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Abstract
Due to the high availability of location-based sensors like GPS, it has been possible 
to collect large amounts of spatio-temporal data in the form of trajectories, each of 
which is a sequence of spatial locations that a moving object occupies in space as 
time progresses. Many applications, such as intelligent transportation systems and 
urban planning, can benefit from clustering the trajectories of cars in each locality 
of a city in order to learn about traffic behavior in each neighborhood. However, the 
immense and ever-increasing volume of trajectory data and the concept drift present 
in city traffic constitute scalability challenges that have not been addressed. In order 
to fill this gap, we propose the first GPU algorithm for local trajectory clustering, 
called GTraclus. We present a parallelized trajectory partitioning algorithm which 
simplifies trajectories into line segments using the Minimum Description Length 
(MDL) principle. We evaluated our proposed algorithm using two large real-life tra-
jectory datasets and compared it against a multicore CPU version, which we call 
MC-Traclus, of the popular trajectory clustering algorithm, Traclus; our experiments 
showed that GTraclus had on average up to 24× faster execution time when com-
pared against MC-Traclus.
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1  Introduction

Easily attainable GPS technology and cheap storage space have led to an unprece-
dented amount of trajectory data, where a trajectory is the time-ordered sequence 
of positions, i.e., latitude and longitude, that a moving object occupies in space 
as time passes. This provides a great opportunity for analyzing similar patterns 
on time-varying data by clustering the trajectories into groups containing similar 
trajectories. Such analysis has a broad range of applications in bird migration pat-
tern identification, location-based social networks [1], recommendation of travel 
locations of interest based on common trajectories [2], finding users with similar 
life experiences based on their trajectories [3], intelligent transportation systems, 
and urban computing [4]. Trajectory clustering can also be used in trajectory-
based advertising, where a shopping mall, after tracking the movements of the 
shoppers that have logged into its wireless network, can send personalized adver-
tising information to customers based on their paths inside the mall [5].

An important consideration for trajectory clustering is whether the elements to 
be clustered are entire trajectories, in which case we say that we perform global 
trajectory clustering, or whether they are sub-trajectories, which gives rise to the 
problem of local trajectory clustering. In many applications, clustering entire tra-
jectories may not provide significant insights into the common shorter paths the 
objects take, as real-world objects do not always take similar paths for the entirety 
of their journeys. For example, when using trajectories for predicting a hurri-
cane’s landfall, meteorologists are more interested in clustering hurricane behav-
iors near the coastline or at sea rather than on the entire hurricane trajectories [6]. 
Similarly, when examining the effects of vehicular traffic on animal movement, 
distribution, and habitat use, zoologists are more interested in common behaviors 
of animal trajectories near roads [7]. These problems can be solved with Traclus, 
a well-known local trajectory clustering algorithm for single-core CPUs [8].

Despite its wide range of applications, Traclus does not scale with large trajectory 
datasets. This problem along with the very large and ever-increasing sizes of spatio-
temporal datasets and with the presence of concept drift in the previously mentioned 
applications, gives rise to a need for parallel local trajectory clustering algorithms. 
One way to address this problem is to utilize Graphics Processing Units (GPUs), 
which are parallel processors that can provide efficient and massively parallel com-
putation with high instruction throughput and memory bandwidth, even when com-
pared to multicore CPUs [9]. However, developing algorithms for GPUs is not with-
out challenges, as the latter have several idiosyncrasies that need to be addressed in 
order to attain the high-performance throughput for which GPUs are known [10]. 
Among these idiosyncrasies are the small memory space of GPUs and that the inter-
faces through which they are connected to the computer (e.g., the PCIe bus) have 
low throughput when compared to their instruction throughput.

Despite the advantages of GPUs, no algorithm exists that exploits this archi-
tecture for local trajectory clustering. To address this gap, we introduce GTraclus, 
a novel GPU algorithm for local trajectory clustering. GTraclus includes a novel 
trajectory partitioning algorithm for GPUs that uses the Minimum Description 
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Length principle (MDL) and a novel GPU algorithm for trajectory segment clus-
tering. The MDL principle allows compressing trajectories by minimizing the 
approximation error and the total number of points resulting from the compres-
sion. We analyze the performance of GTraclus when applied to two large, real-
world datasets, Geolife [2] and Porto [11], and compare its performance with that 
of a multicore CPU version of Traclus, which we call MC-Traclus. The contribu-
tions of this paper are the following: 1) A novel GPU algorithm, named GTraclus, 
for trajectory partitioning according to the Minimum Description Length princi-
ple; 2) a GPU algorithm to cluster segments with a breadth-first search on a graph 
whose nodes are the partitioned line segments; and 3) a comprehensive set of 
experiments demonstrating the performance and scalability of GTraclus cluster-
ing hundreds of thousands of trajectories from real-world datasets.

A preliminary version of this paper was presented in 2021 at the Joint Interna-
tional Workshop on Big Data Management on Emerging Hardware and Data Man-
agement on Virtualized Active Systems (HardBD & Active), which is a part of 
IEEE International Conference on Data Engineering Workshops (ICDEW) [12]. 
This paper extends the workshop version by providing the following additional 
details and experiments: (1) we perform a study of the impact of the different stages 
of GTraclus on its overall execution time performance; (2) we extend our proposed 
GTraclus algorithm with a linear work complexity GPU algorithm for trajectory 
cluster expansion; (3) we evaluate the impact of this algorithm on the overall exe-
cution time performance; and (4) we revise the presentation, adding more related 
work.

