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Abstract
Discovering spatial co-location patterns is a process of finding groups of distinct 
spatial features whose instances are frequently located together in spatial proximity. 
A co-location pattern is prevalent if its participation index is no less than a mini-
mum prevalence threshold given by users. Most of the existing algorithms are very 
sensitive to the prevalence threshold, when users change the prevalence threshold, 
these algorithms have to re-collect table instances and re-calculate participation 
indexes of all patterns for mining the prevalent patterns that users expect to acquire. 
To tackle this issue, we propose an overlapping clique-based spatial co-location 
pattern mining framework (OCSCP). In our framework, we design a two-level fil-
ter mechanism with the first level is a feature type filter and the second level is a 
neighboring instance filter. By employing the mechanism, under a certain neighbor 
relationship, spatial instances are divided into a set of overlapping cliques and each 
clique is also a co-location instance of a pattern. And then, a co-location pattern 
hash map structure is designed to store table instances of patterns based on these 
overlapping cliques. The participation index of each pattern can be fast and directly 
calculated from the hash map structure. Thus, when the prevalence threshold is 
changed, the proposed framework does not need to re-gather table instances, and 
the mining result can be adaptively and quickly given to users. The proposed algo-
rithms are performed on both synthetic and real-world data sets to demonstrate that 
our algorithms can rapidly respond to user requirements compared to the previous 
algorithms.
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1  Introduction

Nowadays, many different domains have generated large and rich spatial data sets. 
For example, weather and climate monitoring or satellite observations can produce 
terabytes of spatial data each day [5]. This brings a big challenge to spatial data min-
ing. As an important branch of spatial data mining, spatial co-location pattern min-
ing technology has been proven valid to identify interesting and previously unknown 
spatial knowledge hidden in the spatial data sets.

The objective of spatial co-location pattern mining is to find a set of groups of 
distinct spatial features whose instances are frequently located together in spatial 
proximity. Spatial co-location patterns provide distribution rules of spatial features 
in geographic space. The rules help users in many fields with planning and decid-
ing. They can make intelligent decisions and arrange smart plans based on the rules. 
For example, in city facilities, a group of {Hotel, Shopping center, Restaurant} is a 
prevalent co-location pattern because they frequently appear together in nearby geo-
graphic space. Users can use the information about the pattern to plan their trip, e.g., 
if they go shopping at a shopping center, they can easily find out restaurants and 
hotels in the near space of the shopping center. This co-location pattern also can be 
provided to businessmen who want to arrange a new store, they would like to know 
the different types of businesses that frequently appeared together. According to the 
information obtained from pattern {Hotel, Shopping center, Restaurant}, they can 
determine the profitability of similar stores and their neighborhood stores to make a 
better decision relating to the new store.

Another example is in the transportation domain. Based on traffic data sets we 
can find out a co-location pattern as {Frequent point of traffic accidents, Traffic jam, 
Police car}. The information about the pattern is provided to the traffic manager to 
properly arrange police presence and rapid handle traffic accidents to avoid traffic 
jams. The same benefit of spatial co-location patterns is also embodied in the mobile 
communication domain when the mobile company wants to provide attractive loca-
tion-sensitive advertisements and recommendations.

Overall, the spatial co-location pattern mining technique is a powerful tool for 
discovering knowledge from massive spatial data sets, it can be applied to many 
fields such as disease control and public health [12], urban construction [3], busi-
ness [11], transportation and location-based services [32], mobile communication 
[6], public security [10], environmental management [1], social science [17], geol-
ogy [19], astronomy [2] and so on.

Summarizing the existing spatial co-location pattern mining algorithms, there 
is a common mining framework which is drawn in Fig. 1. This spatial co-location 

Fig. 1   A common framework of spatial co-location pattern mining
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pattern mining framework uses an expensive generate-test candidate model [33]. 
This framework has six phases. In the first phase, users give a spatial data set, 
a neighbor relationship R, and a minimum prevalence threshold min_prev. The 
neighbor relationships between instances are materialized in the second phase. 
An then, in the third phase, a set of candidate patterns (a candidate is symbolized 
by c) is generated based on the spatial feature types of the input data set. The 
number k of distinct feature types in a candidate is called the size of the candi-
date (size k candidate, ck ). Next, the table instance (symbolized by T(ck) ) of each 
candidate, which is a set of co-location instances (also called row instances, a co-
location instance is a set of instances in which all the instances have the neighbor 
relationship with each other), is collected in the fourth phase. This is the most 
expensive job in the whole mining process [5]. After that, the participation index 
(which measures the prevalence of a pattern) of each candidate is calculated in 
the fifth phase. Finally, in the sixth phase, candidates whose participation indexes 
are larger than or equal to the minimum prevalence threshold min_prev are fil-
tered and they are called prevalent spatial co-location patterns.

Under a certain neighbor relationship, if mining results do not meet the require-
ment, users must adjust the minimum prevalence threshold min_prev to obtain 
expected results. This mining framework has to re-execute from the third phase to 
the sixth phase since it is an incremental mining process. Assume that ck and c′

k
 

are two size k patterns, T(ck) and T(c�

k
) are the table instances of the two patterns, 

respectively. First, the size (k + 1) candidate, ck+1 , is generated by joining features 
in ck and c′

k
 . Second, the table instance of ck+1 , T(ck+1) , is discovered based the 

table instances of ck and c′

k
 (the neighboring instances in T(ck+1) is obtained by 

joining and validating based on neighboring instances in T(ck) and T(c�

k
) ). Given 

a prevalence threshold min_prev, if ck and/or c′

k
 are not prevalent with this value 

of the prevalence threshold, candidate ck+1 which is constructed from ck and c′

k
 , 

must not be prevalent (according to Lemma 1 that will be given later in Sect. 3), 
and it does not need to gather table instance T(ck+1) of ck+1 . However, when users 
change min_prev to make ck and c′

k
 prevalent, it needs to re-collect table instances 

T(ck) of ck and T(c�

k
) of c′

k
 besides collecting table instance T(ck+1) of candidate 

ck+1 and then the participation index of ck+1 is calculated to judge the prevalence 
of it. It means that Steps 3 to 6 have to be re-performed.

Many mining algorithms belonging to this framework have been published so 
far, e.g., join-based [16], partial-join [31], join-less [30], iCPI-tree [21], order-
clique-based [22], SGCT [27], MGPUCPM [4], GPU grid-based [15]. However, 
this mining framework has some deficiencies as follows: 

(1)	 The generate-test candidate model is very time-consuming. The set of candi-
dates and their table instances will become very huge if the spatial features 
and instances are large and/or data sets are dense (the number neighbors of 
instances are huge). Table instances corresponding to candidate patterns must 
be collected and tested to obtain real prevalent spatial co-location patterns. It 
takes a lot of time to process such a huge candidate set and its table instances. 
To demonstrate this point, Fig. 2 shows the average execution time in each phase 
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of the joinless algorithm [30] when the number of features and instances are set 
to 20 and 15,000, respectively. In Fig. 2, T_gen_candidates, T_table_instances, 
and T_filter_patterns are the execution time of generating candidates (corre-
spond to the third phase in Fig. 1), collecting table instances of candidates (the 
fourth phase), and calculating and filtering prevalent patterns (the fifth and sixth 
phases), respectively. It is clear to see that the largest fraction of the execution 
time is devoted to collecting table instances of candidate patterns.

(2)	 This mining framework is particularly sensitive to the minimum prevalence 
threshold. The participation index is an important parameter for measuring the 
prevalence of a co-location pattern and it is calculated based on the table instance 
of each candidate. It means that only after finishing collecting table instances of 
patterns, we can get the participation indexes of patterns. When users change the 
minimum prevalence threshold, the mining framework has to re-perform from 
the third phase to the sixth phase, which needs to re-collect all table instances 
of the candidate patterns. Therefore, it cannot quickly respond to the change of 
users in the prevalence threshold. The flexibility of it is poor.

(3)	 It is hard to quickly mine high-size co-location patterns. The framework shown 
in Fig. 1 is an incremental mining process. The size (k + 1) candidates and their 
table instances are generated based on the size k prevalent patterns and their 
table patterns. That means only when size k patterns are finished, size (k + 1) 
patterns will be performed. It cannot start mining at any size k (k > 2) patterns. 
Users sometimes do not want to know all of the sizes of co-location patterns, 
they only care about a certain size k of co-location patterns, and the framework 
is hard to do it. The flexibility of the framework is not sufficient. Moreover, 
although the candidate patterns can be pruned by using the monotonically non-
increasing property of the participation index [16], it fails when the minimum 
prevalence threshold is small. However, the prevalence threshold cannot be set 
to a big value, because it will miss some significant co-locations [14].

