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Abstract
Sequential pattern matching to detect a user-defined sequence of conditions on event
streams is a key feature in modern event processing systems. However, the sequen-
tial nature of event based pattern matching has two major deficiencies. First, it is
hardly possible to express complex temporal relationships between situations lasting
for periods of time. Because events are equipped with a single timestamp only, the
expressible temporal relations are limited to before/after/at the same time. Second, a
sequential pattern is mapped to a continuous subsequence of the input stream starting
with an arbitrary event, making efficient parallelization a hard problem. In this paper
we present TPStream, a novel event processing operator for complex temporal pattern
matching on event streams. TPStream first summarizes incoming events to situations
lasting for periods of time, before it matches temporal patterns. With situations, tem-
poral patterns can easily be defined based on Allen’s interval algebra. We also show
that situation based temporal pattern matching can be efficiently executed in parallel
using multiple threads on a single machine or multiple machines in a cluster. Finally,
we present adaptive optimization components continuously tuning the execution strat-
egy of TPStream towards the lowest possible result latency with respect to the overall
system load. The results of our experimental evaluation show that TPStream is capable
of processing high-volume event streams with both low latency and high throughput
while outperforming applicable CEP solutions from academia and industry.
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1 Introduction

Analyzingmassive streams of data in near real-time is amission-critical task in various
application domains, including infrastructure monitoring, traffic monitoring, health
care and financial applications. A special form of data stream processing is (complex)
event processing. From a user’s perspective, an event can be seen as a notification that
something happened at a specific point in time. When ordered by time, a sequence of
these notifications form an event stream. For example, a temperature sensor naturally
generates an event stream by periodically measuring the temperature and reporting it
with the time of measurement. Technically, an event is composed of some structured
information (e.g., the temperature value) and a timestamp, and an event stream is a
potentially unbounded sequence of events, ordered according to this timestamp.

Besides filtering, aggregating and joining event streams, a key feature in event
processing systems is sequential pattern matching. Typically, a pattern is expressed
as a regular expression over a set of symbols, whereby every symbol is associated
with a user-defined condition on the input data. A match of the pattern is detected
if the event stream contains a sub-sequence of events fulfilling the conditions in the
specified order.

However, the sequential nature of regular expression based patterns has two major
deficiencies. First, the expressible temporal relationships are limited to before/after/at
the same time relationships. Conditions lasting for periods of time and their temporal
relationships (e.g., A happens during B) can not or only hardly be expressed in this
approach. Second, due to the sequential nature of this process efficient parallel exe-
cution strategies are scarce. Nevertheless, efficient parallel and distributed execution
is a crucial aspect to deal with ever increasing data rates.

To overcome these deficiencies, we introduce the concept of situations. A situa-
tion is a period of time for which a set of conditions holds true. Situations can be
derived from event streams on-the-fly and a temporal pattern can be matched using
the situations’ time intervals. This reduces the input data by (i) summarizing relevant
sub-sequences of the stream and (ii) filtering out events not relevant for matching the
pattern, which, as we will show, allows for efficient parallel and distributed query
processing.

We illustrate this idea with the following example. A traffic monitoring system is
continuously receiving sensor data from connected cars (i.e., position, speed, accel-
eration). One of the system goals is to notify drivers about potential threats around
their locations, such as an aggressively driving car. Among others, the American
Automobile Association has identified the following two actions being indicators for
aggressive driving1: “Operating the vehicle in an erratic, reckless, careless, or neg-
ligent manner or suddenly changing speeds” and “Driving too fast for conditions or
in excess of posted speed limit”. From these definitions, a pattern to detect aggres-

1 http://www.iii.org/fact-statistic/aggressive-driving.
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Fig. 1 Detecting aggressive driving with situations

sive drivers could be stated as: “A sharp acceleration followed by hard braking, both
accompanied by a period of speeding.”

