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Abstract
As one of the most popular parallel data processing models, data analysis system 
MapReduce has been widely used in many fields. Task scheduling is the core module 
in MapReduce system, and the quality of the scheduling algorithm directly affects 
the processing capacity of the system. Since new nodes need to be continuously 
added in the cluster to improve the processing capacity of the cluster, objectively, 
the heterogeneity of the cluster is caused. Heterogeneous environment is common in 
practical application scenarios, but there has been little research on task scheduling 
in heterogeneous environment. For this reason, this paper presents an in-depth study 
of task scheduling in heterogeneous environment and proposes a new task schedul-
ing algorithm HTD. First, we give a formal definition of the throughput-driven task 
scheduling problem in a heterogeneous environment. Second, we design the sched-
uling algorithm HTD, which quickly obtains the completion sequence of a jobs set 
and optimizes the task scheduling details in heterogeneous environment. Finally, a 
series of experiments show the efficiency and effectiveness of the algorithm.

Keywords MapReduce · Scheduling · Heterogeneous · Throughput

1 Introduction

Increasingly a huge amount of data has been produced by using the internet. How 
to effectively store and process massive data has become a hot issue in the field 
of data management. MapReduce [1] has become one of the most effective tools 
for big data analysis due to its strong availability, high scalability and many other 
advantages. MapReduce framework uses a master-slave architecture. The master 
node is responsible for cluster management and task scheduling. For any given 
MapReduce job, the master node splits it into multiple map tasks and reduce 
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tasks, and distributes them to idle slave nodes for processing. And the master 
node monitors the progress of the task. Each slave node has a certain number of 
map and reduce task slots for processing the map and reduce tasks assigned by 
the master node. The slave node also periodically uses the heartbeat mechanism 
to report the execution status of the task to the master node.

Task scheduling is the core module of MapReduce systems, and the quality of 
the scheduling algorithm directly affects the processing capacity of the system. 
Some studies [2–4] have been done on MapReduce task scheduling, but most of 
the research results are still in their infancy and do not provide in-depth analysis 
of specific application scenarios, thus failing to meet the actual needs of users. 
Additionally, many IT companies have built their own MapReduce clusters to 
handle their internal data analysis operations. In 2005, the Apache Foundation 
announced the Hadoop system [5], an open source implementation of the MapRe-
duce parallel processing framework, which laid the foundation for later work. At 
present, many institutions have launched derivative products based on MapRe-
duce, which greatly extend the functions of the MapReduce system, such as the 
SQL query processing framework Hive based on MapReduce [6], Hadoop-EDF, 
a distributed signal processing tool to load European Data Format(EDF) data 
based on Hadoop MapReduce [7]. With the company’s own growth and rising 
business volume, the existing clusters are limited in size and their performance 
is no longer sufficient to meet the business needs. As a result, new nodes need to 
be added constantly to increase the processing power of the cluster. The hardware 
configuration of the new nodes is often superior to the old nodes, which makes 
the coexistence of multiple batches of nodes in the cluster. And this objectively 
results in the heterogeneity of the cluster.

In recent years Tiwari et al. [8], Benifa et al. [9] and Jiang et al. [10] gave stud-
ies on MapReduce systems and their scheduling algorithms. These studies gave 
scheduling algorithms for MapReduce for different problems and discussed their 
drawbacks. In addition, the study of task scheduling in heterogeneous environ-
ments is also a focal point of current research. For the situation that each node 
has different computing capabilities, how to determine the order of jobs execution 
and how to efficiently allocate jobs to each node are the key issues of research. 
Chen et al. [3] studied scheduling tasks with deadline constraints in heterogene-
ous environments by converting the MapReduce scheduling problem into a graph 
problem and then solving it using heuristic algorithm Ant. Ahmad et  al. [11] 
and Hsieh et al. [12] improved the matching of resources and jobs by improving 
the MapReduce performance. Cheng et  al. [13] proposed an adaptive task tun-
ing method to improve the performance of MapReduce clusters in heterogeneous 
environments. Rasooli et al. [14] proposed a new scheduling method to improve 
the average completion time of jobs. Although there have been some studies on 
scheduling tasks in heterogeneous environment, they do not delve into the charac-
teristics of MapReduce systems. Our paper addresses the scheduling characteris-
tics of MapReduce and proposes the HTD algorithm.

In this paper, primarily for heterogeneous MapReduce clustered environment, 
we study the problem of task scheduling with throughput as the target. The con-
tributions of this paper are as follows:
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(1) A formal definition of the throughput-driven scheduling problem is given in a 
heterogeneous MapReduce environment.

(2) We propose a novel strategy, Heterogeneous Throughput-Driven task schedul-
ing algorithm in MapReduce (HTD). The algorithm includes three main parts. 
First, for a single job, a task assignment scheme is designed in a heterogene-
ous environment, and the job parameters are estimated. Secondly, for a job set, 
the parameters estimate of each job are used to generate the optimal execution 
sequence of the jobs. Finally, the sequence is brought into a heterogeneous envi-
ronment to further optimize the specific details of task assignment and obtain 
the final task execution scheme.

(3) We prove the efficiency and effectiveness of the HTD through a series of experi-
ments.

Section 2 introduces an overview of MapReduce and related research of sched-
uling algorithm. Section  3 proposes a formal definition of the throughput-driven 
scheduling problem in a heterogeneous MapReduce environment. Section  4 
describes the method for estimating the job parameters and the details of HTD in 
Sect. 4. Finally, Sect. 5 contains the experimental result of HTD and the summarizes 
the content of the paper.

2  Background knowledge

We mainly introduce the framework of MapReduce and the related work of task 
scheduling in MapReduce.

2.1  Framework of MapReduce

The job that MapReduce can handle is composed of map phase and reduce phase. 
In the map phase, the huge input file (usually stored in the distributed file system 
HDFS) is first parsed into a set of key-value pairs. The required data (key-value 
pairs) is extracted from them to form intermediate results. The reduce phase must be 
executed after the map phase is completed. The goal is to integrate the intermediate 
results obtained in the map phase and output the final result in the form of key-value 
pairs in reduce phase.

Figure 1 describes the general flow of a MapReduce job execution. When the user 
wants to carry out a data analysis work, he first needs to write the corresponding 
map and reduce functions according to his own requirements to form a job j.

After j is submitted to the system, the master node will divide it into m map tasks 
and r reduce tasks, and assign them to slave nodes for processing. Usually m is the 
number of fragments contained in the HDFS of the input file of j, and r is speci-
fied by the user or is the default value. In the map phase, a fragment corresponds 
to a map task. The data in the fragment will be assigned to a specific map task slot 
(such as M1 ) and parsed into a series of key-value pairs in (k1, v1) format. Then, each 
map task slot calls the map function submitted by the user, and outputs a series of 
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key-value pair in (k2, v2) format as intermediate results. The intermediate results pro-
duced by each map task will be divided into r blocks and sent to the corresponding 
reduce task slots. The partition method usually uses a hash function to ensure that 
key-value pairs with the same key are divided into the same block.

As shown in Fig. 1, the job contains two reduce tasks, so the intermediate result 
produced by M1 is divided into two blocks, where C1,1 is sent to R1 , and C1,2 is sent to 
R2 . Similarly, the intermediate result C2,1 produced by M2 is sent to R1 , C2,2 is sent to 
R2 , and so on. In the reduce phase, first, each reduce task slot (such as R1 ) merges the 
received blocks together to form a series of key-value pairs in (k2, list(v2)) format.