To address these deficiencies, this paper proposes a new method named overlap-
ping cliques-based spatial co-location pattern mining algorithm (OCSCP for short) 
to discover prevalent co-location patterns. In terms of graphs, a clique is a set of ver-
tices in which all the vertices are adjacent to each other [7]. However, different from 

Fig. 2   Percentage of the execu-
tion time for each phase based 
on the mining framework shown 
in Fig. 1
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the general definition of cliques, in the spatial co-location pattern domain, instances 
belong to a clique must be having different feature types. If a clique satisfies this 
condition, a clique can be viewed as a row instance for mining co-location patterns. 
Since an instance can belong to more than one clique at the same time, just as an 
instance participates in multiple row instances. That is why we call them overlap-
ping cliques.

The original idea in this paper is in our previous work [18], which is that if all 
row instances are obtained first, we do not need to generate and test candidate pat-
terns, table instances of any patterns can be directly collected. In a given neighbor 
relationship, table instances are fixed because they are based on the distribution of 
the input data set and the distance threshold. Hence, if users change the minimum 
prevalence threshold, prevalent patterns can be directly and quickly filtered instead 
of re-collecting table instances of candidates. Therefore, mining efficiency can be 
improved significantly.

However, in our previous work, a mining algorithm based on overlapping maxi-
mal clique partitioning (OMCP for short) was presented. First, the OMCP algorithm 
utilizes a grid method to divide instances of an input data set into different cells and 
group nine cells as a block. Then, neighboring instance pairs (two instances have 
a neighbor relationship) are listed in each block. These neighboring instance pairs 
are treated as initialization of overlapping maximal cliques. Next, OMCP discov-
ers all overlapping maximal cliques in each block by trying to put instances into 
the initialized maximal cliques to build maximal cliques. After that, row instances 
are extracted from the maximal cliques. And table instances of patterns are directly 
collected by gathering these row instances with the same type of features. Finally, 
participation indexes of patterns are calculated and prevalent patterns are filtered. 
The OMCP algorithm only needs to perform once to gain participation indexes of 
patterns and it does not need to re-collect table instances when the minimum preva-
lence threshold is adjusted.

In this paper, we design a new method to yield all overlapping cliques instead of 
discovering overlapping maximal cliques as the previous work. In the new method, 
neighbor relationships of instances are materialized into a set of overlapping cliques. 
First, we devise a two-layer clique structure that is made up by clique headers and 
clique bodies. Then, a two-level filtering mechanism to find all cliques is designed. 
The first level is feature type filtering. According to the co-location pattern notion, 
only belonging to different feature type instances may form row instances. Next, 
the second level is neighboring instance filtering. One instance which wants to put 
into the clique bodies to combine bigger cliques if only the instance has a neighbor 
relationship with the clique header. After obtaining all overlapping cliques, a two-
layer hash map structure is utilized to store the cliques. The participation indexes 
of patterns can directly and quickly calculate from the hash map structure. In sum-
mary, the new algorithm designed in this paper has two advantages over the OMCP 
algorithm: 

(1)	 An instance can be quickly positioned into the cliques that it can be put into to 
build larger cliques. This method effectively reduces unnecessary verification 
of neighboring instances when enumerating cliques.
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(2)	 All row instances are generated directly from the overlapping cliques.

The remainder of this paper is organized as follows: Sect.  2 describes the related 
work. The fundamental concept of spatial co-location pattern mining and the notion 
of overlapping cliques are represented in Sect.  3. Two overlapping cliques-based 
spatial co-location patterns mining algorithms are proposed in Sect. 4. The experi-
mental results and analysis are discussed in Sect. 5. The work of this paper is con-
cluded in Sect. 6.

2 � Related work

As an important branch of data mining, a large number of spatial co-location pattern 
mining algorithms have been proposed. These algorithms can roughly fall into three 
categories, they are traditional mining algorithms, mining algorithms for different 
spatial data types, and compression co-location pattern mining algorithms.

Some spatial co-location pattern mining algorithms such as join-based [16], par-
tial-join [31], join-less [30], CPI-tree [20], iCPI-tree [21] are divided into the tradi-
tional co-location pattern mining algorithm category. The join-based, partial-join 
algorithms use a time-consuming join operation to obtain row instances of candi-
dates. While CPI-tree and iCPI-tree adopt a prefix tree structure to describe neigh-
bor relationships between instances. The two algorithms are no longer using join 
operations, thus their performances are improved. This type of co-location pattern 
mining algorithms is on the premise of mining all correct and complete patterns, it 
focuses on improving the efficiency and storage space of mining algorithms.

The different spatial data type mining algorithms effectively deal with some 
more practical spatial data sets such as fuzzy, interval, uncertain, spatiotemporal 
data sets, and so on. These data sets cannot be processed by the traditional min-
ing algorithms. Ouyang et al. [13] developed the single co-location pattern (SCP) 
and range co-location pattern (RCP) algorithms for mining co-location patterns on 
fuzzy data sets by using a membership threshold and a membership range threshold, 
respectively. An efficient co-location pattern mining method which deals with inter-
val data sets was proposed by Wang et al. [23]. In this method, semantic proximity is 
used to measure the proximity between two instances on interval data sets. An algo-
rithm that finds probabilistic prevalent co-locations in spatially uncertain data sets is 
also developed by Wang et al. [24]. By defining a concept called probabilistic preva-
lent co-locations, this algorithm tries to find all the co-locations that are likely to be 
prevalent in a randomly generated possible world. Leibovici et  al. [10] developed 
an algorithm that considers both the location and existence time of instances. This 
algorithm effectively mines patterns from spatio-temporal data sets. Huang et al. [8] 
proposed a new measure called the maximal participation ratio to tackle the problem 
of mining co-location patterns with rare spatial features.

The results of spatial co-location pattern mining often contain numerous pat-
terns, which makes it hard for users to understand or apply. Thus, compression 
co-location pattern mining algorithms have attracted many researchers. An order-
clique-based (OCB) and sparse-graph and condensed tree (SGCT) algorithms were 
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developed for mining maximal co-location patterns (a prevalent co-location pattern 
c is a maximal pattern if it has no super prevalent patterns) by Wang et  al. [22] 
and Yao et al. [27], respectively. Yoo et al. [28] proposed a mining top-k closed co-
location pattern algorithm (a prevalent co-location pattern c is called closed pattern 
if there exists no proper super prevalent pattern c′

⊃ c such that the participation 
indexes of c′ and c are equal). A framework for generating condensed co-location 
sets from spatial databases was developed by Yoo et al. [29]. To address redundant 
co-location patterns, two algorithms RRclosed and RRnull to perform the redun-
dancy reduction for prevalent co-location patterns were developed by Wang et  al. 
[25]. This researcher group also developed a super participation index-closed (SPI-
closed) algorithm which considers the intrinsic characteristics of spatial co-locations 
and effectively captures the nature of spatial co-location patterns [26]. This type of 
mining algorithm concentrates on provides rich and practically instructive patterns 
to users.

To avoid generating candidate patterns, some mining algorithms, which directly 
mine co-location patterns without generating candidates by utilizing maximal 
cliques, had been developed. A maximal clique can extract to a set of sub cliques 
that are row instances of co-location patterns. Kim et al. [9] developed a maximal 
clique generating algorithm for spatial co-location pattern mining called AGSMC. 
AGSMC builds a tree-type data structure and generates maximal cliques by scan-
ning the tree. And then, the maximal cliques are used as transaction-type data for 
mining spatial co-location patterns. AI-Naymat [2] proposed an algorithm named 
GridClique to generate maximal cliques from large spatial data sets that can be con-
verted to transaction data and then using the association rule mining algorithms for 
generating spatial co-location patterns. More recently, a spatial co-location pattern 
mining algorithm based on overlap maximal clique partidesignedtioning called 
OMCP was proposed in [18]. However, extracting maximal cliques from a graph 
is known as an NP-hard problem, hence, the performance of these algorithms is 
limited.

