
Vol.:(0123456789)

Distributed and Parallel Databases (2024) 42:143–178
https://doi.org/10.1007/s10619-022-07409-7

1 3

An SGX‑based execution framework for smart contracts
upon permissioned blockchain

Min Fang1 · Zhao Zhang1,2 · Cheqing Jin1 · Aoying Zhou1

Accepted: 8 April 2022 / Published online: 23 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Since consensus protocol and execution mechanism act as two key factors for the
overall throughput of blockchain systems, how to execute smart contracts efficiently
becomes an emergent bottleneck as many high-performance consensus protocols
have been proposed in recent years. Due to the existence of Byzantine nodes, exist-
ing concurrency approaches can only achieve intra-node concurrency, not inter-node
concurrency. Fortunately, since the trust among nodes can be achieved based on the
confidentiality guarantee provided by the trusted execution environment, such as
Intel Software Guard Extensions (SGX), we propose a novel concurrent execution
framework using SGX, which is the first to achieve both intra- and inter-node con-
currency. Specifically, each replica executes the task assigned by the primary in par-
allel and gets trusted results using SGX firstly. Then, each node obtains the execu-
tion results of others via state replication to achieve consistency. However, we must
ensure the integrity and correctness of all data transferred to SGX for getting the
trusted results. Therefore, we design a novel approach to efficiently generate Merkle
multiproofs and verify data in parallel. Theoretical analysis and experimental results
show that the proposed scheme significantly outperforms state-of-art solutions.

Keywords  Blockchain · Smart contract · Concurrency · SGX

 *	 Cheqing Jin
	 cqjin@dase.ecnu.edu.cn

	 Min Fang
	 mfang@stu.ecnu.edu.cn

	 Zhao Zhang
	 zhzhang@dase.ecnu.edu.cn

	 Aoying Zhou
	 ayzhou@dase.ecnu.edu.cn

1	 School of Data Science and Engineering, East China Normal University, Shanghai, China
2	 Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology,

Guilin, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-022-07409-7&domain=pdf

144	 Distributed and Parallel Databases (2024) 42:143–178

1 3

Mathematics Subject Classification  MSC code1 · MSC code2 · More

1  Introduction

As a decentralized, tamper-proof, traceable, and trusted distributed ledger jointly
maintained by multiple mutual distrust participants, blockchain has shown broad
application prospects and attracted a lot of attention from academics and industry
since its inception [1–3]. The main factors that affect the throughput of block-
chains are the efficiency of consensus protocol and smart contract execution
mechanism. Some recent works focus on studying scalable consensus protocols,
which attempt to improve throughput by designing or modifying consensus algo-
rithms [2, 4–7]. However, with significant improvement of the consensus effi-
ciency in the permissioned blockchain, how to execute smart contracts efficiently
becomes a big challenge nowadays [8, 9]. Concurrency is a direct way to improve
the performance of smart contracts. Existing solutions usually follow a two-phase
style [8, 10–12], where the primary adopts a serializable concurrency control pro-
tocol to execute all transactions per block and generates scheduling logs in the
first phase, then each replica replays all transactions according to the scheduling
logs and verifies results in parallel in the second phase.

However, in a hostile environment, malicious nodes may deliberately discard
or tamper with data, so a node distrusts any information from others. Under this
situation, once a node receives a block, it needs to re-execute all transactions in
the block to get the result. By transferring concurrent scheduling logs, the two-
phase methods above improve execution efficiency to some extent, but the fol-
lowing two weaknesses still remain: (i) Both phases are still serialized, i.e., all
replicas are idle when the primary is working; (ii) All replicas must replay all
transactions to keep consistent. Fortunately, trusted hardware that has evolved
deeply can deal with this issue. The trusted execution environment (TEE) such as
Intel Software Guard Extensions (SGX) [13] provides an encrypted region, also
known as enclave, to enable confidentiality and integrity protection of code and
data inside it from other processes (privileged software, etc.) and physical attacks.
The communication between SGX-equipped nodes is implemented through a par-
ticular secure channel, which is a remote-attestation transmission channel of SGX
and can avoid data being maliciously tampered with. In other words, once the
mutual trust has been established using SGX, smart contracts running in SGX are
protected against threats from other processes. Consequently, consistency among
nodes can be achieved via state replication without re-execution.

Therefore, we design a novel SGX-empowered framework to improve smart
contract execution efficiency. At first, we use enclave to protect the execution
result from attacks in the first phase (Execution phase). Then, the execution result
is synchronized among nodes via state replication in the second phase (Follow
phase). Hence, it is unnecessary to re-execute any smart contract by other nodes
to verify data integrity. Moreover, smart contracts can be dispatched to differ-
ent nodes and executed with a serializable concurrency control protocol, avoiding
idle waite of replicas when primary is executing. Note that cross-contract calls

145

1 3

Distributed and Parallel Databases (2024) 42:143–178	

are identified in the Execution phase and processed in a deterministic order in the
Follow phase. Therefore, the transfer cost between enclave and untrusted memory
should be minimized in the Execution phase.

However, executing contracts directly in the enclave in the first phase does not
significantly improve the efficiency due to the following reasons: (i) The enclave
page cache (EPC) is limited to 128 MB (or 256 MB in the latest implementation),
of which the available size is smaller than this [14, 15], it is infeasible to maintain
all state data in the enclave if data volume exceeds the EPC limitation. Furthermore,
it is hard to predict which part of state data will be visited by transactions before
running because smart contracts are usually written in Turing-complete languages;
(ii) The cost of transitioning control to/from enclaves, i.e., Ecall/Ocall, is high,
resembling a context switch [16, 17]. Besides, enclave paging is expensive, bringing
additional enclave transitions and cryptographic operations [18, 19]. It is not hard to
devise an asynchronous execution method based on existing two-phase framework
to deal with this issue. At first, a batch of transactions is divided into multiple micro-
batches, each being pre-executed in untrusted memory to generate scheduling logs
and collect visited data, and then validated in the enclave.

As a result, the aforementioned method suffers from three challenges: (i) How to
minimize the number of enclave transitions and the amount of data transferred when
the code and accessed state data of smart contracts exceed the storage limitation of
EPC; (ii) How to improve validation efficiency of the enclave using pre-execution
in the untrusted memory; (iii) How to verify the correctness for state data passed
to the enclave from untrusted memory quickly. For the first challenge, we compress
state data transmitted and cache part of hot data in the enclave to reduce the amount
and number of data transfers. Furthermore, to minimize the transfer cost while
maintaining execution efficiency, we use pipeline for data transmission between
untrusted and trusted regions. Then, we propose a mixed concurrent control protocol
optimized for traditional two-phase execution, which combines the batching OCC
(Optimistic Concurrency Control) with traditional OCC to optimize the execution
process. Meanwhile, we use Merkle proof [20] to ensure the integrity and correct-
ness of state data passed into the enclave. For fast proof and verify data, we design
a method to quickly get no-index multiproofs for multiple values based on Merkle
Tree (MT) [21] and verify data quickly. According to the characteristics of the data
access pattern, we further optimize the structure of MT and design a compressed MT
to merge hot data. Moreover, a concurrent MT (CMT) is designed to support concur-
rent operations on a tree and is friendly to a large dataset.

The main contributions are summarized below:

–	 We propose a novel SGX-based two-phase concurrent approach to achieve both
intra- and inter-node concurrency for smart contracts. Different contracts will be
dispatched to different nodes to execute, the results will be verified in the enclave
and synchronized via the secure channel. Cross-contract calls are also supported
here.

–	 We propose a mixed OCC protocol to improve execution and validation effi-
ciency, and design a MT-based mechanism to efficiently obtain compact Merkle

146	 Distributed and Parallel Databases (2024) 42:143–178

1 3

multiproofs and verify in parallel. Moreover, a compressed MT based on data
access pattern is proposed to optimize it further.

–	 We design and implement a multi-threaded prototype integrated with the above
technologies in open-source BFT-SMaRt [22] and evaluate it using the standard
benchmark in a distributed setting. Experimental results show the efficiency of
the proposed method.

As the extension of our conference version [23], we make the following improve-
ments: (i) Add the process of Follow phase and solve the problem of cross-contract
calls; (ii) Propose a mixed concurrent control protocol and a compressed MT; and
(iii) Conduct reliable theoretical analysis and details of design.

1.1 � Organization

The paper is organized as follows: Sect. 2 provides background about smart con-
tracts and Intel SGX. Section 3 describes the overall architecture of our system
model. Section 4 explains our SGX-based execution framework in detail. The rel-
evant content of Merkle multiproofs is discussed in Sect. 5. Section 6 shows how to
use the framework with PBFT and provides some performance and security anal-
ysis. The experimental evaluations are presented in Sect. 7. Section 8 reviews the
related work. Finally, a conclusion is provided in Sect. 9.

2 � Background

In this section, we present relevant background on smart contracts and SGX.

2.1 � Smart contract

The smart contract concept was first introduced defined by computer scientist, law-
yer, and cryptographer Nick Szabo in 1994 [24]. A smart contract is initially a com-
puter protocol that disseminates, validates, or enforces a contract in an informative
manner, allowing trusted transactions to be made without a third party, which are
traceable and irreversible. Modern blockchain systems follow this idea and sup-
port a set of programmable smart contract implementations on top of cryptocur-
rency transactions, such as contract account in Ethereum [25] and Chaincode in
Hyperledger Fabric [26], to better integrate into traditional industries. A smart con-
tract, written in Turing-complete languages (e.g., Solidity [27]), can be viewed as a
piece of code predefined by business logic that executes automatically triggered by
a transaction. Figure 1 is part of the source code for a smart contract, which imple-
ments a simple payroll and bank application written in Solidity language. Generally,
a smart contract can be called directly or indirectly. For example, in Ethereum, there
are two types of accounts, namely normal accounts and contract accounts. When a
transaction occurs between normal accounts, it is similar to a bank transfer trans-
action, such as the SimpleBank contract in Fig. 1. However, the situation is more

147

1 3

Distributed and Parallel Databases (2024) 42:143–178	

complicated when the transaction involves a contract object. In this situation, this
transaction may be a transfer, a call to a contract function, or both. This is the case
with the SimpleBank contract at the top of Fig. 1, where contract function deliver-
Salary invokes SimpleBank contract and pays salaries to a specific staff by function
sendPayment. Under this case, if a transaction calls the function deliverSalary of
SimpleCompany contract, it will trigger a call to the SimpleBank contract, then we
call it a cross-contract transaction.

2.2 � Intel SGX

The trusted execution environment (TEE) is a secure area within CPU, which can
guarantee the confidentiality and integrity of computation and data in it. As a state-
of-the-art implementation of TEE, Intel Software Guard Extensions (SGX) has
attracted broad attention from academia and industry since its inception. SGX is an
extension of x86 instruction set architecture that enables applications to run inside
an isolated virtual address space called enclave [13]. Both code and data of enclave
reside in a protected area of physical memory called the enclave page cache (EPC)
that is not accessible to the host, i.e., the rest of processes outside the enclave. The

Fig. 1   A typical smart contract example

148	 Distributed and Parallel Databases (2024) 42:143–178

1 3

Memory Encryption Engine (MEE) is responsible for encrypting and decrypting the
cache line in the EPC, and the code and data do not leave enclave memory with
unencrypted. SGX provides a remote attestation mechanism that allows a remote
party to verify the authenticity of the enclave’s identity information and the code/
data it loads. It facilitates the creation of a secure channel between the remote party
and the enclave (e.g., passing secret keys).