Figure 1 illustrates this example. The stream of raw sensor readings is transformed
into three situation streams, one for each component of the pattern. Each situation con-
sists of a time interval describing the temporal validity and ameaningful summarization
of the event sequence it was derived from (e.g., the average speed during the phase of
speeding). The temporal pattern can then be matched by joining streams of situations
with appropriate conditions. Figure 1 also showcases two more desirable features for
temporal pattern matching. First, the way the situations are temporally related to each
other differs slightly among the two sketched matches. In the first match they overlap,
while in the second match deceleration happens during the speeding situation. The
query language should be flexible enough to cover these cases within a single query.
Second, the pattern should be detected with the lowest possible latency. As depicted
above, both matches may be concluded at the beginning of the deceleration situation,
since speeding holds true at this point in time and the pattern allows any combination
of their endpoints. Technically, this means the system should be able to conclude a
successful match without exact knowledge about the validity of all situations.

While the problems sketched above are described based on the assumptions of
incoming point events, there is some research on native support for complex temporal
pattern matching [37]. However, the major drawback of these approaches is that they
rely on externally created interval events as input, and hence are not able to conclude
matches before the end of all situations is known.

We propose TPStream, a holistic operator for complex temporal pattern matching
on point event streams. Compared to the existing approaches, our contributions are:

– TPStream is the first event processing operator to closely couple derivation of
situations with pattern matching, enabling match detection at the earliest possible
point in time.

– We introduce an optimizer component for interval-based pattern matching which
continuously adapts its execution strategy to deal with fluctuating data rates and
changes in the data distribution of incoming streams.

– TPStream provides an easy-to-read query-language for temporal patternmatching.
– Unlike previous research, the operator and its low latency optimizations can
easily be implemented in commonly available point-based systems, because time-
intervals are used only internally and results are again point event streams.

– In experiments, we show our latency improvements and the performance limits of
two existing CEP solutions from academia and industry when handling situations.
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We present that TPStream can outperform these systems by an order of magnitude
and that alternatives, which have great impact on the performance of sequential
pattern matching, influence TPStream’s matching performance only marginally.

– In this extended version of a previous paper [36], we show that temporal pattern
matching via situations can be efficiently parallelized—on a single machine as
well as in a shared-nothing cluster environment.

– Additionally, we present an auto-tuning component capable of tuning the paral-
lelization degree towards minimizing both, result latency and resource consump-
tion.

The rest of the paper is organized as follows. The next section discusses alternative
solutions to temporal patternmatching in detail. Section 3 reviews relatedwork, before
we introduce TPStream’s query language in Sect. 4. In Sect. 5 we model all aspects of
TPStream in an algebra. Efficient evaluation strategies, the algorithm for low-latency
matching and our optimization techniques are presented in Sect. 6. Solutions for par-
allel and distributed execution of TPStream are introduced in Sect. 7. We evaluate the
performance of TPStream in Sect. 8 and conclude this paper in Sect. 9.

2 State-of-the-art

To the best of our knowledge, the only work on complex temporal relations in event
stream pattern matching is the ISEQ operator [37]. However, ISEQ has several short-
comings concerning the desired features: first, the operator requires interval-events
(i.e., situations) as input, leaving all aspects of deriving situations to an unspecified
external entity. Being unaware of the origin of interval-events severely limits the opera-
tor in processing power (in terms of plan optimization) and most importantly renders a
detection with the lowest possible latency impossible since there is no way to directly
access an incomplete situation or indirectly manipulate the building of a situation
through constraints. Second, a temporal pattern is specified using a conjunction of
endpoint relationships (i.e., an ordering on start (ts) and end (te) of intervals). This
way, alternatives are expressed by omitting one or more endpoints. For example, the
pattern A.ts < B.ts < A.te ≤ B.te ∨ A.ts < B.ts < B.te < A.te on two situ-
ations A and B is expressed as A.ts < B.ts < A.te. Hence, disjunctions like
A.ts < B.ts < A.te < B.te ∨ B.ts < A.ts < B.te < A.te are not expressible
in a single query. Instead, they require multiple queries in an approach without any
specified optimization component to detect shared processing opportunities. Third,
ISEQ does not provide any solution to parallelizing the process of matching complex
temporal relations. Finally, ISEQ relies on auxiliary index structures and punctuation
mechanisms for efficient query execution, complicating the integration into existing
systems.
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2.1 Strawman’s approach