The remainder of this paper is organized as follows: Sect. 2 presents background 
concepts and related work; Sect. 3 contains the description of the proposed GTraclus 
algorithm; Sect. 4 contains a thorough performance analysis; and finally, Sect. 5 pre-
sents conclusions and future work.

2 � Background and related work

In this section, we provide the background material necessary to follow the discus-
sions on GPUs, local trajectory clustering, and present related work.

2.1 � GPUs

GPUs are highly parallel processors connected to the main computer through an 
interface like PCIe and can achieve up to an order of magnitude of higher through-
put than comparable multicore CPUs [9]. GPU programs are organized into kernels 
[13], which are C-like functions called from within the CPU, also called the host. 
Kernels launch a grid of thousands of simultaneously executing threads, which are 
grouped into blocks. The GPU’s memory space is separated from the host’s, which 
makes it necessary to send all input data through the PCIe bus to the GPU before 
any processing can take place in the latter, and to send all output data from the GPU 
back to the host. The memory space of GPUs is also hierarchical: threads can access 



470	 Distributed and Parallel Databases (2023) 41:467–488

1 3

their own individual local memory registers; threads in a block can cooperate by 
using the larger block-wide shared memory; and threads across different blocks all 
have access to the slower but bigger global GPU memory.

In order to use GPUs to exploit the parallelism present in many algorithms, it is 
necessary to address the research challenges of this architecture. Among these chal-
lenges are the following: 1) low global memory bandwidth relative to the number 
of threads. Because of the large number of threads contending for global memory 
access within a GPU, it is desirable to group those memory requests into as few 
memory transactions as possible. This can be done by the memory coalescing unit 
if those accesses respect memory coalescing, i.e., if consecutive threads access adja-
cent memory locations [14]; 2) low throughput of the GPU-host interface. Since 
GPUs are connected to the host through relatively low throughput interfaces such 
as PCIe, it is essential that communication through the GPU-host interface is mini-
mized; and 3) load balancing. GPU kernels must make sure that different threads 
and blocks have an equal amount of work so that a single thread or block does not 
dominate the total execution time.

The problem of trajectory clustering on GPUs is related to that of arbitrary data 
clustering on the same architecture [15, 16]. In particular, our proposed algorithm, 
GTraclus, is similar to general-purpose density-based clustering algorithms. None-
theless, existing work on GPU algorithms for the latter does not consider the spatio-
temporal correlation of trajectory data. This correlation impacts how this data type 
is arranged in the GPU’s global memory and the calculation of the similarity meas-
ure. There are multiple works devoted to studying algorithms for density-based clus-
tering on GPUs: Thapa et al.’s algorithm [17], CUDA-DClust [18], CUDA-DClust+ 
[19], CudaSCAN [20], Prokopenko’s algorithm [21], and GPU-INSCY [15, 16]. Our 
previous work [22] provides an experimental comparison among several of these 
GPU algorithms for general data clustering.

2.2 � Trajectory clustering

The problem of trajectory clustering, also called global trajectory clustering, con-
sists in that given a dataset of trajectories D and a similarity measure between any 
two trajectories s, find a collection of mutually disjoint subsets, also called clusters, 
of D such that the trajectories belonging to any cluster c are more similar to each 
other according to s than they are to trajectories in other clusters different from c. 
Due to the importance of trajectory clustering applications, there are several works 
devoted to the study of this problem [23–25].

However, there are applications where clustering the entire trajectories may not 
provide insights into the common shorter paths that the objects took because real-
world objects do not always take similar paths for the entirety of their journeys, 
instead they take similar paths for only a portion of them. For example, when clus-
tering the trajectories of vehicles moving in a large city like Beijing, most people 
do not have very similar trajectories because they live and work in different places. 
However, if the trajectories are first broken into sub-trajectories and then clustered, 
then it is possible to discover, for example, that many vehicles drive on a specific 
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highway. Based on this observation, the problem of local trajectory clustering [8] 
was introduced, which consists in that given a dataset of trajectories D and a similar-
ity measure between any two line segments s, find a collection of mutually disjoint 
sets, also called clusters, of sub-trajectories of trajectories in D such that the sub-
trajectories belonging to any cluster c are more similar to each other according to s 
than they are to sub-trajectories in clusters different from c.

The Traclus algorithm [8] was proposed to solve the local trajectory clustering 
problem and it works in two phases: it first partitions trajectories into line segments, 
and then it clusters the line segments. Traclus uses the Minimum Description Length 
(MDL) principle to approximate the best representation for a trajectory while losing 
as little information as possible. Other works devoted to trajectory clustering are 
TCMM [26], CenTra-I-FCM [27], NNCluster [28], and TSST-HDBC [29], none of 
which can perform local trajectory clustering.

Despite the many advantages of GPUs, e.g. their availability in almost all kinds of 
computing devices, none of the clustering algorithms has been developed to address 
the issues of GPUs. To the extent of our knowledge, the only other GPU trajec-
tory clustering algorithms are G-Tra-POPTICS [30], a density-based point cluster-
ing algorithm for global trajectory clustering, not for local trajectory clustering like 
ours, and the work by Gudmundsson and Valladares [31], which, unlike GTraclus, 
finds clusters of similar sub-trajectories within a single trajectory and makes use of 
the Fréchet distance and not MDL.

