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Abstract
Nowadays, Big Data management has become a key basis for innovation, productiv-
ity growth, and competition. The correlated exploitation of data of this magnitude 
remains primordial to discover valuable insights and support decision making for 
domains of major interest. Furthermore, despite the complex aspects of Big Data 
environments, users are usually looking for a unified and appropriate view of this 
huge and heterogeneous data, to support the extraction of reliable and consistent 
knowledge. Thus, Big Data integration mechanisms must be considered to provide 
a uniform query interface, to mediate across large datasets and provide data scien-
tists with a consistent integrated view suitable for analytical exploitations. Thus, 
this paper presents a semantic-based Big Data integration framework that relies on 
large-scale ontology matching and probabilistic-logical based assessment strategies. 
This framework applies optimization mechanisms and leverages parallel-computing 
paradigms (Hadoop and MapReduce) using commodity computational resources, to 
efficiently address the Big Data challenges and aspects. Several experiments were 
conducted and have proven the efficiency of this framework in terms of accuracy, 
performance, and scalability.

Keywords  Big Data integration · Semantic-based integration · Distributed ontology 
matching · High performance computation · MapReduce paradigm · Probabilistic 
logical processing

1  Introduction

The rapid evolution of the Internet and the technological development of services 
have led to a proliferation of various heterogeneous data sources in a broad array 
of domains. Hence, extrapolating relevant insights on a specific domain (e.g. trans-
port, energy, etc.) requires the correlated exploitation of multiple large data sets 
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(high volume), that are continuously collected from disparate sources (high veloc-
ity) by different data acquisition devices, with different formats (high variety) and 
various data quality levels (obscure veracity). Therefore, managing data of this 
magnitude (i.e. Big Data) is usually confronted with well-known challenges and 
practical obstacles [14, 43], which may undermine the effective building of data-
driven applications devised to support decision-making and problem resolution. For 
instance, urban traffic control and optimization strategies require intelligent systems 
that harness information from diverse cross-domain data sources (i.e. traffic sen-
sors, weather, social networking, etc.) to provide a deeper understanding of complex 
transportation cases, hence, supporting more coordinated and smarter planning and 
modeling of the transport sector.

To achieve this, the different engaged stakeholders (i.e. data scientists, planners, 
decision-makers) usually seek a unified and integrated view of these available data 
to support the extraction of reliable and consistent knowledge that would help them 
make better and smarter strategic and operational decisions [15, 43, 93]. Hence, 
given its important benefits in incorporating and combining multiple data sources, 
and considering the complex aspects of Big Data environments, Big Data integra-
tion has attracted growing interest [11, 14, 27]. Specifically, this operation is accen-
tuated by the constraints related to the inherent Big Data characteristics, as they 
increase the complexity and undermine the real-time requirements of the integration 
process [77]. Moreover, the integration process is also affected by the heterogene-
ity and interoperability issues (i.e. the structural and the semantic conflicts between 
integrated data) [52]. Besides, the unpredicted character of the structure and content 
of data sources entails some agility of the data integration process to handle the 
dynamic aspects of the data sources. Furthermore, the integration process should, 
in particular, ensure the reliability and credibility of the integrated data in order to 
provide solid ground for their related exploitation scenarios, especially in large-scale 
environments.

In fact, several studies have been conducted to resolve the Big Data integration 
issue [11, 37, 45]. Among them, different approaches have been entirely oriented 
toward ontology-based data integration [13, 18, 19]. These approaches have claimed 
that ontologies grant an explicit and machine understanding conceptualization of a 
domain and offer a semantic model of the data sets under integration [19, 70]. By 
the same token, [20, 71] have stated that ontologies provide solutions to data hetero-
geneity and interoperability issues by allowing a cross-cutting meaning of terms, at 
various levels of formalization, and relationships between them. However, such data 
integration approaches usually rely on the nature of the data source and only tackle 
the variety aspect of Big Data. Furthermore, these data integration solutions do not 
consider the scalability, availability and performance aspects of the integration pro-
cess, especially in large-scale context.

In this regard, this paper proposes a semantic-based Big Data integration frame-
work that relies on a large-scale ontology matching strategy. This framework aims 
to overcome the Big Data challenges while ensuring scalability, availability, reli-
ability and high performance. The scalability refers to the support of continuously 
increasing volumes of data, where a significant expansion or optimization of storage 
and computational resources (i.e. machines) is viable [64], whereas the availability 
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implies the ability to access and integrate data, even when machines failures occur. 
The reliability reflects the capacity of the integrated data to support its effective 
exploitation and avoid biased and wrong conclusions. In light of the above, this 
framework consists of three main steps: 

1.	 Generating local ontologies from each data source: This step allows unifying the 
data model for each data source and addresses data heterogeneity and interoper-
ability issues. It grants, thus, the ability to gather and integrate data from hetero-
geneous data sources despite their unpredicted content and form.

2.	 Hybrid large-scale ontology matching (HLSOM): This step integrates and com-
bines these local ontologies in order to construct a shared global ontology, con-
sidered as the uniform view of the integrated data sources.

3.	 Probabilistic-logical based assessment: This step consists of handling the conflicts 
that arise during the preceding step (i.e. HLSOM), which may improve the reli-
ability of the integration framework.

Fundamentally, this semantic-based integration framework uses optimization mech-
anisms and leverages parallel-computing paradigms (i.e. Hadoop and MapReduce), 
using commodity computational resources, to perform high computational complex-
ity operations, efficiently. This will promote the scalability and availability aspects 
of this framework. On the other hand, this parallelism-enabled architecture allows 
performance gain during the integration process and overcomes machines failures 
issues. Ultimately, it is worth mentioning that the aim of this paper is beyond the 
development of new ontology learning approaches and will concentrate mainly on 
the implementation of the HLSOM process and the probabilistic-logic based assess-
ment process.

The remainder of this paper is organized as follows. The related works drawing 
from the existing state-of-the-art of the associated fields, such as ontology-based 
data integration, ontology learning, and ontology matching approaches, are mainly 
reported and discussed, in Sect. 2, to highlight their weaknesses. Section 3 presents 
the overall architecture of the proposed integration framework and the detailed 
exposition of its modules. Section 4 presents and discusses the experimental results, 
in terms of the reliability and the performance of the proposed framework, on differ-
ent datasets. The paper concludes with proposals for future works in Sect. 5.

2 � Related work

2.1 � Ontology‑based data integration

Ontology-based data integration (OBDI) is an active field of research that has 
increasingly confronted with new challenges under the Big Data environments [13]. 
In fact, the ontology-based data integration as a Global-As-View (GAV) semantic-
based integration approach [45], resides on the exploitation of ontologies to effi-
ciently combine data or information from various heterogeneous sources, where the 
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global schema of data is replaced by the conceptual model of the domain, formally 
designed through a domain ontology [10, 63]. To this end, three main strategies are 
implemented, namely the single ontology, the multiple ontologies and the hybrid 
strategies [85].

For the single ontology-based integration approach, all data sources are semanti-
cally mapped to a global ontology as a shared vocabulary [16, 85]. This approach 
requires that all sources share the same view of the domain. However, it is time-
consuming and difficult to devise, especially in a large scale context, as it requires 
a good understanding of the disparate data and may need an expert intervention to 
build a valid and consistent knowledge base (i.e. shared vocabulary). Moreover, this 
approach is not suitable for dynamic environments with changing data sources, as 
this may imply changes in the global ontology, affect the exiting mapping on data 
sources and alter the overall conceptualization of the domain, which is impracticable 
in Big Data scenarios. The multiple ontologies based approach, by contrast, aims to 
avoid expert intervention and allows the integration of data from different domains 
[16, 54]. First, this solution implies that each data source would apply a semantic 
lifting operation to describe the local data in terms of its own ontology. Then, the 
ontologies generated are mapped to each other by an inter-ontology mapping sus-
ceptible to be modified w.r.t. the dynamic change of data sources. Accordingly, this 
may allow multiple views on data inasmuch as that only a single ontology can be 
used for querying and exploiting the integrated knowledge base. Besides, the hybrid 
approach uses multiple local ontologies that would be aligned to a top-level shared 
ontology instead of defining correspondences between the other local ontologies [2, 
16]. This top-level shared ontology may be a pre-existing domain-specific ontology 
or can be created from scratch. Hence, such an approach allows adding new data 
sources without altering existing mappings between local ontologies or the top-level 
ontology.

2.2 � Ontology‑based Big Data integration

Ontology-based data integration mainly relies on a three-pillar architecture, formed 
by the data sources, the global ontology, and the mapping between them. Early 
OBDI approaches exploit the single ontology strategy to represent available data 
sources. Vandecasteele and Napoli [87] exploit a geographical ontology for the cor-
relation and aggregation of sensor data used to analyze abnormal ship behavior. 
By the same token, Curé et al. [18] propose an OBDI framework, in which NoSQL 
databases (MongoDB and Cassandra) are mapped to an OWL1 ontology as target 
schema. Similarly, Kiran and Vijayakumar [41] have developed a semantic-based 
integration system for the HBase column-oriented NoSQL data store. Besides, 
Jirkovskỳ and Obitko [40] propose a semantic-based Big Data integration approach 
for the industrial automation domain. This approach deals with structural and 
semantic heterogeneity by the semi-manual construction of a shared ontology from 

1  http://www.w3.org/TR/owl-featu​res/.

http://www.w3.org/TR/owl-features/
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the preprocessed data sources. Then, the authors adopt some ontology matching sys-
tems to find correspondences between entities across all data sources, which ensures 
knowledge sharing.