Besides ISEQ, we identified two approaches to solve the task of temporal pattern
matchingwith point event streams. Thus, we can provide a point of comparison to CEP
systems featuring pattern matching via regular expressions or equivalent techniques.
The first approachworks in two phases: In the first phase, a patternmatcher is deployed
for each defined situation, computing its duration (start/end timestamp) and the desired
summarizations. Technically, this means matching patterns of the form !S S+ !S
with S being the situation’s condition (e.g., speed > 70 mph) which identifies the
longest contiguous subsequence of events fulfilling S by surrounding this sequence
(S+) with events not fulfilling the condition (!S). This results in a dedicated stream
per defined situation. Each of these streams is ordered according to the end timestamp,
which allows to map the temporal pattern to a sequence of situations (reflecting the
order of end timestamps, possibly containing alternatives). In the second phase, a
dedicated pattern matching operator is used to find all matching sequences, whereby
the proper ordering of start timestamps is checked via additional predicates. While
this approach is able to derive situations including the desired summarizations, it fails
to produce early results because, just like in ISEQ, situations are fully derived before
they are available for pattern matching.

The second approach uses a single patternmatching operator and expresses the tem-
poral pattern as a single sequence of point events. To express temporal overlaps, the
conditions of all involved situations must be connected via a logical AND. For exam-
ple,Acceleration overlaps Speeding is expressed as A B+ C with the
following conditions: A : accel > 8 m/s2, C : speed > 70 mph and B : A ∧ C.
Since patterns are expressed on the granularity of events, early results are achieved by
simply omitting the last portion of the pattern. At the same time summarizations of
single situations are left to a post-processing step, since situations are disassembled
to express temporal overlaps.

3 Related work

So far, native ways to work with situations in systems capable of CEP have not been
sufficiently addressed. Nevertheless, the concept can be related to working with time
intervals, aggregating information and performing temporal joins, all of which have
seen recent contributions. Since these are broad areas, we will loosely group the
most relevant approaches under five headlines: Event Pattern Matching, Context/State
in CEP, Stream Reasoning, Spatio-Temporal Database Systems and Parallel Pattern
Matching.

Event patternmatching Systems capable ofCEP (e.g. [5,17]) are generally closely
associated with a pattern matching operator. Zhang et al. [49] features a discussion
on the several different semantics of the operator and a recent survey [21] covers sev-
eral implementations, that employ different techniques such as NFAs or Graphs, each
featuring their own unique optimization techniques. Regardless of specific details,
most approaches focus on data referring to points in time, and thus lack native capa-
bilities to query complex relations between time intervals as stated in Allen [3]—a
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crucial aspect for dealing with long-lasting situations. Cayuga [16], ZStream [40] and
Microsoft StreamInsight [2] are well-known approaches that associate time intervals
with data, showcasing the interest in working with interval-based events. ZStream in
particular shares similarities with our join-based, adaptive processing approach for
pattern matching. However, each of the respective pattern languages is based around
a strictly sequential relation (interval i ends before interval j begins) and/or explic-
itly order-independent relations (conjunction, disjunction). Not only does this limit
their respective algorithmic support for complex temporal relations, but, just like
point-based systems, formulating derivation queries naturally leads to the straw man’s
approach mentioned above using Kleene Operators (or FOLDS in Cayuga). As we
will show, this approach results in significant performance deficiencies.

Context/state in CEP There has been recent work on introducing contexts into a
CEP environment. CAESAR [43] associates queries to long-lasting context windows,
detects them from incoming events as soon as they start and suspends queries of
inactive contexts. Similarly, contexts described by Etzion et al. [20] are used to group
up event types to process them together. While contexts and situations are related
concepts, the key difference is that contexts are purposefully decoupled from events.
Therefore, it is not possible to query the relation of different contexts to each other. In
contrast, TPStream focuses on efficient, adaptive and low-latency implementations of
those temporal relations. Likewise, work dealing with periods of times such as states
[30] or aggregating windows [25,28], cover the deriving aspect of situations, but lack
interval relations [3] or pattern matching.