In this paper, we propose an overlapping clique-based spatial co-location pat-
tern mining framework (OCSCP) and we design two mining algorithms based on 
OCSCP. The OCSCP algorithm employs cliques instead of maximal cliques with-
out converting the cliques to transaction data. To efficiently discover all cliques, 
designing a two-layer clique structure with clique headers and clique bodies, the 
instances in the clique bodies are gradually expanded by a two-level filtering strat-
egy. And then, a co-location pattern hash map structure is developed to gather table 
instances of all patterns. The participation indexes of co-location patterns can be 
calculated quickly by scanning the co-location pattern hash map structure. The prin-
cipal contributions of this work are summarized as follows: 

(1)	 Non-generate-test candidate mining algorithms are developed. The generate-test 
candidate model is no longer used in the proposed algorithms. Hence, the mining 
performance is improved significantly.

(2)	 The proposed algorithms are insensitive to the prevalence threshold. When users 
change the minimum prevalence threshold for their different mining purposes, 
our algorithms can adaptively and quickly give new results.
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(3)	 The proposed algorithms can efficiently and directly mine high-size patterns.

3 � Preliminaries

In this section, we first briefly review some basic notions of spatial co-location pat-
tern mining. And then, some definitions of overlapping cliques are described in 
detail.

Definition 1  (Co-location pattern): Given a set of spatial instances, S = {S1, ..., Sn} , 
where Si = {fi1 , ..., fim} is corresponding instances of feature fi ⊂ F = {f1, ..., fn} , 
each instance in S is formed by ⟨feature type, instance identification, location⟩ , and 
a neighbor relationship R over on S. A spatial co-location pattern is a subset of F, 
c = {f1, ..., fk} (1 < k < n) , whose instances are frequent neighbors under the neigh-
bor relationship R. The number of the distinct features in c is k and it is called the 
size of c.

Definition 2  (Row instance and table instance): A row instance I = {f1j , ..., fkq} 
(1 ≤ j, q ≤ m) is a subset of S which includes all feature types in c and each instance 
in I has a neighbor relationship with the others. A group of all row instances of c is 
called the table instance of c and denoted as T(c).

Definition 3  (Participation ratio): The participation ratio of a feature fi in a co-loca-
tion pattern c is denoted by

where N(fi, T(c)) and N(fi, S) are the number of distinct instances of fi in T(c) and 
the number of instances of fi in S, respectively.

Definition 4  (Participation index): The participation index of pattern c is denoted by

Definition 5  (Prevalent co-location pattern): Given a minimum prevalence thresh-
old, min_prev , if the participation index of pattern c is no less than the minimum 
prevalence threshold, PI(c) ≥ min_prev , pattern c is called a prevalent co-location 
pattern.

Lemma 1  (The anti-monotonicity property of the participation ratio and the 
participation index): The participation ratio and the participation index are anti-
monotonicity with the increase of the size of patterns.

(1)PR(c, fi) =
N(fi, T(c))

N(fi, S)

(2)PI(c) = min{PR(c, fi)}

(3)PR(c�, fi) ≤ (PR(c, fi))
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where c′ is a superset of c.

Proof  Please reference [9] in detail. 	�  ◻

The problem of spatial co-location pattern mining is defined in Table 1.
For example, Fig. 3 illustrates the mining process of spatial co-location patterns 

in the traditional framework shown in Fig. 1. The input spatial data set has four spa-
tial features, A, B, C, D and they have 4, 4, 4, 3 instances, respectively. Under a 
neighbor relationship given by users, if two instances have the neighbor relationship, 
they are connected by solid lines. First, size 2 candidates are generated, { A, B } , { A, 
C } , { A, D } , { B, C } , { B, D }, and { C, D } . Then, the table instance of each candidate 

(4)PI(c�) ≤ PI(c)

Table 1   The definition of the 
spatial co-location pattern 
mining problem

Given (1) A set of spatial instances S, each instance in 
S has an information vector as ⟨feature type, 
instance identification, location (x, y)⟩.

(2) A spatial neighbor relationship R, normally 
a Euclidean distance metric is employed with 
a neighbor distance threshold d.

(3) A minimum prevalence threshold min_prev.
Find All prevalent co-location patterns.

Fig. 3   An illustration of spatial co-location pattern mining
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is collected. For example, the table instance of { A, B } is T({ A, B }) = {{A.1, B.4} , {
A.3, B.1} , {A.4, B.3}} . After that, the participation ratios and participation indexes 
of these candidates are calculated, e.g., PR({ A, B } , A) = N(T({ A, B } ), A)/N(A, S) = 
3/4; PR({ A, B } , B) = N(T({ A, B } ), B)/N(B, S) = 3/4. Thus, the participation index 
of candidate { A, B } is PI({ A, B } ) = min{3/4, 3/4} = 0.75. Assuming that users set 
min_prev = 0.6, since PI({ A, B } ) = 0.75 > 0.6, thus { A, B } is a prevalent pattern.

It is can be seen that when the value of the prevalence threshold is min_prev = 
0.6, the size 2 prevalent patterns are {A, B} and {A, C}. However, if users change 
the prevalence threshold min_prev = 0.3, all the six size 2 patterns are prevalent. 
As a result, we have to generate size 3 candidates which are constructed based on 
the size 2 prevalent patterns, they are {A, B, C}, {A, B, D}, {A, C, D}, and {B, C, 
D}. Collecting their table instances, calculating participation ratios and participation 
indexes, and filtering size 3 prevalent patterns have to be re-performed to determine 
whether these candidates are prevalent. The mining processing will continue to per-
form generating candidates based on lower size prevalent patterns and testing the 
prevalence of the candidates until there are no higher candidates generated.

It is in clear view that if users change the prevalence threshold, the mining pro-
cess has to re-perform from size 2 candidates to the highest size candidates. It makes 
the generate-test mining framework less flexible.

Moreover, it is easy to see that the anti-monotonicity of the participation ratio and 
participation index are satisfied, e.g., PR({ A, B } , A) = 3/4 > PR({ A, B, C } , A) = 2/4 
and PI({ A, B, D } ) = 1/3 > PI({ A, B, C, D } ) = 1/4. Since { A, B, D } is not prevalent, 
{ A, B, C, D } is not a prevalent pattern too.

Definition 6  (Clique): Give a set of spatial instances S and a neighbor relationship 
R. A clique is a subset of S which satisfies the following conditions:

–	 All instances in the subset belong to different feature types.
–	 All instances in the subset have the neighbor relationship R with each other.

Comparing with the definition of row instances in the term of spatial co-location 
pattern mining, it is easy to recognize that a clique is a row instance of a co-loca-
tion pattern. It is known that cliques are a notion in graph analysis. However, dif-
ferent from the graph analysis, in the spatial co-location pattern mining domain, all 
instances in cliques have to belong to different feature types. For example, in Fig. 3, 
{A.1, B.4, C.2} is a clique and it is a row instance of pattern { A, B, C }.
Definition 7  (Overlapping cliques): Cliques that hold one or more same instances 
are called overlapping cliques.

If a clique has no common instances with other cliques, it is an independent 
clique. For the convenience of description, we uniformly name overlapping cliques. 
From the illustration of spatial co-location pattern mining shown in Fig. 3, we dis-
cover that an instance can belong to multiple cliques. For example, instance C.1 
belongs to three cliques, they are {A.2, C.1, D.3} which is a row instance of pattern 
{ A, C, D } , {B.1, C.1, D.3} which is a row instance of pattern { B, C, D } , and {A.3, 
B.1, C.1, D.1} which is a row instance of pattern { A, B, C, D } . Cliques {A.3, C.1, 
D.3} , {B.1, C.1, D.3} and {A.3, B.1, C.1, D.1} are overlapping cliques.



521

1 3

Distributed and Parallel Databases (2023) 41:511–548	

From the graph analysis point of view, give a spatial data set and a neighbor rela-
tionship R, all neighbor relationships of instances can be partitioned into a set of 
overlapping cliques. If we obtain all cliques of the input data set, all table instances 
are also collected. Instead of according to the minimum prevalence threshold to col-
lect table instances of candidate patterns from small-size to large-size, we enumerate 
all overlapping cliques on S. Then a co-location pattern hash map structure is con-
structed to store these cliques. Participation indexes of patterns can be easy to cal-
culate from the hash map structure. Finally, comparing to the minimum prevalence 
threshold given by users, prevalent patterns are filtered. Hence, we propose a mining 
framework that is drawn in Fig. 4. This framework has also six phases. The first, 
second, fifth, and sixth phases are the same as in the framework shown in Fig. 1. 
There are two differences, the third phase enumerates all overlapping cliques and 
the fourth phase constructs a co-location hash map structure to store these cliques 
and calculate participation indexes conveniently. The two phases are described in 
the next section in detail.