3 � Proposed algorithm

In this section, we present our proposed algorithm, GTraclus, for local trajectory 
clustering on GPUs.

3.1 � Overview

GTraclus is a GPU algorithm for local trajectory clustering that receives as inputs 
two numbers: minLines and Epsilon. This algorithm works in two stages executed in 
succession: a partitioning stage and a grouping stage. Its pseudo-code is presented 
in Algorithm  1. In its partitioning stage, GTraclus uses the Minimum Descrip-
tion Length (MDL) principle to partition trajectories into line segments, and in its 
grouping stage, it uses a GPU density-based clustering algorithm to cluster similar 
line segments. GTraclus also includes several optimization strategies for GPUs to 
bring the computation time down. We now provide a brief overview of each of these 
stages.

In its partitioning stage, GTraclus uses separate GPU threads to partition each 
input trajectory by identifying characteristic points, which are the points belong-
ing to the trajectory that best partition it into line segments in terms of MDL cost 
[8]. To discover the characteristic points of trajectory, a GPU thread traverses 
each point of the latter while comparing the MDL cost of either including or not 
including the current point. If the current point under consideration leads to a 
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greater overall MDL cost for the trajectory it belongs to, then the previous point 
is classified as a characteristic point. This stage is called in Line 1 of Algorithm 1.

The grouping stage of GTraclus performs density-based clustering of the trajec-
tory segments on the GPU using a reachability graph. This graph has as vertex or 
node set the set of all segments produced in the partitioning stage, and its edge set 
is constructed by having an edge between any two vertices that lie within a segment 
distance [8] of Epsilon. Then, it is possible to identify the core segments, i.e., those 
nodes that have at least minLines many nodes within a segment distance of Epsilon, 
then the border segments, i.e., those nodes that are not core, but such that there is a 
path in the reachability graph from them to a core segment, and the noise segments, 
which are all other segments that are neither core nor border. Then, by doing succes-
sive BFS traversals on the reachability graph starting from different core segments 
p, it is possible to identify all the nodes reachable from p, which are the members of 
the cluster to which p belongs. This stage is called in Line 2 of Algorithm 1.

We store this reachability graph in Compressed Sparse Row (CSR) format [32], 
which has a low memory overhead that makes it very popular [33]. This format 
stores a graph with two arrays: vertex and edge. The vertex array satisfies the follow-
ing property: for every integer i, an id of a vertex, vertex[i] contains the offset in edge 
such that all elements in edge[vertex[i]] up to and including edge[vertex[i + 1] − 1] 
are the ids of the vertices adjacent to i.

Algorithm 1 GTraclus (Trajectory Set D, Double Epsilon, Double
minLines)
Performs local trajectory clustering on D in the GPU using the values of
Epsilon and minLines

1: segments ← GPU -Partition(D) � Partitioning Stage
2: labels ← G-TrajScan(segments, Epsilon,minLines) � Grouping Stage
3: return (segments, labels)

3.2 � Partitioning stage

The first stage of GTraclus partitions the input trajectory dataset D using the GPU-
Partition function called in Line 1 of the function GTraclus in Algorithm 1. Given 
a trajectory T = T1, T2,… , Tsize(T) , partitioning T according to the MDL principle 
consists in finding a subsequence {Tc0 , Tc1 ,… , Tcl−1} of points of T, each of which is 
called a characteristic point, such that the MDL cost, defined as L(H) + L(D ∣ H) is 
minimized, where L(H) and L(D ∣ H) are defined as:
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where TcjTcj+1 denotes the segment from Tcj to Tcj+1 and Length(TcjTcj+1) is the Euclid-
ean distance between its endpoints, d

⟂
 is the orthogonal distance [26] between two 

segments Li and Lj where ‖Li‖ ≥ ‖Lj‖ , and it is defined as follows: 
d
⟂
(Li, Lj) = (l2

⟂1
+ l2

⟂2
)∕(l

⟂1 + l
⟂2) , where l

⟂1 is the distance from one of the 
endpoints of Lj to Li , l⟂2 is the distance from the other endpoint of Lj to Li , and d

�
 is 

the angular distance between those two segments and is defined as:

To solve the MDL trajectory partitioning problem, we follow Traclus’s approxi-
mate partitioning algorithm [8]. We parallelize the problem on the GPU by assign-
ing different trajectories to different threads. The first step in GTraclus’s partitioning 
stage is to calculate the number of segments for each trajectory, which is done by 
the CountPartitions kernel. In this kernel, each thread is in charge of sequentially 
traversing the points of its assigned trajectory, seeking for characteristic points. The 
number of characteristic points determines the number of segments of a trajectory. 
This kernel, called in Line 2 of the Function GPU-Partition in Algorithm 2, returns 
the array dSegs containing the number of segments for each trajectory.

