fig. 2c and d. We conclude from these tests that
GTraclus’ performance is resilient to extreme parameter values and clustering situa-
tions, as the change in performance is relatively even across these trials.

GTraclus (A4500) GTraclus (V100) MC Traclus

Geolife

102

103

104

105

10 4 10 3 10 2 10 1 100 101 102

Epsilon

Av
g.

 T
ot

al
 E

xe
cu

tio
n

Ti
m

e
(m

s)

(a)
Porto

102

103

104

105

10 4 10 3 10 2 10 1 100 101 102

Epsilon

Av
g.

 T
ot

al
 E

xe
cu

tio
n

Ti
m

e
(m

s)

(b)

Geolife

102

103

104

105

100 200 300 400 500 600
minLines

Av
g.

 T
ot

al
 E

xe
cu

tio
n

Ti
m

e
(m

s)

(c)
Porto

102

103

104

105

100 200 300 400 500 600
minLines

Av
g.

 T
ot

al
 E

xe
cu

tio
n

Ti
m

e
(m

s)

(d)

Fig. 2   a Impact of Epsilon on the average total execution time in milliseconds for the Geolife dataset. b
Impact of Epsilon on the average total execution time in milliseconds for the Porto dataset. c Impact of
minLines on the average total execution time in milliseconds for the Geolife dataset. d Impact of min-
Lines on the average total execution time in milliseconds for the Porto dataset. In all experiments, 24
threads were used for MC-Traclus

484	 Distributed and Parallel Databases (2023) 41:467–488

1 3

4.5.3 � Stage time distribution

In this experiment, we measure the rate between the execution time of the individual
stages of GTraclus to the overall execution time of this algorithm when run under
the default experimental parameters, shown in Table 1. We have used the execution
times obtained with the V100 for this section.

The results of our experiments are presented in Table 2. There we see that for
the Geolife dataset, the smallest of our test sets, roughly 10% of the total execu-
tion time comes from the trajectory partitioning stage, while the construction of the
graph (Make-Graph, presented in Algorithm 4) and its BFS traversal (Identify-Clus-
ters, presented in Algorithm 5) each contributes around 45% of the total execution
time. In the Porto dataset, partitioning takes around 46% of the total execution time,
while constructing and traversing the graph each takes around 27% of the execu-
tion time. The discrepancy between the partitioning percentages across these data-
sets stems from the fact that the Porto dataset gives rise to many more trajectory
segments (3.87×) than Geolife; therefore, GTraclus partitioning does more work for
Porto than for the other dataset. This is because these datasets have different spatio-
temporal distributions, with the Porto dataset containing trajectories that are harder
to “compress”, according to MDL, than those of Geolife. These results indicate
that for datasets with hard-to-compress trajectories, partitioning dominates the total
execution time, while for other datasets, the clustering algorithms, Make-Graph and
Identify-Clusters, dominate the execution time.

Figure 3a and b present the impact of the number of trajectories on the execution
times of the stages of GTraclus using the Geolife and the Porto datasets, respectively.
The grouping time corresponds to the sum of the execution time of the Make-Graph
and Identify-Clusters sub-stages. In both datasets, we observe a similar behavior:
the contribution of the grouping time to the total execution time is negligible when
trajectories are few, but as the number of trajectories increases (beyond 1000 and
10,000 in Geolife and Porto, respectively), the grouping time dominates the total
execution time.

4.5.4 � Impact of the GPU BFS traversal algorithm

In this experiment, we investigate the impact of the GPU BFS traversal algorithm
on the execution time performance of GTraclus (V100). We compare two BFS tra-
versal algorithms: the quadratic and the linear. The first, Algorithm 6, was the one
used in the workshop version of this paper [12]; the second, Algorithm 8, is the
one described in Sect. 3.4. As can be seen from their pseudo-codes, one of the key

Table 2   Stage time distribution GTraclus stage Geolife (%) Porto (%)

Trajectory partitioning 9.72 45.86
Make-graph 45.04 26.92
Identify-clusters 45.26 27.20

485

1 3

Distributed and Parallel Databases (2023) 41:467–488	

differences between them stems from the fact that the linear version uses a queue
implemented as an array to contain all the vertices that are in the frontier of the seg-
ment graph, while the quadratic version does not do this and instead uses a boolean
array of length |V| , called frontier, where V is the set of all vertices, indicating
whether each vertex has been visited or not; every GPU thread is assigned a differ-
ent vertex in V to test if it is in the frontier or not. In the linear algorithm, every GPU
thread is assigned a different vertex in frontier, instead of a different vertex of V.