SGX can build trusted and secure execution environments for untrustworthy
blockchains. However, due to the limitations of SGX implementation, the follow-
ing key challenges still remain to achieve a robust and high-performance design.
(i) The preserved memory space for SGX is limited to 128 MB (or 256 MB in the
current implementation). Although SGX supports swapping unused EPC pages to
unprotected memory to hide this limitation, the overhead of page swapping is high,
which can reach 40,000 CPU cycles [14, 19]. (ii) The cost of transitioning control
to/from enclaves (i.e., Ecall and Ocall) is high, resembling a context switch, which
can easily consume 8600–14,000 CPU cycles according to cache hit or miss [19,
28]. And a page missing will bring the cost for enclave transitions and extra compu-
tation of cryptographic operations. (iii) SGX faces security risks such as excessive
TCB and exposure of excessive external interfaces, because any vulnerabilities in
the loaded code can endanger the security of the entire system. Some works attempt
to deploy function libraries or system libraries in the enclave to support the execu-
tion of a complete application, thereby reducing the interaction between the code
in the enclave and the operating system [14, 15]. These works support unmodified
applications and can reduce the attack surface while ensuring a small TCB. Among
the above three limitations, the first two focus on performance, while the last one is
for security.

3 � Overview

In this section, we present the overview of our novel SGX-based concurrent execu-
tion framework, including system architecture and adversary model.

3.1 � System architecture

We extend concurrency to improve smart contract process with the confidentiality
guarantee provided by SGX, achieving both inter- and intra-node concurrency. Spe-
cifically, a batch of transactions will be assigned based on some partition rules to
multiple nodes for concurrent execution using SGX, which will be synchronized to
others via Gossip protocol. Figure 2 elucidates our system architecture that involves:
(i) One primary (PrimaryNode), a node elected by consensus, which is responsi-
ble for packaging and broadcasting blocks. (ii) Multiple replicas (ReplicaNodes),
nodes other than primary, which can be further divided into ExecutionNode and Fol-
lowNode according to logical roles, and the role of each node is different for the
same contract. Each ReplicaNode is responsible for the execution, validation, and

149

1 3

Distributed and Parallel Databases (2024) 42:143–178	

maintenance of its contract state. All nodes are SGX-equipped and have trusted and
untrusted memory.

A batch of smart contracts goes through four steps from packaging to commit-
ting, as shown in Fig. 2.

①	 PrimaryNode packages a batch of transactions into a block and assigns the trans-
actions to different ReplicaNodes according to some pre-specified rules, which
are used to divide a batch of transactions rationally and can take various forms,
like geo-distributed-based [29] and contract-based [30], etc. The allocation infor-
mation is attached to the block body and participate in consensus along with the
block (see Sect. 4.1 for details).

②	 PrimaryNode initiates a consensus process and each ReplicaNode acts as an
ExecutionNode for the assigned transactions.

③	 ExecutionNode executes pre-assigned transactions concurrently, marks and aborts
all cross-contract transactions during execution. Meanwhile, ExecutionNode uses
enclave to get trusted execution results (see Sect. 4.2 for details).

④	 All results and cross-contract transactions are transferred to FollowNodes via the
secure channel of SGX. FollowNodes synchronize results via state replication
and re-execute all unexecuted transactions with the same sequence obtained in
the consensus (see Sect. 4.3 for details).

3.2 � Adversary model

In permissioned blockchain, all nodes are considered potential adversaries because
no one trusts others. To avoid any replica re-executing all smart contracts, we apply
SGX to guarantee the correctness and integrity of execution results. Since the size
of SGX is limited, all necessary data in the enclave for validating are from untrusted
memory. Here, we adopt Merkle proof [20] to guarantee the correctness and com-
pleteness of the initial data passed into the trusted memory, because the probability
of verification based on the wrong initial state or proof is negligible [31]. And Fol-
lowNode can trust the correctness and completeness of the encrypted result because
an adversary cannot break the hardware security enforcement of SGX even though

Fig. 2   System architecture

150	 Distributed and Parallel Databases (2024) 42:143–178

1 3

it may compromise OS or other privileged softwares. SGX side-channel, page-table,
and cache-timing attacks are beyond the scope of this work because these vulner-
abilities are specific implementations and common to all SGX frameworks [32–34].

4 � The SGX‑based execution framework

To improve smart contract execution efficiency, we design a novel framework based
on SGX. In this section, we present our execution framework in detail, including the
packaging strategy, the Execution phase and the Follow phase.

4.1 � The packaging strategy

Randomized packaging mechanism is widely used in the existing permissioned
blockchain, where a specific thread randomly packages a batch of transactions into
a block. This packaging mechanism brings low system latency because it obtains
transactions from transaction pool without the division of transactions. However,
such randomized approach cannot restrict the number of distinct contracts in a
block. For example, when there are t transactions in a block, in the worst case, these
t transactions all call the same contract. In this situation, if we simply assign trans-
actions in a block to different nodes for execution, more cross-contract transactions
may occur, because there may be more possible conflicting dependencies among
transactions for the same contract [30]. Meanwhile, the cost of processing cross-
contract transactions is high. However, considering user rights and data security, the
conflicting dependence between transactions of different contracts may be smaller
[35, 36]. Therefore, if there are m contracts and the number of transactions per con-
tract in a block is t

m
 , we can divide this block into t

m
 equal parts and execute them in

parallel by different nodes.
Therefore, in order to improve efficiency and achieve load balancing, we maintain

multiple queues in PrimaryNode, responsible for packaging and distributing trans-
actions. The number of queues is equal to the number of smart contracts. As shown
in Fig. 3, each queue (called contract queue) maintains transactions that call to the
same contract. Each block can be composed of one or more contract block s, and

Fig. 3   The packaging strategy

151

1 3

Distributed and Parallel Databases (2024) 42:143–178	

each contract block is composed of transactions in the same contract queue. Like
Ethereum transactions, the recipient address of a transaction is usually specified,
so we can know which contract is invoked by analyzing the content of the transac-
tion. Whenever receiving a transaction, PrimaryNode puts it into the corresponding
queue based on the information obtained about the recipient address of the transac-
tion. The cost of this is minimal, as it is easy to read the value of a specified field of
a transaction directly. Besides, we can apply multiple threads to facilitate this pro-
cess, just like the multi-threaded deep pipeline designed in [37]. Then, PrimaryNode
packages contract block s according to some rules to get a block, and transactions
of different contract types are packaged into different contract block s. We design
two strategies to implement packaging. One is based on time, for each contract
queue, after a fixed period T, even if it is unfull, PrimaryNode will still package
all transactions in it. Another is based on capacity, when the number of transac-
tions in a contract queue exceeds pre-defined threshold V, PrimaryNode will pack-
age all transactions in each contract queue and generate multiple contract block s.
All contract block s will be packed into a block to participate in consensus. It is not
difficult to find that the system latency will increase under a great T, because there
may be some unprocessed transactions in the queue. To simplify the description, we
denote the number of transactions contained in a block as the block size. Therefore,
if V is small, the block size also small since at most V ⋅ m transactions are packaged
into a block. According to the experimental results in Fig. 15 in Sect. 7.3, a smaller
block will lower the throughput. Therefore, we can optimize this packaging process
using a shorter period T and a greater queue capacity V. When a block is gener-
ated, PrimaryNode specifies a particular ReplicaNode as ExecutionNode for each
contract block in this block, i.e., idle replicas with no or few tasks, and broadcasts
this block.

4.2 � Execution phase

The upper part of Fig. 4 shows the Execution phase in an ExecutionNode, and the
bottom part illustrates the Follow phase in a FollowNode, where they communicate
through the secure channel of SGX. During the Execution phase, we pre-execute
transactions concurrently in untrusted memory and then concurrently validate the
correctness in trusted enclave, as shown in the upper part of Fig. 4. All state data
accessed by the assigned tasks ( contractj block) are identified during pre-execution
and passed to the enclave in batches to minimize the number of enclave transitions.
At the same time, the proofs of all identified data are also transmitted to the enclave
to provide integrity assurance. How to efficiently obtain proofs and verify data with
proofs are discussed in Sect. 5.

4.2.1 � Pre‑execution in the untrusted memory

Conflict graph (CG) has long been used in concurrency control to capture con-
flicts between transactions [8, 38, 39], where vertices are transactions, and edges
represent the dependencies of read-write conflicts. A CG can be generated based

152	 Distributed and Parallel Databases (2024) 42:143–178

1 3

on the read-write sets of transactions after concurrent execution and partitioned
into several non-intersecting subgraphs, so transactions in different subgraph
can be executed in parallel safely. In this paper, we also construct CG to repre-
sent the dependencies between transactions. Further, we define RS(Ti)/WS(Ti) as
the read/write set of a transaction Ti , and a dependency Tj → Ti (i ≠ j) exists if
RS(Tj) ∩WS(Ti) ≠ � . With the scheduling logs produced by non-intersecting sub-
graphs, the transactions can be executed concurrently and deterministically in the
enclave. Since each block contains a batch of transactions in the blockchain, some
recent works apply batching OCC protocol to execute smart contracts and use
reordering mechanism to improve the commit rate [8, 39]. Basically, such meth-
ods contain two steps. First, a batch of transactions is processed based on the cur-
rent snapshot, and a CG is constructed based on the read/write set obtained after
execution. Second, conflicting transactions are removed from CG to ensure the
correctness of results, and the schedule log is generated.

Example 1  Consider three transactions T1−3 in Table 1. Operations ri(D) , wi(D)
and rwi(D) denote the read, write, and read and write data item D of transaction Ti ,
respectively. Operations ci and ai denote the i-th transaction prepares to commit and
abort, respectively. Under the traditional OCC protocol, once T1 is successfully com-
mitted, T2 and T3 must be aborted because data item A has been updated. However,
the situation may differ under batching OCC. Figure 5a shows the conflict graph
of transactions T1−3 under batching OCC. In order to get the serializable order, i.e.,
topological order, we either abort T1 or T3 to break the circle ( T3 is aborted as an

Enclave

Concurrent
Validation

contract j block

Bl

oc
k i

Storage

Concurrent
Pre-execution

Ecall

Untrusted Memory Trusted Memory

Validation Information

Schedule
Log

Compact
Read Set

Merkle
Root

Merkle
Proof

Storage

Execute in order

Write Set

unexecuted transactionsWrite Set

ExecuteNode Execution Phase

FollowNode Follow Phase

Decrypt Ocall

Merkle
Proof

Encrypted Channel

Compact
Read Set Cache Schedule

Log

Fig. 4   The Execution phase and the Follow phase

153

1 3

Distributed and Parallel Databases (2024) 42:143–178	

example). Therefore, we can commit two transactions T2 , T1 in order successfully
rather than one under traditional OCC protocol.