Stream reasoning The semantic web community has worked on extending RDF
triples with a time dimension, introducing the concept of temporally limited informa-
tion, and thus allowing for a variety of graph-based temporal queries such as temporal
joins [24]. C-SPARQL [11] deals with streams in particular, introduces window
semantics and corresponding aggregation capabilities, but does not feature tempo-
ral relationships necessary for formulating CEP-style pattern queries. EP-SPARQL
[4] and its implementation ETALIS assume that each data item is associated with a
fixed time interval and support the usage of Allens temporal operators when formu-
lating queries. Similarly, TEF-SPARQL [35] supports all temporal relationships in a
language and algebra build around always valid triples and so-called facts. Analogous
to situations, facts feature a start time and a potentially undetermined expiration time
which may be set in the future. Like TPStream, EP-SPARQL and TEF-SPARQL aim
to solve the combination of fleeting events with longer lasting situations, but are ulti-
mately complementary to the work presented here due to a variety of reasons. First,
the approaches aim to empower SPARQL with event semantics while we look at the
problem from the perspective of event processing in order to facilitate easy integration
into existing CEP languages and systems. Second, both works focus on establishing
the language in particular while TPStream also deals with the implementation side in
order to improve latency and parallelization aspects. Finally, a more recent study [23]
showed performance benefits of TEF-SPARQL’s algebraic notion of ongoing facts
by compiling them into Esper queries. We go a step further by not only supporting
ongoing situations, but also developing optimizationmechanisms unique to the pattern
matching process.
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Spatio-temporal database systems The spatial databases community studied the
problem of spatio-temporal pattern queries (STPQ) in trajectory databases, e.g. in
Erwig [19]. In general, these approaches cannot be directly applied to an event pro-
cessing environment, because they are built on top of a persistent trajectory database
model, where movement histories are already stored and indexed in the database.
However, the design of Sakr and Güting [45] in particular served as a foundation
for our proposed TPStream operator as TPStream adapts similar concepts of tempo-
ral predicates and constraints. Similar to the spatial community, Helmer and Persia
[29] introduce an event query language for high-level event detection for temporal
databases. The approach is based on introducing Allen’s interval algebra into Post-
greSQL and can also be applied for video stream surveillance [41].While those efforts
focus on language and databases, TPStream targets data streams while highlighting
efficient methods for both low latency and parallel processing.

Due to relating multiple types of situation to each other based on their point of
occurrence, our evaluation method is also related to temporal joins (see [22] for an
excellent survey). Even thoughmost research is not based in stream processing, Piatov
et al. [42] present a sweep-line algorithm for joins based on temporal overlap pred-
icates. To evaluate interval relations, a specialized hash-index on intervals’ start and
end points is used. Dignös et al. [18] also target joins with overlap predicates, but
focus on long-lasting intervals. To speed up processing while dealing with intervals of
varying sizes, the authors adaptively divide intervals into temporal partitions of dif-
ferent granularities while reducing the join to temporally overlapping partitions. Both
of those works are orthogonal to TPStream, since they optimize for overlap predicates
on stored interval data, while TPStream derives intervals on the fly, allows for mul-
tiple arbitrary temporal relations and combines both aspects for low latency pattern
detection. A more general approach called the Timeline Index [34] was presented for
main memory database systems. The Timeline Index is an append-only data structure
supporting efficient methods for time travel, temporal aggregation and temporal join
queries. While the Timeline Index is designed to support a wide variety of queries
in multi-version workloads (i.e., including records updates and queries covering the
whole history), data structures used in TPStream are optimized for streaming work-
loads (i.e., insert-heavywithwindowed queries for recent items). In comparison to join
algorithms on streams [8,26] as well as adaptive approaches [7], TPStream combines
both, the derivation of situations and the detection of patterns. Thus, the operator can
offer new techniques for early result detection unique to CEP-style pattern matching.

Parallel pattern matching There is a wide variety of Frameworks (e.g. Apache
Spark [48], Apache Flink [12]) and research (e.g. [1,38]) on parallel and distributed
execution of streaming applications. However, since pattern matching is generally
sequential in nature, work on parallel approaches is much more limited. To categorize
the different approaches they can generally be grouped into either task, data or pipeline
parallelism [15].