4 � Overlapping clique‑based spatial co‑location pattern mining 
algorithms

In this section, we first describe two finding overlapping clique methods in detail. 
And then, a co-location pattern hash map structure is proposed to store these cliques. 
After that, calculating participation indexes of patterns from the hash map structure 
is given. Finally, filtering prevalent pattern method is represented.

4.1 � A basic algorithm

4.1.1 � Enumerating overlapping cliques

Definition 8  (Ordered features and instances): Given fij and fkq are two instances. 
We call feature fi is smaller than feature fk if fi < fk , ∀i, k in the lexicographical 
order. And instance fij is smaller than instance fkq , fij < fkq , if they meet one of the 
following conditions:

–	 fi < fk for all i and k
–	 fi = fk and j < q

Fig. 4   The proposed mining framework
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Definition 9  (Star neighborhood): The star neighborhood of a spatial instance fij is 
a set of spatial instances which have a neighbor relationship R with it and denoted as

where R(fij , fkq ) represents fij and fkq having the neighbor relationship R.
In this paper, we adopt a Euclidean distance metric with a distance threshold d to 

determine the neighbor relationship R, i.e., R(fij , fkq ) ⇔ dist(fij , fkq ) ≤ d with 
dist(fij , fkq ) is the distance between fij and fkq . The star neighborhood of each instance 
is converted to a hash map (named neighboring hash map) with the key is a string 
constructed by instance fij with each its neighboring instance and the value is 1 that 
represents that  the two instances have a neighbor relationship. Since instances are 
ordered, each neighboring instance pair is only stored once, there are no repeating 
elements in the neighboring hash map.

To improve the efficiency of finding neighboring instance pairs, a grid with size 
d × d of cells is posed on the input data set. Besides, to handle dense data when run-
ning algorithms in a limited memory environment, we group every nine cells as a 
block and each time we only deal with one block. In order to ensure that no neigh-
boring instance pairs are cut off between blocks, we employ an overlapping block 
partitioning scheme (as shown in Fig. 5). When finding the neighboring instances of 
an instance fij , instead of calculating the distance of fij with all other instances in the 
input data set and comparing with the distance threshold d, we only need to validate 

(5)SN(fij ) = {fkq ⊂ S|fij < fkq ∧ R(fij , fkq )}

Fig. 5   Posing rectangular grids with a size d × d and dividing into blocks on the input data set
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the neighbor relationship of fij with the instances that fall into the same block with 
fij . In addition, since these instances are ordered, only the instances that are smaller 
than fij are needed to validate. Thus, computing the distance between instance pairs 
and comparing the distance with the distance threshold are reduced efficiently.

For example, Fig.  5b–e plot the result of the partitioning of the input data set 
shown in Fig. 5a into a set of blocks with each block contains nice cells. If the star 
neighborhood of A.4 is required, instead of calculating the distance between A.4 
with the other 13 instances, it only calculates the distance between A.4 with B.1, 
C.3, D.1, and D.2, and compares the distance with the distance threshold. As shown 
in Fig. 6, the star neighborhood of instance A.3 is {B.1, C.1, D.1} and {C.1, C.3, D.1, 
D.3} is the neighboring instance set of B.1. A.3 and its neighborhoods are combined 
to A3B1:1, A3C1:1, and A3D1:1 that are elements in the neighboring hash map.

However, there is a situation where instances within one block may be totally 
contained in other blocks, the block is redundant and it does not need to process. 
As an illustration in Fig. 5, all instances of block 3 are in block 1, thus neighbor 
relationships of instances in block 3 can be obtained from block 1, and we skip 
block 3. Since instances within a block are ordered, detecting redundant blocks 
can be accelerated. Assume that bl1 and bl2 are two blocks. For each instance fij in 
bl1 , it only needs to validate the appearance of instance identification j in the set 
of instances of feature fi in block bl2 . For example, in Fig. 5a and b, the instances 
in block 1 and block 2 are bl1 = {A.2, A.3, A.4, B.1, B.3, C.1, C.4, D.1, D.2, D.3} 
and bl2 = {A.3, A.4, B.1, C.3, D.1, D.2} , respectively. To detect whether bl2 is a 
redundant block, for A.3 in bl2 , it only needs to check instance identification 3 is 
in the set of instances of A in bl1 , SA = {A.2, A.3, A.4} . If A.3 is in SA , the vali-
dating process continues checking the next instances of bl2 (e.g., A.4, B.1), else it 
is terminated immediately, the remaining instances of bl2 do not need to perform 

Fig. 6   An illustration of star neighborhoods, neighboring hash map, and initial cliques
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validating. For C.3, it is not in {C.1, C.4} of bl1 , and the validating process is bro-
ken instantly, it directly returns false that represents bl1 and bl2 are two independ-
ent blocks. Obviously, to detect whether a block is redundant, one instance in a 
block only needs to validate with a small number of instances in other blocks.

Definition 10  (Two-layer clique structure): A two-layer clique structure is a hash 
map structure with key-value pairs where

–	 The key is a feature type and it is called a clique feature.
–	 The value is a hash map structure with its key that  is an instance (called a 

clique header) and its value that  is a set of neighborhoods of the instance 
(called a clique body).

For example, Fig.  7 illustrates an example of a two-layer clique structure of 
feature A. In this structure, the clique feature is feature A, clique headers are 
instances belonging to A (A.2, A.3, A.4), and clique bodies are the instances that 
have a neighbor relationship with the clique headers, e.g., C.1, C.4, D.3. We ini-
tialize the clique structure based on the star neighborhood. Figure 6 (the fifth col-
umn) also lists all initial cliques in each block which is constructed by the star 
neighborhood of each instance.

It can be seen that a clique header leads to a set of clique bodies, and a clique 
is combined by a clique header and a clique body. As an example, in block 1 of 
Fig. 6, clique header A.2 and its clique body set [[C.1], [C.4], [D.3]] form cliques 
{A.2, C.1}, {A.2, C4} and {A.2, D.3}.

To obtain larger clique bodies, we iterate each instance in a block and try to 
put the instance to clique bodies. A two-level filtering mechanism, which includes 
feature type level filtering and neighboring instance-level filtering, is designed to 
yield all cliques.

Definition 11  (Feature type filter): Given a spatial instance fij and a clique with 
clique feature fk . fij can be put into clique bodies led by fk if and only if fi < fk , ∀i, k.

According to Definition 6, a clique is a set of neighboring instances and these 
instances have to belong to different feature types. When a new instance attempts to 
insert into a clique body to get a larger clique, the first requirement is that the feature 
type of the new instance is different from the all features of the current clique. Based 
on the two-layer clique structure given in Definition 10, a clique feature fk can draw 
out a set of cliques and these cliques have to include an instance that its feature type 
is fk . In other words, it has already existed an instance of fk in the clique bodies. 
Thus, it only needs to compare the feature type of the new instance fij with clique 

Fig. 7   The structure used to 
store cliques in our algorithm
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feature fk to determine fij can be or not be added to these cliques led by clique fea-
ture fk.

By ordering the features, it makes generating cliques more efficient. Assume that 
fi < fk < ft are three ordered features and fkq is an instance that belongs to feature 
type fk . According to the definition of the star neighborhood, if fkq and an instance 
of feature type fi have a neighbor relationship, fkq has to appear in the star neighbor 
of the instance, it means that fkq has already existed in the cliques that are led by fi . 
Besides, according to the definition of cliques and row instances, fkq can not be 
placed into the cliques led by feature type fk (since they have the same feature type). 
Therefore, we only need to consider adding fkq to the cliques derived from the fea-
ture types that are larger than fk.

For example, listed in block 1 in Fig. 6, instances A.2, A.3, and A.4 can only be 
put into cliques with clique features are B and C since A < B and A < C; instances 
B.1 and B.3 have already existed in the cliques that are led by feature A since A.3 
and A.4 have a neighbor relationship with B.1 and B.3, respectively. Thus, B.1 can 
only be considered to put into the cliques that are led by clique feature C.

Definition 12  (Neighboring instance filter): Given a spatial instance fij and a clique 
with clique header fkq , fij < fkq . Instance fij can be put into clique bodies led by 
clique header fkq if and only if R(fij , fkq ).

As the designed mechanism of the two-layer clique structure, a clique is com-
bined by a clique header and a clique body. The clique header has a neighbor 
relationship with all instances in the clique body. When a new instance fij that 
tries to add into the clique body to build a larger clique, fij must have the neighbor 
relationship with the clique header. Thus, it only validates the neighbor relation-
ship of fij with the clique header. Besides, since the instances in a block are 
sorted, we only need to verify the neighbor relationship between fij and instances 
larger than fij in a block.