Note that the rollback rate of batching OCC will increase significantly under
high conflict workload. Furthermore, batching OCC behaves even worse if con-
flict-free transactions have not been committed early. For example, if we execute
T1−4 in Table 1, T4 can be committed in traditional OCC but must be aborted in
the batching OCC because of new circles ( T1 and T4 form a circle; T3 and T4 form
a circle). Obviously, for a large batch of transactions, execution under batch OCC
may have more unresolved conflicts, in other words, more circle dependencies.
This is comparable to the observation of Hyperledger Fabric, where the num-
ber of transactions included in one block has significant effect on the number of
transaction failures [40]. Based on this, we combine the advantages of traditional
OCC and batching OCC. We identify committable transactions during execution,
which can reduce the possibility of additional conflicts and the cost of resolving
conflicts. For this purpose, we introduce Rule 1 below.

Rule 1 is correct because there is no dependency between a commitable trans-
action and any others. In addition to early-commit, we should also identify all
unresolvable conflicts and abort these transactions, especially under high conflict
workloads, i.e., break unresolvable circle dependencies as soon as possible. How-
ever, such dependencies are difficult to detect during execution due to multiple

Table 1   Scheduling information Transaction T
1

T
2

T
3

T
4

Scheduling r
4
(A);w

4
(B)

c
4

r
1
(B);rw

1
(A) r

2
(A) r

3
(B);rw

3
(A)

c
1

a
2

a
3

T2

T1

T3

(a) CG 1

T4

T1

T3

T2

T1

T3

(b) CG 2

Fig. 5   Examples of CG, red vertices are aborted for serialization (Color figure online)

154	 Distributed and Parallel Databases (2024) 42:143–178

1 3

transactions or data items may be involved. Since a circle dependency between
two transactions can be determined easily, we introduce Rule 2 to abort uncom-
mittable transactions as soon as possible.

Rule 2 is valid due to the existence of a circle dependency between two transac-
tions. Observe that for a long transaction, the read/write sets may be large. There-
fore, in order to evaluate Rule 2 efficiently, we restrict it to a concrete case where
two dependencies must be triggered by the same value, such as T1 and T3 in Example
1 (dependency is triggered by the same value A). Such a situation is common in the
blockchain because, in general, smart contract access to accounts is always skewed
[41, 42], namely, some accounts are frequently accessed, also known as active
accounts.

We can optimize the pre-execution process under high conflict workload based
on Rule 1 and 2. Specifically, following the standard OCC protocol, we divide the
execution process of each transaction into three phases, including local execution,
validation, and early-commit. However, during validation, we only commit transac-
tions that satisfy Rule 1 and rollback all that meet Rule 2 . After executing the trans-
actions in current batch, we use the method in [8] to resolve the conflicts to obtain
scheduling logs.

Example 2  Consider four transactions T1−4 in Table 1. According to Rule 1 , T4 can
be early-committed because there exists no dependency between T4 and any other
transactions when it comes to the validation phase. Subsequently, T1−3 begin to be
executed and validated. Noted that either T1 or T3 needs to be aborted under Rule 2
because they try to update the same item A. Same as Example 1, we also abort T3 .
However, T1 still cannot be early-committed, because uncommitted T2 has already
read A. Since T2 is a read-only transaction, it can be early-committed according to
Rule 1 . After execution, there is no circle in CG because only T1 is left, and we can
commit it directly. As a result, we mitigate the cost of resolving conflict dependen-
cies in [8]. In addition, we can commit three transactions T4 , T2 and T1 in order suc-
cessfully rather than two in Fig. 5b.

4.2.2 � Validation in the enclave

Due to the size limit of enclave and the expensive cost of enclave paging, we get
all necessary state data for execution during pre-execution phase and compress it
further to generate a compact read set, i.e., the oldest read operations for the current
batch of transactions. After transferring the compact read set into enclave, transac-
tions will be re-executed based on the incoming read set. However, it introduces a
certain waiting time because pre-execution in untrusted memory and re-execution

155

1 3

Distributed and Parallel Databases (2024) 42:143–178	

in trusted memory are synchronous. Therefore, we transfer data in batch asynchro-
nously to connect untrusted and trusted memory to optimize parallelism. In the
untrusted memory, we pre-execute transactions in micro-batch, e.g., we divide b
transactions into c micro-batches and execute these batches sequentially. Under this
situation, we must ensure the size of b

c
 transactions are relatively reasonable to maxi-

mize the transfer volume without adding an additional high transfer overhead, which
can be approximated by the Intel VTuneTM XE Amplifier [18]. Since an EPC page
size is 4 kB [43], which is used as the default granularity in some works to optimize
enclave transfers [44], so we set the default value of b

c
 to 4 kB. Transactions in each

micro-batch are executed using the method mentioned above. During execution, we
collect all aborted transactions and put after the last micro-batch to execute again
since the transactions aborted in the current micro-batch have high probability of
being aborted again. In addition, data transmission of the current micro-batch can be
performed in parallel with the pre-execution of the next micro-batch.

In order to minimize the amount of data transferred, we cache the latest state
data involved in the previous micro-batch in the enclave. Meanwhile, a correspond-
ing buffer is maintained in the untrusted memory to identify the cached data items.
Since the enclave size is limited, we use the LRU page replacement algorithm to
manage the cache dynamically. Considering the existence of Byzantine nodes, we
must provide proofs for transferred data and validate in the enclave to ensure cor-
rectness (see in Sect. 5 for the acquisition and verification of proofs). Thanks to the
confidentiality and integrity protection provided by SGX, there is no need to provide
proof for data inside the enclave, so the transmission cost is reduced significantly.
During validation, the compact read set is validated using the Merkle root and its
corresponding Merkle proof. After validation, transactions will be concurrently
replayed based on transferred scheduling logs and the compact read set to get write
set. Finally, a certificate is generated to show the correction of the execution result
and passed to other nodes via the secure channel of SGX.

4.3 � Follow phase

After the Execution phase, the trusted result obtained in the enclave is synchronized
to FollowNode through the secure channel of SGX with Gossip protocol, and then
the Follow phase begins. This subsection presents the entire Follow phase, including
data synchronization and the execution of cross-contract transactions.

4.3.1 � Synchronization process

As shown at the bottom of Fig. 4, after receiving the result, FollowNode will decrypt
and store the information locally. As described in Sect. 3.1, all unexecuted trans-
actions will be executed in the same order by all nodes after consensus. To avoid
inconsistency of system state when partial results are missed, we require Fol-
lowNode to receive all results from others before updating state. But this naive
method undoubtedly adds waiting time. Moreover, in a hostile environment, mali-
cious nodes may deliberately discard or tamper with data. Although all malicious

156	 Distributed and Parallel Databases (2024) 42:143–178

1 3

actions can be discovered during validation in the enclave, data loss caused by hard-
ware or network failures cannot be detected. Besides, the SGX of a node cannot
determine what caused it not to receive results for an extended period, network fail-
ure or node failure, or both. Therefore, we maintain a timeout parameter inside the
enclave to identify the state synchronization, which cannot be tampered with. The
timeout parameter is initialized to the time used for one round of network commu-
nication during consensus and can be dynamically adjusted based on the time used
for the last round of state synchronization. Once the result of a contract block is
not received on time, SGX will send a confirmation message to the corresponding
ExecutionNode via the secure channel. This confirms either ExecutionNode left the
trusted network or just failed to execute all transactions on time due to some long
transactions. For the former, it is no need to wait any longer, and the corresponding
transaction will be marked as unexecuted. For the latter, SGX will reset the timeout
parameter and continue to wait.

However, this method does not cope well with the case where nodes are deliber-
ately unresponsive. To address this issue, we can delegate a task to multiple execu-
tors for execution with a deterministic method, i.e., PrimaryNode randomly selects g
nodes at a time as an execution group for a task. In fact, for a cluster of n = 3f + 1
nodes (i.e., f malicious out of n nodes), the probability that there are only malicious
nodes in an execution group is p =

∏g

i=0

f−i

3f+1−i
 . We allow the user to choose an

upper bound of probability p to compute the appropriate g to trade off the probabil-
ity of tolerating silence against the efficiency of concurrent execution. Specially, if
we need to avoid the performance degradation caused by malicious node silence
with 100% (i.e., p = 0 ), we must guarantee that each task has g = f + 1(> f) execu-
tors (i.e., at least one honest node). Although this strong guarantee improve system
security, it significantly affects the concurrency efficiency of the proposed frame-
work as only two contracts can be executed simultaneously. But when p is higher we
can obtain better concurrency efficiency, e.g., when f = 10 and g = 6 , i.e.,
p < 0.1% , we can get 5 execution groups and execute 5 tasks simultaneously.
Although this method reduces the inter-node concurrency of the system to some
extent, it can bring higher security because as long as one executor isn’t a Byzantine
node and the system is not affected.

4.3.2 � Cross‑contract execution

A cross-contract transaction may have several sub-calls to other contracts, which
will result in conflicts among transactions that invoke these contracts. Under this
situation, some transactions must be aborted to keep atomistic, which limits the
efficiency of concurrent execution among nodes. Therefore, we urgently need to
resolve such cross-contract transactions. Generally, direct contract calls are usually
specified, so contract call information can be obtained directly, just like Ethereum
transactions. However, we cannot know which contract is called indirectly because
indirect contract call is triggered called by the executed contract and can only deter-
mined by executing contract code. As shown in Fig. 1, the SimpleBank contract is
triggered called by the function deliverSalary in the SimpleCompany contract. If

157

1 3

Distributed and Parallel Databases (2024) 42:143–178	

there are multiple contracts like SimpleCompany for different banks, we can’t know
which bank contract is called without executing. Hence, if a smart contract is called
indirectly, we cannot obtain the contract information conveniently.

For these indirect contract calls, the current work [30] first pre-executes transac-
tions in the client to identify all contracts involved and then executes the transac-
tions related to these contracts together to avoid cross partition transactions during
execution. Although this method does address the problem of executing cross-con-
tract transactions, it puts an amount of computational pressure on clients, which
is too heavy for light clients. Given this, we use a static code analysis tool Slither
[45] for Solidity language to estimate the involved contracts for each function of
a smart contract. In particular, Slither will over-approximate all possible contracts
called by a transaction in all code paths. Based on the results obtained from analysis,
PrimaryNode will merge the contract queue involved and then add the request to
this merged queue. In addition, we adopt the merging strategy designed in [46] to
achieve efficient queue merging. However, this method cannot suit for the dynamic
contract calls where the contracts involved can only be discovered during execution.
For this type of transaction, we abort them during execution and re-execute them
after synchronizing the results. Specifically, during the Execution phase, an Executi-
onNode finds all transactions with dynamic contract calls and aborts them to ensure
consistency among nodes. Then the transactions ids are sent to other nodes via the
secure channel of SGX. During the Follow phase, a FollowNode first verifies the
correctness of the received result, and state synchronization will be performed once
the verification succeeds.