Furthermore, Bansal and Kagemann [7] propose a semantic extract, transform 
and load (ETL) framework for Big Data integration. This framework produces a 
semantic model of the data sources under integration, then, generates semantically 
linked data (RDF triples), in conformity with the data model. For that, data is nor-
malized and cleaned, in the Transform step, then their schema is analyzed manually. 
Each schema is mapped to an existing domain-specific ontology or to an ontology 
that has to be created from scratch. For data sources of multiple domains, multiple 
ontologies are required and ontology matching tools are invoked to specify common 
and related data fields. Likewise, Daraio et al. [19] exploit this approach to integrate 
heterogeneous data sources, including big scholarly data to support the assessment 
of research and to develop scientific policy models. García et al. [33] also propose 
an OBDI approach for web analytics in e-commerce. This approach exploits a sin-
gle ontology as mediated schema to collect, integrate, and store web analytics data, 
from several sources of popular and commercial digital footprints. For that, several 
build-in wrappers are invoked to realize the mappings between data sources (RDB, 
JSON files, CSV files, etc.) and this ontology.

Additionally, Li et al. [46] propose a framework for ontology-based top-k global 
schema generation as a schema integration solution. The ontology provides a high-
quality global schema from several relational schemas, with moderate user involve-
ment, as a base-merging model. The strategy consists of converting each local rela-
tional schema to a local ontology, then, an ontology merging procedure is performed 
and top-k global ontologies are generated. Finally, the user selects a unique merged 
global ontology, which will be converted to a global schema. Abbes and Gargouri 
[1] propose an approach to build a modular ontology for Big Data integration in con-
junction with the characteristics of Big Data. This approach leverages a MongoDB 
NoSQL database and takes advantage of modular ontologies by wrapping each data 
source to a MongoDB database, then, generating local ontologies from these data-
bases by specifying a set of transformation rules to map MongoDB constructs to 
OWL ontologies. Finally, they propose a matching algorithm that allows the ontol-
ogy modules to be automatically composed into a global ontology. Nadal et al. [58] 
propose a semantic-based Big Data integration by introducing a structured ontol-
ogy that allows modeling and integrating evolving data from several data providers 
(using REST APIs). This approach governs the integration process by annotating 
it with information about the schema of the evolving sources. First, data sources 
are accessed via wrappers, which expose a relational schema, depict its RDF-based 
representation in the ontology, and define its appropriate mappings. Then, a query 
answering algorithm, that leverages the proposed ontology, is defined in order to 
translate a restricted subset of SPARQL queries over the ontology to queries over 
the sources.

From another perspective, ontology-based data access (OBDA) solutions were 
also adopted to integrate dynamic and voluminous data. Zamboulis et al. [92] pro-
pose an ontology-assisted data restructuring and transformation of XML heterogene-
ous data sources through using a semantic bridge between them. They also present 
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ontology-based data access to relational data sources to support the integration of 
heterogeneous medical databases under a predefined ontology. Moreover, Mezghani 
et al. [55] propose a semantic Big Data architecture as a Wearable KaaS (Knowledge 
as a Service) platform for smart management of scattered heterogeneous correlating 
medical data coming from wearable devices and to deal with their heterogeneity and 
scalability challenges. The main aim of this work is to provide a wearable health-
care ontology that ensures semantic interoperability and enables the aggregation of 
distributed heterogeneous data from wearables to make accurate health-related deci-
sions and to generate new valuable information. Besides, Santipantakis et  al. [70] 
propose the OBDAIR integration framework that follows the multiple ontologies 
approach to perform distributed retrieving, integrating, and reasoning tasks. The 
framework consists of creating multiple ontologies for the integrated data sources, 
extracting correspondences between concepts and individuals of each ontology unit, 
making RDF mappings of the relational databases using OBDA, and an ontology-
mediated distributed data access for multiple sources cases.

Big Data integration is an important and complex process that is extremely 
affected by the challenges and aspects of Big Data. In the light of the above, several 
approaches have been conducted to resolve the integration issue by leveraging dif-
ferent ontology-based data integration strategies (i.e. single, multiple and hybrid). 
However, these data integration approaches suffer from several weaknesses, given 
the Big Data environment and its related requirements: They rely on the category of 
the data source, the ontology building procedure, and how to find the correspond-
ences between them; and focus only on addressing the variety aspect of Big Data; 
They do not study the agility of data sources and their unpredicted structure and con-
tent (i.e. structured, unstructured or semi-structured); They do not use mechanisms 
to handle voluminous datasets; and they do not ensure the veracity of the integrated 
data. Furthermore, they do not consider the scalability, availability, and performance 
aspects of the integration process, which are especially essential in Big Data envi-
ronments. Eventually, They adopt semi-automatic procedures to extract the mapping 
between local ontologies, which is certainly not suitable for large-scale context.

For that, the proposed semantic-based Big Data integration framework leverages 
the hybrid ontology-based integration approach and relies on a large-scale ontology 
matching strategy that creates the mapping between the created ontologies (from 
data sources) and the global ontology. This framework aims first to unify the data 
model for each data source and addresses data heterogeneity and interoperabil-
ity issues, which allows integrating data from heterogeneous data sources despite 
their unpredicted content and form (i.e. Variety). It implements different optimiza-
tion mechanisms and leverages parallel-computing paradigms to efficiently perform 
high computational complexity operations, which may tackle the Velocity challenge 
of Big Data, ensure that continuously increasing volumes of data (i.e. Volume) 
are supported where a significant expansion or optimization of storage and com-
putational resources is viable (i.e. Scalability), and guarantee data integration even 
when machine failures occur (i.e. Availability). Moreover, the framework applies 
an assessment mechanism to ensure the reliability and credibility of the integrated 
data (i.e. Veracity) and to support its effective exploitation (i.e. Value). Accordingly, 
the shared global ontology is built by performing a large-scale ontology matching 
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process over local ontologies. Thus, it is more interesting to further investigate the 
ontology matching field in terms of the accuracy and performance aspects.

2.3 � Large‑scale ontology matching approaches

Fundamentally, this study would go beyond basic matching strategies (i.e. element-
based and structure-based strategies) [30, 61, 76] and focus on strategies that opti-
mize the matching process in large-scale context (such as reduction of matching 
space strategies and parallel matching strategies) while making an arrangement 
between accuracy and performance.

2.3.1 � Reduction of matching space strategies

2.3.1.1  Pruning strategies  Ontology matching algorithms may deal with large-scale 
ontologies, containing a huge number of entities. Therefore, pruning strategies can 
dynamically ignore parts of those ontologies and avoid comparing them during the 
matching process [30, 65]. In other words, on the basis of a further processing or 
a specified threshold, the process tries to correctly identify matching entity pairs 
by excluding highly dissimilar ones from the matching phase, which consequently 
improves the performance of the matching process by limiting the pairwise compari-
son of the whole entities.

Quick ontology matching [24] adopts this strategy by first extracting matching 
candidates based on entity labels, then evaluating structural properties only for 
highly similar ones gathered from the first constraint. Likewise, AROMA [21] tries 
to learn association rules by measuring, at each stage, the maximum implication 
intensity obtained by learning more specific rules. If the intensity value is below a 
threshold more specific rules are eliminated, which avoids any further comparisons. 
The approach proposed by Peukert et al. [62] uses filter operators within the match-
ing process to eliminate dissimilar element pairs having a similarity below some 
threshold from intermediate match results. Similarly, Anchor-Flood strategy [73] 
uses anchors reduction mechanisms to handle large ontologies. First, the system ana-
lyzes the neighbors of each anchor (i.e predefined correspondence) and builds small 
segments candidates to be matched. Then, it iteratively explores neighbors until no 
new candidate pairs are founded or the collected entities are fully explored, which 
is the same concept adopted by Wang et al. [89]. Further works like LogMap [39] 
focus on index-based pruning by firstly indexing all the entities using their labels 
and their URIs, then, extracting matching candidates when each pair of entities is 
indexed together for different ontologies. Comparably, ServOmap [6] dynamically 
constructs an inverted index for each entity according to the features it holds. After 
that, the system computes the lexical-based similarity between entities using the pre-
viously built indexes. Finally, it computes context-based similarity only for those 
who have not been yet matched to any other entities during the first phase.

2.3.1.2  Partition‑based matching strategies  Since large-scale ontology matching 
issue is expressively related to the size and the complexity of matched ontologies, 
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partition-based strategies aim to perform splitting operations to obtain exhaustive 
and non-overlapping sub-ontologies with the intention to perform matching by parts 
and aggregate the independent partial matching results. Accordingly, partition-based 
matching involves four main stages: (i) partitioning the input ontologies into a set 
of small disjoint sub-ontologies, (ii) comparing these partitions with each other to 
determine those that worth to be fully matched, (iii) applying matching algorithms to 
determine local correspondences between partitions and (iv) aggregating the partial 
alignments to form the overall matching result.

COMA++ [23] conducts a partition-based matching strategy by first identifying 
fragments of two schemas and selecting the most similar ones to match. Likewise, 
Falcon-AO [36] proposes a divide-and-conquer strategy involving a structure-based 
agglomerative clustering approach to partition input ontologies into relatively small 
disjoint blocks, taking into account the internal cohesion of a block. Then, using 
predefined anchors, the system selects candidate blocks pairs to be further matched. 
Algergawy et al. [3] propose a clustering-based approach that consists of represent-
ing input ontologies as directed acyclic graphs, then, performs a structure-based 
clustering algorithm to split input ontologies into a set of disjoint sub-graphs in 
such a way that structurally similar nodes are placed in the same cluster while the 
nodes of different clusters are structurally dissimilar. Later, each cluster of the input 
ontologies is represented as a cluster of documents and the approach uses both the 
Vector Space Model and TF-IDF approaches to efficiently compute the similarity 
between cluster pairs. Finally, having similar clusters, a specific matching algorithm 
is applied to completely match the elements inside similar clusters. By contrast, See-
COnt [4] aims to reduce the complexity of comparisons between entities within clus-
ters by only comparing their clusters’ seeds. The approach represents input ontolo-
gies as labeled directed graphs, then, a ranking function that quantifies the node 
importance is exploited to rank ontology entities. Those having the highest-ranking 
are selected to construct the clusters’ heads. Later, remaining entities are specifically 
assigned to their appropriate clusters based on a membership function. Eventually, 
the Falcon-AO matching system is adapted to perform the matching process.