Task parallelism naturally occurs when executing multiple non-chained streaming
operators concurrently. Ray et al. [44] propose a technique to find shared sub-patterns
among multiple operators and compute them only once. Zhang et al. [49] propose
a similar technique that finds a generalization of a pattern and delays more detailed
evaluation that could be handled in parallel. Both works do not consider situations
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and feature techniques best suited for multi-query optimization. We focus on the
orthogonal approach of intra-query parallelism. Nevertheless, we design our solution
in a way that allows applying above techniques and highlight how crucial points of
dealing with situations effect the design of tasks.

In data parallelism, data blocks can be processed independently, e.g. in a querywith
a group-by clause. Hirzel [31] discusses how to semantically introduce the partition-
by keyword into a CEP language based on a automaton evaluation technique. One of
our techniques also handles partitioned data, but is a join-based approach and focuses
on handling situations. Schneider et al. [46] developed a system that automatically
applies safe data parallelism techniques (e.g. partitioning) for parts of an operator
graph. The paper does not discuss pattern matching. Furthermore, most techniques
cannot be directly applied to achieve intra-parallelism of the TPStream’s components,
because the matcher features multiple predecessors and a non-partitioned state which
the system considers unsafe for parallelism. Regardless, we also apply the technique
of sequence numbers to deal with synchronization issues for our non-partitioned data
strategy. Most similar to our work is RIP [10]. Instead of partitioning data by key,
the authors propose to partition data by run, i.e. distributing consecutive batches of
events. To ensure correct results for patterns spanning multiple batches, RIP replicates
a certain number of events based on the pattern length. We use a similar technique
of run-based partitioning for non-partitioned data, but cannot rely on pattern length
and have to adapt the idea to handling situations. In addition, we develop an adaptive
strategy for deployed threads and batch size.

Finally, pipeline parallelism can be applied to queries featuring chained operators
that are processed in sequence. This chain is parallelized by assigning computing
resources to each operator. Schultz-Møller et al. [47] propose to rewrite the pattern
matching operator into several smaller chained tasks that are distributed and reused
overmultiple queries. Jayasekara et al. [33] design a framework for distributing stream-
ing operator graphs including task, data and pipeline partitioning method in a cluster
environment. Pattern matching is handled in the pipeline sense by distributing filter
operations and joining their result on another node. Cugola and Margara [14] use the
CPU to evaluate whether an event matches a state in the pattern matching automaton
and the GPU to produce result sequences and aggregates. All those works aim to use
external resources to speed up parts of the pipeline. For a single machine, we decided
not to rely on pipeline parallelism, since we observed that switching threads between
deriving and matching causes unnecessary overhead. However, we do discuss how our
techniques can be converted to a pipeline parallel model for a cluster environment.

4 Query language

In this section, we present TPStream’s query language for specifying temporal pattern
queries over point event streams. Therefore, we first present the basic structure of a
TPStream-query. Then, we discuss every component in detail, before we formulate
the aggressive drivers query from the introduction as an example. Finally this section
is closed with a discussion on the expressiveness of the proposed language.
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4.1 Syntax

The basic structure of the language is based onmatch recognize, a language for sequen-
tial pattern matching in the SQL:2016 standard (items in square brackets are optional):

FROM <input stream>
[PARTITION BY <attributes>]
DEFINE <situation definitions>
PATTERN <pattern definition>
WITHIN <duration>
RETURN <output definition>

The FROM clause selects the input stream for the query. If the physical input stream
carries multiple logical partitions, where each of them should be evaluated separately,
this can be specified in the optional PARTITION BY clause. The partitioning scheme
is specifiedvia oneormore<attributes>of the input stream,whereby eachunique
combination of attribute values defines a logical partition. To limit the search space
for matches of the temporal pattern, a time window in which the pattern must occur
completely is defined via the WITHIN clause. The duration is specified as <number>
<time unit>, with time unit being one of second(s), minute(s), hour(s).

The DEFINE clause specifies which situation streams should be derived from the
raw events and how to derive them:

<situation definitions> := <situation definition> |
<situation definition>, <situation definitions>

<situation definition> := <name> AS <condition>
[<duration constraint>]

A situation stream definition consists of a unique name and a condition. Con-
ditions are constructed using boolean expressions (true,false,and,or,not),
predicates (<,>,≤,≥,=, �=) and arithmetic expressions composed of constant val-
ues and references to attributes of the input stream. The situations (time-intervals)
composing a situation stream are derived by applying those conditions to every incom-
ing event. Optionally, a duration constraint can be set, allowing to restrict
the length of derived situations:

<duration constraint> := AT LEAST <duration> |
AT MOST <duration> |
BETWEEN <duration> AND <duration>

Thismeans that only situations fulfilling this constraint are considered for matching
the temporal pattern.