After state synchronization, all nodes have consistent state. We need to ensure
that all unexecuted transactions are executed deterministically on all nodes to keep
this consistent. Serialization is the simplest way to achieve this, but it limits the con-
currency capability of the system. In fact, for the same batch of transactions on the
same data snapshot, their read and write states are also the same, which helps get
the same CG. Given this, we implement a deterministic concurrent control protocol
based on the mixed OCC we designed in Sect. 4.2.1. Therefore, as long as each node
can abort the same transaction every time, the final scheduling order is the same.

Specifically, all cross-contract transactions are first executed locally. After exe-
cuting, we construct a CG based on the read-write sets obtained during execution
and break CG deterministically to eliminate conflicts. As shown in Fig. 6, Tx1−3 are
cross-contract transactions, and all of them indirectly invoke another contract dur-
ing execution, which triggers other transactions. For example, Tx3 invokes contract
S2 , and triggers transactions Tx31 and Tx32 , which are called internal transactions.

Fig. 6   The example of cross-contracts CG, red vertex is aborted for serialization (Color figure online)

158	 Distributed and Parallel Databases (2024) 42:143–178

1 3

We define the cross-contract transaction and its all internal transactions as a hyper-
graph. The transactions within the hypergraph are executed in the invoking order.
Since the scheduling of all internal transactions also satisfy ACID requirement, they
must commit or roll back simultaneously. Finally, we convert it into the schedul-
ing problem for individual hypergraphs, which can be dealt with by a similar solu-
tion in Sect. 4.2.1. For example, in Fig. 6, there are three hypergraphs marked with
dashed boxes, based on the read-write dependencies of which a conflict graph CG′
is formed. We first find all strongly connected hypergraphs of CG′, and then remove
a hypergraph with the smallest transaction id to break the circle, instead of the ran-
dom removal in [8]. Thus, we remove the first hypergraph produced by Tx1 , and the
corresponding read-write dependencies are broken. Finally, we obtain a scheduling
log with high parallelism, i.e., Tx2 ⇒ Tx21 → Tx3 ⇒ Tx31,32.

In summary, we avoid many cross-contract transactions through static analysis
using Slither during packaging, and efficiently execute the remaining cross-contract
transactions that are only identified during execution in the Follow phase.

5 � Compact merkle multiproofs

MT is widely used to verify the integrity of data in blockchain [47, 48]. In general, a
MT is a binary tree, which consists of some hash values. Let Hi

j
 (i is the level of the

tree, j is the index of level i) denote a node in MT, which has two child nodes Hi−1
2j

and Hi−1

2j+1
 . Figure 7a illustrates an example of MT. In our execution framework, we

use MT to ensure the correctness of data transferred into the enclave. As SGX being
memory-limited, the generated proof must be small enough. Thus, we consider the
multi-value proof problem of MT, which tries to prove multi-values exist on the
same MT at the same time. Although the existing methods on multiproofs [49–51]
can save storage space to a certain extent, the following problems still exist: (i)
Expensive to generate and verify proofs; (ii) Lack of scalability to support a large
MT.

In fact, when generating the Merkle proof for an input value, it needs one proof
value in each level of MT for the proof path. For example, in Fig. 7a, if we want
to provide the proof for v4 , we need H5

0
 in level 0, H1

3
 in level 1, and H2

0
 in level

(a) The proof of one value (b) The multiproof of two values

Fig. 7   The typical example of Merkle multiproof

159

1 3

Distributed and Parallel Databases (2024) 42:143–178	

2 to form the proof path. When verifying, it calculates step by step from bottom
to top according to the proof path until the root. However, when generating the
proof for two values that belong to the same parent node, there is no need to add
additional proofs. As shown in Fig. 7b, if we need to provide proof for v4 and v6 ,
since H1

3
 can be calculated by v6 , there is no need to maintain it in the proof path

to get H2

1
 of level 2. Given this, when obtaining proof for a verified set, we can

determine whether two input values belong to the same parent node or not level
by level to remove redundant intermediate node, such as H1

3
 in Fig. 7a. Next, we

will explain how to efficiently obtain the multiproof and verify based on it.

5.1 � Generate compact Merkle multiproofs

We design Algorithm 1 to obtain multiproofs of a MT efficiently. The inputs are
a MT H and the ordered index set � of the read set. Algorithm 1 iterates H from
bottom to top and finally outputs a compact multiproofs M={M1 , M2 , ...}, where
Mi means the proofs of i-th level (Level-i) and consists of some hashcodes. Proof
in Fig. 8 illustrates an example of M. Let nd.lNode and nd.rNode denote the left
and right children of a node nd, respectively. If only nd.lNode exits in the input
list, then nd.rNode must be output as a proof to obtain nd, and vice versa. If both

nd.lNode and nd.rNode are in the input list (called a full pair), it is no need to
provide any proof to get nd.

Fig. 8   An example of generating multiproofs

160	 Distributed and Parallel Databases (2024) 42:143–178

1 3

Algorithm 1 generates proofs for each level in a bottom-up manner and finally
generates compact multiproofs M. If all nodes in a level are in the input list � , we
do not need to generate proofs for higher levels (Lines 2–3). Otherwise, we must
compute the proof for each item in � and maintain their parent index at nli, which
will be used as input to get Mi+1 (Line 4). For each item � in � , if Hi

�
 is an rNode,

its left brother Hi
�−1

 will be provided to get Hi+1
�∕2

 , and maintained in Mi (Lines
6–7). If Hi

�
 is an lNode, we will judge whether its right brother index � + 1 is in �

or not. If it is, we just skip its right brother, i.e. delete � from � (Lines 9–10).
Otherwise, we add Hi

�+1
 to Mi if it is not the last one of Hi (Lines 11–12). Finally,

we add the parent index of � , i.e., �
2
 , to nli (Line 13). After current iteration, we

replace � with nli for Level-i+1. After iteration, no-index Merkle multiproofs M
will be returned. Algorithm 1 dramatically reduces the transmission cost because
there is no need to provide indexes and other additional information for multi-
proofs, which is necessary in previous works.

Example 3  As shown in Fig. 8, the read set that needs to provide proof is {v1, v4, v6} ,
and the index list � is initialized to the ordered index of this read set, namely
{1, 4, 6} . We traverse � in order. The first value is 1, an rNode, so its left brother H0

0

used to get the parent H1

0
 , and we add index 0 to the next index list nli for the next

level. The second value is 4, an lNode, so it needs a right brother H0

5
 to get H1

2
 , and

add index 2 to nli. Since the last value 6 in � is the last value without right neighbor,
it will generate H1

3
 with itself, and add index 3 to nli. Finally, we get the proofs of

Level-0, namely M0 = {H0

0
,H0

5
} and update � = nli = {0, 2, 3} for the next round.

We iterate to get M1 = {H1

1
} . At last, since � in the Level-2 is full, namely the length

161

1 3

Distributed and Parallel Databases (2024) 42:143–178	

of � is equal to the node number of in Level-2, Algorithm 1 is completed and returns
a compact Merkle multiproof M = {{H0

0
,H0

5
}, {H1

1
}}.

5.2 � Verify based on Merkle multiproofs

To reduce the amount of data transferred into the enclave, we produce an index-less
multiproofs with Algorithm 1. Based on multiproofs obtained, we further propose
Algorithm 2 to accelerate the verification process. The inputs of Algorithm 2 are
the compact Merkle multiproofs M and the ordered node list � of read set, which
consists of the index and hashcode of an input value, e.g., � of Level-0 in Fig. 9. The
output of Algorithm 2 is a root obtained based on M, which will be compared with
the root of H to validate the correctness of the transferred read set.

Fig. 9   An example of verification based on multiproofs

162	 Distributed and Parallel Databases (2024) 42:143–178

1 3

Algorithm 2 verifies the input data based on M in a bottom-up manner to get
Root. If M is empty and the size of � is equal to 1, the root has been obtained and the
process is ended (Line 1). For each iteration, we create the next node list nln firstly,
which will be used as input for the next level verification (Line 2). Since MT is a
binary tree, so the parent node of H� is H �

2

 (Line 4). For each node H� in � , if H� is
an rNode, there must be a left brother in M0 , so we pop it from M0 and compute its
parent node with H� (Line 6). If H� is an lNode and the right brother H�+1 is also in
� , we compute H �

2

 with both of them and skip the right brother, i.e., delete H�+1
from � (Lines 9–10). But if the pair is not in � , we should compute its parent node
with a value in M0 or compute with itself (Lines 11–14). Finally, we add the parent
node H �

2

 into nln (Line 15). After dealing with the current level, if M is not empty,
we pop the proof of the next level from it and update � to nln for the next level veri-
fication (Lines 16–17). By Algorithm 2, we return the last value in � as the Root.

Example 4  According to Example 3, we obtain multiproofs M={{H0

0
 , H0

5
 }, { H1

1
 }}

of given read set, and the ordered node list of read set � = {H1,H4,H6} . As shown
in Fig. 9, we traverse M in order based on Algorithm 2. Firstly, we use M0 and � to
verify and generate the node list of Level-1. Since the first node H1 in � is an rNode,
we compute H′

0
 by combining H1 with H0

0
 in M0 , and put H′

0
 into nln as the inputted

value of Level-1. The second node H4 is an lNode, so we compute H′
2
 by using it and

H0

5
 in M0 . When computing the last node H6 in � , since both � and M0 are empty, we

get H′
3
 by computing H6 with itself. Finally, we get the node list of Level-1, namely

� = nln = {H0,H2,H3} and pop an item from M for the next iteration. We continue
to iterate based on the updated � and the value pop from M until reaching Root.

5.3 � Update and compress Merkle tree

5.3.1 � Update Merkle tree

After a block is committed, MT will be updated using the new state data to produce
a new root, like state root in Ethereum [48]. The update process is also performed
iteratively from the bottom to up. After getting trusted result, enclave uses the result
and incoming multiproofs to update MT incrementally in parallel. Since the write set
only involves the state data controlled by the same contract, and cross-contact trans-
actions are not processed in the enclave, such updates are lightweight and friendly.
Eventually, the updated tree structure will be synchronized to all nodes along with
the trusted write sets via the secure channel of SGX. All state updates caused by
cross-contract transactions will be completed after the Follow phase to ensure the
consistency of nodes. Through incremental update based on SGX, the state update
cost of all nodes is greatly reduced.