From the experiments we performed in our datasets, the performance improve-
ment of the linear BFS algorithm over the quadratic one is negligible because the
sizes of the datasets are not large enough for the difference to show. This can be
seen in Fig. 4, which shows the difference between the average total execution times
when using the quadratic and the linear BFS traversal as a function of the number
of trajectories. Even when the total execution time is highest for both datasets (i.e.,
when using 100,000 trajectories), the difference between the execution times repre-
sents only a small fraction of the total execution time of GTraclus: around 100 ms
when the total execution time is in the order of 10,000 ms. However, it is evident
that the linear BFS algorithm should be the preferred choice, especially for deal-
ing with even larger datasets than the ones in this study, since the effort required to
implement it is minimal when compared to that of the quadratic BFS algorithm.

5 � Conclusion and future work

In this paper, we presented a new GPU algorithm for local trajectory clustering based
on the Minimum Description Length principle (MDL). Existing algorithms to solve
the problem of local trajectory clustering based on this principle, like MC-Traclus, a
multithreaded version of Traclus, do not scale. We addressed this gap by effectively
parallelizing the distance computations between trajectories in the GPU. GTraclus pro-
vides the same clustering results as MC-Traclus but for large numbers of trajectories,

Avg. Grouping Time (ms) Avg. Partitioning Time (ms) Avg. Total Execution Time (ms)

Geolife

100

101

102

103

104

105

106

101 102 103 104 105

Number of Trajectories

Ti
m

e

(a)
Porto

100

101

102

103

104

105

106

101 102 103 104 105

Number of Trajectories

Ti
m

e

(b)

Fig. 3   a Impact of the number of trajectories on the execution time in milliseconds of each GTraclus
stage for the Geolife dataset. Grouping Time is the sum of the time of Make-Graph and Identify-Clusters.
b Impact of the number of trajectories on the average execution time in milliseconds of each GTraclus
stage for the Porto dataset

486	 Distributed and Parallel Databases (2023) 41:467–488

1 3

starting around 100 to 1000 trajectories, it results in up to 24× faster execution time
than MC-Traclus. Our experiments suggest that for datasets with hard-to-compress
trajectories, the trajectory partitioning stage dominates the total execution time, while
for other datasets, the cluster discovery algorithms dominate the execution time. Our
experiments also show that the GPU BFS traversal algorithm used for discovering clus-
ters does not have a noticeable impact on the execution time performance of our pro-
posed algorithm. GTraclus assumes that the data fits in the global memory of the GPU.
It also assumes that the neighbor graph, which in our experiments occupied more space
than the data, also fits along in global memory. A potential avenue for future research
is studying new algorithms that do not make these two assumptions. Another possible
future work is to research the applications of GPU-based processing on fuzzy cluster
membership of trajectories [27].

Acknowledgements  This work is supported in part by the National Science Foundation under Grant Nos.
1302439 and 1302423.

Author contributions 	 All authors contributed equally to the manuscript.

Declarations 

Competing interests  The authors declare no competing interests.

References

	 1.	 Zheng, Y.: Location-based social networks: users. In: Zheng, Y., Zhou, X. (eds.) Computing with
Spatial Trajectories (2011). https://​doi.​org/​10.​1007/​978-1-​4614-​1629-6_8

	 2.	 Zheng, Y., Xie, X., Ma, W.: Geolife: a collaborative social networking service among user, location
and trajectory. IEEE Data Eng. Bull. 33 (2010)

Geolife

0

20

40

60

80

101 102 103 104 105

Number of Trajectories

D
iff

. T
ot

al
 E

xe
cu

tio
n

Ti
m

e
(m

s)
(a)

Porto

10 3

10 2

10 1

100

101

102

103

101 102 103 104 105

Number of Trajectories

D
iff

. T
ot

al
 E

xe
cu

tio
n

Ti
m

e
(m

s)

(b)

Fig. 4   a Impact of the number of trajectories on the difference between the average total execution times
in milliseconds of GTraclus when using the quadratic versus the linear BFS traversal with the Geolife
dataset. b Impact of the number of trajectories on the difference between the average total execution
times in milliseconds of GTraclus when using the quadratic versus the linear BFS traversal with the
Porto dataset

https://doi.org/10.1007/978-1-4614-1629-6_8

487

1 3

Distributed and Parallel Databases (2023) 41:467–488	

	 3.	 Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W., Ma, W.-Y.: Mining user similarity based on location
history. In: Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. GIS ’08. Association for Computing Machinery, New York, NY,
USA (2008). https://​doi.​org/​10.​1145/​14634​34.​14634​77