In order to achieve high availability in a large-scale cluster, MapReduce adopts a 
dynamic task assignment model. For a new job, the scheduler first appends its map/
reduce tasks to the map/reduce task sequences. Instead of assigning all the tasks to 
work nodes in advance, the master node waits the work node to apply. Each time a 
work node becomes idle, it will apply a new task. At this time, the master chooses a 
task from the sequence and allocate it to the work node.

2.2  Related work

In the past few years, a lot of research work has been done to solve scheduling prob-
lems in different situations. Aiming at the heterogeneity of cluster nodes in process-
ing power and storage capacity, Bellatreche et  al. [15] proposed the Fragmenta-
tion and Allocation algorithm, a cost model that considers both fragmentation and 
allocation parameters for performing fragmentation and allocation phase, respec-
tively. At the fragmentation phase, the allocation phase/decision task is completed 

Fig. 1  MapReduce framework
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accordung to the Fragmentation and Allocation algorithm. Over heterogeneous data-
base clusters, the main Parallel Rational Data Warehouses (PRDW) design prob-
lems are solved by Hill Climbing and Genetic Algorithm. At the allocation phase, 
an innovative matrix-based formalism is introduced, which can capture the interac-
tion between fragments, input queries, and cluster node characteristics, thereby driv-
ing the corresponding data allocation tasks. Buffer management is often ignored, 
in query optimization techniques such as materialized views. In order to avoid its 
influence, Kerkad et al. [16] combined the query scheduling problem with the buffer 
management problem, and proposed an inspiring beehive algorithm. Considering 
the impreciseness of query execution time, a cost-aware scheduling algorithm Shep-
herd [17] is proposed. It uses a histogram with query execution time distribution as a 
means to query whether the scheduler input is valid. At the same time, job schedul-
ing is also an important technology to improve the overall performance of distrib-
uted systems. In cloud computing, the Cost-based job scheduling (CJS) algorithm 
[18] considers two types of jobs at the same time, takes the characteristics of the 
job as the main basis for scheduling decisions, and considers data and computing 
requirements at the same time. For large-scale computing systems, a duplication-
based compile-time task scheduling heuristic algorithms are usually used, but rely-
ing on duplication will consume additional energy [19]. Therefore, a green mech-
anism applied to any scheduling is proposed to reduce energy consumption while 
maintaining the same application completion time.

Task scheduling for MapReduce has also received extensive attention, and vari-
ous scheduling methods have been proposed for different situations. The default 
first in first out (FIFO) strategy of the Hadoop system is the most basic and effec-
tive scheduling strategy. FIFO strategy organizes all the jobs received by the system 
into a queue. The jobs in the queue are sorted according to priority, and then sorted 
according to the order of submission. Late submissions are ranked behind. During 
the execution of the MapReduce, if a task is executed too slowly, the system will 
judge it as a straggler, and the scheduler will re-select another node to execute the 
task, that is, the backup operation. Zaharia et  al. [20] pointed out that the default 
backup operation of MapReduce often fails to improve the efficiency of calculation 
in a heterogeneous environment, and therefore proposed the longest approximate 
time to end (LATE) scheduler. The algorithm first improved the method of judg-
ing straggler in MapReduce. After that, the performance of each child node and the 
processing speed of each task are estimated, and the slower tasks are backed up on 
nodes with better performance, which significantly improves the performance of the 
heterogeneous MapReduce cluster.

For task scheduling in a heterogeneous MapReduce cluster environment, many 
scholars have conducted research and proposed different scheduling strategies. 
Kwon et al. [21, 22] analyzed the skew problem [23–25] in the task execution pro-
cess for the heterogeneous MapReduce cluster environment, and proposed the Skew-
tune algorithm. Skew means that the processing time of multiple map (or reduce) 
tasks of a job is very different, usually caused by heterogeneous clusters and uneven 
data distribution. Analysis of queries often ignores buffer management and assumes 
a fixed order and are known in advance. However, these assumptions are too strong. 
In order to overcome this problem, the basic idea is to perform a split operation at 
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an suitable point in time, and redistribute part of the data in the long task to the 
node where the short task is located for processing. Pericini et al. [26] proposed the 
Bron-Kerbosch-Clique algorithm in combination with Simulated Annealing, Local 
Beam Search and Stochastic Beam Search. Wang et  al. [27] analyzed the reasons 
for poor computing capability in a heterogeneous MapReduce cluster environment, 
and proposed the ActCap algorithm to dynamically determine the computing capa-
bility of cluster nodes and allocate data to reduce network overhead. Wang et  al. 
[28] improved the random task sequence into a sorted task sequence, that is, using 
improved heartbeats and task deadlines to improve the efficiency of job execution 
between geographically distant data centers. Hsieh et al. [12] proposed a job sched-
uler called Job Allocation Scheduler (JAS), which aims to balance resource utiliza-
tion. For various task workloads, JAS classifies the tasks and then assigns the tasks 
to the CPU-bound queue or I/O-bound queue. For heterogeneous environments, the 
use of nodes is improved and a dynamic job allocation scheduler with locality is 
created. Wang et al. [29] designed a predictive model to predict the end time of the 
task, which is used to allocate the corresponding data to the corresponding nodes 
in advance to reduce time consumption. On the basis of this prediction model, a 
scheduling algorithm based on task matching is proposed. The tasks in the queue are 
scheduled by considering the situation of each node in the cluster. Chen et al. [30] 
use rack as the basic unit of resources to design multi-job pre-mapping algorithm to 
optimize the execution order of jobs.

In summary, the existing work still cannot fully solve the throughput-driven 
scheduling problem in a heterogeneous MapReduce environment, so we propose an 
effective algorithm to solve this problem.

3  Preliminary

3.1  Problem definition

In this paper, we focus on the problem of task scheduling with throughput as the 
target for heterogeneous MapReduce cluster environments. First, for ease of descrip-
tion, Table 1 describes the notation used in this chapter.

We are given a MapReduce cluster N = {N1,N2,… ,N|N|} for a heterogeneous 
environment, which includes |N| nodes. For each node Ni , we denote Ni . cost as the 
computing capability of Ni , rationi,j as ratio of time spent by nodes Ni and Nj on the 
same task. In this paper, we select standardized nodes N1 , so the computing capa-
bility of N1.cost = 1 . Simply, if a map task for ji needs s seconds on N1 and ratio 
of time spent by nodes Ni and N1 is rationi,1 , the time for Ni to process this task is 
rationi,1 × s s. The parameter estimation method is given is Sect. 3.2.

The set of jobs in a cluster is denoted by J = {j1, j2,… , j|J|} which includes |J| 
stand-alone jobs. For each ji , ji.Mnum is the number of map tasks for ji and ji.Rnum is 
the number of reduce tasks for ji . The time spent on a map task for ji at Nm is defined 
as ji.Tm

map
 and the time spent on a reduce task for ji at Nm is defined as ji.Tm

reduce
.
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Given a heterogeneous cluster N = {N1,N2,… ,N|N|} and a set of jobs 
J = {j1, j2,… , j|J|} , we aim to complete all jobs for J in the shortest possible time by 
setting up a reasonable scheduling algorithm.