5.3.2 � Compress Merkle tree

According to Algorithms 1 and 2, multi-value computation is used to generate
proofs and verify data. Note that when the tree is processed to a specific height, the

163

1 3

Distributed and Parallel Databases (2024) 42:143–178	

input of each subsequent level is full, i.e., all necessary hashcodes are inputted from
the lower level. If this height remains stable over multiple executions, it is better to
compute a single hash for the level to obtain the root node, which can save a lot of
computation cost. Furthermore, the root can be computed with a single hash from
lower level if we can balance the cost of transmission and computation well. The
transmission cost significantly varies under different access patterns. For example,
in the worst case, where only one hashcode is inputted from the lower level, the
transmission cost is the greatest with a single hash because all sibling node in the
current level must be included in the proof. On the contrary, in the best case, where
all hashcodes are inputted from the lower level, it is no need to provide any addi-
tional proofs and the transmission cost is minimized. To achieve this goal, we design
a dynamic compression strategy to determine the height of a tree to be compressed
based on recent data access pattern, aiming to further speed up the verification and
update process. To reduce identification overhead, we use access pattern matching
to quickly determine, which is relatively easy. Specifically, we pre-generate some
judgment rules based on historical information, which record the number of nec-
essary proofs for verification under different access patterns. Besides, the cost of
computing and updating hashcode is also maintained for cost estimation during rule
selections.

Example 5  For a MT consisting of four leaves, there is no need to provide additional
proofs if all nodes are from the input set. Under this situation, the whole MT is com-
puted from the leaf until root during verification and update, so we compute the hash
value for 4 + 2 = 6 times (four leaf nodes and two nodes in Level-1), and all hash-
codes, for 4 + 2 + 1 = 7 times (including the root). However, only four leaf nodes
need to be calculated under a single hash to obtain the root. At the same time, only
leaf nodes and the root node need to be considered when updating. In summary,
using a single hash can greatly reduce the computation and update cost in this case.

Usually, the access pattern to a MT may be different during verification and
update phases, so we need to consider these two phases separately. We mark the size
of the compact multiproofs to be transferred for verification as PV , the size of data
to be computed for verification or update as CV or CU , and the number of hashcodes
to be updated as WU . We compute both costs as follows, where Tcost(PV) represents
the cost to transfer proof of size PV to the enclave, Ccost(CV + CU) is the cost to
compute the hashcode with the size CV + CU , and Wcost(WU) represents the cost to
update WU hashcodes.

The level can be compressed if and only if Costmerkle

Costcompress
≥ � . We can determine

whether a level can be compressed or not by counting the recent access pattern. We
will analyze a MT from top to bottom until it cannot be compressed, i.e., this level
does not meet the compression condition. Finally, we obtain a compression rule
R = {(Levelj, Leveli)} , i.e., for a MT, we compute the parent node in Level-i with a
single hash from the Level-j.

Cost = Tcost(PV) + Ccost(CV + CU) +Wcost(WU)

164	 Distributed and Parallel Databases (2024) 42:143–178

1 3

The compression rule is initiated by PrimaryNode and attached to the block body
to participate in consensus to ensure all nodes are under the same state tree struc-
ture. After consensus, all nodes begin to compress MT according to the rule con-
tained in the block. Meanwhile, the compression rule is transmitted into the enclave
to ensure correct validation. When applying modifications, we do not change the
physical structure of the tree but replace original values with values recomputed
under a compressed manner. Therefore, only a simple modification is needed for the
previous algorithm. When obtaining proof, if the level hits a rule in R, we add all
other values that are not inputted from the lower level to the proof. For verification
and update, we compute the root with a single hash from the marked level.

Example 6  As shown in Fig. 10, the ordered index list � of read set is {1, 4, 6} and a
compression rule is R = {(1, 3)} , which means we should compute the parent node
at Level-3 using a single hash from Level-1. When generating multiproofs, we can
handle Level-0 using Algorithm 1 and add H1

1
 for the proof at Level-1. During the

validation phase, we can compute H3

0
 with a single hash of � = {H0,H2,H3} of

Level-1 and H1

1
.

5.4 � Concurrent Merkle tree

To increase the parallelism of generating multiproofs and verifying data integrity,
we modify the structure of traditional MT and design a concurrent MT (CMT). For
a dataset D, CMT consists of k + 1 subtrees, where each of the first k subtrees has
2N (N is user-defined) leaf nodes, and the (k + 1)-th subtree has m = |D| − k ∗ 2N
leaves, where m ∈ [0, 2N) . Compared with standard MT, each subtree in CMT is
shorter, which can support a large dataset since proofs can be generated easily and
data can be verified quickly by employing multi-threads. The first k subtrees are full
MTs, and the last tree constructed by the remaining m data may be unfull. Take the
roots of these k + 1 subtrees as a new dataset, we can continue to build more trees
according to the above rules until the number of subtrees is less than 2N . Meanwhile,
we can get the last tree, i.e., root tree. In this way, for a large dataset, we can obtain
multiple layers of MT. Figure 11 shows a simple example of CMT with N = 2 and
D = 7 . At the lowest layer (Layer-0), there are k = 3 full subtrees and m = 1 unfull
subtree with one value H0

6
 . Roots of the subtrees in Layer-0 are the leaves of the

upper layer (Layer-1), so we continue to compute until reaching the root tree. For
the known dataset, we set k + 1 equal to the number of cores to use the advantages
of multi-core processor. After obtaining multiproofs, we only need to pay attention

Fig. 10   The structure of a com-
pressed MT 

165

1 3

Distributed and Parallel Databases (2024) 42:143–178	

to the involved subtrees. Once a tree is involved, its root must be calculated and
become the input for the upper level. Through loop iterations, we will finally get
all necessary proofs. Furthermore, for each subtree, we can independently calculate
multiproofs and use them for verification based on Algorithms 1 and 2.

6 � Analysis and optimization

6.1 � Performance analysis

We analyze the performance of our framework in this section. The overall cost
consists of two parts: computation cost and communication cost. The computation
cost comes from the Execution phase and Follow phase. The communication cost is
brought by the information sent from ExecutionNode to others.

For the traditional two-phase approach, we denote the pre-execution time of the
first phase as Cp and the replay time of the second phase as Cr . For our work, each
ExecutionNode executes a part of the block in the Execution phase. Assume the
original block B is split into n micro-blocks B1 , B2 , . . ., Bn , and the rest data block is
Br , which contains all unexecuted transactions including cross-contract transactions.
ExecutionNodei deals with |Bi|

|B| of the whole data. Let M(B) denote the cost of data
transfer for a block B between the enclave and the the untrusted memory, and Cc the
execution cost of cross-contract transactions. Therefore, the total cost of Execution
phase for ExecutionNodei is |Bi|

|B| (Cp + Cr) +M(Bi) . In the Follow phase, a node
decrypts the result from others and executes all rest cross-contract transactions. Let
D(Bi) denote the cost of decrypting a data block Bi , then the cost of the Follow phase
is D(B − Br) + Cc(Br) . Therefore, the computation cost is expressed as follows.

From the above equation, we find: (i) When the contracts in the block are well bal-
anced, as the number of nodes increases, the execution can scale well among nodes;
(ii) When all transactions in a block are cross-contract transactions, the total cost is
equal to the cost of executing all transactions on each node. The equation also sug-
gests that the performance improvement should focus on the distribution of transac-
tions in a block and data exchange efficiency between the untrusted memory and
enclave.

max
1≤i≤n

(|B
i
|

|B|
(C

p
+ C

r
) +M(B

i
)

)
+ D(B − B

r
) + C

c
(B

r
)

Fig. 11   An example of concur-
rent MT 

166	 Distributed and Parallel Databases (2024) 42:143–178

1 3

For the communication cost, all results need to propagate by Gossip protocol
after the Execution phase, and the communication cost is T(B − Br) . When all con-
tracts are cross-contract, the additional communication cost is 0. Therefore, combin-
ing the cost of the computation and communication, the cost of our solution is equal
to that of the traditional serial execution solution when sharding is not possible. Oth-
erwise, our solution can improve performance by high inter-node concurrency and
intra-node concurrency.

6.2 � Security analysis

6.2.1 � Fake data

There are at most f malicious out of n nodes, just like the assumption of PBFT [52]
where n ≥ 3f + 1 . Each malicious node may send, drop, modify, or record arbitrary
messages at any time during the contract deployment and invocation. Thanks to the
confidentiality guarantee provided by SGX, all possible malicious behaviors during
the pre-execution can be detected during the validation in the enclave. Therefore,
the results obtained by a FollowNode from others via the secure channel of SGX
must be correct, i.e., not maliciously tampered with. As stated above, all data nec-
essary for validation in the enclave are from untrusted memory. Under this case, a
malicious node may tamper with local data, leading to the incorrect read set being
transferred into the enclave. Then, an incorrect result can be generated based on this
incoming wrong read set in the enclave, resulting in wrong results being endorsed
successfully and synchronized to other nodes. To avoid this, we first generate a MT
using all initial state data, whose root is signed when consensus is reached. Then
2f + 1 signatures on this root are collected as the proof. This signature collection
process can be tied to the consensus of blocks and does not impact the overall per-
formance. SGX uses these 2f + 1 signatures to verify whether the root is correct or
not and then uses the verified root and corresponding multiproofs to verify the cor-
rectness of incoming read set. This verification method is correct because malicious
nodes cannot forge 2f + 1 correct root signatures.

6.2.2 � Replay attack

Due to the existence of Byzantine nodes, the initial read set can be replaced with an
old version when getting the compact validation information in untrusted memory,
making stale data read in trusted memory. To avoid replay attack, each message to
be transferred to the enclave will be endowed with a monotonic counter. A trusted
monotonic counter also is maintained in the enclave to protect the latest version of
the round. To detect and defend against the replay attack, we use SGX monotonic
counter service to guarantee the freshness of incoming data. Comparing the values
of these two counters can ensure the incoming data is new with the same version,
and transactions will not be executed if the data is old.

167

1 3

Distributed and Parallel Databases (2024) 42:143–178	

6.3 � Combine with PBFT

Currently, permissioned blockchain systems usually use a BFT-like consensus algo-
rithm, which includes three rounds of communication and one-third of the fault-tol-
erant (i.e., the number of malicious nodes is less than one-third of the total number
of the system). Thanks to these characteristics, our execution framework can work
fine with BFT-like protocols. We further integrate our execution framework with
PBFT and analyze its correctness theoretically. Figure 12 shows the whole process
flow, where f is the maximal number of malicious nodes the system can tolerate.

Firstly, PrimaryNode uses the strategy proposed in Sect. 4.1 to package a batch
of transactions sent by clients into a block. Then, it broadcasts a pre-prepared mes-
sage to all ReplicaNodes along with the pre-allocated information. Once a node is
prepared, i.e., receiving 2f matching prepare messages (excluding itself), it starts
Execution phase. The node firstly executes the contract block assigned to it using
concurrent execution policy, and obtains the corresponding validation information
in the untrusted memory. Then, this validation information is passed to the enclave
to concurrent validate using our proposed scheme. All cross-contract transactions
are identified and aborted during Execution phase, which will be attached to the
encrypted results and sent to all replicas via the secure channel of SGX. After vali-
dation, a commit message will be sent to other nodes. When a replica receives 2f
matching commit message (excluding itself), it starts Follow phase. During the Fol-
low phase, all nodes firstly update the local state by decrypting the corresponding
state sets and then use deterministic concurrency protocol to execute all unexecuted
transactions it collects.