As an example, instance A.2 recorded in block 1 in Fig.  6 cannot be placed 
into clique bodies led by B.1 and B.3 because A.2 has no neighbor relationships 
with B.1 and B.3. But A.2 can be put into clique bodies of C.1 since A.2 and C.1 
have a neighbor relationship.

When a new instance passes the two levels of filtering, it can be placed in 
clique bodies to form larger cliques. However, it is still not guaranteed that the 
new instance can be put into the clique bodies because it may have no neighbor 
relationships with the all instances in clique bodies. Therefore, we need to further 
validate the neighbor relationship of the new coming instance with the instances 
in the clique bodies. The neighbor relationship can be quickly queried by the 
neighboring hash map. If they are neighborhoods, the new coming instance can 
be put into the clique bodies to make larger cliques.

For example, after filtering instance A.2 in block 1, A.2 can be positioned 
into cliques with clique header C.1, {C.1 : [[D.1], [D.3]]}. Then, the neighbor 
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relationship between A.2 and the clique bodies, [D.1] and [D.3], is validated. 
A2D1 is not in the neighboring hash map in block 1, A.2 cannot be put into [D.1]. 
And A2D3 is in the neighboring hash map, thus A.2 is placed into [D.3] to form 
[A.2, D.3]. 

To sum up the above description, Algorithm 1 gives the pseudocode of the pro-
cessing of enumerating overlapping cliques in detail. Algorithm 1 has three phases. 
In the first phase, we impose a rectangular grid on the input data set and group all 
instances of each nine cells as a block by the PartitionGrid function (Step 2) and 
detect redundant blocks (Step 3). The second phase makes initialization, include 
finding star neighborhoods (Step 5), neighboring hash map (Step 6), and initial over-
lapping cliques (Step 7). The third phase iterates each instance in the current block 
and tries to place the instance into clique bodies if they meet the neighbor relation-
ship by the UpdateCliques function which is described by Algorithm  2 in detail 
(Step 9). This function returns a set of overlapping cliques that is feed to construct a 
co-location pattern hash map structure to mining spatial co-location pattern mining 
in the next section. 
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By using the two-level filtering mechanism described in Definitions 11 and 
12, an instance in a block can be quickly located in clique bodies where it can 
be placed into to combine larger bodies. The verification space is effectively 
reduced, and therefore enumerating cliques is accelerated. The pseudocode of the 
process of updating cliques in a block is described by Algorithm 2 in detail. Fea-
ture-level filtering is executed first. The feature type of the new coming instance 
is compared with each clique in initial cliques (Steps 2 - 3). If the new coming 
instance passes the feature level filter, it will be entered instance-level filtering 
by validating if the new coming instance has a neighbor relationship with each 
clique header (Step 4). If they have a neighbor relationship (Step 5), it means the 
new coming instance may be placed to clique bodies to form larger clique bodies. 
Then, Algorithm  2 iterates each instance in the satisfied two-level filter clique 
bodies to validated if the new coming instance and instances in bodies have a 
neighbor relationship (Steps 6 - 12). If the new coming instance has a neighbor 
relationship with all instances in a body, it is placed to the body to build a larger 
clique body (Steps 13 - 14).

For example, Fig.  8 illustrates the process of Algorithm 2 to obtain overlap-
ping cliques on Block 2. First instance A.3 (Column 1) is considered and after 
executing the feature level filter, A.3 can be put into cliques B.1 : [[C.3], [D.1], 
[D.2]] and C.3 : [[D.2]] (Column 2) since the feature type of A.3 is A and it is 
smaller than clique features B and C. Then, the mining process enters the instance 
level filter, after checking the neighbor relationship of A.3 with B.1 and C.3, only 
A.3 and B.1 have a neighbor relationship (Column 3). Next, each instance in bod-
ies of clique header B.1, [[C.3], [D.1], [D.2]], is checked whether having a neigh-
bor relationship with A.3 (Column 4). Only A.3 with D.1 meets the neighbor 
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condition, thus they are combined to form clique body [A.3, D.1] (Column 5). 
Finally, these updated cliques are used as the next iteration step. 

As can be seen, by using a feature-level filter and an instance-level filter, it is fast 
to determine whether an instance can be placed into clique bodies to compose larger 
overlapping cliques. Table 2 lists all overlapping cliques are discovered on the data 
set shown in Fig. 3 by our algorithm. After obtaining a set of overlapping cliques, 
we employ a co-location pattern hash map structure to compress neighbor relation-
ships of instances. Participation indexes of patterns can be quickly calculated based 
on the structure.

4.1.2 � Constructing the co‑location pattern hash map structure

In this section, a co-location pattern hash map structure is constructed to gather 
these overlapping cliques and therefore participation indexes (PIs) of patterns can be 
directly and quickly calculated based on the hash map structure.

Definition 13  (Co-location pattern hash map structure): The co-location pattern 
hash map structure is a two-layer hash map structure with a key and a value, which 
is denoted by

Fig. 8   The process of the UpdateClique function on Block 2

Table 2   All overlapping cliques of the data set in Fig. 3

Block No. Overlapping cliques

Block 1 A:{ A.2:[[C.1], [C.4], [D.3]], A.3:[[B.1], [C.1], [D.1]], A.4:[[B.3], [D.1]]}, B:{ B.1:[[C.1], 
[A.3, C.1], [D.1], [A.3, D.1], [D.2], [D.3]], B.3:[[D.1], [A.4, D.1]]}, C:{ C.1:[[D.1], [A.3, 
D.1], [A.3, B.1, D.1], [D.3], [A.2, D.3], [B.1, D.3]]}

Block 2 A:{ A.3:[[B.1], [D.1]], A.4:[[D.1]]}, B:{ B.1:[[ C.3], [D.1], [A.3, D.1], [D.2]]}, C:{ 
C.3:[[D.2], [B.1, D.2]]}

Block 4 A:{ A.1:[[B.4], [C.2]], A.3:[[B.1], [D.1]], A.4:[[D.1]]}, B:{ B.1:[[D.1], [A.3, D.1]], 
B.4:[[C.2], [A.1, C.2]]}
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–	 The key is a set of feature types of instances in the cliques.
–	 The value is a hash map structure with its key is each feature type of each 

instance in overlapping cliques and its value is the instance identification of these 
instances in the cliques.

For example, Fig.  9a shows a co-location pattern hash map structure that is con-
structed by overlapping cliques {A.2, C.1}, {A.2, C.4}, {A.3, C.1} and {A.1, C.2} 
which are discovered from Table 2. All overlapping cliques that are enumerated by 
Algorithm 1 are plotted in Fig. 9b.

It can be seen that neighboring instances are converted into the co-location pat-
tern hash map structure without missing any instances that have a neighbor relation-
ship. The key of the hash map structure is a co-location pattern and all co-location 
patterns can be extracted from the keys of the hash map structure. Participation 
indexes of patterns can be directly calculated from the values of this hash map struc-
ture. Algorithm 3 describes the pseudocode of the construction of the co-location 
pattern hash map structure. This algorithm iterates through cliques (Step 2) and 
loops each instance in a clique (Step 3) to compose a key (Step 4) and a value (Step 
5). After that, the key and the value are put into the co-location pattern hash map 
structure (Step 6). 

(a)

(b)

Fig. 9   An example of the co-location pattern hash map structure
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4.1.3 � Filtering prevalent co‑location patterns

Participation indexes of patterns are easily and conveniently computed based on the 
co-location hash map structure, so when users give/adjust the minimum prevalence 
threshold, prevalent co-location patterns can be determined quickly. Since the table 
instances of patterns have already been stored in the co-location hash map struc-
ture, our algorithm only needs to re-perform Phases 5 and 6 in the proposed mining 
framework shown in Fig. 4.

Algorithm 4 shows the pseudocode of calculating participation indexes and filter-
ing prevalent patterns. The algorithm travels each item in the co-location hash map 
structure (Step 2) to get a pattern which is the key of the item (Step 3) and calculates 
the participation index of the pattern by passing the value of the item into the Cal-
culatePI function (Step 4). If the PI of the pattern is larger than the minimum preva-
lence threshold (Step 5), it becomes a prevalent pattern and is added to the mining 
result (Step 6). 