Intuitively, in order to complete all jobs for J as quickly as possible and increase 
the throughput of the system, the scheduling algorithm should make full use of the 
computation resources in the system and reduce resource idleness. In the following 
text, we use an example to elaborate on the problem. As shown in Fig. 2, given a 
cluster N = {N1,N2,… ,N|N|} , we assume that the computing capability is known, 
N1.cost = 1 , N2.cost = 1.3 , N3.cost = 0.8 , N4.cost = 1.5 . For each job, the follow-
ing parameters are known. (1) The number of map and reduce tasks. (2) Time spent 
on a map and reduce task at N1 . If a simple FIFO scheduling strategy is applied, all 
jobs are executed in the original order. Job j1 is processed first. After about 42 s, 
the map phase ends.The numbers of the map tasks executed on node N1,N2,N3,N4 
are 14, 10, 17, 9. Then, j1 goes to the reduce phase and the map phase of j2 begins. 
In this order, it is expected that all jobs can be completed in 140.2 s at the earliest. 
At this point, there are substantial resource constraints and the processing capac-
ity of the system is not fully utilized. Conversely, if the order of job execution is 
re-rationalized and the characteristics of heterogeneous clusters are fully consid-
ered, idle resource can be greatly reduced and processing efficiency improved. As 
shown in Fig. 2, if the scheduling method in this paper is followed, we change the 
job sequence to j3, j4, j2, j1 . The tasks can be reasonably assigned based on the com-
puting capability of each node. With the adjustments, all jobs can be completed in 
107.2 s. It is easy to observe that HTD reduces the idle time of the system resources 
and increases the throughput.

3.2  Parameter estimation

Based on the problem description above, it is clear that two parameters need 
to be estimated. (1) the computing capability of each node in the cluster, (2) the 

Table 1  Summary of notations Symbol Description

N The heterogeneous MapReduce cluster
Ni The ith node in a cluster
Ni.cost Computing capability of Ni

rationi,j Ratio of time spent by nodes Ni and Nj 
on the same task

J A job set
ji The ith job
ji.Mnum Number of map tasks for ji
ji.Rnum Number of reduce tasks for ji
ji.T

m
map

Time spent on a map task for ji at Nm

ji.T
m
reduce

Time spent on a reduce task for ji at Nm
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processing time of a map/reduce task for each job. The basic estimation method is 
described as follows.

We randomly select a set ST of tasks to test the computing capability of nodes. 
For each task t, we record the corresponding execution time on node N as ett

N
 . The 

average execution time for node N, aet(N) =
∑

t∈ST et
t
N

�ST�  . Then, For node Ni , its comput-
ing capability with respect to the standardized node N1 is Ni.cost = aet(Ni)∕aet(N1) . 
For example, assume that these is a cluster with three nodes N = {N1,N2,N3} , and 
several test tasks are randomly selected. We run these tasks on N1,N2,N3 and com-
pute the related average execution time 2.3 s, 2.7 s, 1.8 s separately. Then the com-
puting capability is N1.cost = 1 , N2.cost = 2.7∕2.3 = 1.174 , N3.cost = 0.8.

Fig. 2  Example of MapReduce throughout-driven scheduling on heterogeneous environment
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For a MapReduce job j waiting to be executed, we use history reocords and 
sampling method to estimate the processing time. First, we check the system pro-
cessing history and look for the jobs with the same type of j. Using these similar 
jobs, we compute the average processing time of map (reduce) tasks on node N1 
as j.T_his1

map
 ( j.T_his1

reduce
 ). Second, we randomly extract a small fraction of 

input data to form a simplified version of j (consisting of only one map and one 
reduce task). We run the simplified job on node N1 . By keeping track of the pro-
cessing time for the map and reduce phases, we can compute the average process-
ing time j.T_samp1

map
 , j.T_samp1

reduce
 . Then, Combining the history value and 

the sampling value, we estimate ji.T1
map

= � ⋅ j.T_his1
map

+ (1 − �) ⋅ j.T_samp1
map

 , 
ji.T

1
reduce

= � ⋅ j.T_his1
reduce

+ (1 − �) ⋅ j.T_samp1
reduce

.
Based on the above parameters, according to Eq. 1, we obtain the processing time 

for map and reduce tasks on node Nm for job ji.

Note that we only use these estimated values to generate the initial scheduling plan. 
As the processing continues, the parameter can be re-computed and the scheduling 
plan can be adjusted.

4  HTD algorithm description

In this section, we describe the detail of HTD. First, for a single job, we designed 
a task scheduling scheme for a heterogeneous environment, and the parameters of 
the jobs are estimated. Second, for a set of jobs, we generate an optimal execution 
sequence of the jobs using the parameter estimates of the jobs. Finally, the sequence 
is brought into the heterogeneous environment to further optimize the details of the 
task assignment and obtain the final task execution scheme.

We are given a MapReduce cluster N = {N1,N2,… ,N|N|} for a heterogeneous 
environment and a set of jobs J = {j1, j2,… , j|J|} . The goal of this section is to 
design a scheduling scheme that allows all jobs to be completed in the shortest pos-
sible time. First, we design a scheduling scheme for a single job, which ensures that 
a single job can be completed in the shortest possible time. Then, by setting up a 
reasonable scheduling order, all the jobs in the job set can be completed in the short-
est possible time.

4.1  Scheduling scheme for a single job

Given a MapReduce job j, it consists of multiple map and reduce tasks. To complete 
j quickly, the map and reduce tasks for job j need to be completed in the shortest 
possible time. In the methods in this section, the map and reduce tasks have the 
same processing strategy, so only the map task is presented as an example. A formal 
definition of the problem is given below first.

(1)
{

ji.T
m
map

= Nm.cost × ji.T
1
map

ji.T
m
reduce

= Nm.cost × ji.T
1
reduce
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We are given a MapReduce cluster N = {N1,N2,… ,N|N|} for a hetero-
geneous environment, the computing capability on any node and the num-
ber of maps j.Mnum for job j. We assume that Numi map tasks are assigned for 
job j on each node Ni , 

∑�N�
i=1

Numi = j.Mnum . All map tasks for j are cost time 
obj(N, j) = maxi∈[1,|N|]{Ni.cost × Numi × j.T1

map
} . The goal of this section is to 

design the allocation method in such a way that the value obj(N, j) is minimized. 
In other words, all nodes in the cluster complete their tasks in the same time as 
possible.

In a homogeneous environment, it is only necessary to evenly distribute the 
map tasks to each node to ensure that the tasks on all nodes are completed in 
approximately the same time. But in a heterogeneous environment, this even dis-
tribution scheme is obviously unreasonable. Therefore, the following theorems 
are proposed.

Theorem 1 Given two heterogeneous node N1 and N2 , the number of map tasks for 
job j assigned on Ni is Numi and the number of map tasks for job j assigned on Nj 
is Numj . If Numi∕Numj = Nj.cost∕Ni.cost , the node Ni and Nj can both accomplish 
their tasks.

Proof The map task for job j cost time Ni.cost × Numi × j.T1
map

 on node Ni and 
the map task for job j cost time Ni.cost × Numi × j.T1

map
 on node Nj . Based on 

Numi∕Numj = Nj.cost∕Ni.cost , the time cost on Ni and Nj is the same.  □

According to Theorem 1, all map tasks for job j can be distributed among the 
nodes of a cluster in such a way that all nodes accomplish their respective map 
tasks as simultaneously as possible.

Suppose that the number of map task for job j is Num1 on node N1 , then by 
Theorem  1 the number of map tasks assigned to Ni is Num1∕N1.cost . Due 
to 

∑�N�
i=1

Numi = j.Mnum , we obtain 
∑�N�

i=1
1∕Ni.cost × Num1 = j.Mnum . We can 

calculate the number of map tasks Num1 = ⌊j.Mnum∕
∑�N�

i=1
1∕Ni.cost⌋ . For 

example, on the example in Fig.  2, the capabilities of the four nodes are 
N1.cost = 1 , N2.cost = 1.3 , N3.cost = 0.8 and N4.cost = 1.5 . The number of 
map tasks is j1.Mnum = 50 for job j1 . Based on the Equation above, we obtain 
Num1 = ⌊50∕(1 + 1∕1.3 + 1∕0.8 + 1∕1.5)⌋ = 13 , Num2 = ⌊13∕1.3⌋ = 10 , 
Num3 = 16 and Num4 = 8.