The PATTERN clause specifies the temporal pattern as a set of temporal constraints
between two situation types:

<pattern definition> := <constraint> |
<constraint> AND <pattern definition>

<constraint> := <name> <relations> <name>
<relations> := <relation> |

<relation>;<relations>

The meaning here is as follows. A set of situations matches the temporal pattern
if all defined constraints are satisfied. A constraint between situations from two
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Table 1 Allen’s interval algebra

streams is satisfied if their temporal relation is among the specified relations. In
other words, a constraint is a disjunction of temporal relations (delimited by ; in the
query language). In order to express temporal relations between situations, we adopt
Allen’s Interval Algebra (see [3]) depicted in Table 1 for two intervals A and B. Each
interval has a starting point (ts) and an ending point (te), resulting in a total of four
points. te is the first point in time when the interval is not valid, i.e. the interval is
half-open. Relation (R) between A and B is represented through the relation between
these four points as given by Definition (δR). As an example depicted in Table 1,
A before B means the interval A ends before the interval B begins. Similarly, A
during B means A happens during B, because A.ts and A.te are both within the
interval B.

The last part of a TPStream query is the RETURN clause defining the shape of result
events:

<output definition> := <output variable> |
<output variable>, <output definition>

<output variable> := <aggregate> as <name>
<aggregate> := FIRST(<ref>) | LAST(<ref>) |

COUNT(<ref>) | SUM(<ref>) | ...

Every attribute of the output event stream is an aggregation over an attribute
of the input-stream. It summarizes all events that occurred during the time interval of
a situation. The attribute reference (<ref>) is composed of the name of the situation
stream to refer to and the name of an attribute of the input stream. Besides the standard
aggregation functions like COUNT or SUM, TPStream allows to refer to values of the
FIRST and LAST event participating the specified situation.

Listing 1 shows the query definition for detecting aggressively driving cars from
the introductory example. The query processes point events from the CarSensors
stream which is partitioned by the car_id to evaluate each driver individually. We
define the three situations for sharp acceleration (A), speeding(B) and hard breaking
(C), by referring to the acceleration and speed attributes of the input stream. All
three definitions make use of duration constraints. The pattern allows for different
combinations among the derived situation types. For instance, accelerationmay meet,
overlap, start or occur during a phase of speeding. The total length of a match
is restricted to 5 minutes and result events are composed of the unique car_id and
the average speed during the speeding situation.
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FROM CarSensors PARTITION BY car_id

DEFINE A AS accel > 8m/s2 AT LEAST 5s,
B AS speed > 70 mph BETWEEN 4s AND 30s,

C AS accel < -9m/s2 AT LEAST 3s
PATTERN A meets;overlaps;starts;during B

AND B contains;finishes;overlaps;meets C
AND A before C

WITHIN 5 minutes
RETURN FIRST(B.car_id) AS id ,

AVG(B.speed) AS avg_speed;

Listing 1 Agressive drivers query

4.2 Expressiveness

Most common CEP systems define patterns based on symbols connected via regu-
lar expressions. Specific extensions, like aggregation, put the expressiveness of those
languages between regular and context-free grammars [49]. However, only ISEQ pro-
vides a native way to process patterns based on temporal relations. This deficit is also
reflected in the respective languages.

By design, TPStream can express all temporal relations (and unlike ISEQ alterna-
tives among them) in a single query. In contrast, a single pattern matching query in
CEP systems is designed to detect a sequence, i.e., a before relation. Nevertheless,
as shown by both straw man’s approaches in Sect. 2, in a system supporting Kleene-
closure it is possible to express other temporal relations through eithermultiple queries
(decoupling derivation and detection) or a single query (without aggregation capabil-
ities and the validation of duration constraints). Thus, our language does not express
more than the full language of other systems.