Algorithm 2 GPU-Partition (Trajectory Set D)
Each trajectory in D is partitioned in parallel according to the MDL principle
1: for trajectory t ∈ D do in parallel
2: dSegs[t] ← CountPartitions(t)
3: end for
4: dSegs ← InclusivePrefixSum(dSegs)
5: for trajectory t ∈ D do in parallel
6: segments ← FillPartitions(t, dSegs)
7: end for
8: return segments

Once the number of segments for each trajectory is known, it is possible to 
actually allocate space in the GPU’s global memory to hold the trajectory seg-
ments. To accomplish this, an inclusive scan is executed over the array dSegs, 
as shown in Line 4 of the Function GPU-Partition in Algorithm 2. This opera-
tion can be performed efficiently on GPUs and is used in this case to compute 
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the offsets in the segments array in which each trajectory’s segments will reside. 
The original dataset is then discarded to free GPU memory. As mentioned, the 
segments are computed and stored using Traclus’s approximate partitioning algo-
rithm in parallel, as shown in Lines 5–8 of GPU-Partition.

By first counting the number of partitions, allocating space for the results on 
the host, and then calculating and saving those partitions in GPU memory, the 
partitioning stage can take place entirely in GPU memory. If each thread allo-
cated its own separate space for the segments of its trajectory, each partition 
would be in an independent location in memory and the host, and future ker-
nels would have to deal with different data locations. The strategy of maintaining 
all of the segments in one array indexed by dSegs ensures that the partitions are 
aligned in one array and in contiguous memory for use in the following kernels.

As mentioned, the GPU-Partition algorithm (Algorithm  2) is parallelized by 
having GPU threads partition different trajectories. The disadvantage of this 
approach is that warps load points located in non-adjacent memory locations; this 
decision stems from the fact that trajectories are not guaranteed to have the same 
number of points. However, as we will see in Sect.  4.5.3, this potential lack of 
global memory coalescing does not have a significant impact on the overall exe-
cution time of GTraclus for a large number of trajectories because the partition-
ing stage does not necessarily dominate the execution time of our algorithm.

3.3 � Grouping stage

In the grouping stage, called in Line 2 of the GTraclus function in Algorithm 1, 
the line segments produced by the partitioning stage are clustered. To do this, 
we present a new density-based segment clustering algorithm for GPUs. Unlike 
the existing G-DBSCAN [34], which is designed for density-based clustering of 
points, the algorithm proposed here clusters trajectory segments, which poses a 
different challenge concerning the arrangement of data in memory in order to 
guarantee global memory coalescing in the GPU.

The grouping stage has two sub-phases: making of the density connected graph 
of segments and the identification of segment clusters. We know explain each of 
these.

Algorithm 3 GPU-TrajScan (Segment Set D, double Epsilon, double
minLines)
Performs the grouping stage of GTraclus on D in the GPU using the values of
Epsilon and minLines

1: graph ← Make-Graph(D,Epsilon,minLines)
2: labels ← Identify-Clusters(graph,Epsilon,minLines)
3: return labels
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3.3.1 � Making the density connected graph

In Line 1 of the procedure G-TrajScan in Algorithm 3, our proposed algorithm 
creates a density-connectedness graph whose vertices are the segments of all 
trajectories. There exists an edge between any two vertices in this graph if and 
only if their corresponding segments lie within an Epsilon distance of each other, 
measured according to the segment distance of Traclus [8]. Once this graph is 
created, GTraclus performs a sequence of parallel breadth-first searches (BFS) 
on the segments in order to find segment clusters; each separate BFS search gives 
rise to a different trajectory cluster. This strategy is highly efficient on GPUs 
because the large amount of distance calculations between trajectory segments 
can be parallelized. Given any vertex, all other vertices that are reachable from it, 
meaning that there is a path in the graph between them, are labeled as members 
of the same cluster. All the segments that are not part of any cluster are labeled as 
noise.

Since our proposed segment clustering algorithm clusters line segments, it 
stores for each segment the coordinates of its start and end points, the index of 
the trajectory to which it belongs, and the identifier of the cluster to which it will 
belong. To this end, Lines 1–8 of the Make-Graph function in Algorithm 4 count 
the number of segments within an Epsilon distance of each segment, then Line 
9 computes a prefix sum over the number of neighbors of each segment with the 
purpose of allocating space for the CSR representation of the graph. Lines 10–15 
then compute the edge_array by checking in parallel which segments are within 
an Epsilon distance for each node.

Algorithm 4 Make-Graph (Segment Set D, double Epsilon, double
minLines)
Constructs the reachability graph on the set of segments D
1: for p ∈ D do in parallel
2: numNeighbors[p] ← 0
3: end for
4: for each pair (p, q) of segments in D do in parallel
5: if dist(p, q) < Epsilon then
6: numNeighbors[p]++
7: end if
8: end for
9: edge array ← ExclusivePrefixSum(numNeighbors)

10: for each pair (p, q) of segments in D do in parallel
11: if dist(p, q) < Epsilon then
12: Add q to the list vertex array of neighbors of p and vice versa
13: end if
14: end for
15: return new Graph(vertex array, edge array)
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The Make-Graph Algorithm (Algorithm 4) is designed to exploit global mem-
ory coalescing because all segments of all trajectories are represented as four 
arrays: startx, starty, endx, endy , allowing the threads in a warp to access their own 
points in a coalesced manner in Lines 4–8 and 10–14; the fact that segments are 
represented using those four arrays is not purposely shown in the pseudo-code of 
Algorithm 4 so that the presentation is cleaner. Using the array numNeighbors to 
store the number of neighbors of each segment allows coalesced global memory 
accesses on two different occasions: first, after the threads have computed these 
values on their own and write to the numNeighbors array (after Line 8), and sec-
ond, during the exclusive prefix sum computation (Line 9). The Make-Graph is 
load balanced in Lines 1–9, except during the writing of the neighbors (Lines 
10–14) because different segments will have different numbers of neighbors.