The process of blocks packaged and tasks pre-allocated by PrimaryNode does
not affect the correctness of PBFT, because it occurs before the consensus process.
Meanwhile, the embedded SGX-based two-phase execution also does not affect the
correctness. If the node is malicious, the validation process in the trusted memory
will not pass, and any incorrect result will not be confirmed. Any malicious action
can be discovered during the validation in the enclave. After a timeout, PBFT trig-
gers the view change protocol.

PrimaryNode

ReplicaNode

ReplicaNode

ReplicaNode

Pre-prepare Prepare Execute Commit

Synchronize data via state replication

Deterministic execute cross-contract txs

Primary packages blocks and assigns tasks

Pre-execute and validate

Follow

Fig. 12   Workflow when integrating with PBFT

168	 Distributed and Parallel Databases (2024) 42:143–178

1 3

7 � Experiments

We implement a prototype system that integrates all techniques proposed above with
an open-source PBFT framework BFT-SMaRt [22] and evaluate its performance in this
section.

7.1 � Experiment setup

All experiments were conducted upon a cluster of 4 virtual machines based on UCloud-
N2, and the configuration of each one is shown in Table 2. Besides, the project is
built in the debug simulation mode of Intel SGX withe 128MB of EPC. All codes in
untrusted memory and the enclave are written in Java and C++ respectively, and com-
municate via JNI.

We use SmallBank as the workload for testing, which is widely used to evaluate
blockchain systems [1, 8, 39]. To simulate the real workload properly, we extend the
original SmallBank benchmark by adding two new transactions: SendPayment and
Query, where SendPayment transfers money from one account to another one as shown
in Fig. 1, and Query reads the checking and the saving account of a user. The data-
base is initiated with 1000 k customers, including 1000k checking and 1000 k saving
accounts. Before the start of each round of experiments, the system is warmed up for
three minutes, and all experimental figures show an average of 10 runs. At the same
time, we fix the size of a subtree in CMT as 210 (the number of leaf nodes involved).
During each run, we trigger these six transactions in a random manner, where a certain
probability Pw is designed to decide whether pick one of five writing transactions or
not, and the reading transaction is picked with probability 1 − Pw . We set the default
setting of Pw to p =

1

6
 , which means the workload will be generated on these six trans-

actions evenly, e.g., when the workload size is X, the amount allocated to each of these
six transactions is X ⋅ p =

X

6
 . Data access pattern follows a Zipfian distribution to simu-

late the data skew situation. Note that the greater the skew value, the higher the transac-
tion conflict rate. Note that the throughput in the experiments below includes all trans-
actions of a block, and the default setting of the failure rate is 0.

In the following experiments, we use SE, CE, CEIS, and CEWS to denote serial exe-
cution, concurrent execution, concurrent execution in SGX (put execution completely
in SGX), and our concurrent execution with SGX respectively. Due to the size limita-
tion, it is infeasible to put all data into the enclave. Given this, if we put the execution
of smart contracts in SGX, it will inevitably introduce a large number of enclave transi-
tions and encryption and decryption, which is costly to the system. Therefore, to fur-
ther reduce the overhead introduced when executing in SGX, we use two-phase locking

Table 2   Machine configuration

Resource type CPU core Memory System JDK Ethernet SGX SDK [53]

Quota 16 16 GB Ubuntu 18.04 v11 1 GB v2.13

169

1 3

Distributed and Parallel Databases (2024) 42:143–178	

(2PL) protocol to implement CEIS to avoid additional overhead of operations such as
validation and rollback in OCC.

7.2 � Concurrency performance

We evaluate the concurrency and scalability of the system, including intra-node con-
currency under multiple threads and inter-node concurrency under different number
of smart contracts.

7.2.1 � Varying the number of threads

Figure 13 shows throughput and latency of the system under different numbers of
threads upon 4 smart contracts, 2048 transactions per block, and Pw = p under uni-
form distribution when the number of threads varies from 1 to 16. Obviously, the
throughput of CE, CEIS, and CEWS rises with the increase of thread number. The
latency decreases as the thread number grows and is smaller than SE. Experimen-
tal results show the performance of CEWS under multi-threading is significantly
better than other methods. However, the system performance will reach the upper
limit when the number of threads reaches a threshold. As shown in the Fig. 13,
the throughput and latency of CEWS and CE towards stability when the number of
threads reaches 8. However, when the number of threads is greater than 12, the sys-
tem throughput starts to fluctuate significantly. The reason is that the competition of
background threads has already affected the system’s current state. Therefore, we
fixed the number of threads in the remaining experiments to 12 to obtain high sys-
tem throughput.

7.2.2 � Varying the number of smart contracts

We evaluate the scalability of CEWS by varying the number of smart contracts from
1 to 4 because four machines are used in our experiment, the number of transactions
per block is 2048, and Pw = p under uniform distribution with fixed 12 threads. Fig-
ure 14 reports throughput and latency with the number of smart contracts. Under all
situations, SE and CE are almost unchanged in throughput and latency because they

1 2 4 8 12 14 16
0

10k

20k

30k

Th
ro
ug

hp
ut

(tx
s/
se

c)

the number of threads

SE CE CEIS CEWS

(a) Throughput

1 2 4 8 12 14 16
0

1000

2000

3000

La
te
nc

y
(m

s)

the number of threads

SE CE CEIS CEWS

(b) Latency

Fig. 13   Performance against the number of threads

170	 Distributed and Parallel Databases (2024) 42:143–178

1 3

do not consider the division of transactions. According to Fig. 14a, the throughput of
CEIS and CEWS continues to rise and does not show any flattening trend. Compared
with CEIS, CEWS performs better because of less enclave interaction and trans-
mission during execution. Therefore, as the number of contracts increases, CEWS
can complete the calculation with higher degree of parallelism. At the same time,
the latency of CEWS is smaller than others, as shown in Fig.14b. For the remain-
ing experiments, we fix the number of smart contracts to 4 to achieve high overall
throughput.

7.3 � Workload distribution

We evaluate the performance of our system under different workloads, including
block size, workload skew, and the number of cross-contract transactions.

7.3.1 � Varying the number of transactions per block

Figure 15 reports the throughput and latency upon 4 smart contracts, Pw = p ,
and 16 threads over uniform distribution when the number of transactions per
block varies from 64 to 6144. Both throughput and latency of SE, CE, CEIS, and
CEWS increase as the block size increases, because enhancing block size lowers

1 2 3 4
0

10k

20k

30k

Th
ro
ug

hp
ut

(tx
s/
se

c)

The number of smart contracts

SE CE CEIS CEWS

(a) Throughput

1 2 3 4
0

400

800

1200

La
te
nc

y
(m

s)

The number of smart contracts

SE CE CEIS CEWS

(b) Latency

Fig. 14   Performance against the number of smart contracts

64 128 256 512 1024 2048 4096 6144
0

10k

20k

30k

40k

Th
ro
ug

hp
ut

(tx
s/
se

c)

The number of transactions per block

SE CE CEIS CEWS

(a) Throughput

64 128 256 512 1024 2048 4096 6144
0

1000

2000

3000

La
te
nc

y
(m

s)

The number of transactions per block

SE CE CEIS CEWS

(b) Latency

Fig. 15   Performance against the number of transactions

171

1 3

Distributed and Parallel Databases (2024) 42:143–178	

network communication, while raises execution overhead. Obviously, as the block
size increases, CEWS gains higher throughput and lower latency than others. The
throughput of CEWS does not have any tendency to flatten here, but CE and CEIS
start to flatten when the block size is greater than 2048. This clearly shows the
effectiveness of our proposed method, which benefits from larger blocks. For the
compromise principle, we use a block size of 2048 transactions for the rest experi-
ments because the throughput and latency of SE, CE, CEIS and CEWS are within an
acceptable range under this setting.

7.3.2 � Varying the value of skew

We vary the probability of picking a writing transaction over the reading transac-
tion in three different parameters Pw = 5% (read-heavy), Pw = 50% (balanced) and
Pw = 95% (write-heavy), to evaluate the throughput of CEWS. This upon fixed 4
smart contracts, 2048 transactions per block and 16 threads under varying skew
from 0.0 to 2.0. Figures 16, 17 and 18 shows the results under different Pw . When
Pw = 5% , CEWS has higher throughput and lower latency than others. At the same
time, under this read-heavy workload, concurrent execution does not bring signifi-
cant performance improvement, so SE, CE and CEIS have similar effect. Moreover,
under Pw = 50% and Pw = 95% , after the skew parameter is smaller than 1.0, the
throughput of CE and CEWS is relatively high because of smaller potential conflict

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

10k

20k

30k

40k

50k

Th
ro
ug

hp
ut

(tx
s/
se

c)

skew value of the Zipf distribution

SE CE CEIS CEWS

(a) Throughput

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

50

100

150

200

250

La
te
nc

y
(m

s)

skew value of the Zipf distribution

SE CE CEIS CEWS

(b) Latency

Fig. 16   Performance against the value of skew ( P
w
= 5%)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

10k

20k

30k

Th
ro
ug

hp
ut

(tx
s/
se

c)

skew value of the Zipf distribution

SE CE CEIS CEWS

(a) Throughput

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

200

400

600

800
La

te
nc

y
(m

s)

skew value of the Zipf distribution

SE CE CEIS CEWS

(b) Latency

Fig. 17   Performance against the value of skew ( P
w
= 50%)

172	 Distributed and Parallel Databases (2024) 42:143–178

1 3

between transactions. However, for higher skew (skew value is greater than 1.0), the
throughput of SE and CE declines sharply because of higher abort rate with the OCC
protocol. On the contrary, the skew value basically has no effect on CEIS, because it
uses 2PL instead of OCC protocol, which is lower sensitive to high skew workloads.

7.3.3 � Varying the number of cross‑contract transactions

We tested the system performance for different proportion of cross-contract trans-
actions in the block. This fixed 4 smart contracts, 2,048 transactions per block,
Pw = p and 16 threads, and varied the percentage of cross-contract transactions in
the batch from 0.0 to 1.0. Figures 19, 20 and 21 shows the results under different
Pw . As crossRate grows, SE and CE remain essentially unchanged because they
both need all nodes to execute all transactions in a block. However, in CEWS and
CEWS, a batch of transactions is sliced and assigned to several different nodes for
execution, and the increase of crossRate inevitably affects system performance
because cross-contract transactions involve multiple nodes and cannot be simply
executed by a node. Even so, with the growth of crossRate, CEIS and CEWS still
perform better than CE because we use a deterministic concurrency approach
to process all identified unexecuted transactions. The throughput of CEWS first
drops and then rises because the concurrency among nodes has a major impact on
the system at the beginning. However, when cross-contract transactions increase,

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

10k

20k

30k
Th

ro
ug

hp
ut

(tx
s/
se

c)

skew value of the Zipf distribution

SE CE CEIS CEWS

(a) Throughput

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

1000

2000

3000

La
te
nc

y
(m

s)

skew value of the Zipf distribution

SE CE CEIS CEWS

(b) Latency

Fig. 18   Performance against the value of skew ( P
w
= 95%)

0.0 0.2 0.4 0.6 0.8 1.0
0

10k

20k

30k

40k

Th
ro
ug

hp
ut

(tx
s/
se

c)

The number of crossRate

SE CE CEIS CEWS

(a) Throughput

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

La
te
nc

y
(m

s)

The number of crossRate

SE CE CEIS CEWS

(b) Latency

Fig. 19   Performance against the number of cross-contract transactions ( P
w
= 5%)

173

1 3

Distributed and Parallel Databases (2024) 42:143–178	

this advantage is weakened, and the throughput naturally decreases. When it
reaches a certain level, the deterministic concurrency of cross-contract transac-
tions has a major impact on the system, so the throughput increases. Compared
with CEWS, the throughput of CEIS first increases and then decreases because
there are a large number of enclave transitions and high data encryption and
decryption costs during the execution of CEIS. When cross-contract transactions
increase, these costs will decrease. However, when crossRate reaches a certain
threshold, since most transactions are cross-contracts, the concurrency among
nodes decreases, and the cost of deterministic concurrency increases, which leads
to a decrease in system performance. When across-contract transactions reach
about 50%, fewer transactions are executed in the Execution Phase , leading the
extra cost being more significant than execution cost.