Unfortunately, the above-mentioned partition-based matching systems have sev-
eral concerns regarding the efficiency of the partitioning processes, and the mech-
anisms adopted to identify the similar partitions to match, which may certainly 
impact their accuracy. In addition, these works do not consider non-taxonomic rela-
tions from input ontologies during the graph creations, which may affect the struc-
tural knowledge encoded on them and lead to create trimmed graphs. Furthermore, 
these works try to perform large-scale ontology matching without considering per-
formance concerns, in terms of scalability and execution-time.

2.3.2 � Parallel matching strategies

In fact, some research has been conducted in devising parallelism with regard to 
ontology matching issues [5, 35]. Specifically, the parallelism strategies apply two 
main kinds of parallel matching (inter and intra-matcher parallelization) to improve 
performance by using parallel and distributed infrastructure. The inter-matcher par-
allelism approach allows parallel execution of independently matching operations 
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(i.e. matchers) on a parallel platform (multiple cores of a single computing node or 
multiple nodes). However, the parallelization is limited by the number of independ-
ent matchers and their required memory when loading the overall ontology, which 
decreases the performance and expands the overall execution time of the ontology 
matching system. Also, matchers of dissimilar computational complexity may have 
largely different execution times, which harms and limits the achievable speedup, so 
that the slowest matcher determines the overall execution time. The intra-matcher 
parallelism approach, on the other hand, is more volatile and leads to several finer 
matching tasks with limited computational complexity, that can be performed in 
parallel with reduced memory requirements per task. The approach can be applied 
for sequential as well as independently executable matchers and can also be com-
bined with inter-matcher parallelism scenarios. Therefore, Amin et  al. [5] decou-
ple the performance and accuracy aspects by implementing data parallelism over 
parallelism-enabled platforms for effectiveness-independent performance-gain dur-
ing ontology matching. It aims to split complex ontologies into smaller subsets in 
order to preserve the parsing effort for future matching requests for the same ontolo-
gies. Nevertheless, these parallel-based approaches ignore and do not manage the 
node failure issues related to parallel platforms which affect the system performance 
whenever failed tasks are re-executed. Besides, they implement parallelism mech-
anisms for data storage level rather than computational level, thus, not benefiting 
from the computational advantages offered by parallel platforms.

Overall, several works were conducted in the large-scale ontology matching field. 
Even though, they do not consider scalability and availability aspects. They often 
carry out a matching process with high computational complexity, without tak-
ing performance aspects into consideration. On the other hand, the assessment and 
monitoring of the quality of the ontology matching process are usually impractical 
and mostly overlooked during these processes. For these reasons, using new opti-
mization mechanisms and advanced parallel-computing paradigms on commodity 
computational resources, need to be more employed to achieve high-performance 
ontology matching.

3 � Scalable semantic‑based Big Data integration framework

3.1 � Framework overview

Big Data comes from every imaginable source: user-generated data [8], machine-
generated data [74], and official data (i.e. governmental and public authorities data) 
[84]. Indeed, this explosive growth of data is entirely reliant on different technolo-
gies, such as the Internet of Things, Cloud Computing, Internet, mobile devices, 
and various sensor technologies [95]. For these reasons, this paper introduces a 
semantic-based Big Data integration framework (SBDI), that considers Big Data 
features (4Vs) and aspects (i.e. scalability, availability, and high-performance) to 
support the extraction of reliable and consistent knowledge. This framework has 
a corpus formed by heterogeneous data sources as input and an OWL (Ontology 
Web Language) ontology as target. Choosing OWL as the ontology representation 
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language is determined because it is the recommended standard to represent ontolo-
gies according to the World Wide Web Consortium (W3C).2 Thus, the integration 
framework (SBDI) is devised using three modules (see Fig. 1).

The local ontology building module (Sect.  3.2) which constructs local ontolo-
gies from each data source. This module (i.e. module 1 in Fig. 1) is responsible for 
gathering data from heterogeneous data sources, despite their unpredicted content 
and their type, and converting it to a common representation (i.e. OWL ontology) 
while preserving the autonomy of the initial sources. To this end, it harnesses sev-
eral ontology learning strategies that differ depending on the nature of the input data 
sources. This semantic choice allows a cross-cutting meaning of terms, at various 
levels of formalization, and relationships between them. These local ontologies are 
stored as DL axioms in order to be mapped by the set of alignments derived through 
the HLSOM module. Overall, the local ontology building module provides a seman-
tic data model that homogenizes data under integration, which resolves data hetero-
geneity and interoperability issues, and handles the ’Variety’ challenge of Big Data.

The hybrid large-scale ontology matching module (HLSOM) (Sect.  3.3) is a 
three-layer module (i.e. module 2 in Fig. 1), which aims to extract the set of align-
ments between the local ontologies under integration. It is considered as the core 
of the semantic-based integration framework since it unveils the different mappings 
between the diverse entities of these local ontologies (i.e. classes and relation-
ships between them), which are essential to construct the uniform view of the inte-
grated data sources (i.e. the shared global ontology). Fundamentally, the HLSOM 
module consists of the resource extraction layer, which allows the parsing of local 
ontologies and the creation of personalized data subsets, with scalability-friendly 
data structures (i.e. lists and hashmaps), where each one is dedicated to satisfy-
ing some specific needs of the upcoming processes. Then, this layer serializes and 
persists these subsets in the HBase data store, that offers random real-time read/
write access and allows parallelizing and distributing processing tasks over avail-
able storage resources [34]. Accordingly, this parallelism-based storage mechanism 
reduces the computational complexity of the remaining layers and improves their 
performance (see Sect. 3.3.1). Besides, this layer slightly handles the data and/or the 
schema evolution by dealing with each source separately from others and preserving 
their autonomy. For that, each evolution is propagated from the input ontology and 
applied, as updating operations, to their associated persisted data subsets. Overall, 
through this layer, the semantic-based integration framework tackles the ’Velocity’ 
challenge of Big Data and improves the integration process performance, in terms of 
speedup and scalability.

Furthermore, in the ontology clustering layer, HLSOM performs a parallel clus-
tering strategy to split the stored local ontologies (i.e. their duplicates) into a set of 
disjoint partitions, while preserving their internal encoded knowledge. To this end, 
the clustering strategy exploits certain metrics to rank the different ontologies enti-
ties and assign them to their appropriate clusters. Indeed, this operation allows the 
matching tasks to be performed by parts instead of matching the whole ontologies. 

2  https​://www.w3.org/.

https://www.w3.org/
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For that, advanced parallel-computing paradigms (i.e. MapReduce) are adopted 
to distribute these partial matching tasks over several commodity computational 
resources. Additionally, HLSOM performs a specific sequential combination of 
several matching strategies (within the matching layer), to provide more accurate 
ontology alignments by following the paradigm of matching space reduction. This 
layer incorporates, first, an initial stage that identifies semantically similar clusters, 
considered as candidates to be independently matched. This stage aims to ignore 
dissimilar clusters before performing the matching strategies which help improve 
the accuracy and performance of the matching layer and reduce its overhead. 
Moreover, each matching strategy relies on the intra-matcher parallelism approach 
(Sect.  2.3.2) under the Hadoop framework as a data parallelism-enabled platform 
and using the parallel programming technique (MapReduce) over distributed com-
putational resources. Hence, this leads to several finer matching tasks, with limited 
computational complexity, that can be performed in parallel with reduced memory 
requirements per task. This parallel implementation impacts the real-time require-
ments of the Big Data integration process and promotes its scalability. Eventually, 
all the individual independent partial correspondences derived from each matching 
strategy are aggregated to form the final alignments set.

The probabilistic-logical based assessment module (Sect.  3.4) is dedicated 
to the refinement of the extracted alignments vis-a-vis the encoded knowledge of 
ontologies. For that, this module leverages the Markov logic network paradigm as 
a probabilistic-logical paradigm to reduce the incoherence and conflicts that arise 
during the HLSOM module. Thus, this module exploits the stored OWL-DL axi-
oms derived from the created local ontologies (Sect. 3.2), to describe the encoded 
knowledge of these ontologies. Notably, OWL-DL supports the maximum expres-
siveness while retaining computational completeness and decidability. Overall, this 
module addresses the quality and accuracy of the semantic-based integration frame-
work, which supports the appropriate and efficient exploitations of the shared global 
ontology.

3.2 � Local ontology building module

The local ontology building module is responsible for transforming input data 
sources into local ontologies (Module 1 in Fig. 1). It provides a semantic data model 
that homogenizes data under integration through exploiting several ontology learn-
ing mechanisms to gather data from heterogeneous data sources, despite their con-
tent and their nature, and transform them into a common representation, i.e. OWL 
ontology, while preserving their autonomy. In fact, the ontology as a knowledge 
representation form plays a significant role in the promotion and deployment of the 
semantic web. It describes the different aspects of knowledge of a specific domain 
explicitly and formally. It provides a sound semantic ground and a cross-cutting 
meaning of terms (i.e. entities labels), at various levels of formalization, by defining 
concepts (i.e. classes) and named relationships linking concepts and their instances. 
This makes ontologies suitable to address the data heterogeneity and interoperabil-
ity issues of overlapped domains. Nevertheless, the pervasive use of ontologies in 
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information sharing and knowledge management requests efficient and effective 
strategies for ontology development. Hence, the ontology learning (OL) paradigm 
[49] consists of the integration of a multitude of disciplines to facilitate the con-
struction of ontologies [82]. In fact, OL refers to the automatic or semi-automatic 
discovery and creation of ontological knowledge using machine learning techniques. 
It also mitigates human-introduced biases and inconsistencies [94].