3.3.2 � Identifying the segment clusters

Once the reachability graph is created, a GPU-based BFS is initiated in Line 2 
of the GPU-TrajScan procedure in Algorithm  3 by calling the Identify-Clusters 
function in Algorithm 5. This algorithm begins with marking all nodes as not vis-
ited (Lines 2–4 of Algorithm 5). Then, in Lines 5–10, it starts a BFS search from 
each unvisited core segment, where a core segment is one with at least minLines 
many segments within a segment distance of Epsilon.

Algorithm 5 Identify-Clusters (Graph G, double Epsilon, double minLines)
Performs a BFS on the graph G in order to discover clusters
1: clusterID ← 0
2: for all node v do
3: visited[v] ← false
4: end for
5: for each node v ∈ G do
6: if visited[v] = false and v is a core segment then
7: visited[v] ← true
8: labels[v] ← clusterID
9: GPU-BFS(v,G,Epsilon,minLines, clusterID); clusterID++

10: end if
11: end for
12: return labels

During a BFS search from a core segment, shown in Algorithm 6, each thread 
goes into the adjacency lists of density-connected line segments and marks them 
as visited (Lines 5–11 in the Identify-Clusters procedure of Algorithm  5). All 
density-connected line segments [35] get the same cluster label, and the process 
is conducted in parallel. Once all segments are marked as visited, the algorithm 
concludes, and clustering data is provided as output.
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The GPU-BFS Algorithm is designed as a sequence of BFS kernel calls where each 
thread is assigned a node on the frontier, which consists of the nodes in the adjacency 
list of the previous frontier, until the entire frontier is explored. This allows the GPU to 
explore the entire frontier of the breadth-first search at the same time.

In Lines 1–3 of Algorithm  6, we initialize two arrays, frontier and V of length 
G.numNodes with false values, indicating that no vertex is in the frontier and no vertex 
has been visited, and then place the vertex v in the frontier before calling, in Lines 4–6, 
the GPU-BFS-Kernel of Algorithm 7.

This kernel has different threads check in parallel if each node in the graph belongs 
to the frontier, and if it does, it removes the node from the frontier, marks it as visited 
(Lines 1–3 of Algorithm 7), and adds its unvisited neighbor nodes to the frontier (Lines 
4–9). In Algorithm 6, since each thread performs each one of the calculations in paral-
lel, the threads can make full use of their local thread registers to store and sum the 
distance and vector calculations. These calculations are designed to contain no branch-
ing logic so different thread instructions will not diverge, allowing the GPU to achieve 
high performance. Since all of the partitioned line segments are stored in a single array 
and threads access this array in a serial fashion when loading the partitions to perform 
distance calculations, the GPU is able to coalesce the data transfers from the global 
memory.

Algorithm 6 GPU-BFS (Graph G, Node v, double Epsilon, double
minLines, integer clusterID)
Performs a BFS on the graph G in order to discover clusters
1: Initialize local array frontier[1 . . . G.numNodes] with false values
2: Initialize local array V [1 . . . G.numNodes] with false values
3: frontier[v] ← true // Put node v in the frontier
4: while frontier has some node with a value of true do
5: GPU-BFS-Kernel(G,Epsilon,minLines, frontier, V )
6: end while
7: Bring the V array from the GPU to the host
8: for each node n in the graph G do
9: if V [n] then

10: label[n] ← clusterID
11: visited[n] ← true
12: end if
13: end for
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Algorithm 7 GPU-BFS-Kernel (Graph G, double epsilon, double minLines,
Array of boolean frontier, Array of boolean visited)
GPU Kernel that assists GPU-BFS in performing a BFS search
1: if frontier[threadID] then
2: frontier[threadID] ← false
3: visited[threadID] ← true
4: for each neighbor n of the node with identifier threadID do
5: if visited[n] = false and n is a Core segment then
6: frontier[n] ← true
7: end if
8: end for
9: end if

3.4 � Further enhancements to GTraclus

As can be seen from our description in Sect.  3.3, Algorithm  6, originally pre-
sented in our paper [12], has quadratic work complexity because every GPU 
thread checks if its assigned elements belong to the frontier of the graph in Line 
1 of Algorithm 7, regardless of the size of the frontier. In this section, we pre-
sent an improved, linear complexity version of this algorithm: GPU-BFS-Linear 
(see Algorithm 8) and its associated kernel, GPU-BFS-Linear-Kernel (see Algo-
rithm 9), adapted from [36, 37]. These two algorithms are drop-in replacements 
for Algorithms 6 and 7. Algorithm 8 initializes two queues, queue1 and queue2 , 
and a V array, all with a capacity equal to the number of nodes in the segment 
graph (Lines 1–2 of Algorithm 8). Then, it places the starting node v in queue1 
before calling the linear algorithm GPU-BFS-Linear-Kernel (Line 11). This ker-
nel, unlike the quadratic one, does not check each node for containment in the 
frontier; instead, each GPU thread takes an element v from the queue (Line 2 
of Algorithm  9) and adds to the next_queue all the unvisited core neighbors of 
v (Lines 4–9 of Algorithm 9). This last operation is done with an atomic add to 
make sure that the writes to the globally shared next_queue are coordinated. The 
next_queue will be the queue used the next time that the GPU-BFS-Linear-Ker-
nel is called. This alternation between queue and next_queue is accomplished by 
keeping track of the parity of the number of calls to the GPU-BFS-Linear-Kernel.