It can be seen that the proposed algorithm arranges all neighbor relationships 
of instances into a hash map structure. The hash map makes participation indexes 
of patterns can be quickly and conveniently computed. When users change the 
minimum prevalence threshold, instead of re-collecting table instances, our 
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algorithm only need to implement Algorithm 4 (corresponding to Phases 5 and 
6 in the framework described in Fig. 4) for calculating participation indexes and 
filtering prevalent patterns. Hence, the proposed mining algorithm is robust to 
minimum prevalence thresholds. In addition, the proposed mining framework has 
no candidate and it can rapidly compute participation indexes of arbitrary size 
patterns and measure the prevalence of them.

4.1.4 � The time complexity analysis

The computational complexity of the proposed mining framework includes four 
main parts: posing rectangular grids and detecting redundant blocks, enumerating 
overlapping cliques (Algorithms 1 and 2), constructing the co-location hash map 
(Algorithm  3), calculating participation indexes and filtering prevalent patterns 
(Algorithm 4).

Assume that n is the total number of instances and AR is the area of the spatial 
data set. The whole area is divided into a grid with a set of cells, and the area 
of each cell is d × d , where d is the neighbor distance threshold. Therefore, the 
average number of instances falls into a cell is n d2

AR
 . To pose the grid, it needs 

to iterate each instance of the input data set, thus the computational complexity 
of posing rectangular grids is about O(n). In Algorithm 1, nine cells are group 
as a block, the average number of instances in a block is about 9n d2

AR
 . Suppose 

the number of feature types is m. The average number of instances of each fea-
ture type is n

m
 and these instances are divided into the whole area of the spatial 

data set. Hence, the average number of instances of each feature type  that fall 
in each block is 9 n

m

d2

AR
 . To detect redundant blocks, instances of a feature type fi 

only need to validate with the instances that belong to fi in the remaining blocks, 
hence the computational complexity of detecting redundant blocks is about 
O(9

n

m

d2

AR
× m ×

AR

9d2
) = O(n) , with AR

9d2
 is the number of blocks.

To enumerate overlapping cliques in Algorithm 2, each instance in a block is 
implemented in the two-level filter. In the worst case, all feature types appear in 
the current block, it means that the number of clique features is the largest. And 
every instance in the current block has its own neighboring instances, thus each 
instance is a clique header. Assume tavg and kavg are the average number of bodies 
led by one instance and the average number of instances in a body, respectively. 
The upper bound of the computational cost of enumerating overlapping cliques is 
about O(9n d2

AR
× tavg × kavg × 9n

d2

AR
×

AR

9d2d
) = O(n2tavgkavg).

Overlapping cliques are led by clique header and clique bodies, and the co-
location hash map is constructed in Algorithm 3 based on these cliques, thus the 
time complexity of this part is about O(9n d2

AR
× tavg × kavg ×

AR

9d2
) = O(ntavgkavg).

For Algorithm 4, in the worst-case, each pattern has its own overlapping cliques 
(a pattern has at least one row instance), it means all size patterns of m feature types 
are presented. Hence, the upper bound time complexity of Algorithm 4 is O(

m∑
k=2

 C k
m
)

.
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Combining the above analysis, the final worst computational complexity of the 
proposed algorithm is about: O(n + n2tavgkavg + ntavgkavg +

m∑
k=2

 C k
m
) . The number of 

feature types is normally small, m ≪ n . Therefore, the largest execution time is 
devoted to finding cliques and constructing the co-location hash map structure. This 
point is also supported by the experimental section.

4.2 � An improvement algorithm

Based on the above time complexity analysis, we discover that the heaviest work 
in the basic algorithm described in Section 4.1 is enumerating overlapping cliques 
shown in Algorithm 1. And the UpdateClique function in Algorithm 1 is the most 
expensive task. Although an instance can be quickly located to clique bodies where 
the instance can be fit into to form larger bodies by using the two-level filter mecha-
nism, to check which bodies can be put into, the instance has to verify the neighbor 
relationship between it with each instance in a body. When all instances of the body 
have a neighbor relationship with the instance, it can be placed in to form a larger 
clique.

For example, in Fig. 8, after implementing the two-level filter process, A.3 is con-
firmed that it can be put into bodies led by clique header B.1, B.1 : [[C.3], [D.1], 
[D.2]]. Now the basic algorithm needs to check the neighbor relationship between 
A.3 and all instances in bodies of [C.3], [D.1], and [D.2].

If the number of instances in a clique body is larger, the neighbor relationship 
verification process can be expensive. Thus, we design a method to accelerate the 
neighbor relationship validation process.

Definition 14  (Complete star neighborhood): The complete star neighborhood of 
a spatial instance fij is a set of spatial instances which have the neighbor relationship 
R with it and denoted as

This definition is different from Definition 9, the complete star neighborhood 
of an instance includes all instances which have the neighbor relationship with the 
instance. For example, Table 3 lists the complete star neighborhood of the instances 
in each block shown in Fig. 5.

It is observed that if an instance fij which would like to put into a clique body, the 
instance has a neighbor relationship with all instances in the clique body. It means 
that these instances are in the star neighborhood of fij . In other words, the clique 
body is a subset of the star neighborhood of fij . Hence, to determine whether an 
instance fij can be put into a clique body, we only need to validate the clique body or 
not a subset of the star neighborhood of fij.

As an example, Table 4 describes the process of the neighbor relationship veri-
fication by using the complete star neighborhood of A.3. If A.3 would like to put 
into clique body [C.3], all instances in body [C.3] must be in the complete star 

(6)CSN(fij ) = {fkq ⊂ S|R(fij , fkq )}
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neighborhood of A.3. It means that body [C.3] is a subset of the complete star neigh-
borhood of A.3. From Table 3, the complete star neighborhood of A.3 is CSN(A.3) 
= {B.1, C.1, D.1}. It can be seen that [C.3] is not a subset of the complete star 
neighborhood of A.3, thus A.3 cannot put into body [C.3]. Now, body [D.1] is con-
sidered, instances in the body are D.1 and D.1 is in the complete star neighborhood 
of A.3, thus A.3 can be placed into body [D.1] to form a larger body, [A.3, D.1].

Table 3   The complete star neighborhood of the instances falling in each block in Fig. 5

– no values

Block ID Instances CSN Block ID Instances CSN

1 A.2 C.1, C.4, D.3 3 – –
A.3 B.1, C.1, D.1 4 A.1 B.4, C.2
A.4 B.3, D.1 A.3 B.1, D.1
B.1 A.3, C.1, D.1, D.2, D.3 A.4 D.1
B.3 A.4, D.1 B.1 A.3, D.1
C.1 A.2, D.1, D.3 B.4 A.1, C.2

2 A.3 B.1, D.1 C.2
A.4 D.1
B.1 A.3, C.3, D.1, D.2
C.3 B.1, D.2

Table 4   The process of 
neighbor relationship validation 
by using the complete star 
neighborhood

– no values

Clique body Complete star neigh-
borhood of A.3

Is subset New clique

[C.3] [B.1, C.1, D.1] No –
[D.1] [B.1, C.1, D.1] Yes [A.3, D.1]
[D.2] [B.1, C.1, D.1] No –
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To sum up the above description, an advanced algorithm of the basic algorithm 
is developed and its pseudocode is shown in Algorithm 5. This algorithm has three 
phases. The first phase and the second phase are feature-level filter and instance-
level filter (Steps 2–5), respectively, which are the same as in Algorithm 2. The third 
phase verifies whether each body in clique bodies is a subset of the complete star 
neighborhood of the new coming instance (Step 7). If the result of the third phase is 
true, the new coming instance is placed to the satisfied body to form a larger clique 
body (Step 9).

5 � Experimental results

In this section, we designed a set of experiments to examine the performance of 
the proposed algorithms. All algorithms were coded and compiled using C++ and 
executed on a 3.4GHz Intel CPU PC machine with 16GHz main memory.

5.1 � Data sets

Both synthetic and real data sets with different distributions are used in our experi-
ments. The details of these data sets are described as follows.

Real data sets: We employ six real data sets to investigate the performance of our 
algorithms. A summary of these data sets is presented in Table 5. It can be seen that 
these data sets have different framework area sizes, numbers of instances, numbers 
of features, and especially their distribution characteristics are distinctive.