Most strategies of ontology learning are usually dependent on the nature of the 
data sources being exploited. For structured and semi-structured data (e.g. data-
bases, JSON, and CSV files), the proposed integration framework follows the basic 
conversion rules from the relational databases to OWL [51], using their implemen-
tations in the RDBtoOnto tool [12]. In regards to unstructured data, such as text 
files, the proposed integration framework follows the ontology learning mechanisms 
provided by [25, 26]. Besides, ontology learning approaches which take NoSQL 
databases as input are extremely relative to the family of the input data store. They 
specify the mapping rules between the data store and the ontology representation 
language (OWL), to extract ontology’s components (i.e. concepts, relations, axioms, 
domains, and ranges). In general, this integration framework follows the transfor-
mation rules from NoSQL data store to OWL ontology proposed by [1, 18, 41], 
given the data model of the data store. After all, these local ontologies are stored as 
OWL-DL axioms in order to be mapped by the set of alignments derived through 
the HLSOM module. They are also used to evaluate this latter via the probabilistic-
logical based assessment module since they encompass the encoded knowledge of 
local ontologies.

3.3 � Hybrid large‑scale ontology matching module

3.3.1 � Resources extraction layer

In the first stage, the resource extraction layer uses Jena3 framework to parse the 
stored local ontologies and generate smaller, finer, and simpler personalized data 
subsets, with scalability-friendly data structures (e.g. lists and hashmaps) accord-
ing to the requirements of the upcoming processes of the HLSOM module (such 
as ontology clustering, similar clusters identification and individual matching of 
similar ones) (Algorithm 1). This will address the memory issues experienced on 
some related works during the execution of ontology matching tasks (i.e. matchers) 
because they load the whole ontology as a resource even if they only require spe-
cific information from it. Next, this layer serializes and persists these data subsets in 
the HBase column-oriented data store which both offers random real-time read/write 
access and allows parallel processing tasks to be distributed over available storage 
resources [34].

As we can notice in the upcoming sections, this layer forms the nucleus around 
which the proposed integration framework is built, as it creates personalized data 

3  https​://jena.apach​e.org/.

https://jena.apache.org/
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resources for each specific processing. For example, the graph-based matching 
strategy will load only the data resources that provide the list of nodes with their 
neighbors and their cotopic distances. In addition, this layer calculates all the met-
rics required (e.g. centralities measures, similarities, etc.) and encapsulates them for 
eventual exploitation. By the same token, when a new data source is introduced, 
the resource extraction layer generates the same data resources. Likewise, if new 
requirements are raised due to new specific processing, the resource extraction 
layer will again parse the input ontologies to generate and encapsulate the resources 
needed for the task requested. Moreover, this layer slightly handles the data and/or 
the schema evolution by dealing with each source separately from others and each 
evolution is propagated from the input ontology and applied, as updating operations, 
to their associated persisted data subsets.

Accordingly, for each processing, this layer not only preserves the repetitive pars-
ing effort that would be conducted on the same ontologies but also provides the 
agility to combine multiple matching strategies and the flexibility to add new data 
sources to the integration framework. This layer also leverages parallelism-based 
storage mechanisms, which reduces the computational complexity of the remaining 
layers and improves their performance.

Algorithm 1: Resources Extraction Layer
Input: Local Ontologies Collection O
Output: Set of Resources for each Local Ontology

1 Parsing input ontologies
2 foreach collection Oi do
3 Extract OWLClasses List(Oi)
4 Extract Labels List (Oi)
5 foreach OWLClass CLj do
6 Extract Neighbors HashMap of CLj

7 Extract Ascendants List of CLj

8 Extract Descendants List of CLj

9 Extract Instances List of CLj

10 Compute Centrality Metrics of CLj

11 end
12 end
13 Save Extracted Resources in HBase Data Store

3.3.2 � Large‑scale ontology clustering layer

Ontology matching is considered as a computationally-intensive process, usu-
ally performing a cartesian product of two candidate ontologies with quadratic 
computational complexity [86]. Hence, in large-scale ontology matching scenar-
ios, partitioning input ontologies can be of a great benefit to building effective 
matching processes, as a strategy of reduction of the matching space (Sect. 2.3.1). 
This partitioning mechanism splits ontologies into a set of disjoint partitions and 
allows performing ontology matching tasks by parts. To this end, the HLSOM 
module adopts an entity-assignment parallel clustering approach to partition 
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large-scale ontologies into disjoint clusters taking into account their internal 
cohesion (see Fig.  2). First, the clustering strategy determines entities with the 
highest ranking as clusters centroids and assigns, then, the remaining entities to 
their convenient clusters according to some structural features (see Algorithm 2).

Entities ranking The current layer loads a copy of the stored ontologies, parses 
them and represents them as labeled directed graphs. Accordingly, the entities 
ranking phase aims to identify the nodes that are significantly important for each 
ontological graph. There are many metrics in the social network analysis field 
[9, 32, 42, 44, 48], that exploit the graph features to evaluate the importance of 
nodes while attributing a specific score to each node given its position in the 
graph [72]. Notably, the degree centrality metric, which is a local-based informa-
tion metric, indicates the number of links directly connected to the node. It may, 
to some extent, describe the importance of nodes. Although, nodes having the 
same degree measure may not reflect the same importance in a complex network. 
Moreover, the betweenness centrality describes the capacities of nodes to con-
trol the information of networks. It aims to locate the bridge nodes, responsible 
for connecting important nodes and requires that information needs to be spread 
using the shortest way, which is not the case in most real networks. Yet, this met-
ric is beyond the scope of our extent. Furthermore, the closeness centrality metric 
reflects the importance of nodes based on the distance between them. It is global-
based information and a time-consuming metric since it measures the shortest 
path between any pair of nodes. Besides, the context centrality metric, which is 
a semi-local centrality metric evaluates the node importance using the node itself 
and its surrounding neighbors. Likewise, the relative generalized release of the 
degree centrality measures the node importance in the graph by redistributing the 
degree measure sum over its surrounding nodes, taking into account the global 
structure of the graph ( i.e. the required depth) [17].

In view of the above, the HLSOM module, and especially the entities ranking 
layer, carries out a hybrid combination of local-based and global-based central-
ity metrics [53, 60] while making a tradeoff between accuracy and performance 
of the ranking operation. To this end, and based on the conducted experiments 
shown in Sect. 4, the centrality metrics adopted to perform entities ranking task 
are as follows:

Degree centrality This metric measures the number of links incident upon a 
node. In the case of a directed network, it calculates both the number of input 
and output links of a node. Indeed, the relationships between nodes can play a 
decisive role in concept ranking, since nodes having higher centrality degree are 
certainly more prominent than the others [53, 60].

Closeness centrality This metric shows the importance of the closest nodes to the 
others in the graph. For each node, this metric calculates the cost to reach the oth-
ers based on the shortest paths between the node and all other nodes in the graph. In 
general, the more the centrality value is high, the closer the node to all the others.

(1)Dc(Ni) = |InputArcs(Ni)| + |OutputArcs(Ni)|
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where Distance(Ni, Nj) is the shortest path length between the nodes i and j in the 
graph.

Context centrality This metric takes into account the all-around structural 
(i.e. topological) context between nodes. It aims to calculate the number of sur-
rounding neighbors (ancestors and descendants) of a node up to a specific depth 
(L). Having a large number of surrounding nodes compared to other nodes may 
reflect the importance of the node.

Generalized degree centrality This metric aims to spread the degree centrality of 
node ancestors and descendants up to a specific level.

where L is a predefined level of depth to calculate the metrics.
Besides, the ranking strategy incorporates the non-taxonomic relation-

ships between nodes that are not tackled by existing partition-based matching 
approaches (Sect.  2.3.1). Indeed, including such relationships during the com-
putation of centrality metrics may lead to more significant and pertinent entities 
ranking. In brief, the strategy combines the above metrics to perform an effi-
ciently ranking process in terms of accuracy and performance. Furthermore, con-
versely to the related works, this step is improved by loading only the required 
resources, already created via the resources extraction layer, and by performing 
the ranking process in parallel over the distributed computational architecture, 
which enhances the performance of the HLSOM module. Thus, the relative rank-
ing score for a given node is formulated as below:

Centroid selection In fact, centroids selection is usually performed using these dif-
ferent approaches: random generation, buckshot approach, and ranking technique 
[69]. Therefore, this phase selects the most important nodes based on their ranking 
alongside their decline rate regarding the efficiency of the network (i.e. the graph). 
This latter reflects the network connectivity [48] in such a way that better connectiv-
ity implies better network efficiency. The network efficiency denotes that the dam-
age of the network caused by deleting a node is equivalent to its importance. Thus, 
the network efficiency �k can be formulated as follow:

(2)
CLc(Ni) =

1∑

Nj

Distance(Ni,Nj)

(3)CXc(Ni) =
∑

L

|Ancestor(Ni)| + |Descendant(Ni)|

(4)

GDc(Ni, L) =DegreeC(Ni)

+
∑

L

GDc(Ancestor(Ni, L))

+
∑

L

GDc(Descendant(Ni, L))

(5)
Rankingscore(Ni) =Dc(Ni) + Clc(Ni)

+ CXc(Ni) + GDc(Ni)
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�ij is the efficiency between ni and nj , �ij =
1

dij
 , dij is the shortest path between ni and 

nj , C and N are the number and the set of nodes without node k, respectively. Thus, 
the decline rate � of network efficiency is defined as follow:

�k is the network efficiency affected by deleting the node k, whereas �0 is the initial 
network efficiency. Having great �k means that the network connectivity is seriously 
destroyed which consequently reflects the importance of the removed node.