This kernel addresses the issue of low global memory bandwidth relative to 
the number of threads by having threads by consecutive thread ids access adja-
cent elements of the queue array (Line 2 in Algorithm 9); nonetheless, accessing 
the neighbors of those nodes might not guarantee global memory coalescing.
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Algorithm 8 GPU-BFS-Linear (Graph G, Node v, double Epsilon, double
minLines, integer clusterId)
Performs a BFS on the graph G in order to discover clusters
1: Create two empty queues queue1, queue2 with capacity G.numNodes in

the GPU
2: Initialize local array V [1 . . . G.numNodes] with false values
3: level ← 0
4: queue1.insert(v) // Put node v in queue1
5: repeat
6: if level mod 2 = 0 then
7: queue, next queue ← queue1, queue2
8: else
9: queue, next queue ← queue2, queue1

10: end if
11: GPU-BFS-Linear-Kernel(G,Epsilon,minLines, V, queue, next queue)
12: level ← level + 1
13: until next queue = ∅
14: for each node n in the graph G do
15: if V [n] then
16: label[n] ← clusterID; visited[n] ← true
17: end if
18: end for

Algorithm 9 GPU-BFS-Linear-Kernel (Graph G, double epsilon, double
minLines, Array of boolean visited, Queue of Node queue, Queue of Node
next queue)
GPU Kernel that assists GPU-BFS in performing a BFS search
1: if threadID < queue.size then
2: v ← queue[threadID]
3: visited[v] ← true
4: for each neighbor n of the node v do
5: if visited[n] = false and n is a Core segment then
6: position ← atomicAdd(next queue.size, 1)
7: next queue[position] ← n
8: end if
9: end for

10: end if



480	 Distributed and Parallel Databases (2023) 41:467–488

1 3

4 � Performance analysis

In this section, we describe the datasets, the hardware, and the setup used in the 
experiments presented in this paper. We compare GTraclus against MC-Traclus, 
a multicore algorithm based on Traclus that we wrote for this purpose and that in 
these experiments we run with 24 threads. MC-Traclus is identical to Traclus, except 
it parallelizes the distance computation between segment pairs by assigning different 
threads to different pairs.

4.1 � Datasets

For our experiments, we used two real datasets: Geolife [2] and the Taxi Service 
Trajectory Prediction Challenge dataset [11], which we will refer to as Porto. 
Geolife contains the trajectories of people and cars as they move through the city of 
Beijing in China, while the Porto trajectories log taxis as they move through the city 
of Porto in Portugal. Both datasets contain a considerable amount of data; Geolife 
has 17,621 trajectories, which were broken down into over 100,000 trajectories after 
stay-point detection [24], and Porto has 1.7 million trajectories. Geolife occupies 
700 MB and Porto 1.8 GB. Each dataset is kept in the GPU’s global memory.

We have chosen these two datasets because they are well-known and have been 
used in recent years in research studying the scalability of clustering algorithms 
on Apache Spark [38] and GPUs [19]. This is because these are real-life trajectory 
datasets with significant noise and skew that test the limits of indexing and cluster-
ing algorithms.

4.2 � Hardware

Our experiments were performed on a machine with Ubuntu 18.04 using CUDA 10 
and compiled with gcc v11.3 with -O3 optimizations. The hardware used was two 
Intel Xeon®6136 processors, an Nvidia A4500 GPU with 20 GB, and an Nvidia 
Tesla V100 GPU with 16 GB.

4.3 � Parameters

As the minLines parameter decreases and the Epsilon parameter increases, the num-
ber of resulting clusters approaches one. We employ realistic measurements for both 
as default parameters for our tests. The parameters used in our experiments are pre-
sented Table 1 along with their default values indicated in bold.

4.4 � Performance measure

In our experiments, the performance measure is the total execution time of the algo-
rithm measured from the moment when it starts executing until the moment when 
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the results are available in the host. Each query was run five times, and we report the 
average of these five executions. In these experiments, the standard deviations of the 
execution times are not shown, because they are very small and not noticeable in the 
figures.

4.5 � Experimental results

In this section, we describe the impact of the parameters on the performance meas-
ures of the competing algorithms.

4.5.1 � Impact of the number of trajectories

In this section, we describe the impact of the number of trajectories to cluster on 
the performance of each algorithm. Increasing the number of trajectories affects the 
processing time of both MC-Traclus and GTraclus, and while MC-Traclus outper-
forms GTraclus for a small number of trajectories, GTraclus performs much bet-
ter for large trajectory datasets, regardless of whether GTraclus runs on the Nvidia 
A4500 (A4500) or the Nvidia V100 (V100).