When the number of assignments for a job is not exactly proportional to the 
number of nodes, since the above calculations take lower bounds, the sum of the 
number of assignments on each node can only be less than or equal to the number 
of assignments for the job.

For the remaining unassigned tasks, we select the node that minimizes the 
objective function obj(N,  j) and assign it. Continuing with the above exam-
ple, Num1 = 13 , Num2 = 10 , Num3 = 16 , Num4 = 8 and j1.Mnum = 50 , there are 
three map tasks that have not been assigned for job j1 . Based on the assigned 
strategy, the cost time on N1 is j.T1

map
× Ni.cost × 13 = 39s and the cost time 

on N2 , N3 and N4 is 39 s, 28.4 s and 36 s. The current objective function is 
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max{39, 39, 38.4, 36} = 39s . At this point, the three remaining tasks have not 
been assigned. The first remaining task is processed and the new objective func-
tion is found to be the smallest 40.5 s after assigning it to node N4 . Then the 
remaining two tasks are processed sequentially and assigned to node N3 and N1 . 
Finally, we can calculate that Num1 = 14 , Num2 = 10 , Num3 = 17 and Num4 = 9 . 
The objective function is 42 s. Arranging the above methods, we can get Algo-
rithm 1. In Algorithm 1, first, we initially assign a certain number of tasks to each 
node (lines 1–5). Since the initialization phase is a lower bound value for each 
acquisition, the number of tasks assigned to each node during the initialization 
phase must be less than or equal to the number of tasks on the node. It is there-
fore necessary to further allocate the remaining unassigned tasks (lines 6–18), 
and to ensure that the allocated objective function obj(N, j) is minimized so that 
all tasks of the job j are completed in the shortest possible time. We will see that 
the number of unassigned tasks remains O(|N|) after initialization, and a maxi-
mum of |N| attempts are required for each task. We obtain that the time complex-
ity required for this step is O(|N|2) . 

Algorithm 1 Single Job Processing
Input: a heterogeneous cluster N = {N1, N2, . . . , N|N|}, the computing capability Ni.cost

on each node, the job j, and the number of map tasks j.Mnum for j
Output: the number of map tasks Numi for the job j on each node Ni

1: Num1 = �j.Mnum/
∑|N|

i=1 1/Ni.cost�
2: obj(N, j) ← 0
3: for each node Ni in the cluster do do
4: Numi = �Num1/Ni.cost�
5: end for
6: remaining number of unassigned jobs RNum = j.Mnum −

∑|N|
i=1 Numi

7: for each remaining unassigned task Tj do do
8: T ime ← ∞, TNode ← ∅
9: for each node Ni in cluster N do do
10: assigning a task to Ni

11: obj(N, j) = maxi∈[1,|N|]{Ni.cost×Numi × j.T 1
map}

12: if obj(N, j) < Time then
13: TNode = Ni, T ime = obj(N, j)
14: end if
15: end for
16: assign this remaining job Tj to node TNode
17: the number of assignment job to TNode NumTnode+ = 1
18: end for

Algorithm 1 can be used to estimate the minimum processing time j.TCmap (or 
j.TCreduce ) for the map (or reduce) phase of an arbitrary job j in a heterogeneous 
cluster. In the example shown in Fig.  1, the number of map tasks for job j1 is 
j1.Mnum = 50 . The number of map tasks for j1 that should be assigned on the four 
nodes are 14, 10, 17, and 9 respectively. The objective function is 42 s, which 
means that the map phase for j1 costs j1.TCmap = 42s . The number of reduce tasks 
for j1 is j1.Mnum = 40 . The number of reduce tasks for j1 that should be assigned 
on the four nodes are 11, 8, 14, and 7 respectively. The objective function is 11.2 
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s, which means that the map phase for j1 costs j1.TCreduce = 11.2s . Then, the total 
time for j1 cost 42 + 11.2 = 52.3s.

4.2  Scheduling scheme for multi‑jobs

Based on the results of the analysis in the previous section, you can find the short-
est possible time spent on a heterogeneous cluster for the map and reduce phases of 
each job. In this section, for a set of jobs in a cluster, we use the estimated time to 
overall scheduling. Table 2 shows the time cost of the map and reduce phases for 
each job in Fig. 1.

In general, multiple jobs executing on a cluster can be divided into two schedul-
ing methods. One is shared scheduling, where multiple jobs are processed simulta-
neously in the cluster (such as Fair Scheduler). And the other is a map (or reduce) 
task only processes one job at the same time in the cluster (such as FIFO Scheduler), 
which is called exclusive scheduling in this section. In this section, we adopt the 
exclusive scheduling approach. The following provides the necessary definitions and 
then describes the advantages of exclusive scheduling over shared scheduling.

Definition 1 (Sequence) For a set of job J (the number of jobs is recorded as |J| ), 
the sequence Seq is an ordered list of the jobs in J, which restricts the scheduling 
order of all the jobs in the set.

Definition 2 (Optimal sequence) The sequence that can complete all the jobs in J 
the fastest is called the optimal sequence of all sequence in the job set J.

Theorem 2 Given two jobs jm and jn , note that the time t is consumed to complete 
all tasks for jobs jm and jn using the exclusive scheduling method and according to 
the optimal sequence. Then the time t must be less than or equal to the time required 
to complete and under any shared scheduling method.

Proof Suppose the optimal sequence jm , jn . 1) If jm.TCmap ≥ jn.TCreduce , the 
time cost to complete these two jobs using the exclusive scheduling method 
t = jn.TCreduce + jm.TCmap + jm.TCreduce . It is easy to find that if a shared 
scheduling method is used, the time cost cannot be less than this value. 2) If 
jm.TCmap < jn.TCreduce , the time cost using the exclusive scheduling method 

Table 2  The estimated completion time of jobs using Algorithm 1

jobs j1 j2 j3 j4 Jobs j1 j2 j3 j4

j1.TCmap 42 s 35.2 s 12 s 12 s j1.TCreduce 11.2 s 12 s 26.4 s 22.4 s
Num

map

1
14 8 6 3 Numreduce

1
11 6 8 11

Num
map

2
10 6 4 2 Numreduce

2
8 4 6 8

Num
map

3
17 11 7 3 Numreduce

3
14 7 11 14

Num
map

4
9 5 3 2 Numreduce

4
7 3 5 7
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t = jn.TCmap + jn.TCreduce + jm.TCreduce . If the shared scheduling strategy is used, the 
time to complete the map phase must be greater than jn.TCmap . Therefore, the over-
all time cost must be greater than the time cost to complete the map phase.    □

Corollary 1 Given a set of jobs J = {j1, j2,… , j|J|} , note that the time t is consumed 
to complete all tasks in J using the exclusive scheduling strategy and according to 
the optimal sequence. Then the time t must be less than or equal to the time required 
to complete and under any shared scheduling strategy.

Based on Corollary 1, in the system with throughput as the goal, the exclusive 
scheduling strategy is better than the shared scheduling, and the job set can be com-
pleted in a shorter time. In addition, it is easy to find that the completion time of the 
job set varies when using different sequences. Here is how to calculate the comple-
tion time of a job set when using different sequences.