Afterward, the system calculates the structural proximity between them, so that 
only those having minimal proximity (i.e. far away nodes) are selected to construct 
clusters centroid. Let Ni , Nj be two nodes in a given ontological graph, the structural 
proximity between Ni and Nj is measured based on how closely they are related to 
their common super-class:

where Nij is the common super-class of the nodes i and j in the graph.
Clusters Creation. This phase starts by affecting the direct surroundings nodes of 

each centroid to its corresponding cluster following the ontological graph topology 
(the graph architecture). Next, using the AssignSim metric, it assigns the remaining 
nodes to their appropiate clusters. For that, each remaining node (i.e. entity label) 
is compared to the clusters centroid’s, rather than performing a similarity compari-
son against the whole clusters entities, which reduces the comparison overhead and 
improves the computational performance of the HLSOM module.

The contextual similarity ContextSim exploits nodes and their parents and children, in 
such a way that whenever two nodes share several common nodes, their contextual 
similarity will be necessarily high. The contextual similarity between the centroid C 
and node N can be computed as follows:

where �(C) and �(N) represent the number of nodes surrounding the node C and N, 
respectively, including the node itself and �(C) ∩ �(N) is the number of common 
nodes between C and N.

(6)�k =
1

C(C − 1)

∑

ni≠nj∈N

�ij

(7)�k = 1 −
�k

�0

(8)

Structuralprox(Ni,Nj)

=
2 ×max(depth(Nij))

max(depth(Ni)) +max(depth(Nj))

(9)
AssignSim(C,N) =ContextSim(C,N)

+ SemanticSim(C,N)

(10)ContextSim(C,N) =
�(C) ∩ �(N)
√
�(C) × �(N)
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On the other hand, the hierarchical semantic similarity SemanticSim relies on the 
taxonomical features obtained through the following metric:

where M1 and M2 are the numbers of ascendants from C and N to their common 
ancestor A, respectively, whereas M3 is the number of descendants from the root of 
the taxonomy to the node A.

3.3.3 � Large‑scale ontology matching layer

The above clustering strategy allows us to perform ontology matching tasks over 
formerly partitioned ontologies following the MapReduce paradigm over a paral-
lel and a distributed infrastructure. With this intention, this step determines, firstly, 
semantically comparable clusters candidates for the matching process. Accordingly, 
the entities of dissimilar clusters will be ignored from the matching process, which 
can lead to a reduced matching overhead and achieve better matching accuracy. Fol-
lowing that, we implement the matching process by combining several matching 
algorithms. These algorithms are parallelized and distributed over available com-
putational resources, resulting in many finer matching tasks with limited compu-
tational complexity (see Fig. 3). Finally, all the partial individual results are aggre-
gated to construct the alignments set.

(11)SemanticSim(C,N) =
2 ×M3

M1 +M2 + 2 ×M3

Fig. 3   Matching process between ontology partitions
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Algorithm 2: Large-scale Ontology Clustering Layer
Input: Local Ontology O
Output: Set of Clusters of O

/*gniknaRseititnE*/

1 C ← Load OWLClasses(O)
2 foreach Ci ∈ C do
3 Dc ← get Degree Centrality(Ci)
4 CLc ← get Closeness Centrality(Ci)
5 CXc ← get Context Centrality(Ci)
6 GDc ← get GeneralizedDegree Centrality(Ci)
7 Rankingscore(Ci) = Dc + CLc + CXc +GDc

8 Rank Ci given its Rankingscore
9 end

/*noitceleSdiortneC*/

10 foreach Ci ∈ Rankedlist do
11 ϕ(Ci) ← calculate the decline rate if removing Ci

12 if ϕ(Ci) ≥ default network efficiency then
13 Add Cito the set of important nodes Setimp

14 end
15 end
16 foreach Ni ∈ Setimp do
17 calculate the structural proximity between Ni and the other nodes ∈ Setimp

18 centroidset ← nodes having min proximity

19 end

/*noitaerCsretsulC*/

20 foreach ctri ∈ centroidset do
21 create cluster for each ctri
22 neighborsList(ctri) ← load neighbors nodes of ctri
23 add neighborsList(ctri) to the cluster(ctri)
24 remainingnodes ← {C \ centroidset}
25 foreach nodei ∈ remainingnodes do
26 assign nodei to cluster(ctri) given the max AssignSim measure
27 if nodei affected then
28 remove nodei from remainingnodes

29 end
30 end
31 end
32 return clusters set

Similar clusters identification  This phase determines the clusters susceptible 
to be matched independently. Similarly to Moawed et  al. [57], this phase lever-
ages the Latent Semantic Indexing (LSI) approach to identify semantically com-
parable clusters, which overcomes the limitations of some conducted strategies 
(Sect. 2.3.1). Indeed, instead of parsing the whole ontologies to extract similari-
ties between nodes (which is a time-consuming operation), applying LSI aims to 
construct the similarity matrix between the clusters of nodes. The LSI strategy 
takes as input two sets of clusters and determines similar clusters across them . 
First, the node-cluster matrix is created to represent the elements of the first set 
of clusters. Then, a truncated SVD (singular decomposition value) is applied to 
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factor the node-cluster matrix into left singular vectors U (representing nodes), 
right singular vectors (representing clusters) V and keeping only the great-
est k singular values (matrix S). Next, the second clusters set is also formulated 
according the reduced k-dimensional space (i.e. matrix S) to determine the singu-
lar vectors V ′ representing clusters of the second set. Finally, the cosine similar-
ity between V and V ′ is invoked to identify comparable clusters and to create the 
cluster similarity matrix. Besides, it is important to notice that the LSI strategy is 
parallelized over distributed computational resources which significantly reduces 
its execution time.

Clusters matching Once identifying similar clusters, the matching phase per-
forms a combination of different ontology matching strategies over them to find 
correspondences between their entities. Thus, for each cluster pairs, a parallel 
ontology matching strategy is considered as an individual matching request that 
should be resolved independently. For that, the ontology matching tasks are dis-
tributed among the participating computational nodes. Notably, where the number 
of matching tasks is greater than the number of computational nodes, this phase 
benefits from the resources management mechanisms provided by the computa-
tional architecture of the Hadoop ecosystem to align and schedule these tasks and 
minimize the matching space. Furthermore, each ontology matching task aims 
to discover alignments between clusters elements by implementing a similarity 
computation between their entities. Hence, these tasks are performed according 
to three main levels, notably, the linguistic, terminological, and structural.

In fact, several works that combine multiple ontology matching strategies have 
been conducted to meet the different issues related to the ontology matching field 
[22, 29, 79, 80]. More specifically, several ontology matching algorithms, with 
specific techniques and features, have been proposed, and each one of them has 
its strengths and weaknesses. Thus, to improve the accuracy of the HLSOM mod-
ule, this phase primarily invokes the element-based strategies, since it determines 
more ontological alignments than structure-based strategies. For that, this phase 
sequentially combines the language-based, the string-based (i.e. element-based 
strategies), and the graph-based (i.e. structure-based strategies) algorithms over 
the clusters entities, in such a way that only alignments with similarities greater 
than a fixed threshold are extracted. In addition, following the mechanism of 
reducing the matching space, it is necessary to notice that for each pair of clusters 
candidate to be matched, the pair of entities of an extracted correspondence are 
marked in order to be omitted from the loaded resources prior to the next match-
ing strategy. Accordingly, the charge of the next matching operations is reduced 
since they are only applied for unmatched entities that are not matched using the 
prior strategy. Thus, this reduction of the matching space will avoid redundant 
matching tasks and results and reduce the execution time of the HLSOM module.
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Algorithm 3: Candidates Clusters Identification
Input: ClusterSet1 = C11, C12, ..., C1n and ClusterSet2 = C21, C22, ..., C2m
Output: Clusters Similarity Matrix (C1i, C2j)

/* ClusterSet1 /*noitaraperP

1 create node-clusters matrix M for Cluster Set1 foreach mij ∈ M do
/* compute log-entropy weights for mlc */

2 c freqlc ← frequency of appearance of a label l in each cluster c
3 gc freql ← global frequency of a label l within the entire clusters set
4 Plc = c freqlc/gc freql

5 mlc = (1 +

∑

c

Plc × logPlc

logn
)× (log c freqlc + 1)

6 end

/* singular value decomposition and dimensionality reduction */

7 Apply SV D technique to M ⇒ M = USV T

8 Dimensionality reduction ⇒ Mk = UkSkV
T
k /* (k singular values) */

9

/* interpretation of the ClusterSet2 according to the reduced space (k
/*)seulavralugnis

10 Create reduced node-clusters matrix Q for Cluster Set2 Qk = U ′
kSkV

′T
k

/*gniknardnagnitaluclacytiralimis*/
11 foreach column ma ∈ Vk do
12 foreach column qb ∈ V ′

k do
13 Cluster Sim Mat[a][b] = cossim(ma, qb)
14 end
15 end
16 Return Cluster Sim Mat
17 Save Clusters Similarity Matrix

The first matching strategy applied concerns the language-based matching. 
It applies natural language processing mechanisms (i.e. post-tagging and stem-
ming) as intrinsic techniques to exploit the morphological features of entities 
labels by reducing each form of a term (i.e. entity label) to a standardized form 
(stem). This strategy is mainly adopted before running string-based strategies in 
order to reduce the matching space and improve the HLSOM results. Afterward, 
this phase benefits from linguistic resources (i.e. WordNet) [56] to compute the 
similarity between the stemmed labels. Indeed, each label is linked to its Word-
Net specific lexical category, called synset. This latter is organized into senses, 
thereby providing the synonyms, the hyponym/hypernym (i.e. Is-A), and the mer-
onym/holonym (i.e. Part-Of) relationships of each label. As a result, this phase 
measures the similarity between labels by computing the similarity between 
their appropriate related senses. For instance, the sense similarity Sim WordNet 
between two labels is computed by the max of the sum of the similarity of their 
senses Sim sense:
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where Simsense(Sin, Sjm) is the similarity between two senses.
The Simsense is calculated via the Wu–Palmer measure [91] depicted in Eq.  11. 