Figure 1a shows the results of MC-Traclus and GTraclus executed on the Geolife 
taxi dataset. In this figure, it is possible to see that the performance improvement of 
GTraclus (both V100 and A4500) over MC-Traclus is more pronounced than for the 
Porto dataset: GTraclus (V100) performs better starting from 100 trajectories instead 
of 1000, achieving up to 186× faster execution time than MC-Traclus for 100,000 
trajectories. This is because the trajectories in the Geolife dataset have fewer points 
than in the Porto dataset, improving the execution time of the partitioning step on 
GPU, which is sensitive to trajectories with many points. A similar behavior is seen 
for GTraclus (A4500) except that it performs better than MC-Traclus starting from 
around 700 trajectories, achieving up to 28× faster execution time than MC-Traclus 
for 100,000 trajectories. The gap between the execution times of GTraclus (V100) 
and GTraclus (A4500) with 100,000 trajectories is around 6.7×.

Figure 1b shows the results of MC-Traclus and GTraclus executed on the Porto 
taxi dataset. The results are similar to those seen with the Geolife dataset. In this fig-
ure, we see that for fewer than 1000 trajectories, the multicore CPU MC-Traclus per-
formed faster than GTraclus (V100), the latter performing 7.8× slower (5 ms versus 
39 ms) for 100 trajectories. However, GTraclus (V100) started having an advantage 

Table 1   Experimental 
parameters

The default parameter values are bolded

Parameter name Values

Epsilon 10
−4
, 10

−3
, ��−�, 0.1, 1, 10, 102

minLines 100, 200, 300, 400, 500, 600

Num. of trajectories 10
1
, 10

2
, 10

3
, ���, 105

GPU threads per block (GTraclus) 512

Num. of CPU threads 24
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over MC-Traclus for datasets with over 1000 trajectories, performing 5.5× faster 
for 10,000 trajectories and 22× faster for 100,000 trajectories. A similar behavior is 
observed between GTraclus (A4500) and MC-Traclus, except that it takes slightly 
over 1000 trajectories for GTraclus (A4500)’s execution time to improve upon MC-
Traclus’s. The reason for this is that the GPU’s parallel architecture can effectively 
support the independent distance calculations of GTraclus. Every thread measures 
the parallel, perpendicular, and angular distances [8] independently and using hun-
dreds of threads and overcomes the overheads produced by the memory transfers 
between main memory and device memory.

The partitioning stage on the GPU for 1000 trajectories takes three times longer 
than with MC-Traclus. At 10,000 and 100,000 trajectories, it closes this gap and 
starts to perform about as well as the original MC-Traclus partitioning implementa-
tion. This is because partitioning trajectories is semi-sequential.

In our experiments, we verified that one of the main challenges for scalable tra-
jectory clustering on GPUs is fitting the data structure used by the algorithm during 
the Make-Graph stage, which requires more memory (around 12 GB for Porto) than 
the data itself. GTraclus addresses this issue in part thanks to its CSR representation 
(See Sect. 3.3), which avoids using explicit pointers, keeping a compact data struc-
ture. However, to scale several orders of magnitude beyond the number of trajecto-
ries in these datasets, future research needs to be done to eliminate the assumption 
that the data structures must fit entirely in global memory.

4.5.2 � Impacts of Epsilon and minLines

In this experiment, we assess the impact of the Epsilon and minLines parameters 
on the performance of the competing algorithms. On one hand, we find that there 
is a significant impact of the Epsilon parameter on the total execution time, as 
seen in Fig.  2a and b. As Epsilon becomes larger, this leads to the creation of a 
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Fig. 1   a Impact of the number of trajectories to cluster on the average total execution time in milliseconds for 
the Geolife dataset. b Impact of the number of trajectories to cluster on the average total execution time in mil-
liseconds for the Porto dataset. In all experiments, 24 threads were used for MC-Traclus
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single large trajectory cluster and to an execution time increase of up to two orders 
of magnitude. This is due to the overhead in computing extremely large neighbor-
hoods and performing very large graph searches for huge numbers of results. At 
the extreme parameter values tested, many segments that would be classified as 
noise are included in clusters, and many clusters which would be differentiated are 
merged. In Fig.  2a and b we also see that for low values of Epsilon, the perfor-
mance of GTraclus (A4500) becomes competitive with that of MC-Traclus; this is 
expected because the performance of the A4500 is around 6× slower than the V100, 
corresponding to shifting upwards the execution time curve of the V100; the net 
impact of low Epsilon values is that it increases the number of trajectories required 
for the A4500’s execution time to improve upon MC-Traclus’s. On the other hand, 
varying the minLines parameter within the range specified has little impact on the 
performance of GTraclus, as seen in Fig. 2c and d. We conclude from these tests that 
GTraclus’ performance is resilient to extreme parameter values and clustering situa-
tions, as the change in performance is relatively even across these trials.
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Fig. 2   a Impact of Epsilon on the average total execution time in milliseconds for the Geolife dataset. b 
Impact of Epsilon on the average total execution time in milliseconds for the Porto dataset. c Impact of 
minLines on the average total execution time in milliseconds for the Geolife dataset. d Impact of min-
Lines on the average total execution time in milliseconds for the Porto dataset. In all experiments, 24 
threads were used for MC-Traclus
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4.5.3 � Stage time distribution

In this experiment, we measure the rate between the execution time of the individual 
stages of GTraclus to the overall execution time of this algorithm when run under 
the default experimental parameters, shown in Table 1. We have used the execution 
times obtained with the V100 for this section.