Instead,we focus on enabling the user to express complex temporal patterns in a sin-
gle, readable and maintainable query via the widely-known interval algebra (Table 1).
For this purpose, we made two notable design choices that differ from some sequence-
based approaches. First, some languages [49] allow to skip events while matching. In
contrast, we derive the longest possible contiguous sequence of events, because this
aligns well with the idea of long lasting situations and avoids ambiguity whether a sit-
uations is still ongoing during other events. Second, in some languages [17] symbols
can access aggregates of other symbols. Due to ambiguity in the expected results when
dealing with situations, we do not allow this. For example, consider modifying the def-
inition for symbol B in Listing 1 to B AS speed > max(A.speed). Then, for A
overlaps B it is unclear whether max(A.speed) is accessed when A finishes,
when B starts or is continuously monitored for each B. For a precise presentation of
our approach, we chose those two concessions and will work on mitigating them in
the future.

We would also like to sketch that, apart from those concessions, it is possible to
express a purely sequence-based pattern with TPStream: A sequence can be expressed
with a before relation and the implicit ongoing nature of situations can be eliminated
with a duration constraint. Nevertheless, the basis for our implementation [32] fea-
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tures a standard sequence-based pattern matching operator that is optimized, and thus
preferable for this purpose. Similarly, our implementation can be easily integrated into
other systems, because TPStream consumes and produces point-based event streams.
In conclusion, thismeans thatwedonot change the expressiveness of other approaches,
but by extending a query language with Allen’s Interval Algebra, our benefits can be
almost universally adopted.

5 Algebra

The goal in designing TPStream is to develop an operator capable of continuously
deriving situations from a stream of events and relate those situations to each other.
To achieve this, we need to be able to express both the derivation and relation. For
this purpose, we formally model those aspects (streams, data, deriving situations and
temporal pattern matching) in an algebra.

5.1 Streammodel

Definition 1 (Data stream) A data stream D is a potentially unbounded sequence of
data items 〈d1, d2, . . .〉 totally ordered by a relation <D . di ∈ D refers to the i th data
item in the stream according to that order and all data items are from the same domain
D. 〈〉 refers to an empty data stream.

In order to refer tomultiple data streams,wewill utilize the notation D1, D2, D3, . . .

with Di = 〈di
1, di

2, . . .〉, i.e. a superscript labels separate streams, while a subscript
refers to the order within a stream. For the sake of simplicity and readability, we will
generally assume that each item in a data stream is unique (i.e., ∀di

j , di
k ∈ Di : j �= k)

and refer to previous work on the matter of handling potentially equal elements (see
[16]). 〈〉 is mainly used to specify the case of no output in upcoming definitions.

Definition 2 (Continuous subsequence) Based on a data stream D, D[i, j] =
〈di , . . . , d j 〉 with i < j refers to a continuous subsequence containing every data
item as it pertains to <D .

Definition 3 (Union) The union� of two data streams D1 and D2 both totally ordered
with <D and no contemporary items between D1 and D2, results in a data stream D′
with the same order <D:

�(D1, D2) := D′ = 〈d ′
1, d ′

2, . . .〉

such that D′ contains each element from both D1 and D2. Analogous to set theory,
the union of n data streams D1, . . . Dn is abbreviated with the notation

⊎n
i=1 Di .

5.2 Datamodel

Our operator involves two kinds of data whichwe need to define: events and situations.
In general, events refer to a notification that something happened instantaneously at
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exactly one point in time while situations span multiple points in time and contain
aggregated information for that time period.

Definition 4 (Event) An event e is a pair (p, t) consisting of a payload p and an event
timestamp t . p is from some domain D and t is from a discrete and totally ordered
time domain T . The validity of p is the instant t .

Definition 5 (Situation) A situation s is a triple (p, ts, te) consisting of a payload p
and two timestamps: ts (start timestamp) and te (end timestamp). p is from some
domain D. ts and te are from a discrete and totally ordered time domain T with
ts < te. The half-open time interval [ts, te) specifies the validity of p.

Event streams are ordered by the event timestamp and will be represented with
E . Situation streams are ordered by the end timestamp of situations and will be
representedwith S.We focus our efforts on presenting algorithms for streamswith data
arriving in-order and leave the adjustment to out-of-order data by adapting previous
research on out-of-order pattern matching (e.g. [13,39]) for future work.