Subsequently, the extracted correspondences are saved and their corresponding 
entity labels are removed from the list of labels, of each clusters’ pair. Then, the 
clusters matching phase proceeds to the string-based matching strategies.

String-based matching strategies are designed, in turn, to treat the labels of enti-
ties or their descriptions without considering their meaning and context. Hence, this 
phase will preserve only the correct correspondences extracted by string equality. 
In this phase, the Levenshtein, trigram and JaroWinkler metrics are adopted and 
combined to extract the most relevant alignments. Notice that these metrics are only 
applied to entities not yet matched to any other ones during the prior language-based 
matching algorithm.

Levenshtein distance: This measure computes the minimum number of “edit” 
operations allowing the transformation of the entity label L1 into the entity label L2 . 
This measure is obtained by dividing this number by the minimum length of the two 
entity labels.

TriGram: The n-gram method is generally developed in the linguistic computing and 
probability fields. It interprets a contiguous sequence of n units from a string (i.e. 
entity label). For the sake of making a tradeoff between accuracy (i.e. reliability of 
the information provided by the extracted sequence) and performance (i.e. complex-
ity of computations), this phase uses trigrams as follows:

where Trigram(Li) is the set of trigrams for the entity label Li.
JaroWinkler distance: This metric measures the similarity between two entities 

labels in such a way that the longer the distance between them, the higher similar 
they are. It is calculated by the following formula:

with:

(12)
SimWordNet(Li, Lj)

= max
∑

Sin∈Si

∑

Sjm∈Sj

Simsense(Sin, Sjm)

(13)LevSim(L1, L2) =
minEdit(L1, L2)

|L1|, |L2|

(14)
TgramSim(L1, L2)

=
Trigram(L1) ∩ Trigram(L2)

min |L1|, |L2| − 2

(15)dw = dj + �p(1 − dj)

(16)dj =
1

3
×

(
m

|S1|
+

m

|S2|
+

m − t

m

)
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with �p is the prefix’s length; dj is the Jaro’s distance, m is the number of correspond-
ing characters, |Si| is the length of the string i and t is the number of transpositions.

Besides, contrary to the element-level strategies, the structure-level ones con-
sider both the ontology entities and their relations for extracting alignments. Among 
them, this phase applies the graph-based strategy which considers the input ontolo-
gies as labeled graphs. Thus, the similarity measurement between nodes (i.e. enti-
ties) is based on the taxonomic structure of the graph, in such a way that, if two 
nodes are similar, their neighbors must also be somehow similar. For that, this phase 
exploits the structural measure formerly mentioned on the cluster’s creation step 
(see Eq.   10) to extract the correspondences between clusters pairs. Besides, this 
contextual measure is applied only to the clusters entities that were not yet matched 
to any other ones during the prior matching strategies.

Finally, the HLSOM module aggregates these independent partial results gath-
ered from each matching strategy to form the alignments set that will be set between 
input ontologies in order to create the shared global ontology.

3.4 � Probabilistic‑logical based assessment module

3.4.1 � Big Data integration quality issues

Certainly, data from several sources increases diversity, which is particularly sig-
nificant for the Big Data representativeness and reliability issues. Thus, integrat-
ing large datasets needs automated strategies to manage and control the quality of 
the integrated data, to efficiently use them in decision-making processes. Gener-
ally speaking, data quality is among the most Big Data concerns. In fact, remov-
ing things like bias, abnormalities or inconsistencies are just some aspects that fac-
tor into improving the accuracy of Big Data. Therefore, and similarly to different 
approaches [31, 47, 88], the proposed Big Data integration framework leverages 
ontological mechanisms to address these quality concerns during the Big Data inte-
gration process. In other words, having accurate ontology alignments reflects the 
effective Big Data integration framework quality. However, after conducting several 
evaluation experiments of the HLSOM module over several ontological tracks, hav-
ing reference alignments, we have noticed some conflicting alignments vis-a-vis the 
encoded semantic constraints on these ontologies. From another side, the assess-
ment of the proposed integration framework in real-world scenarios and without 
reference assessment mechanisms remains extremely unachievable, which requires 
a dynamic and scalable strategy for conflict resolution and incoherence mitigation 
during the integration process, in which any helpful confidences and constraints can 
be considered.

To this end, the proposed semantic-based Bid Data integration framework incor-
porates a probabilistic-logical based module that dynamically improves the quality 
of the extracted alignments and evaluates their accuracy according to the encoded 
ontological knowledge. This module leverages both statistical-language process-
ing and rule-based approaches via the Markov logic formalism. Notably, it har-
nesses well-defined semantics constraints (i.e. description logics) that guarantee that 
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alignment conditions are interpreted uniformly, in order to exclude logically incon-
sistent alignments between the entities and thus improve the overall accuracy of the 
integration process.

3.4.2 � Ontologies through description logics

Generally, description logics (DL) are decidable fragments of first-order logic that 
are designed to describe the entities of the ontology in terms of complex logical 
expressions. Notably, ontology incorporates axioms of concepts, individuals, and 
roles that state the specific relations between these concepts. Let Sc , Sr , and Sa be 
the mutually disjoint sets of concepts, roles, and individuals of an ontology, respec-
tively. Thus, the T-Box of the ontology is defined by the finite set of general concept 
inclusion axioms of the form C ⊂ D , where C and D ∈ Sc . Also, the finite set of role 
inclusion axioms having the form R ⊂ R′ define the R-Box of the ontology, where R 
and R’ ∈ Sr . Besides, the A-Box of the ontology is defined via the finite set of asser-
tions having the form a : C, (a, b) : R, a ≠ b , where a and b ∈ Sa , R ∈ Sr and C ∈ Sc.

Therefore, encoding ontologies in description logics is beneficial, as it allows 
specific expressions that can be used to describe necessary and sufficient constraints. 
It also enables inference engines to reason about ontological descriptions. Thus, we 
rely on the T-Box descriptions and their corresponding graphs to illustrate the eval-
uation issue. In fact, the assessment module involves both purely rule-based logi-
cal data and uncertain data. The former is defined by the DL axioms since they are 
known to be true, in such a way that they represent the encoded knowledge and the 
logical structure of the input ontologies and should not be altered by the matching 
process. On the other hand, the ontological alignments extracted (i.e. uncertain data) 
rely on the degree of confidence derived from the similarity measures calculated. 
Indeed, considering both the similarity between entities (as degrees of uncertainty) 
and the logical semantic constraints of ontologies (as known logical rules) requires 
specific formalism that provides the representation of both deterministic and uncer-
tain aspects of the issue.

3.4.3 � Alignments refinement using Markov logic

Markov logic is a knowledge representation formalism that combines first-order 
logic fragments as a declarative language with undirected Markov networks as prob-
abilistic graphical models. Markov networks permit to efficiently handle uncertainty, 
whereas first-order logic fragments compactly represent a wide variety of knowl-
edge. Thus, Markov logic network (MLN) [66] is considered as a set of first-order 
formulas with weights, in such a way that the more evidence that a formula is true, 
the higher the weight of that formula.

Indeed, the assessment strategy relies on representing DLs as Markov logic 
networks, by realizing the first-order translation of ontologies and incorporat-
ing the similarity scores of the alignments as the network weights. The transla-
tion links the concepts (i.e. ontology classes) to unary predicates and properties 
(i.e. taxonomic and non-taxonomic) to binary predicates which enables modeling 
some basic semantic inference rules and uses them in the probabilistic reasoning 
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process. This may cover the majority of alignments conflicts that can appear dur-
ing the HLSOM module, especially for ontologies without complex axiom struc-
tures. Let D and E ⊆ Sc and R ⊆ Sr , A is a correspondence between E and D with 
c which is a confidence value (i.e. similarity value). Table  1 illustrates some axi-
oms with their relative predicates.

To sum up, this module enables compiling formal constraint-based semantic 
rules into predicate calculus while incorporating well-founded confidence values, 
which allows efficient conflict resolution mechanisms. First, this module intro-
duces the observable predicates to model the structure of the similar matched 
clusters with respect to both concepts and properties. Then, it adds ground atoms 
of observable predicates to the set of hard formulas and makes them hold in every 
extracted alignment (i.e. the encoded knowledge in the ontologies is assumed to 
be true and should be maintained). Indeed, given the set of the observable predi-
cates, the assessment module focuses on determining the state of the hidden pred-
icates that maximize the a-posteriori probability of the corresponding possible 
world. In addition, the ground atoms of these hidden predicates are assigned to 
the weights specified by the matching similarity � , notably, (map(C,D), �(C,D)) 
and (map(P,R), �(P,R)) , where C and D ⊆ Sc and R and P ⊆ Sr . At the same time, 
the module enforces consistency by adding constraints that model the conflicts. 
Hence, the following constraints are used to determine the state of the hidden 
predicates and add them to the set of formulas:

Alignments cardinality constraints These hard cardinality constraints restrict 
the alignment to be functional and one-to-one in the Markov logical framework.

Alignments coherence constraints Since incoherence occurs when the extracted 
alignments lead to logical conflicts, these coherence constraints are incorporated 
on the set of hard formulas:

(17)map(x, y) ∧ map(x, z) ⇒ y =z

(18)map(x, y) ∧ map(z, y) ⇒ x =z

Table 1   DL axioms and their 
predicates

DL Axiom Predicate

Oi ⊧ D ⊆ E subi(d, e)

Oi ⊧ D ⊆ ¬E disi(d, e)

Oi ⊧ ∃R.⊤ ⊆ D subi
dom(r, d)

Oi ⊧ ∃R−1.⊤ ⊆ D subi
ran(r, d)

Oi ⊧ ∃R.⊤ ⊇ D supi
dom(r, d)

Oi ⊧ ∃R−1.⊤ ⊇ D supi
ran(r, d)

Oi ⊧ ∃R.⊤ ⊆ ¬D disi
dom(r, d)

Oi ⊧ ∃R−1.⊤ ⊆ D disi
ran(r, d)

(E, D, A, c) ⟨map(E,D), c⟩
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where mapc and mapp represent respectively the mapping between concepts and 
properties.