The results of our experiments are presented in Table 2. There we see that for 
the Geolife dataset, the smallest of our test sets, roughly 10% of the total execu-
tion time comes from the trajectory partitioning stage, while the construction of the 
graph (Make-Graph, presented in Algorithm 4) and its BFS traversal (Identify-Clus-
ters, presented in Algorithm 5) each contributes around 45% of the total execution 
time. In the Porto dataset, partitioning takes around 46% of the total execution time, 
while constructing and traversing the graph each takes around 27% of the execu-
tion time. The discrepancy between the partitioning percentages across these data-
sets stems from the fact that the Porto dataset gives rise to many more trajectory 
segments (3.87×) than Geolife; therefore, GTraclus partitioning does more work for 
Porto than for the other dataset. This is because these datasets have different spatio-
temporal distributions, with the Porto dataset containing trajectories that are harder 
to “compress”, according to MDL, than those of Geolife. These results indicate 
that for datasets with hard-to-compress trajectories, partitioning dominates the total 
execution time, while for other datasets, the clustering algorithms, Make-Graph and 
Identify-Clusters, dominate the execution time.

Figure 3a and b present the impact of the number of trajectories on the execution 
times of the stages of GTraclus using the Geolife and the Porto datasets, respectively. 
The grouping time corresponds to the sum of the execution time of the Make-Graph 
and Identify-Clusters sub-stages. In both datasets, we observe a similar behavior: 
the contribution of the grouping time to the total execution time is negligible when 
trajectories are few, but as the number of trajectories increases (beyond 1000 and 
10,000 in Geolife and Porto, respectively), the grouping time dominates the total 
execution time.

4.5.4 � Impact of the GPU BFS traversal algorithm

In this experiment, we investigate the impact of the GPU BFS traversal algorithm 
on the execution time performance of GTraclus (V100). We compare two BFS tra-
versal algorithms: the quadratic and the linear. The first, Algorithm 6, was the one 
used in the workshop version of this paper [12]; the second, Algorithm  8, is the 
one described in Sect. 3.4. As can be seen from their pseudo-codes, one of the key 

Table 2   Stage time distribution GTraclus stage Geolife (%) Porto (%)

Trajectory partitioning 9.72 45.86
Make-graph 45.04 26.92
Identify-clusters 45.26 27.20
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differences between them stems from the fact that the linear version uses a queue 
implemented as an array to contain all the vertices that are in the frontier of the seg-
ment graph, while the quadratic version does not do this and instead uses a boolean 
array of length |V| , called frontier, where V is the set of all vertices, indicating 
whether each vertex has been visited or not; every GPU thread is assigned a differ-
ent vertex in V to test if it is in the frontier or not. In the linear algorithm, every GPU 
thread is assigned a different vertex in frontier, instead of a different vertex of V.

From the experiments we performed in our datasets, the performance improve-
ment of the linear BFS algorithm over the quadratic one is negligible because the 
sizes of the datasets are not large enough for the difference to show. This can be 
seen in Fig. 4, which shows the difference between the average total execution times 
when using the quadratic and the linear BFS traversal as a function of the number 
of trajectories. Even when the total execution time is highest for both datasets (i.e., 
when using 100,000 trajectories), the difference between the execution times repre-
sents only a small fraction of the total execution time of GTraclus: around 100 ms 
when the total execution time is in the order of 10,000 ms. However, it is evident 
that the linear BFS algorithm should be the preferred choice, especially for deal-
ing with even larger datasets than the ones in this study, since the effort required to 
implement it is minimal when compared to that of the quadratic BFS algorithm.

5 � Conclusion and future work

In this paper, we presented a new GPU algorithm for local trajectory clustering based 
on the Minimum Description Length principle (MDL). Existing algorithms to solve 
the problem of local trajectory clustering based on this principle, like MC-Traclus, a 
multithreaded version of Traclus, do not scale. We addressed this gap by effectively 
parallelizing the distance computations between trajectories in the GPU. GTraclus pro-
vides the same clustering results as MC-Traclus but for large numbers of trajectories, 
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Fig. 3   a Impact of the number of trajectories on the execution time in milliseconds of each GTraclus 
stage for the Geolife dataset. Grouping Time is the sum of the time of Make-Graph and Identify-Clusters. 
b Impact of the number of trajectories on the average execution time in milliseconds of each GTraclus 
stage for the Porto dataset
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starting around 100 to 1000 trajectories, it results in up to 24× faster execution time 
than MC-Traclus. Our experiments suggest that for datasets with hard-to-compress 
trajectories, the trajectory partitioning stage dominates the total execution time, while 
for other datasets, the cluster discovery algorithms dominate the execution time. Our 
experiments also show that the GPU BFS traversal algorithm used for discovering clus-
ters does not have a noticeable impact on the execution time performance of our pro-
posed algorithm. GTraclus assumes that the data fits in the global memory of the GPU. 
It also assumes that the neighbor graph, which in our experiments occupied more space 
than the data, also fits along in global memory. A potential avenue for future research 
is studying new algorithms that do not make these two assumptions. Another possible 
future work is to research the applications of GPU-based processing on fuzzy cluster 
membership of trajectories [27].
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