Real-1 data set, whose instances form a zonal distribution as shown in Fig. 10a, 
is a rare plant data set of the Three Parallel Rivers of Yunnan Protected Areas. Three 
points of interest (POI) data sets of Beijing, Shenzhen, and Shanghai, China, which 
contain facilities and their locations such as residential area, fast food, and grocery 
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store, are named Real-2, Real-3, and Real-51, respectively. Figures  10b, 10c, and 
10e show the distributions of the three real data sets. It can be seen that the distri-
bution of the instances in Real-2 is sparse in the suburbs and very dense in the city 
center, the instances of Real-3 distribute being various clusters, and the instances of 
Real-5 are densely distributed throughout the space. The Real-4 data set is a Cali-
fornia’s points of interest data set2, including churches, flats, parks, etc. As shown 
in Fig. 10d, the distribution of the instances of this data set is dense and zonal. The 
final real data set Real-6, which includes supermarkets, banks, cinemas, etc., is a 
collection of points of interest in the United Kingdom3. Figure 10f shows the dis-
tribution of the Real-6 data set, it can be seen that it includes both dense and sparse 
parts.

In the field of co-location pattern mining, when data sets are dense, the number 
of neighbors of each instance will become larger, the row instances of each pattern 
will be also more, and it will take more execution time for gathering table instances 
of patterns. Thus, we carefully chose these data sets with different densities for sur-
veying the performance of the proposed algorithms to prove that our algorithms are 
more efficient for processing dense data sets.

Synthetic data sets: A similar synthetic data generator which was developed by 
Shekhar et al. [16] is used to produce synthetic data sets. Table 6 lists the parameters 
of the synthetic data sets used in different experimental tables/figures.

5.2 � Results and analysis

We chose the joinless algorithm [30] to compare with our proposed algorithms. 
Since (1) it has been proved is an efficient co-location pattern mining algorithm, (2) 
this algorithm is based on the mining framework shown in Fig. 1 which employs 
the generate-test candidate model, (3) the star neighborhood is used in it. Besides, 

Table 5   A summary of the real data sets

Name of data set Space area ( m2) Number of instances Num-
ber of 
features

Distribution characteristics

Real-1 72000 × 123000 336 25 Sparse, zonal
Real-2 138700 × 230000 106,315 23 Concentrated dense
Real-3 90000 × 29000 23,867 13 Dense, cluster
Real-4 846000 × 1152000 97,337 23 Dense, zonal
Real-5 66400 × 117190 120,355 15 Dense, uniform
Real-6 1699000 × 14640000 71,851 10 Dense, Sparse

1  https://​figsh​are.​com/​artic​les/​datas​et/​OCSCP/​12941​714
2  https://​www.​cs.​utah.​edu/​~lifei​fei/​Spati​alDat​aset.​htm
3  https://​www.​pocke​tgpsw​orld.​com/

https://figshare.com/articles/dataset/OCSCP/12941714
https://www.cs.utah.edu/%7elifeifei/SpatialDataset.htm
https://www.pocketgpsworld.com/
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we also compare with our previous work in [18], in which the OMCP algorithm is 
proposed.

For the convenience of description, we name the basic algorithm described in 
Sect.  4.1 as OCSCP-BS and the advanced algorithm represented in Sect.  4.2 as 
OCSCP-AD. Our experiments are designed including four main parts: 

(1)	 Performance comparison of the algorithms.
(2)	 Analysis of sensitivity to minimum prevalence thresholds.

Fig. 10   The distribution of the six real data sets used in our experiments
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(3)	 Evaluation of efficiency improvements for discovering high-size patterns.
(4)	 Assessing the storage space of the proposed algorithms.

5.2.1 � Performance comparison of the algorithms

Comparison of computational complexity factors We investigate the computa-
tional cost in each phase of the four algorithms as the increase of the density of data 
sets to prove that our algorithm effectively improves mining performance. Table 7 
shows the execution time of each phase in different densities of data sets (the spatial 
framework size is firm, increase the number of instances). Since the first and sec-
ond phases in the joinless, OMCP, OCSCP-BS, and OCSCP-AD algorithms are the 
same, only different phases are listed in Table 7, where T_gen_candidates, T_grid_
redundant_blocks, T_enum_max_cliques, T_table_instances, T_enum_over_cliques, 
T_constr_co-loc_hashmap, T_call_PI_fi- lter_patterns are the execution times for 
generating candidates (the third phase in the framework shown in Fig.  1), posing 
grids and detecting redundant blocks (a part of the third phase in Fig. 4), enumerat-
ing maximal cliques (for OMCP), collecting table instances of candidates (the fourth 
phase in Fig. 1), enumerating all cliques (the third phase in Fig. 4), constructing the 
co-location pattern hash map (the fourth phase in Fig. 4), and calculating participa-
tion indexes of patterns and filtering prevalent patterns (the fifth and sixth phases in 
Fig. 1 and Fig. 4), respectively.

As shown in Table  7, in sparse data sets, the performance of these algorithms 
is not much different. But as the data density increases, OCSCP-BS and OCSCP-
AD show better performance. The most execution time in the joinless algorithm is 
devoted to collect table instances of candidates. This is in line with the shortcom-
ings of the algorithms based on the generate-test candidate model mentioned in 
the introduction section. Enumerating maximal cliques and overlapping cliques are 
the heaviest job in the OMCP and the proposed algorithms, respectively. However, 
finding cliques in OCSCP-BS and OCSCP-AD takes less computation time than 

Table 6   The summary parameters of synthetic data sets used in different experimental tables/figures

* : variables; 1k = 1000

Table / Figure No. Space area N. of instances N. of features d min_prev Clumpiness

Table 6 1k × 1k 25k, 40k, 55k 17 10 0.2 1
Fig. 11a 1k × 1k * 17 9 0.2 1
Fig. 11b 10k × 10k * 17 9 0.2 1
Fig. 11c 10k × 10k 25k 17 10 0.2 *
Fig. 12a 1k × 1k 35k 17 * 0.2 1
Fig. 12b 10k × 10k 35k 17 * 0.2 1
Fig. 13a 1k × 1k 35k 17 10 * 1
Fig. 13a 10k × 10k 35k 17 10 * 1
Fig. 14a 1k × 1k 35k 17 10 0.2 1
Table 8 1k × 1k 30k, 50k, 70k 17 10 0.2 1
Fig. 15a 1k × 1k * 17 9 0.2 1
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enumerating maximal cliques in OMCP. Since in the newly proposed algorithms, 
one instance can be quickly located into cliques to form larger cliques without per-
forming unnecessary verification like in the OMCP algorithm. At the same time, 
OCSCP-BS and OCSCP-AD directly generate table instances of patterns after find-
ing cliques. They are not like OMCP to enumerate maximal cliques before collect-
ing table instances. Hence, OCSCP-BS and OCSCP-AD show better performance.

The space cost of each algorithm is also listed in Table 7. Under the same dis-
tance threshold, the denser data sets, the larger the number of neighboring instances 
of an instance, the bigger the table instance supporting the pattern, hence these four 
algorithms require more and more storage space. The joinless algorithm needs to 
hold the table instances of all size k patterns to construct the table instances of size 
(k + 1) patterns at the same time, the table instances of patterns that their size is 
smaller than k can be released. While OMCP, OCSCP-BS, and OCSCP-AD keep the 
table instances of all size patterns, therefore they require more storage space than 
the joinless algorithm.

Overall, the newly proposed algorithms OCSCP-BS and OCSCP-AD signifi-
cantly improve the mining performance, especially for dense data.

Comparison of data set density We evaluate the performance of algorithms when 
increasing data set density. By fixing the spatial framework size, the amount of 
instances is continuously increased, thereby increasing the data density. Figures 11a 
and 11b show the execution time of the four algorithms on dense and sparse data 
sets with different numbers of instances. The four algorithms have similar the execu-
tion time in the sparse data sets. However, with the increase in the density of dense 
data sets, OCSCP-BS and OCSCP-AD shows more superior performance.

Further examining the performance of the proposed algorithms, we observe the 
mining effect of the algorithms in different clumpiness values. Clumpiness repre-
sents the number of co-location instances generated in the same neighborhood 
areas over total instances. The higher clumpiness is, the larger table instances are 
obtained. Figure  11c summarizes the examination results. With the increase of 
clumpiness, the execution times of the joinless, OMCP, OCSCP-BS, and OCSCP-
AD algorithms also increase accordingly. However, the newly proposed algorithms 
increase more slowly.