To clarify, if any correspondence contains two concepts that subsume each other 
in the first model and that are disjoint at the same time in the second model (i.e. 
the first and the second input ontology that want to be matched), thus, it must be 
excluded. Notably, given two properties R and R ′ and concepts D and E, we note 
that if (R, R ′ , ≡ ) and (D, E, ≡ ) were two alignments of properties and concepts, 
respectively, and given that O1 ⊧ ∃R.⊤ ⊆ ¬D and O2 ⊧ ∃R.⊤ ⊆ E , therefore, we can 
notice the appearance of a logical conflict between ∃R.⊤ ⊆ D and ∃R.⊤ ⊆ ¬D.

Stability constraints The stability signifies that a correspondence should not 
introduce new structural knowledge; e.g. if we have a correspondence between two 
concepts, it does not mean that we should also have correspondences between their 
children. These constraints prevent this type of correspondences by decreasing their 
probability.

where w1 and w2 are weights that render the correspondences that satisfy the formu-
las possible but less likely.

In other words, the hidden predicates interpret correspondences between the enti-
ties of ontologies whereas observable ones describe the predicates gathered from 
description logic statements. Thus, determining the most likely alignment of two 
ontologies relies on calculating the set of ground atoms of the hidden predicates 
that maximize the probability, taking into account the ground atoms of observable 
predicates and the ground formula. This can be performed by executing the MAP 
(maximum a-posteriori) inference over the ground Markov logic network. Hence, 
considered as an effective method for exact MAP inference in undirected graphical 
models (i.e Markov logic networks), this module leverages the integer linear pro-
gramming (ILP) by applying the MAP inference engine RockIt [59] over our distrib-
uted architecture.

For instance, Fig. 4 presents an example of two partitions of ontologies, candi-
dates for matching. Thus, the adopted matching strategy extracts the list of align-
ments (see Table 2) that will be refined by the probabilistic-logical based assessment 
module, where � is the similarity measure between their entities ( � ≥ 0.5):

(19)
dis1(R,D) ∧ sub2(R,D) ⇒

¬(mapp(R,R�) ∧ mapc(D,E))

(20)
disd

1
(R,D) ∧ subd

2
(R,D) ⇒

¬(mapp(R,R�) ∧ mapc(D,E))

(21)
sub1(R,D) ∧ ¬sub2(R

�,E) ⇒

(mapp(R,R�) ∧ mapc(D,E),w1)

(22)
subd

1
(R,D) ∧ ¬subd

2
(R�,E) ⇒

(mapp(R,R�) ∧ mapc(D,E),w2)
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As an illustration, the consistency is enforced by applying the introduced constraints 
in such a way that, for the same entity, every alignment map(F1,F2) that have positive 
entity assertion for the first individual (i.e. F1 ) and a negative affirmation (i.e. F2 ) for 
the second must be ignored from the obtained alignment results.

Cardinality constraints After induction, the refinement module excludes the align-
ment ( A7 ) even if it has a higher similarity value since Paper_File and Paper are two 
disjoint entities.

Coherence constraints Similarly, using these constraints, the assessment module 
ignores the alignment ( A1).

Stability constraints These constraints leverage the fact that existing correspond-
ences evidence should not introduce new structural knowledge. They render the align-
ments that satisfy the formulas possible but less likely. Thus, after induction, these con-
straints exclude respectively the alignments ( A3 ), ( A4 ) and ( A11).

map(Paper_File,Paper) ∧ map(Paper,Paper)

⇒ Paper_File = Paper

dis1(Review,Contribution)∧

sub2(Review,Conference_Document) ⇒

¬(map(Review,Review)∧

map(Contribution,Conference_Document))

Table 2   Extracted alignments 
set ( � ≥ 0.5)

Alignment Similarity (�)

A1 − map(Contribution,Conference_Document) 0.553
A2 − map(Contribution,Written_Contribution) 0.557
A3 − map(Contribution, Submitted_Contribution) 0.588
A4 − map(Contribution,Reviewed_Contribution) 0.608
A5 − map(Contribution_File,Written_Contribution) 0.549
A6 − map(Paper,Paper) 1
A7 − map(Paper_File,Paper) 0.722
A8 − map(Poster,Poster) 1
A9 − map(Review,Review) 1
A10 − map(Reviewer,Reviewer) 1
A11 − map(reviews, reviews) 1
A12 − map(judges, reviews) 0.678
A13 − map(createdBy, hasAuthors) 0.731
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sub1(Paper, Contribution)∧
¬sub2(Paper, Submitteded Contribution) ⇒

map(Paper, Paper)∧
map(Contribution, Submitted Contribution)

sub1(Paper, Contribution)∧
¬sub2(Paper,Reviewed Contribution) ⇒

map(Paper, Paper)∧
map(Contribution,Reviewed Contribution)

sub1(reviews,Reviewer)∧
¬sub2(reviews,Reviewer) ⇒
map(reviews, reviews)∧

map(Reviewer,Reviewer)

4 � Experimental evaluation

Since the focus was on implementing the HLSOM and the probabilistic-logical 
based assessment modules, this experimental evaluation is conducted over a collec-
tion of real-world ontologies provided by the OAEI (i.e Ontology Alignment Evalu-
ation Initiative4), to evaluate the integration process in terms of accuracy and execu-
tion time. These ontologies are of various sizes and cover different magnitudes of 
the ontology matching issue. The conference dataset contains 16 ontologies from the 
conference organization domain, whereas, the anatomy dataset contains two large 
ontologies of human and mouse anatomy with respectively 3306 and 2746 concepts.

To this end, we have used various ontology matching approaches (Sect.  2.3) 
having computational complexity upper than O(n2) . All the experiments were 
carried out using the Cloudera distribution Hadoop platform which is an open-
source Apache Hadoop distribution, deployed over two distributed compu-
tational architectures. Cloudera provides a scalable, flexible, and integrated 
platform to manage massive amounts of data. It allows deploying and manag-
ing Apache Hadoop and its related projects. Furthermore, the integration frame-
work uses HBase, which is a column-oriented data store built to run on top of 
the Hadoop Distributed File System (HDFS), to support random, real-time read/
write access and allow using a larger in-memory cache, which reduces the exe-
cution time of the framework. Besides, the framework is implemented over two 
computational modes: (i) a pseudo-distributed mode over a single-node desktop 

4  http://oaei.ontol​ogyma​tchin​g.org.

http://oaei.ontologymatching.org
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PC incorporating multiple cores as a standalone cluster, equipped with IntelⓇ 
XeonⓇ 5160 (3 GHz)*8 with 12 GB memory, Java 1.8 and Ubuntu 14.04 LTS; 
(ii) a fully-distributed mode over a cluster of 10 slave machines and one master 
machine. Each node is equipped with 3.4 GHz Intel(R) Core i3(R) with 4 GB 
memory, Java 1.8, and Ubuntu 14.04 LTS.

The Hadoop Distributed File System (HDFS) [75] is a scalable and distrib-
uted standalone file system designed as the core storage component of the Apache 
Hadoop ecosystem and the majority of its associated Big Data platforms [78, 90]. 
HDFS provides a highly reliable and scalable data storage system across a large set 
of low-cost commodity hardware [68]. HDFS is suitable for data-intensive applica-
tions, quickly data ingesting, and bulk processing that requires high throughput [81]. 
Typically, HDFS provides high scalability, reliability, availability, and protection 
against data loss caused by node failures [28]. Furthermore, HDFS achieves better 
storage efficiency (high throughput and network traffic reduction) [50, 75]. Also, it 
is agnostic of data storage format and allows storing and manipulating any data type 
using several read/write APIs.

HBase is an open-source column-oriented data store implemented to handle the 
Big Data storage requirements in the Apache project [34]. HBase runs on the top 
of HDFS and uses Apache Zookeeper [38] for storage cluster management. More-
over, HBase has exceptional support for read-intensive transactions [67], which 
is the main reason for its use in the HLSOM module (i.e. loading extracted data 
resources). Also, it is a high performance, scalable, distributed, and fault-tolerant 
storage system that offers random read-write access to Big Data [83].

In the first stage, we should get answers to the following issues:

•	 What is the best combination of centrality metrics that should be adopted to 
implement the entities’ ranking phase?

•	 What is the convenient number of clusters centroids that should be selected to 
perform the ontology clustering phase?

Centrality metrics selection To this end, a series of experimental evaluations are 
carried out over two different large ontologies from the Anatomy dataset, namely 
the NCI human anatomy and the adult mouse anatomy. This test inspects the best 
centrality combination alternative. The results of the combinations of these central-
ity metrics on each ontology are shown in Figs. 5 and 6, where each bar describes 
one combination of them, DC refers to degree centrality, LC means the closeness 
centrality, CC is the context centrality and GDC is the generalized degree centrality. 
Hence, given the performed implementations, several combinations could achieve 
this objective. Accordingly, we select DC + LC + CC + GDC, as it outperforms the 
other combinations slightly while combining and benefiting from local-based and 
global-based information with affordable performance. In brief, this strategy con-
ducts an efficiently ranking process in terms of accuracy and performance by load-
ing only the required resources -already created via the resources extraction layer 
- and by performing a parallel ranking process over the distributed computational 
architecture.
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Clusters centroids selection Given the large-scale nature of the input ontolo-
gies, the selection of the most important nodes, after being ranked by the combi-
nation of centrality measures as clusters centroids, remains impracticable. There-
fore, this experiment adopts the decline rate of network efficiency as a solution 
to automatically select the most convenient number of clusters centroids. Fig-
ures  7 and 8 illustrates the set of nodes able to be centroids, for the two large 

Fig. 5   Accuracy and execution time of the centrality metrics combinations on the NCI human anatomy 
ontology

Fig. 6   Accuracy and execution time of the centrality metrics combinations on the the adult mouse anat-
omy ontology
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ontologies of the Anatomy track, which are those with a decline rate ratio on top 
of the default network efficiency. Then, from this set of nodes, only those having 
minimal structural proximity are selected as clusters centroids, which effectively 
smooth the large-scale clustering layer.