	 4.	 Zheng, Y., Capra, L., Wolfson, O., Yang, H.: Urban computing: Concepts, methodologies, and
applications. ACM Trans. Intell. Syst. Technol. 5 (2014). https://​doi.​org/​10.​1145/​26295​92

	 5.	 Ghose, A.: Tap: Unlocking the Mobile Economy (2017)
	 6.	 Powell, M.D., Aberson, S.D.: Accuracy of United States tropical cyclone landfall forecasts in the

Atlantic basin (1976-2000). Bull. Am. Meteorol. Soc. 82 (2001). https://​doi.​org/​10.​1175/​1520-​
0477(2001)​082<​2749:​AOUST​C>2.​3.​CO;2

	 7.	 Wisdom, M.J., Cimon, N.J., Johnson, B.K., Garton, E.O., Thomas, J.W.: Spatial partitioning by
mule deer and elk in relation to traffic (2004)

	 8.	 Lee, J.-G., Han, J., Whang, K.-Y.: Trajectory clustering: a partition-and-group framework. In: Pro-
ceedings of the 2007 ACM SIGMOD International Conference on Management of Data. SIGMOD
’07, pp. 593–604. Association for Computing Machinery, New York, NY, USA (2007). https://​doi.​
org/​10.​1145/​12474​80.​12475​46

	 9.	 Lee, V.W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A.D., Satish, N., Smelyanskiy, M.,
Chennupaty, S., Hammarlund, P., Singhal, R., Dubey, P.: Debunking the 100x GPU vs. CPU myth:
an evaluation of throughput computing on CPU and GPU. (2010). https://​doi.​org/​10.​1145/​18159​61.​
18160​21

	10.	 Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Skadron, K.: A performance study of
general-purpose applications on graphics processors using CUDA. J. Parallel Distrib. Comput. 68
(2008). https://​doi.​org/​10.​1016/j.​jpdc.​2008.​05.​014

	11.	 Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., Damas, L.: Predicting taxi-passen-
ger demand using streaming data. IEEE Trans. Intell. Transp. Syst. 14 (2013). https://​doi.​org/​10.​
1109/​TITS.​2013.​22623​76

	12.	 Mustafa, H., Barrus, C., Leal, E., Gruenwald, L.: Gtraclus: A local trajectory clustering algorithm
for GPUS. In: 2021 IEEE 37th International Conference on Data Engineering Workshops (ICDEW),
pp. 30–35 (2021). https://​doi.​org/​10.​1109/​ICDEW​53142.​2021.​00013

	13.	 Nvidia: Cuda C++ Programming Guide Toolkit Documentation. https://​docs.​nvidia.​com/​cuda/​
cuda-c-​progr​amming-​guide/. Accessed 11 Oct 2020

	14.	 Nvidia: Cuda C++ Best Practices Guide. https://​docs.​nvidia.​com/​cuda/​cuda-c-​best-​pract​ices-​guide/​
index.​html. Accessed 11 Oct 2020

	15.	 Jørgensen, J.R., Scheel, K., Assent, I., Pathak, A.R., Elster, A.C.: GPU-FAST-PROCLUS: a fast
GPU-parallelized approach to projected clustering. In: EDBT, pp. 2–196 (2022). https://​doi.​org/​10.​
48786/​edbt.​2022.​09

	16.	 Jørgensen, J.R., Scheel, K., Assent, I.: GPU-INSCY: A GPU-parallel algorithm and tree structure
for efficient density-based subspace clustering. In: EDBT, pp. 25–36 (2021). https://​doi.​org/​10.​
5441/​002/​edbt.​2021.​04

	17.	 Thapa, R.J., Trefftz, C., Wolffe, G.: Memory-efficient implementation of a graphics processor-based
cluster detection algorithm for large spatial databases. In: 2010 IEEE International Conference on
Electro/Information Technology, pp. 1–5 (2010). https://​doi.​org/​10.​1109/​EIT.​2010.​56121​34

	18.	 Böhm, C., Noll, R., Plant, C., Wackersreuther, B.: Density-based clustering using graphics proces-
sors. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management,
pp. 661–670 (2009). https://​doi.​org/​10.​1145/​16459​53.​16460​38