Given a sequence Seq1 = {j1, j2,… , j|J|} of a job set, we define job ji at posi-
tion i in the sequence. All map tasks for ji can be completed at time point ∑i

m−1
.TCmap . Then the reduce task for ji can be only start after the time 

point 
∑i

m−1
.TCmap . If it is known that reduce task completes at time point 

ji−1.ComReduce for ji−1 , the reduce task for ji can be start execution at time point 
ji.ComReduce = max {

∑i

m−1
jm.TCmap, ji−1.ComReduce} . Then the reduce task for ji 

can be completed at time point ji.ComReduce = ji.startReduce + ji.TCreduce . Accord-
ing to the above introduction, it is possible to quickly get the completion time of 
each job’s reduce task when a set of execution sequences is identified. And the last 
job’s reduce completion time is the final completion time of all jobs in the set. The 
following Eq. 2 can be used to find the completion time of the reduce task for each 
job in the sequence Seq = {j1, j2,… , j|J|}.

Figure  3 depicts the execution of the jobs in Table  2 when using different 
sequences. For example, the completion sequence Seq = {j1, j2,… , j|J|} of four jobs 
specified in Scheme 1. All map tasks of j1 are finished in 42 s and starts to enter the 
reduce phase with the reduce completion time of 53.2 s. However, when the map 
phase of j4 completes at 101.2 s, the reduce task is still incomplete. Therefore, the 
reduce phase of j4 needs to wait until the reduce phase of j3 completes at 115.6 s. 
Finally, the completion time of j4 is 138 s. By comparing the two different scenarios 
in Fig. 2, it can be seen that the final completion time of the map task for all four 
jobs is 101.2 s regardless of the scheduling order set, but the final completion time 
for reduce is different.

(2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

j1.ComReduce = j1.TCmap + j1.TCreduce

j2.ComReduce = max{
∑i

m=1
jm.TCmap, j1.ComReduce} + j2.TCreduce

…

ji.ComReduce = max{
∑i

m=1
jm.TCmap, ji−1.ComReduce} + ji.TCreduce

…

j�J�.ComReduce = max{
∑�J�

m=1
jm.TCmap, j�J�−1.ComReduce} + j�J�.TCreduce
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Using Eq.  2, the final completion time of a given sequence can be quickly 
obtained. However, given a set of |J| jobs, the set has a total of |J|! = �

|J|
i=1

i sequences. 
Obviously, it is unreasonable to select the optimal sequence by enumerating all the 
sequences. Several effective methods for obtaining optimal sequences quickly are 
described below.

Given a set of jobs J = {j1, j2,… , j|J|} , we need to get the following statistics: 
the total time J.MapCost =

∑�J�
i=1

ji.TCmap in the map phase and the total time 
J.MapCost =

∑�J�
i=1

ji.TCmap in the reduce phase.

Theorem  3 Given a set of jobs J = {j1, j2,… , j|J|} and a sequence 
Seq = {j�

1
, j�
2
,… , j�|J|} , the sequence is optimal if the sequence ensures that the time 

spent on the map phase of the jobs is in ascending order, and the time spent on the 
reduce phase is exactly in descending order.

Proof Supposing that after the last job’s map tasks are completed and the reduce 
tasks of all previous jobs are completed, then the time to complete all jobs is 
J.MapCost + j�|J|.TCreduce in the sequence. The sequence Seq is optimal because the 
reduce time of j′|J| is the shortest. Conversely, after the last job’s map task is com-
pleted, there are still the reduce tasks of the previous jobs that have not been com-
pleted, there will be no free time from the start of the reduce task, since the map 
phase is in ascending order, and the reduce phase is in descending order. Therefor 
the time to complete all jobs in the sequence is J.ReduceCost + j�

1
.TCmap . Since the 

map phase of j′
1
 takes the shortest possible time, the sequence Seq must be the opti-

mal sequence. This theorem is proven. □

From Theorem 3, then we can directly determine the optimal sequence when the 
map task time is in ascending order and the reduce task time is exactly in descending 
order. However, when the jobs do not satisfy this feature, the following conclusion 

Fig. 3  The completion time of jobs for different scheduling orders



149

1 3

Distributed and Parallel Databases (2022) 40:135–163 

can be drawn from observing Fig. 2. The task completion time of the map phase is 
the same regardless of the job sequence used. The completion time of the sequence 
depends on the idle time of the reduce phase. Therefore, this section goes through 
the following three steps to find the optimal sequence for any set.

Step 1  Simplify the original set of jobs. We use the merge strategy to merge the 
corresponding jobs, thereby reducing the number of jobs to be calculated 
and obtaining a simplified job set.

Step 2  The optimal sequence of the set of simplified jobs is obtained and the 
sequence is taken as a qualifying sequence with the completion time of the 
sequence as a bound value.

Step 3  Using the pruning scheme, we verify all sequences whose completion time 
may be less than the bound value until the final optimal sequence is found.

(1) Simplify the original set of jobs.
This step reduces the number of jobs to be calculated by merging the appropriate 

jobs to obtain a simplified job set. Given two jobs jm and jn , the following condi-
tions need to be met before they can be combined. (1) If jm.TCmap < jn.TCmap and 
jm.TCreduce > jn.TCmap , we can merge the two jobs in order jm, jn and get a new job 
jm,n . The map and reduce completion times for the new job are jm,n.TCmap = jm.TCmap 
and jm,n.TCreduce = jm.TCreduce + jn.TCreduce − jn.TCmap . (2) If jm.TCmap < jn.TCmap , 
jm.TCreduce < jn.TCmap and jn.TCreduce < jm.TCmap and the completion time of two 
jobs jn, jm in the sequence is less than the completion time of jm, jn , we merge the 
two jobs in the sequence jn, jm and get the job jn,m . We have jn,m.TCmap = jn.TCmap 
and jn,m.TCreduce = jn.TCreduce + jm.TCreduce − jm.TCmap . These two merge conditions 
guarantee that the merged jobs are not idle at all when it is executed in the reduce 
phase and it is executed in the local optimal sequence.

The simplified process of the original jobs set can be summarized as sorting 
all jobs by map phase in descending order of time cost, starting with the first job 
and working backwards, and then merging if the merge condition 1 is met. Repeat 
this process until we find the last job. Then we search forward from the second 
job, if the merge condition 2 is met, we merge. Repeat the process until the last 

Fig. 4  Jobs merge strategy
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job is executed and the merge process is complete. As shown in Fig. 4, when the 
jobs are listed in ascending order of map time, the jobs j2, j3 are merged into j2,3 
according to merged condition 1. Similarly, j2,3, j4 is merged into j2,3,4 according 
to merger condition 1. Then, we execute a reverse find and j2,3,4, j1 is merged into 
j2,3,4,1 according to merge condition 2. After merging is complete, we obtain a 
simplified set of jobs {j2,3,4,1, j5, j6}.

(2) Simplifying the optimal sequence of sets
The simplified set of jobs resulting is Jshort = {j1, j2,… , j|Jshort|} from the merger. 

The set has the following characteristics. When all jobs are listed in ascending 
order of their map task times, the reduce times of all jobs are less than the map 
times of the jobs that come after them. The sum of the map task completion times 
for all jobs Jshort.MapCost =

∑�Jshort�
i=1

Ji.TCmap and the sum of the reduce task com-
pletion times for all jobs Jshort.ReduceCost =

∑�Jshort�
i=1

Ji.TCreduce are recorded here.
Since the jobs in the simplified job set Jshort are sorted in descending order 

of time spent on the map phase, a base sequence seqbasic = {j1, j2,… , j|Jshort|} can 
be determined in that order. Using Eq.  2, we know that its completion time is 
seqbasic.cost = Jshort.MapCost + j|Jshort|.TCreduce . Using the completion time of this 
basic sequence as a limit, the optimal sequence of Jshort can be derived by the fol-
lowing pruning method. Based on the given sequence seqbasic = {j1, j2,… , j|Jshort|} , 
this paper determines a sequence seq from backward and forward and makes 
the completion time of the sequence seq less than the completion time of the 
sequence seqbasic = {j1, j2,… , j|Jshort|} . The steps are as follows.