8 � Related work

We review the latest researches close to ours in this section, including smart con-
tract concurrent execution, combining smart contracts with SGX, and Merkle
multiproofs.

0.0 0.2 0.4 0.6 0.8 1.0
0

10k

20k

30k

Th
ro
ug

hp
ut

(tx
s/
se

c)

The number of crossRate

SE CE CEIS CEWS

(a) Throughput

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

La
te
nc

y
(m

s)

The number of crossRate

SE CE CEIS CEWS

(b) Latency

Fig. 20   Performance against the number of cross-contract transactions ( P
w
= 50%)

0.0 0.2 0.4 0.6 0.8 1.0
0

10k

20k

30k

Th
ro
ug

hp
ut

(tx
s/
se

c)

The number of crossRate

SE CE CEIS CEWS

(a) Throughput

0.0 0.2 0.4 0.6 0.8 1.0
0

400

800

1200
La

te
nc

y
(m

s)

The number of crossRate

SE CE CEIS CEWS

(b) Latency

Fig. 21   Performance against the number of cross-contract transactions ( P
w
= 95%)

174	 Distributed and Parallel Databases (2024) 42:143–178

1 3

8.1 � Concurrent smart contract execution

Due to the existence of Byzantine nodes, the execution of a smart contract at each
node must produce exactly the same final state. Given this, none of the existing
mature blockchain systems allow any concurrency in transaction execution, i.e.,
nodes execute smart contract transactions serially in the order that appears in a
block. Serial execution is the simplest way to ensure the consistency of execution
results among nodes, but it does not take advantage of modern multi-core pro-
cessors, which in turn slows down the overall performance of the system. Given
above, smart contracts concurrent execution has been studied recently to replace
the serial execution method. Dickerson et al. propose the concurrent execution
method of smart contracts, where the primary uses a two-phase lock protocol to
ensure serializability in the first phase, and a concurrent schedule is recorded dur-
ing execution and uploaded to replicas for validating in the second phase [11].
Anjana et al. replace the pessimistic lock protocol with an optimistic concurrency
control protocol at the primary, independent and parallel validation is used to
improve efficiency in the second validation phase [10]. Zhang et al. allow the pri-
mary to use any concurrency control protocol to get a conflict-serializable sched-
ule without conflict assumption, and a read-write set is transmitted to replicas
for re-executing in the second phase [12]. Jin et al. use batching OCC based on
conflict graph segmentation to optimize both the execution efficiency of primary
and the transaction replay efficiency of replicas [8]. However, the aforementioned
two-phase concurrent execution approaches can only achieve concurrent execu-
tion of intra-node situations, not inter-node situations, because the second phase
begins after the first phase completes.

We focus on all the above problems and propose the SGX-based two-phase
execution framework to achieve high-performance concurrent execution for smart
contracts, as summarized in Table 3. Among these, our work achieves both intra-
and inter-node concurrency for smart contracts and supports any concurrent exe-
cution method adopted before. The consistency among nodes can be achieved via
simple state replication rather than re-execution.

Table 3   Concurrent execution framework of smart contracts

Phase 1 Phase 2 Intra-node concur-
rency

Inter-nodes
concur-
rency

Dickerson’s [11] Pessimistic Re-executing ✓ ×

Zhang’s [12] Any Re-executing ✓ ×

Anjana’s [10] Optimistic Re-executing ✓ ×

Jin’s [8] Optimistic Re-executing ✓ ×

Our work Any State replication ✓ ✓

175

1 3

Distributed and Parallel Databases (2024) 42:143–178	

8.2 � Smart contracts with Intel SGX

As SGX has been widely supported in Intel Core processor platforms of the sixth gen-
eration and higher, several works try to address the security and privacy issues in smart
contract design by using it. Hawk [54] provides a confidential execution environment
for contracts by using cryptography and SGX. Town Crier [55] provides reliable data
from trusted network servers to smart contracts through trusted hardware such as SGX.
Shadoweth [56] places the execution and storage of private contracts in the trusted
region off-chain and only puts the process of verification on-chain. Microsoft intro-
duces an open-source blockchain framework called Coco [57, 58], where each node is
protected by SGX, and validated before joining the network. However, due to the lim-
ited memory of SGX, it is infeasible and impossible for Microsoft to pre-load all key
components of the blockchain system (PBFT consensus, in-memory database on the
chain, and RPC services for interaction) into SGX. Ekiden [59] tries to make all smart
contracts execute in SGX, but it only suits for the case with a limited number of trans-
actions, since more transactions may exceed the limited trusted memory. In a word,
none of the above work considers how to hasten smart contract execution in SGX, not
to mention the performance limitations of SGX. Note that our work takes the interest of
both and is the first piece of work about smart contract concurrent execution in SGX.

8.3 � Merkle multiproofs

Merkle tree (MT) is widely used to verify the integrity of data in blockchain [47, 48].
Although MT and its variants have been studied for a long time, most of them only
address single-value validation, i.e., authenticate all challenged leaf nodes one by one.
Recently, some studies turn to the problem of sparse Merkle multiproofs, in which the
proofs of all values are generated and verified together [51]. To further reduce com-
munication cost, [49] compresses the obtained sparse multiproofs further, which only
records the index of necessary elements other than that for every non-leaf hash values.
To improve the efficiency of integrity verification, [50] designs a new authenticated
MT to batch-verify multiple values together. Specifically, an auxiliary authentication
table (AAT​k⋅m ) is used to maintain all needed auxiliary authentication information for
all k verified leaf on a Merkle tree with height m. Thus, multiple values can be verified
together based on AAT​k⋅m . However, it needs to calculate k ⋅ m times to build AAT​ and
must maintain NULL for all unneeded items. Thus, the cost of generating and maintain-
ing an AAT​ for each verification is high, especially when the MT and the verified set are
large. In a word, none above can generate and verify sparse multiproofs for a large MT
in parallel.

9 � Conclusion

In this paper, we present an efficient SGX-based execution framework of smart con-
tracts for permissioned blockchain aiming at higher parallelism and throughput. We
focus on the performance problem of concurrent execution of smart contracts on

176	 Distributed and Parallel Databases (2024) 42:143–178

1 3

SGX-equipped nodes due to the limited size of the enclave, and the expensive cost
of enclave transition and enclave paging. We devise a pre-execution mechanism for
smart contracts in untrusted memory to batch fetch all state data that a smart con-
tract needs to access to minimize the expensive overhead of enclave transitions dur-
ing smart contract execution. And a mixed OCC protocol is proposed to accelerate
execution. Meanwhile, we propose a novel mechanism based on MT to efficiently
generate compact Merkle multiproofs and verify the data in parallel, even with a
large dataset.

Acknowledgements  This work is partially supported by the National Science Foundation of China
(U1811264, U1911203, and 61972152) and Guangxi Key Laboratory of Trusted Software (kx202005).
The authors would like to thank the anonymous reviewers for their valuable feedback.

References

	 1.	 Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.L.: Blockbench: a framework for ana-
lyzing private blockchains. In: Proceedings of the 2017 ACM International Conference on Manage-
ment of Data, pp. 1085–1100. ACM (2017)

	 2.	 Gupta, S., Hellings, J., Sadoghi, M.: Fault-tolerant distributed transactions on blockchain. Synth.
Lect. Data Manag. 16(1), 1–268 (2021)

	 3.	 Zhu, Y., Zhang, Z., Jin, C., Zhou, A., Yan, Y.: SEBDB: semantics empowered blockchain database.
In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 1820–1831. IEEE
(2019)

	 4.	 Gupta, S., Hellings, J., Sadoghi, M.: RCC: resilient concurrent consensus for high-throughput
secure transaction processing. In: 2021 IEEE 37th International Conference on Data Engineering
(ICDE), pp. 1392–1403. IEEE (2021)

	 5.	 Hellings, J., Sadoghi, M.: Byshard: sharding in a Byzantine environment. Proc. VLDB Endow.
14(11), 2230–2243 (2021)

	 6.	 Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT protocols. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 31–42.
ACM (2016)

	 7.	 Stathakopoulou, C., David, T., Pavlovic, M., Vukolić, M.: Mir-BFT: High-throughput robust BFT
for decentralized networks. arXiv preprint (2019). http://​arxiv.​org/​abs/​1906.​05552

	 8.	 Jin, C., Pang, S., Qi, X., Zhang, Z., Zhou, A.: A high performance concurrency protocol for smart
contracts of permissioned blockchain. IEEE Trans. Knowl. Data Eng. (2021). https://​doi.​org/​10.​
1109/​TKDE.​2021.​30599​59

	 9.	 Vukolić, M.: Rethinking permissioned blockchains. In: Proceedings of the ACM Workshop on
Blockchain, Cryptocurrencies and Contracts, pp. 3–7. ACM (2017)

	10.	 Anjana, P.S., Kumari, S., Peri, S., Rathor, S., Somani, A.: An efficient framework for optimistic con-
current execution of smart contracts. In: 2019 27th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), pp. 83–92. IEEE (2019)

	11.	 Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to smart contracts. In:
Proceedings of the ACM Symposium on Principles of Distributed Computing, pp. 303–312. ACM
(2017)

	12.	 Zhang, A., Zhang, K.: Enabling concurrency on smart contracts using multiversion ordering. In:
Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International
Conference on Web and Big Data, pp. 425–439. Springer (2018)

	13.	 Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptol. ePrint Arch. 2016(086), 1–118 (2016)
	14.	 Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind, J., Muthukumaran,

D., O’keeffe, D., Stillwell, M.L., et al.: {SCONE} : Secure Linux containers with intel {SGX} . In:
12th {USENIX} Symposium on Operating Systems Design and Implementation ( {OSDI} 16), pp.
689–703 (2016)

http://arxiv.org/abs/1906.05552
https://doi.org/10.1109/TKDE.2021.3059959
https://doi.org/10.1109/TKDE.2021.3059959