	19.	 Poudel, M., Gowanlock, M.: CUDA-DClust+: Revisiting early GPU-accelerated DBSCAN cluster-
ing designs. In: 2021 IEEE 28th International Conference on High Performance Computing, Data,
and Analytics (HiPC), pp. 354–363 (2021). https://​doi.​org/​10.​1109/​HiPC5​3243.​2021.​00049

	20.	 Loh, W.-K., Yu, H.: Fast density-based clustering through dataset partition using graphics process-
ing units. Inf. Sci. 308, 94–112 (2015). https://​doi.​org/​10.​1016/j.​ins.​2014.​10.​023

	21.	 Prokopenko, A., Lebrun-Grandié, D., Arndt, D.: Fast tree-based algorithms for DBSCAN on GPUS.
CoRR arXiv:​2103.​05162 (2021)

	22.	 Mustafa, H., Leal, E., Gruenwald, L.: An experimental comparison of GPU techniques for DBSCAN
clustering. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 3701–3710 (2019).
https://​doi.​org/​10.​1109/​BigDa​ta470​90.​2019.​90061​69

	23.	 Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: Proceedings
of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

https://doi.org/10.1145/1463434.1463477
https://doi.org/10.1145/2629592
https://doi.org/10.1175/1520-0477(2001)082<2749:AOUSTC>2.3.CO;2
https://doi.org/10.1175/1520-0477(2001)082<2749:AOUSTC>2.3.CO;2
https://doi.org/10.1145/1247480.1247546
https://doi.org/10.1145/1247480.1247546
https://doi.org/10.1145/1815961.1816021
https://doi.org/10.1145/1815961.1816021
https://doi.org/10.1016/j.jpdc.2008.05.014
https://doi.org/10.1109/TITS.2013.2262376
https://doi.org/10.1109/TITS.2013.2262376
https://doi.org/10.1109/ICDEW53142.2021.00013
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://doi.org/10.48786/edbt.2022.09
https://doi.org/10.48786/edbt.2022.09
https://doi.org/10.5441/002/edbt.2021.04
https://doi.org/10.5441/002/edbt.2021.04
https://doi.org/10.1109/EIT.2010.5612134
https://doi.org/10.1145/1645953.1646038
https://doi.org/10.1109/HiPC53243.2021.00049
https://doi.org/10.1016/j.ins.2014.10.023
http://arxiv.org/abs/2103.05162
https://doi.org/10.1109/BigData47090.2019.9006169

488	 Distributed and Parallel Databases (2023) 41:467–488

1 3

KDD ’99, pp. 63–72. Association for Computing Machinery, New York, NY, USA (1999). https://​
doi.​org/​10.​1145/​312129.​312198

	24.	 Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. 6(3) (2015).
https://​doi.​org/​10.​1145/​27430​25

	25.	 Gaffney, S.J., Robertson, A.W., Smyth, P., Camargo, S.J., Ghil, M.: Probabilistic clustering of extra-
tropical cyclones using regression mixture models. Clim. Dyn. 29 (2007). https://​doi.​org/​10.​1007/​
s00382-​007-​0235-z

	26.	 Li, Z., Lee, J.G., Li, X., Han, J.: Incremental Clustering for Trajectories, vol. 5982 LNCS (2010).
https://​doi.​org/​10.​1007/​978-3-​642-​12098-5_3

	27.	 Pelekis, N., Kopanakis, I., Kotsifakos, E.E., Frentzos, E., Theodoridis, Y.: Clustering uncertain tra-
jectories. Knowl. Inf. Syst. 28 (2011). https://​doi.​org/​10.​1007/​s10115-​010-​0316-x

	28.	 Roh, G.-P., Hwang, S.-W.: Nncluster: An efficient clustering algorithm for road network trajectories.
In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) Database Systems for Advanced Applica-
tions, pp. 47–61. Springer, Berlin (2010). https://​doi.​org/​10.​1007/​978-3-​642-​12098-5_4

	29.	 Zhang, X., Niu, X., Fournier-Viger, P., Wang, B.: Two-stage traffic clustering based on HNSW. In:
Advances and Trends in Artificial Intelligence. Theory and Practices in Artificial Intelligence: 35th
International Conference on Industrial, Engineering and Other Applications of Applied Intelligent
Systems, IEA/AIE 2022, Kitakyushu, Japan, July 19–22, 2022, Proceedings, pp. 609–620. Springer,
Berlin (2022). https://​doi.​org/​10.​1007/​978-3-​031-​08530-7_​51