First, we identify all the jobs that can be placed last in seq, and require 
the reduce completion time of this job be less than j|Jshort|.TCreduce . A can-
didate set |Jshort|.candi can be formed for all jobs that meet this condi-
tion. If a certain job j�

−1
 in |Jshort|.candi is selected, the compensation factor 

j�
−1
.factor = j|Jshort|.TCreduce − j�

−1
.TCreduce of the corresponding job j

�

−1
 can be 

recorded.
Second, with the 1st from the end job j�

−1
 known, we need to find the appro-

priate job that can be ranked in the second from the end. If the compensation 
factor of the 2nd from the end job is j�

−1
.factor, the 2nd from the end job j�

−2
 

must satisfy condition that the reduce completion time of job j�
−2

 is less than 
j�
−1
.factor + j�

−1
.TCmap . We record that the compensation factor of the 2nd from 

the end job j�
−2

 is j�
−2
.factor = j�

−1
.factor + j�

−1
.TCmap − j�

−2
.TCreduce.

After it has been determined that the ith from the end job of the sequence is j�
−i

 , 
the corresponding compensation factor is j�

−i
 . The (i+1)th from the end job need to 

meet the conditions that the reduce completion time of job j�
−(i+1)

 is less than 
j�
−i
.factor + j�

−i
.TCmap . We record that the compensation factor of the job j�

−(i+1)
 is 

j�
−(i+1)

.factor = j�
−i
.factor + j�

−i
.TCmap − j�

−(i+1)
.TCreduce . When it is determined that 

the compensation factor to a certain point is 0, the algorithm can be terminated.
After the iterative function algorithm Selectjob(seq−i,−(i + 1), factor) deter-

mines the (i+1)th from the end job, the candidate set for the (i+1)th from the end 
job can be determined using step 3 above.
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Algorithm 2 Selectjob(seq−i,−(i+ 1), factor)

1: the ith

2: if i+ 1 = |Jshort— then
3: the job j = Jshort − seq−i is not selected by seq−i

4: if j.TCreduce − j−i.TCmap < factor then
5: put j in the first place of seq−i return seq−i

6: elsereturn null
7: end if
8: end if
9: all jobs that are not selected by seq−i form a set of Remain

10: for each job j
′
in Remain do

11: if j
′
.TCreduce − j−i.TCmap < factor and j

′
.TCreduce ≤ j−i.TCmap then

12: add j
′
to the candidate set pos− Candi−(i+1)

13: else if j
′
.TCreduce − j−i.TCmap < factor and j

′
.TCreduce > j−i.TCmap then

14: add j
′
to the candidate set neg − Candi−(i+1)

15: end if
16: end for
17: if pos− Candi−(i+1) and neg − Candi−(i+1) are null then return null
18: end if
19: sort the jobs in the pos − Candi−(i+1) in descending order of completion time for the

reduce task
20: sort the jobs in the neg − Candi−(i+1) in descending order of completion time for the

reduce task
21: Candi−(i+1) is the jobs in pos− Candi−(i+1) and the jobs in neg − Candi−(i+1)

22: for each job j
′
in Candi−(i+1) do

23: put j at the (i+1)th from the end job position of seq−i to form a new sequence
seq−(i+1)

24: seq−(i+1).factor = factor + j−i.TCmap − j
′
.TCreduce

25: sequence temp = Selectjob(seq−(i+1),−(i+ 2), seq−(i+1).factor)
26: if temp is not null then return temp
27: end if
28: end for
29: return null



152 Distributed and Parallel Databases (2022) 40:135–163

1 3

Algorithm 3 The Optimal Sequence Generation
Input: simplification set seqbasic = {j1, j2, . . . , j|Jshort|}
Output: baseline sequence seqbasic = {j1, j2, . . . , j|Jshort|}
1: repeat
2: all jobs with Reduce duration less than seqbasic.cost − Jshort.MapCost form the

candidate set |Jshort|.candi
3: for each job j in |Jshort|.candi do do
4: make j as the first from end job in seq−1
5: seq−1.factor = seqbasic.cost− Jshort.MapCost− j.TCreduce

6: seq = Selectjob(seq−1,−2, seq−1.factor)
7: if seq is not null then
8: make seq as new baseline sequence seqbasic
9: end if
10: end for
11: until seq is null
12: return the optimal sequence seqbasic

Using an iterative function (Algorithm 2), Algorithm 3 shows how to determine 
the optimal sequence for finding the simplified job set.

Through the following example, how to find the optimal sequence on the simpli-
fied set is explained in detail. The three jobs shown in Fig. 5 are the simplified job 
set of Fig. 4. First, a qualifying sequence seqbasic = {j2,3,4,1, j5, j6} can be determined. 
When determining the third job (the first from end job), the reduce completion time 
of the third job is required to be less than 40 s, and only the job j2,3,4,1 meets this 
condition. When the third job is identified, the second job (the second from end 
job) needs to satisfy the condition that the reduce task is less than 15 + 20 = 30 
s. The rest of the jobs j5, j6 do not satisfy this condition, so it can be determined 
that the sequence seqbasic = {j2,3,4,1, j5, j6} is the optimal sequence for the set of 
simplifications.

(3) Optimal sequence of the original set
The final sequence of the original set can be obtained using the optimal sequence 

of the simplified set that was previously obtained. We substitute this optimal 
sequence into the unmerged original jobs to form a sequence of a sequence of 

Fig. 5  Optimal sequence of reduction set
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original job set, and record the completion time of the sequence as a bound value. 
In the examples shown in Figs.  4 and   6, the optimal sequence of the simplified 
set is {j2,3,4,1, j5, j6} and the current qualifying sequence {j2, j3, j4, j1, j5, j6} can be 
obtained when it is brought into the original job set J. According to Eq. 2, it cor-
responds to a completion time of 280 s. The statistical value of the job set is known 
J.MapCost = 240 s, J.ReduceCost = 205 s.

The determination of the optimal sequence of the original job set is similar 
to the procedure for determining the optimal sequence of the simplified job set. 
When the statistical value of the original job is J.MapCost ≥ J.ReduceCost , the 
original sequence can be used to determine the optimal sequence using Algo-
rithm 3. As shown in Fig. 6, using the optimal sequence of simplified sequences, 
the base sequence {j2, j3, j4, j1, j5, j6} of the original set can be obtained which cor-
responds to a completion time seqbasic.cost = 240 s. Algorithm 3 is then used to 
recursively find the optimal sequence and determine the jobs in the new sequence 
in reverse order. First, we select the job j1 as the 5th job and get the correspond-
ing compensation factor of 30. Then it is determined that the 5th job is j4 with the 
corresponding compensation factor of 15. And so on, until the 1st job is found 
to be j2 and the compensation factor is greater than 0. A new base sequence 
seq�

basic
= j2, j3, j4, j1, j5, j6 can be obtained. Bringing the new base sequence into 

Algorithm 3, the 6th job can only take j1 , while the 5th job is required to have a 
reduce task completion time of less than 15 + 15 = 30 s. It can be seen in the fig-
ure that there is no job that meets the conditions, so the algorithm ends. The final 
optimal sequence obtained is seqopt = {j2, j3, j4, j1, j5, j6}.