Fig. 7   Selected centroids for the adult mouse anatomy ontology

Fig. 8   Selected centroids for the NCI human anatomy
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4.1 � Accuracy evaluation using reference alignments

In this implementation, we validate the accuracy of the HLSOM module over a 
collection of real-world ontologies. First, we compare its efficiency, without using 
the probabilistic-logical based assessment module, against a set of recent large-
scale ontology matching strategies (see Figs.  9 and 10) to prove its pertinence as 

Fig. 9   Ontology matching results for the conference dataset

Fig. 10   Ontology matching results for the anatomy dataset
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a semantic-based Big Data integration strategy. The results show that the HLSOM 
module achieves high precision, recall, and F-measure than the other systems using 
the threshold ( � = 0.6 ). This threshold is selected based on a tradeoff between the 
accuracy and the recall of the matching process. In fact, the sequential combination 
of the different ontology matching strategies has improved the efficiency of the pro-
posed HLSOM module, even if this accuracy is slightly lower than some ontology 
matching systems for the anatomy dataset due to the special features of its entity 
labels. Whereas, the adopted clustering strategy allows getting related entities in the 
same partition, which reduces the matching space and contributes to achieving a 
good recall.

On the other hand, Figs. 11 and 12 show that the number of extracted alignments 
decreases dramatically if we increase the predefined threshold, which consequently 
impacts the precision and recall of the matching process. Besides, after checking 
the gathered alignments, we found that the matching process neglected some perti-
nent alignments due to their low similarity for a selected great threshold. In contrast, 
by decreasing this latter, the matching process achieves some conflicting alignments 
vis-a-vis the semantic constraints encoded on input ontologies. For these reasons, 
the probabilistic-logical based assessment module is adopted after the HLSOM 
module to allow the extraction of the maximum number of alignments while ensur-
ing their reliability.

4.2 � Accuracy evaluation after probabilistic‑logical based refinement

For large-scale context, the majority of ontology matching approaches try to 
improve the accuracy of their alignments by increasing the similarity thresholds. In 
contrast, significant alignments with low similarity value would be ignored, which 
may consequently impact the accuracy of the Big Data integration framework and 
undermine the appropriate exploitation of the created shared ontology. Accordingly, 

Fig. 11   Threshold variation impact for the conference dataset
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the refinement module (i.e. the probabilistic-logical based assessment module) 
allows us to gather more alignments even if their similarity is low, and control them 
through various conflicts detection constraints.

First, we gather the alignments having similarity greater than a specific minimal 
threshold, as well as their corresponding similarity. Then, we apply different con-
straints (see Sect. 3.4.3) to enable conflict detection and to extract the most probable 
alignments. These constraints take advantage of the fact that existing correspond-
ences evidence should not introduce new structural knowledge. Figures 13 and 14 
demonstrate the improvement of the accuracy of the matching process, by providing 
only the accurate alignments that are consistent with the DLs of ontologies.

Furthermore, the refined matching strategy is compared with other matching 
systems (participating in previous OAEI competitions), over the Conference and 
Anatomy tracks, respectively. For simplicity of the chart, Figs.  15 and 16 present 
the F1-measure of each approach. We notice that the proposed refined matching 
approach outperforms the other systems, which proves its pertinence to be adopted 
as a semantic-based Big Data integration strategy.

4.3 � Performance evaluation of the proposed integration framework

In this section, we present the results of the experimental evaluation of the perfor-
mance and scalability of the proposed integration framework.

4.3.1 � Evaluation criteria

Running time Running time is the time needed to create a shared global ontology. 
Thus, the running time is measured both for the pseudo-distributed and fully-distrib-
uted modes.

Running time The speedup is measured by the running time of an algorithm, ran 
on the smallest cluster, divided by the running time of the same algorithm, ran on 

Fig. 12   Threshold variation impact for the anatomy dataset
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another cluster having more number of nodes (i.e. executors). The speedup measure-
ment is as follows:

Fig. 13   Enhanced ontology matching results for the conference dataset

Fig. 14   Enhanced ontology matching results for the anatomy dataset
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where Sp indicates the speedup of the framework on a cluster with p nodes, Tk  is 
the average running time of the framework on the smallest cluster that contains k 

(23)Sp =
Tk

Tp

Fig. 15   Refined HLSOM comparison with leading systems participating in OAEI competitions for the 
conference dataset

Fig. 16   Refined HLSOM comparison with leading systems participating in OAEI competitions for the 
anatomy dataset
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nodes, while Tp is the average running time of the framework ran on the cluster with 
p nodes. Indeed, an ideal speedup is increased linearly while increasing the number 
of used nodes (Sp = p).

Parallel Efficiency. The parallel efficiency metric denotes the efficiency of the 
framework while using increasing numbers of parallel processing elements (cores, 
nodes, etc.). Specifically, it measures the fraction of time for which a processor 
is usefully utilized (i.e. the speedup per processor). It is commonly defined as the 
speedup divided by the number of units of execution.

where Ep indicates the parallel efficiency of the framework, Sp is the speedup of the 
framework and p is the number of the units of execution. Indeed, the ideal efficiency 
is achieved when the speedup is ideal(i.e. Ep = 1 = 100%.

Scalability. The scalability is the capacity of a parallel framework to increase its 
speedup in proportion to the number of execution units. It can be undermined by the 
overhead due to communications and the load-balancing of tasks distribution.

4.3.2 � Pseudo‑distributed mode

Following this mode, a single local machine with 8 available cores is used. Thus, to 
demonstrate the scalability, the proposed framework is executed on a cluster with 
one core and the overall running time was recorded. Then, the same experiment is 
executed on other clusters with increasing cores number. The speedup is measured 
via the formula 23, where the smallest cluster contains one single core.

As illustrated in Fig. 17, the differences in execution time between eight pseudo-
clusters are not significant. The results show that the speedup starts improving as 
more cores are introduced. The framework takes 106 seconds to create the shared 
global ontology for the anatomy track. However, by monitoring the system during 
runtime, we notice that this latency is due to network limitations on one machine. 
Certainly, as the number of partitions grows, the system becomes I/O bound, mean-
ing that its speed is limited by the speed of the input/output operations on that 
machine. Concerning the parallel efficiency, we observe that it decreases by increas-
ing the number of used cores. This signifies that running the framework in a single 
machine, even in a pseudo-distributed mode, remains limited and does not improve 
the efficiency of the implemented modules. For these reasons, a fully-distributed 
implementation over a cluster of machines is performed, which yields more interest-
ing results.

4.3.3 � Fully‑distributed mode

Under these settings, we implement the proposed framework over a cluster of sev-
eral machines (one master and 10 slave nodes). Hence, we evaluate the scalability 
of the framework by varying the number of slave machines, given that the smallest 

(24)Ep =
Sp

p
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cluster is composed of one node. Then, we compute the speedup by comparing the 
running time of the different clusters using the formula 23.

Figure 18 presents a summary of the experimental results over different comput-
ing node clusters. Thus, the results show that the differences in running time between 
ten clusters yielded too much more favorable results compared to the pseudo-distrib-
uted implementation since the speedup increase linearly. Therefore, the more nodes 
are added for processing, the fastest the running time is achieved and the higher 
speedup is obtained. Furthermore, the speedup in a fully-distributed implementa-
tion is linear and gets closer to the ideal speedup. Moreover, the efficiency is higher, 
which signifies that the slave machines are effectively used to improve the scalability 
of the proposed framework. Overall, it is worth noting that the extracted scalability-
friendly resources and the parallelism-driven implementation, using parallel-pro-
gramming techniques over advanced distributed architectures, have contributed to 
enhancing the speedup and the efficiency of the framework.

5 � Conclusions and future works

This paper presents a semantic-based Big Data integration framework that aims to 
provide a unified and integrated view of the available data, while considering Big 
Data features (4Vs) and aspects (i.e. scalability, availability, and high-performance), 
to support the extraction of reliable and consistent knowledge. This integration 
framework incorporates several modules, including the local ontology building 
module, the HLSOM module, and the probabilistic-logical based assessment mod-
ule, implemented over distributed architectures. Therefore, it leverages Hadoop as a 
data parallelism-enabled platform and MapReduce as a parallel programming tech-
nique over distributed storage and computational resources. Experimental results 
over real-world ontologies and different implementation modes show significant 
accuracy, good runtime, high-performance, and high scalability in large-scale envi-
ronments. This is achieved through scalability-friendly optimization mechanisms 
and the parallelism-driven implementation of the integration framework. Accord-
ingly, future works will focus on using this semantic-based Big Data integration 
framework to build a domain-specific application for smart tourism destinations 
(STD). In fact, STD can be defined by the integrated engagement and efforts of dif-
ferent stakeholders at a destination, to collect, aggregate, and harness data derived 
from government/organizational sources, social networks connections, and physical 
infrastructure in conjunction with the use of advanced methodologies and technolo-
gies to transform that data into valuable insights for the experience enrichment and 
the business value co-creation to make better and smarter strategic and operational 
decisions. Therefore, the creation of a unified, reliable, and consistent knowledge 
as well as its exploitation in various querying and analytical operations will enable 
them to acquire additional and detailed information that assists them in the decision-
making process.
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