	30.	 Deng, Z., Hu, Y., Zhu, M., Huang, X., Du, B.: A scalable and fast optics for clustering trajectory big
data. Cluster Comput. 18 (2015). https://​doi.​org/​10.​1007/​s10586-​014-​0413-9

	31.	 Gudmundsson, J., Valladares, N.: A GPU approach to subtrajectory clustering using the fréchet dis-
tance. IEEE Trans. Parallel Distrib. Syst. 26 (2015). https://​doi.​org/​10.​1109/​TPDS.​2014.​23177​13

	32.	 Harish, P., Narayanan, P.J.: Accelerating large graph algorithms on the gpu using cuda. In: Aluru,
S., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) High Performance Computing—HiPC 2007,
pp. 197–208. Springer, Berlin (2007). https://​doi.​org/​10.​1007/​978-3-​540-​77220-0_​21

	33.	 Min, S.W., Mailthody, V.S., Qureshi, Z., Xiong, J., Ebrahimi, E., Hwu, W.: Emogi: Efficient
memory-access for out-of-memory graph-traversal in GPUS. Proc. VLDB Endow. 14(2), 114–127
(2020). https://​doi.​org/​10.​14778/​34258​79.​34258​83

	34.	 Andrade, G., Ramos, G., Madeira, D., Sachetto, R., Ferreira, R., Rocha, L.: G-dbscan: A GPU accel-
erated algorithm for density-based clustering. Procedia Comput. Sci. 18, 369–378 (2013). https://​
doi.​org/​10.​1016/j.​procs.​2013.​05.​200. 2013 International Conference on Computational Science

	35.	 Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters
in large spatial databases with noise. In: Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining. KDD’96, pp. 226–231. AAAI Press, Portland, Oregon
(1996). https://​doi.​org/​10.​5555/​30014​60.​30015​07

	36.	 Merrill, D., Garland, M., Grimshaw, A.: Scalable GPU graph traversal. SIGPLAN Not. 47(8), 117–
128 (2012). https://​doi.​org/​10.​1145/​23700​36.​21458​32

	37.	 Merrill, D., Garland, M., Grimshaw, A.: Scalable GPU graph traversal. In: Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. PPoPP ’12, pp.
117–128. Association for Computing Machinery, New York, NY, USA (2012). https://​doi.​org/​10.​
1145/​21458​16.​21458​32

	38.	 Song, H., Lee, J.-G.: RP-DBSCAN: A superfast parallel DBSCAN algorithm based on random par-
titioning. In: Proceedings of the 2018 International Conference on Management of Data, pp. 1173–
1187 (2018). https://​doi.​org/​10.​1145/​31837​13.​31968​87

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

https://doi.org/10.1145/312129.312198
https://doi.org/10.1145/312129.312198
https://doi.org/10.1145/2743025
https://doi.org/10.1007/s00382-007-0235-z
https://doi.org/10.1007/s00382-007-0235-z
https://doi.org/10.1007/978-3-642-12098-5_3
https://doi.org/10.1007/s10115-010-0316-x
https://doi.org/10.1007/978-3-642-12098-5_4
https://doi.org/10.1007/978-3-031-08530-7_51
https://doi.org/10.1007/s10586-014-0413-9
https://doi.org/10.1109/TPDS.2014.2317713
https://doi.org/10.1007/978-3-540-77220-0_21
https://doi.org/10.14778/3425879.3425883
https://doi.org/10.1016/j.procs.2013.05.200
https://doi.org/10.1016/j.procs.2013.05.200
https://doi.org/10.5555/3001460.3001507
https://doi.org/10.1145/2370036.2145832
https://doi.org/10.1145/2145816.2145832
https://doi.org/10.1145/2145816.2145832
https://doi.org/10.1145/3183713.3196887

	GTraclus: a novel algorithm for local trajectory clustering on GPUs
	Abstract
	1 Introduction
	2 Background and related work
	2.1 GPUs
	2.2 Trajectory clustering

	3 Proposed algorithm
	3.1 Overview
	3.2 Partitioning stage
	3.3 Grouping stage
	3.3.1 Making the density connected graph
	3.3.2 Identifying the segment clusters

	3.4 Further enhancements to GTraclus

	4 Performance analysis
	4.1 Datasets
	4.2 Hardware
	4.3 Parameters
	4.4 Performance measure
	4.5 Experimental results
	4.5.1 Impact of the number of trajectories
	4.5.2 Impacts of Epsilon and minLines
	4.5.3 Stage time distribution
	4.5.4 Impact of the GPU BFS traversal algorithm

	5 Conclusion and future work
	Acknowledgements
	References