When J.MapCost < J.ReduceCost , using Algorithm  3 to determine the order 
of job execution in reverse order would result in the existence of a large set of 

Fig. 6  Optimal sequence of original set based on reverse order
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candidates for each step, without utilizing the filtering of the pruning strategy. 
Therefore, after adjusting Algorithm 3, the positive order can be used to deter-
mine the order of operation and achieve better pruning results. The sequence 
determination method of the positive sequence is basically the same as the reverse 
sequence method. The specific steps are shown below.

First, we identify all the jobs in seq that can be place and require that the map 
completion time for these jobs is less than seqbasic.cost − J.ReduceCost . When a 
job j′

1
 is selected that meets the condition, it corresponds to a compensation factor 

j�
1
.factor = seqbasic.cost − J.ReduceCost − j�

1
.TCmap.

Second, with the 1st job known to be j′
1
 , we search further for jobs that can be 

ranked 2nd. The compensation factor for j′
1
 is j′

1
.factor. Then the 2nd job needs to 

meet the condition that the map completion time is less than j�
1
.factor + j�

1
.TCreduce . 

The compensation factor for j′
2
 is j�

2
.factor = j�

1
.factor + j�

1
.TCreduce − j�

2
.TCmap.

When it has been determined that the ith job is j′
i
 and its corresponding compen-

sation factor is j′
i
.factor, the (i + 1)th job j�

i+1
 needs to meet the condition that the map 

completion time is less than j�
i
.factor + j�

i
.TCreduce . The compensation factor for j�

i+1
 

is j�
i+1

.factor = j�
i+1

.factor + j�
i
.TCreduce − j�

i+1
.TCmap.

As shown in Fig. 7, for a given set of jobs, it can be found that the completion 
time of its underlying sequence is 380 s, J.MapCost = 240 s, J.Reduce = 345 s. If 
the optimal sequence is still determined in reverse order, it can be found that all 
jobs can be placed in the end with a large compensation factor. This creates a situ-
ation where almost all sequences need to be enumerated in order to find the final 
optimal sequence. In order to enhance the filtering capacity of the compensation fac-
tor, a positive sequence is used to determine the order of operation. As shown in 

Fig. 7  Optimal sequence of original set based on positive sequence
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Fig. 7, after determining the 1st job j1 , we can determine that the set of candidates 
for the 2nd job are j2, j3, j4 and select the first element as the 2nd job. And so on, a 
new basic sequence can be identified as seq�

basic
= {j1, j3, j2, j5, j6, j4} . Using the new 

basic sequence as a qualifying sequence, it can be found that the map completion 
time without jobs is less than 15s, so the algorithm ends. Finally, we can obtain the 
optimal sequence is seqbasic = {j1, j3, j2, j5, j6, j4}.

4.3  Adjustments to the multi‑operational scheduling solution

Given a set of jobs J, Algorithm 3 can be used to find the optimal sequence of all 
jobs executed in J so that all jobs in J can be completed in the shortest possible time. 
Given the optimal sequence seqopt = {j1, j2,… , j|J|} for J, we only need process the 
jobs on the order of execution of the optimal sequence. Algorithm 1 gives the num-
ber of map and reduce tasks that each node should execute on a heterogeneous clus-
ter for each job. However, the execution scheme for each job given in Algorithm 1 
is based on the assumption that the entire heterogeneous cluster starts executing the 
job at the same time. In the actual execution, the completion time of job j1 at each 
node of the heterogeneous cluster during the map phase or reduce phase is likely to 
be different, so job j2 starts at each node at a different time. As in Fig. 8, the optimal 
sequence is known to be j3, j4, j2, j1 and the completion time at each node is differ-
ent when job j3 is executed during the map phase. It can be found that after node 
N2,N3,N4 has finished executing, N1 continues to execute. To further increase the 
throughput capacity of the system, the scheduling scheme should be further adjusted 
to reduce node idleness. Figure 9 shows the performance of the adjusted operations.

The adjustment method of the optimal sequence is based on an improvement of 
Algorithm 1. The specific adjustment process is as follows.

(1) For the first job in the sequence, we distribute the tasks of this job to each node 
according to Algorithm 1. After assignment, we can record the number of assign-
ments on each node and the completion time of the 1st job on each node.

Fig. 8  The estimated execution strategy of jobs in heterogeneous cluster
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(2) O n  n o d e  Ni  ,  i t  c a n  r e c o r d  i t s  c o m p e n s a t i o n  t i m e 
Ni.suptime = N1.comptime1 − Ni.comptime1 compared to N1 . According to Algo-
rithm 3, it is possible to initialize to obtain Num1 = ⌊jm.Mnum∕

∑�N�
i=1

1∕Ni.cost⌋ 
when processing the mth job jm in the optimal sequence. On node Ni , its initiali-
zation number is Numi = ⌊Num1∕Ni.cost + Ni.suptime∕jm.T

i
map

⌋ . For unassigned 
tasks, lines 7–15 in Algorithm 1 are followed.

As shown in Fig.  9, the optimal sequence of the entire job set is 
seqopt = {j3, j4, j2, j1} . First, job j3 is processed according to Algorithm  1. 
It can be seen that the number of tasks assigned to node N1,N2,N3,N4 in the 
map phase of j3 are 6,4,7,3 respectively. We record the completion time cor-
responding to each node, N1.comptime1 = 12s , N2.comptime1 = 10.4s , 
N3.comptime1 = 11.4s , N4.comptime1 = 9s . Then we process the map task 
assignment of the job j4 , and calculate according to the initialization, Num1 = 2 , 
Num2 = ⌊Num1∕1.3 + 1.6∕(4 × 1.3)⌋ = 1 , Num3 = 2 , Num4 = 1. We count the 
completion time on each node as N1.comptime2 = 20s , N2.comptime2 = 15.6s , 
N3.comptime2 = 17.6s , N4.comptime2 = 15s . At this point, j4 still has four map 
tasks that are not allocated. According to the greedy allocation strategy in Algo-
rithm 3, the remaining four jobs are assigned to nodes N2 , N3 , N4 and N1 . Through 
the adjustment of the above method, the final job distribution can be obtained, as 
shown in Fig. 9.

When the final execution scheme is determined, the master node assigns the cor-
responding number of tasks to each node. When a node’s task slot finishes executing 
the current task, the next task is executed as planned.

During execution, it is necessary to count the values, record the average process-
ing time of its map task and reduce tasks on each node for each executed job. Using 
the above statistics value information, the true computing capacity of each node on 
a heterogeneous cluster can be calculated. If the actual computational capacity dif-
fers from the previous estimates by more than 10%, the HTD algorithm needs to be 
re-executed to generate the latest optimal sequence and gives the latest execution 

Fig. 9  The execution strategy of jobs in heterogeneous cluster after adjustment
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strategy. In addition, the HTD algorithm is restarted periodically to avoid large gaps 
in estimates that can affect the performance of the system.

5  Experimental evaluation

In this section, the performance of the proposed HTD algorithm is experimentally 
verified. The experimental MapReduce cluster is built using Hadoop (version 1.0.4) 
and consists of one master node and 25 slave nodes. Each slave node consists of an 
Intel Core i3 2100 CPU, 8 GB of memory, and 500 GB of hard drive. In order to 
build a heterogeneous environment and make the computing capacity of each node 
different, in the experiment, we control the computing capacity by locking the CPU 
frequency. Specifically, 25 slave nodes are equally divided into 5 groups, and each 
group includes 5 nodes. Then we lock the CPU frequency of these 5 groups of nodes 
at 3.1 GHz, 2.8 GHz, 2.3 GHz, 2.0 GHz, and 1.6 GHz. Each slave node contains 
a map task slot and a reduce task slot. The input file fragment size is 64 MB. The 
experiment uses five common MapReduce jobs to build a job set, including word 
count, inverted index, distributed grep, join and distributed sorting.