(a) (b) (c)

Fig. 11   The execution times of three algorithms in different data set densities
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(a) (b)

(d)(c)

(e) (f)

(g) (h)

Fig. 12   The execution times of the compared algorithms with changes of the distance threshold
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Comparison of distance thresholds. Figure  12 charts the changes in the exe-
cution times with changes in the distance threshold. As the distance threshold 
increases, the computational cost of the four algorithms also increases. Since the 
larger the distance threshold, the more neighborhoods and row instances, the join-
less algorithm needs more execution time to collect table instances of candidates, 
particularly when data sets are dense, in a large value of distance threshold, it has 
not completed because it takes too much execution time (Fig. 12a, g). While the two 
newly proposed algorithms take less execution time in dense data sets than joinless 
and OMCP, and the OCSCP-AD algorithm has the lowest execution time in most 
cases.

5.2.2 � Analysis of sensitivity to the minimum prevalence threshold

In this section, the sensitivity to the minimum prevalence threshold is evaluated. 
Figure 13 shows the evaluation results. The execution time of the joinless algorithm 
reduces with the increase of the minimum prevalence threshold. Since in the larger 
value of the minimum prevalence threshold, the number of size k prevalent patterns 
is smaller, the number of size (k + 1) candidates generated is also smaller. How-
ever, the minimum prevalence threshold is not suitable for too large, the patterns 
that users may be interested in may be lost.

While the execution time of the proposed algorithms is constant because when 
users change the minimum prevalence threshold, our algorithms only need to per-
form the last two phases of the framework shown in Fig. 4, the proportion of the 
execution time of these two phases is very small in the total execution time (it has 
been proven in Table  7). Besides, OCSCP-AD and OCSCP-BS are more efficient 
than OMCP. Since the two algorithms find cliques instead of maximal cliques and 
they directly generate all table instances

of patterns, while in OMCP, after obtaining maximal cliques, it has to runs 
through the maximal cliques in every possible combination to generate row 
instances.

Besides, for a smaller minimum prevalence threshold, the joinless algorithm that 
is based on the generate-test candidate framework takes more execution time. Since 
the numbers of size k prevalent patterns and size (k + 1) candidates are bigger, thus 
it needs more execution time to collect table instances of the candidates. In all cases 
of the dense data sets (Fig. 13a–f), the computational cost of the joinless algorithm 
is very expensive.

To sum up, the proposed algorithms are insensitive to the minimum prevalence 
threshold.

5.2.3 � The efficiency of discovering high‑size patterns

In this experiment, we show the efficiency improvements for mining certain size k 
patterns or high-size patterns. This is very practical because sometimes users only 
care about certain size k patterns and the question is how to quickly respond to their 
needs. Figure 14 shows the execution times of the four algorithms when they dis-
cover size 3, 4, 5, and all size (k > 3) patterns on both synthetic and real data sets.



542	 Distributed and Parallel Databases (2023) 41:511–548

1 3

(a) (b)

(d)(c)

(e) (f)

(h)(g)

Fig. 13   The execution times of compared algorithms with changes in the minimum prevalence threshold
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The result shown in Fig.  14 demonstrates that our algorithms significantly 
improve mining  performance. OCSCP-AD and OCSCP-BS can swiftly give the 
mining results. Since in our algorithms, the materializing neighbor relationships, 
enumerating overlapping cliques, and constructing the co-location pattern hash map 
structure phases are performed only once and the structure is stored in a JSON file. 
When users want to mine certain size k patterns, the proposed algorithms only need 

Fig. 14   The execution times when mining high-size co-location patterns of the compared algorithms in 
different data sets
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to load the structure, calculate participation indexes and filter patterns with their 
size equal to k and their participation index is larger than the minimum prevalence 
threshold. Thus, the proposed algorithms can rapidly respond to requirements of 
users.

As can be seen from Fig.  14, our previous algorithm OMCP also can quickly 
mine user-specified size patterns. Because like OCSCP-AD and OCSCP-BS algo-
rithms, under a given distance threshold, table instances of patterns have been stored 
already. When users need to mine a certain size of patterns, it just searches for the 
satisfied patterns from the stored table instances.

Whereas, based on the generate-test mining framework, the joinless algorithm is 
an incremental mining approach. The mining process of size (k + 1) patterns can 
only be performed after finishing mining size k patterns. If users want to mine a 
certain size pattern, all patterns smaller than the certain size pattern have to be dis-
covered first, thus it will take more execution time.

5.2.4 � The storage space

In  the final experiment, we survey the storage space of the proposed algorithms. 
In our algorithms, there are two main parts occupying storage space, one is storing 
the two-layer clique structure found in each block, and the other is the co-location 
hash map structure that holds all row instances. Table 8 lists the change of the stor-
age space of the two parts with increasing numbers of instances of input data sets. 
Besides, the storage space of the OMCP algorithm is also plotted. It can be seen 
that storing maximal cliques in OMCP takes less storage space than OCSCP-BS and 
OCSCP-AD because the newly proposed algorithms have to store all cliques, the 
number of the cliques is larger than the number of maximal cliques. Furthermore, 
in the two final phases (phases 5 and 6 in Fig.  4), the storage space of OMCP is 
slightly less than OCSCP-BS and OCSCP-AD since the former employs a one-layer 
hash map structure (with its key is a pattern and its value is a list storing the table 
instance of the pattern) to save these table instances, while the latter uses a two-layer 
hash map structure.

Table 8   The required storage space in each phase of the OMCP, OCSCP-BS, and OCSCP-AD algo-
rithms

F.: Factor, # inst. : the number of instances, – no values

Algorithm OMCP OCSCP-BS OCSCP-AD

F. (MB) # inst.

30000 50000 70000 30000 50000 70000 30000 50000 70000

Maximal 
cliques

24.238 44.309 82.512 – – – – – –

Cliques – – – 137.664 300.082 803.289 137.238 300.125 796.625
Table 

instances
439.867 956.414 3146.113 – – – – – –

CPHashmap – – – 474.840 818.430 3151.855 474.746 817.832 3151.984
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In furthermore, the change in the storage space of the proposed algorithm with 
increases in the number of instances is also investigated. In this experiment, the dis-
tance and minimum prevalence thresholds are set to a suitable value to ensure that 
at least size 5 patterns are discovered. Figure 15a plots the required storage space 
of the proposed algorithms on synthetic data sets when instances are increased. As 
can be seen that the larger the number of instances, the more the storage space is 
required. Since when the framework area of data sets and the distance threshold are 
fixed, increasing in the number of instances, more and more neighboring instances 
are formed. This means that the number of row instances (cliques) also becomes 
larger, thus the proposed algorithms need more storage space to save these cliques.

The storage space required by OCSCP-BS and OCSCP-AD when they execute 
on the real data sets is also shown in Fig. 15b. These data sets are sorted by their 
number of instances. The distance threshold is set to 250m, 1000m, 1100m, 160m, 
and 120m for Real-3, Real-6, Real-4, Real-2, and Real-5, respectively, and the mini-
mum prevalence threshold is set to 0.1 for all data sets. Overall, the storage space 
required by the proposed algorithms increases with the number of  instances in 
data sets. However, the storage space also depends on data distribution. For exam-
ple, although the number of instances of Real-5 is larger than Real-2 and Real-4, 
Real-5 requires less storage space than Real-2 and Real-4. Since the distributions of 
Real-2 and Real-4 are concentrated dense and (dense + zonal) as shown in Fig. 10. 
Although dataset 1 is also dense, instances are evenly distributed throughout the 
space. The data density (number of instances in an area unit) of Real-2 and Real-4 is 
higher than Real-3.

In conclusion, on our experimental hardware platform, we can process dense data 
up to about 120.000 instances. If the hardware resources are expanded, our algo-
rithm can quickly deal with larger data.

(a) (b)

Fig. 15   The requirement of the storage space of the proposed algorithms with the change in the numbers 
of instances
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6 � Conclusions and future work

In this paper, a spatial co-location pattern mining method which is not sensitive to 
the prevalence threshold is studied. We design a two-level filter mechanism to dis-
cover all overlapping cliques and store them in a co-location pattern hash map struc-
ture. Participation indexes are calculated and prevalent patterns are filtered quickly 
from this hash map structure. We evaluate the proposed algorithms on different dis-
tributions of both synthetic and real data sets. The evaluation results demonstrate 
that our methods significantly improve mining performance, especially when deal-
ing with dense data sets. The proposed method can also rapidly respond to user 
requirements when the distance and prevalence thresholds are adjusted to fit their 
application. Moreover, our method shows better performance when directly discov-
ering high-size co-location patterns.

However, the proposed algorithms need to store the whole table instances of all 
patterns in a co-location hash map structure, thus they need a large storage space. In 
further work, we focus on compress the structure to handle larger data sets.
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