177

1 3

Distributed and Parallel Databases (2024) 42:143–178	

	15.	 Tsai, C.C., Porter, D.E., Vij, M.: Graphene-SGX: a practical library {OS} for unmodified appli-
cations on {SGX} . In: 2017 {USENIX} Annual Technical Conference ( {USENIX}{ATC​} 17),
pp. 645–658 (2017)

	16.	 Gjerdrum, A.T., Pettersen, R., Johansen, H.D., Johansen, D.: Performance principles for trusted
computing with intel SGX. In: International Conference on Cloud Computing and Services Sci-
ence, pp. 1–18. Springer (2017)

	17.	 Weichbrodt, N., Aublin, P.L., Kapitza, R.: sgx-perf: a performance analysis tool for Intel SGX
enclaves. In: Proceedings of the 19th International Middleware Conference, pp. 201–213. ACM
(2018)

	18.	 Performance Considerations for Intel SGX Applications. https://​softw​are.​intel.​com/​conte​nt/​dam/​
devel​op/​public/​us/​en/​docum​ents/​intel-​sgx-​perfo​rmance-​consi​derat​ions.​pdf

	19.	 Weisse, O., Bertacco, V., Austin, T.: Regaining lost cycles with hotcalls: A fast interface for
SGX secure enclaves. ACM SIGARCH Comput. Archit. News 45(2), 81–93 (2017)

	20.	 Merkle, R.C.: Method of providing digital signatures. US Patent 4,309,569 (1982)
	21.	 Merkle, R.C.: A certified digital signature. In: Conference on the Theory and Application of

Cryptology, pp. 218–238. Springer (1989)
	22.	 BFT-SMaRt. https://​github.​com/​bft-​smart/​libra​ry
	23.	 Fang, M., Zhang, Z., Jin, C., Zhou, A.: High-performance smart contracts concurrent execution

for permissioned blockchain using SGX. In: 2021 IEEE 37th International Conference on Data
Engineering (ICDE), pp. 1907–1912. IEEE (2021)

	24.	 Szabo, N.: Formalizing and securing relationships on public networks. First Monday (1997).
https://​doi.​org/​10.​5210/​fm.​v2i9.​548

	25.	 Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj.
Yellow Pap. 151(2014), 1–32 (2014)

	26.	 Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., Enyeart, D.,
Ferris, C., Laventman, G., Manevich, Y., et al.: Hyperledger fabric: a distributed operating sys-
tem for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, pp.
1–15 (2018)

	27.	 Solidity. https://​solid​ity.​readt​hedocs.​io/​en/​latest/
	28.	 Minkin, M., Silberstein, M.: Improving performance and security of Intel SGX. Ph.D. thesis,

Computer Science Department, Technion (2019)
	29.	 Amiri, M.J., Agrawal, D., El Abbadi, A.: Sharper: sharding permissioned blockchains over net-

work clusters. In: Proceedings of the 2021 International Conference on Management of Data, pp.
76–88 (2021)

	30.	 Wüst, K., Matetic, S., Egli, S., Kostiainen, K., Capkun, S.: ACE: asynchronous and concurrent
execution of complex smart contracts. In: Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, pp. 587–600 (2020)

	31.	 Yang, Y., Papadias, D., Papadopoulos, S., Kalnis, P.: Authenticated join processing in outsourced
databases. In: Proceedings of the 2009 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 5–18 (2009)

	32.	 Nilsson, A., Bideh, P.N., Brorsson, J.: A survey of published attacks on intel SGX. arXiv pre-
print. (2020). http://​arxiv.​org/​abs/​2006.​13598

	33.	 van Schaik, S., Minkin, M., Kwong, A., Genkin, D., Yarom, Y.: Cacheout: Leaking data on intel
CPUs via cache evictions. In: 2021 IEEE Symposium on Security and Privacy (SP), pp. 339–
354. IEEE (2021)

	34.	 Wang, W., Chen, G., Pan, X., Zhang, Y., Wang, X., Bindschaedler, V., Tang, H., Gunter, C.A.:
Leaky cauldron on the dark land: understanding memory side-channel hazards in SGX. In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp.
2421–2434 (2017)

	35.	 Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace: a sharded
smart contracts platform. In: 25th Annual Network and Distributed System Security Symposium
(NDSS) (2018)

	36.	 Chainspace. https://​github.​com/​xuper​chain/​xuper​chain
	37.	 Gupta, S., Rahnama, S., Sadoghi, M.: Permissioned blockchain through the looking glass: archi-

tectural and implementation lessons learned. In: 2020 IEEE 40th International Conference on
Distributed Computing Systems (ICDCS), pp. 754–764. IEEE (2020)

	38.	 Cahill, M.J., Röhm, U., Fekete, A.D.: Serializable isolation for snapshot databases. ACM Trans.
Database Syst. 34(4), 1–42 (2009)

https://software.intel.com/content/dam/develop/public/us/en/documents/intel-sgx-performance-considerations.pdf
https://software.intel.com/content/dam/develop/public/us/en/documents/intel-sgx-performance-considerations.pdf
https://github.com/bft-smart/library
https://doi.org/10.5210/fm.v2i9.548
https://solidity.readthedocs.io/en/latest/
http://arxiv.org/abs/2006.13598
https://github.com/xuperchain/xuperchain

178	 Distributed and Parallel Databases (2024) 42:143–178

1 3

	39.	 Sharma, A., Schuhknecht, F.M., Agrawal, D., Dittrich, J.: Blurring the lines between blockchains
and database systems: the case of hyperledger fabric. In: Proceedings of the 2019 International Con-
ference on Management of Data, pp. 105–122. ACM (2019)

	40.	 Chacko, J.A., Mayer, R., Jacobsen, H.A.: Why do my blockchain transactions fail? A study of
hyperledger fabric. In: Proceedings of the 2021 International Conference on Management of Data,
pp. 221–234 (2021)

	41.	 Kim, J.Y., Lee, J., Koo, Y., Park, S., Moon, S.M.: Ethanos: efficient bootstrapping for full nodes on
account-based blockchain. In: Proceedings of the Sixteenth European Conference on Computer Sys-
tems, pp. 99–113 (2021)

	42.	 Ponnapalli, S., Shah, A., Banerjee, S., Malkhi, D., Tai, A., Chidambaram, V., Wei, M.: RainBlock:
faster transaction processing in public blockchains. In: 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pp. 333–347 (2021)

	43.	 Guide, P.: Intel® 64 and IA-32 architectures software developer’s manual. Volume 3B: System pro-
gramming Guide, Part 2(11) (2011)

	44.	 Orenbach, M., Lifshits, P., Minkin, M., Silberstein, M.: Eleos: Exitless OS services for SGX
enclaves. In: Proceedings of the Twelfth European Conference on Computer Systems, pp. 238–253
(2017)

	45.	 Slither. https://​github.​com/​crytic/​slith​er
	46.	 Prasaad, G., Cheung, A., Suciu, D.: Handling highly contended OLTP workloads using fast dynamic

partitioning. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data, pp. 527–542 (2020)

	47.	 Bitcoin. https://​github.​com/​bitco​in/​bitco​in
	48.	 Ethereum. https://​github.​com/​ether​eum
	49.	 Ramabaja, L., Avdullahu, A.: Compact Merkle multiproofs. arXiv preprint (2020). arXiv:​2002.​

07648
	50.	 Rao, L., Zhang, H., Tu, T.: Dynamic outsourced auditing services for cloud storage based on batch-

leaves-authenticated Merkle hash tree. IEEE Trans. Serv. Comput. 13(3), 451–463 (2017)
	51.	 Sparse Merkle Multiproofs. https://​medium.​com/@​jgm.​orino​co/​under​stand​ing-​sparse-​merkle-​multi​

proofs-​9b9f0​49e8f​08
	52.	 Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. OsDI 99, 173–186 (1999)
	53.	 Intel SGX SDK. https://​softw​are.​intel.​com/​en-​us/​sgx/​sdk
	54.	 Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain model of cryptog-

raphy and privacy-preserving smart contracts. In: 2016 IEEE Symposium on Security and Privacy
(SP), pp. 839–858. IEEE (2016)

	55.	 Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town Crier: an authenticated data feed for
smart contracts. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 270–282. ACM (2016)

	56.	 Yuan, R., Xia, Y.B., Chen, H.B., Zang, B.Y., Xie, J.: Shadoweth: private smart contract on public
blockchain. J. Comput. Sci. Technol. 33(3), 542–556 (2018)

	57.	 Coco-Framework. https://​github.​com/​Micro​soft/​CCF
	58.	 Russinovich, M., Ashton, E., Avanessians, C., Castro, M., Chamayou, A., Clebsch, S., Costa, M.,

Fournet, C., Kerner, M., Krishna, S., et al.: CCF: a framework for building confidential verifiable
replicated services. Technical Report MSR-TR-2019-16, Microsoft (2019)

	59.	 Cheng, R., Zhang, F., Kos, J., He, W., Hynes, N., Johnson, N., Juels, A., Miller, A., Song, D.:
Ekiden: A platform for confidentiality-preserving, trustworthy, and performant smart contracts. In:
2019 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 185–200. IEEE (2019)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://github.com/crytic/slither
https://github.com/bitcoin/bitcoin
https://github.com/ethereum
http://arxiv.org/abs/2002.07648
http://arxiv.org/abs/2002.07648
https://medium.com/%40jgm.orinoco/understanding-sparse-merkle-multiproofs-9b9f049e8f08
https://medium.com/%40jgm.orinoco/understanding-sparse-merkle-multiproofs-9b9f049e8f08
https://software.intel.com/en-us/sgx/sdk
https://github.com/Microsoft/CCF

	An SGX-based execution framework for smart contracts upon permissioned blockchain
	Abstract
	1 Introduction
	1.1 Organization

	2 Background
	2.1 Smart contract
	2.2 Intel SGX

	3 Overview
	3.1 System architecture
	3.2 Adversary model

	4 The SGX-based execution framework
	4.1 The packaging strategy
	4.2 Execution phase
	4.2.1 Pre-execution in the untrusted memory
	4.2.2 Validation in the enclave

	4.3 Follow phase
	4.3.1 Synchronization process
	4.3.2 Cross-contract execution

	5 Compact merkle multiproofs
	5.1 Generate compact Merkle multiproofs
	5.2 Verify based on Merkle multiproofs
	5.3 Update and compress Merkle tree
	5.3.1 Update Merkle tree
	5.3.2 Compress Merkle tree

	5.4 Concurrent Merkle tree

	6 Analysis and optimization
	6.1 Performance analysis
	6.2 Security analysis
	6.2.1 Fake data
	6.2.2 Replay attack

	6.3 Combine with PBFT

	7 Experiments
	7.1 Experiment setup
	7.2 Concurrency performance
	7.2.1 Varying the number of threads
	7.2.2 Varying the number of smart contracts

	7.3 Workload distribution
	7.3.1 Varying the number of transactions per block
	7.3.2 Varying the value of skew
	7.3.3 Varying the number of cross-contract transactions

	8 Related work
	8.1 Concurrent smart contract execution
	8.2 Smart contracts with Intel SGX
	8.3 Merkle multiproofs

	9 Conclusion
	Acknowledgements
	References