We test the time cost of generating the HTD scheduling scheme in Sect. 5.1. We 
then verify the throughput capability of the system when using HDT for task sched-
uling. The main measure is the final completion time of the job set. The scheduling 
strategies for the experimental comparison include FIFO, LATE, and Skewtune.

5.1  Time cost of generating the HTD

In order to adequately simulate various application scenarios, three sets of jobs 
are constructed in this experiment. The first group of job sets include word count, 
inverted index and distributed grep. Their common feature is that the completion 
time of the map task is longer than the completion time of the reduce task, which is 
recorded as the map jobs set. The second group of job sets include join and distrib-
uted sorting. Their common feature is that the completion time of the reduce task 
is longer than the completion time of the map task, which is recorded as the reduce 
jobs set. The third group of job sets is a mixed jobs set, with half of the above two 
jobs.

Table 3  Parameter settings Parmeter Default value Range of values

Number of map tasks 
(job size)

100 50, 100, 150, 200

Number of jobs 20 10, 20, 30, 40, 50
Cluster size 25 10, 15, 20, 25, 30
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In our experiences, we test the effect of job size, number of jobs and cluster size 
on generation time. The default values and ranges of variation for each parameter 
are shown in Table 3.

Figure 10a depicts the effect of jobs size on generation time of HTD. When the 
number of map tasks for a job becomes larger, it means that the job is processing 
a larger amount of data and consuming more time. As can be seen in Fig. 10a, the 
generation time of HTD remains essentially unchanged as the job increases. In the 
map jobs set, the map task completion time of all jobs is greater than the reduce 
task completion time, and the reverse order filtering method can quickly obtain the 
optimal sequence. In the reduce job set, the reduce task completion time of all jobs 
is greater than the map task completion time, and the positive order filtering method 
can quickly obtain the optimal sequence. In the mixed jobs set, the filtering effects 
of the reverse order filtering method and the positive order filtering method are both 
worse than those of the previous two job sets. Therefore, under the same conditions, 
the generation of the HTD of the mixed jobs set is the slowest. However, it can be 
seen from the figure that no matter how the job set changes and how the job size is 
set, the generation time of the HTD is at the millisecond level, which hardly has any 
impact on the processing of the job.

Figure 10b depicts the effect of jobs number on the generation time of the HTD. 
As the number of jobs increases, the generation time of the HTD also increases sig-
nificantly. As the number of jobs increases, the number of sequences that can be 
formed will increase sharply. But the filtering method can filter out most sequences, 

Fig. 10  Time cost on generating of HTD
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so the generation time of HTD increases linearly with the increase of the number of 
jobs. Even when the number of jobs reaches 50, the generation time of the HTD will 
still not exceed 1 s. Therefore, even in the face of a large number of jobs, the genera-
tion time of the HTD is still within an acceptable range. In addition, under the same 
job parameters, the generation time of the mixed jobs set is still longer than the map 
jobs set and the reduce jobs set.

Figure 10c depicts the effect of cluster size on the generation time of the HTD. 
As the cluster size increases, the number of nodes participating in the calculation 
increases. The generation time of the HTD also increases slightly. Since the genera-
tion time for the first and third steps of the HTD generation step increases linearly 
as the cluster size increases. However, the generation time of HTD depends mainly 
on the second step, and the completion time of this step is independent of the cluster 
size. Therefore, the final generation time of the HTD increases only slightly, and the 
increase is negligible in the figure.

From the above experimental results, it can be found that no matter how the job 
parameters and clusters change, the generation of the HTD scheduling scheme is 
extremely fast. Although compared with other scheduling algorithms, HTD requires 
preprocessing to arrange all the job execution order. Even in the face of a large-
scale job set, the preprocessing time consumption is completely within the accept-
able range and will not affect the execution of the job. Next, we further verify the 
throughput capability of the system using the HTD.

5.2  Performance evaluation of HTD

This section verifies the throughput capacity of the system when using different 
algorithms. In the experiment, the throughput is measured by the final completion 
time of the job set. The comparison algorithm is FIFO, LATE and Skewtune.

Figure  11 depicts the effect of jobs size on completion time. As the jobs size 
increases, the completion time of the four scheduling algorithms increases. In the 
map/reduce jobs set, the completion time of all jobs mainly depends on the comple-
tion time of the map/reduce phase. In this single type of set, the HTD is only slightly 
better than the other three. In details, Skewtune performs a little better than FIFO 
and LATE because of the task reallocation technique in the last wave of jobs. But, 
the the system resource utilization using these three schedulers is good enough, so 
the improvement that HTD can bring is limited. However, in the mixed jobs set, the 
total processing time of map tasks of all jobs is not much different from the total 
processing time of reduce tasks. The HTD can make full use of system resources, so 
that the idle time of the map and reduce task slots in the system is very small, and 
the execution is completed as soon as possible. In the FIFO and LATE, when the 
first half of the execution comes from the job in the map jobs set, the reduce task 
slot has a lot of idle time, and when the second half of the execution comes from 
the job in the reduce jobs set, the map task slot has a lot of idle time. Considering 
the skew situation in MapReduce, Skewtune can split a slow task into fragments 
and reallocate them to the workers with good-performance. the scheduler can miti-
gate heterogeneous problems, but still cannot solve the problem of idle resources. 
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Compared with the three above, HTD has achieved a very obvious advantage in the 
mixed jobs set. No matter how the job size changes, the throughput capacity of HTD 
is better than the others. Especially in the mixed jobs set, this advantage is very 
obvious.

Figure 12 depicts the effect of jobs number on completion time. As the number 
of jobs increases, the completion time of various job sets increases linearly. Since 
the completion time of each job in the reduce jobs set is higher than the completion 
time of each job in the map jobs set, the completion time in the reduce jobs set is the 
slowest. Similarly, no matter how the number of jobs changes, the completion effect 
of the HTD is always better than that of the other three scheduling algorithms. This 
advantage is particularly prominent in the mixed job set.

Figure 13 depicts the effect of cluster size on completion time. We found that as 
the size of the cluster increases, the number of nodes participating in computing 
increases, and the computing capability of the cluster per unit time increases. There-
fore, the completion time of the jobs set decreases linearly. Regardless of the cluster 
size, the HTD in this paper shows excellent performance, which is better than the 
existing ones.

To sum up, in a heterogeneous MapReduce environment, the HTD scheduling 
algorithm proposed in this chapter arranges a reasonable job execution sequence so 
that the job set can be completed in the shortest possible time. Compared with the 
existing scheduling algorithm, HTD can bring higher throughput to the MapReduce 
system.

Fig. 11  Effect of jobs size on completion time
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Fig. 12  Effect of jobs number on completion time

Fig. 13  Effect of cluster size on completion time
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6  Conclusion

We mainly study the batch-job processing problem in a heterogeneous MapReduce 
environment, and design an effective scheduling algorithm HTD for improving the 
system throughput. The algorithm adopts a reasonable job execution sequence to 
ensure that all jobs are completed in short possible time. The HTD mainly includes 
3 steps. First, we design the assignment scheme for a single job in a heterogene-
ous environment, and estimate the parameters for all the jobs in the job set. Second, 
we generate the optimal execution order for the MapReduce environment. Finally, 
we apply this optimal execution order into the heterogeneous environment and 
adjust the number of assignments of each job on the nodes. At last, we verify the 
the effectiveness and efficiency of HTD through experiments. As the results show, 
our method can reduce the processing time for batch jobs in MapReduce clusters, 
and shows significant advantages in mixed-job situations. In the following research, 
we will further study the scheduling strategy under the network constraints, and 
improve the system throughput in complex network environments.
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