5.3 Derivation

Situations are derived from event streams through aggregation and predicate evalua-
tion. First, we formally define aggregation on continuous event subsequences before
deliberating on predicates and how to derive situation streams.

Definition 6 (Aggregated event subsequence) An aggregate γagg is applied to an event
stream subsequence E[i, j] by applying the aggregate agg to the events in the subse-
quence:

γagg(E[i, j]) := (agg(ei , . . . , e j ), ei .t, e j+1.t)

When obvious from context, we abbreviate γagg with γ .

The result in Definition 6 technically already is a situation. However, for the deriva-
tion process as a whole, wewant to discover situations for which a set of circumstances
hold true. In order to provide an unambiguous process to identify these situations we
are looking for the longest possible sequences for which these circumstances apply.

Definition 7 (Derived situation) Situations are derived with a function deriveφ,τ,γ

which aggregates information of a continuous event subsequence E[i, j] by applying
γ iff the events in E[i, j] are the longest possible sequence of events to fulfill a given
predicate φ and the covered timespan is within the given duration constraint τ :=
[dmin, dmax ]:

deriveφ,γ,τ (E[i, j]) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ (E[i, j]) if

∀l ∈ [i, j] : φ(el)∧
!φ(ei−1)∧!φ(e j+1)∧

(e j+1.ts − ei .ts) ∈ τ

〈〉 otherwise
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Example Assume the query in Listing 1 derives a speeding situation for a car with
the time interval [2, 10). This means speed ≤ 70 mph at t = 1 and t = 10 and in
between those timestampsspeed > 70mph. Froman algebraic standpoint, assuming
knowledge about the whole event stream, this aligns well with a natural interpretation:
There are not multiple situations (e.g. [2, 3), [2, 4), . . .) but rather one continuous
speeding phase which fulfills the duration constraint (dmin = 4s and dmax = 30s).
For that reason and because it results in unique situations, we choose to derive the
longest possible subsequence in Definition 7.

Definition 8 (Derived situation stream) The deriveStreamφ,γ,τ function derives a
stream of situations from a given event stream E by applying the function deriveφ,γ,τ

to all possible subsequences and unifying the results:

deriveStreamφ,γ,τ (E) =
⊎

j

j⊎

i=1

deriveφ,γ,τ (E[i, j])

Note that, due to assumption that each event in an event stream has a unique times-
tamp and the fact that deriveφ,γ,τ derives the longest situations possible, it is easy
to show that deriveStreamφ,γ,τ produces a stream of situations with disjoint time
intervals. This important property means that the order of situations using start times-
tamps is the same as the order using end timestamps, resulting in a beneficial pattern
for query processing as stated by Golab and Özsu [27]. Due to space limitations, we
omit a formal proof here.

5.4 Patternmatching

TPStream matches multiple situation streams to a temporal pattern and produces a
result event stream according to the given definitions. A temporal pattern is composed
of temporal constraints between situation streams, which in turn comprise multiple
temporal relations between exactly two streams. In this section, we present formal def-
initions of these terms, the output of a successful match, and ultimately the TPStream
operator.

Example Consider the example query of Listing 1 and let s A be an acceleration sit-
uation as defined by A and s B, sC be a speeding (B) and deceleration (C) situation
respectively. The PATTERN describes how pairs of situations can relate to each other
via temporal constraints: For s A and s B the temporal relation can be either A meets
B, A overlaps B, A starts B or A during B. It does not matter if acceler-
ation overlaps speeding or if speeding contains acceleration. Both cases may lead to
the result of detecting aggressive drivers. The temporal pattern on the other hand is
a conjunction of temporal constraints: In order to match the pattern, each temporal
constraint must be fulfilled.

Definition 9 (Temporal relation) Given two situation streams S A, SB , a temporal rela-
tion R A,B , defines a valid relationship between two situations s A ∈ S A and s B ∈ SB
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according to Allen’s Interval Algebra (cf. Table 1). s A and s B fulfill R A,B , iff they
satisfy the corresponding algebraic definition (δR).

Definition 10 (Temporal constraint) A temporal constraint C A,B between two situ-
ation streams S A, SB is a set of temporal relations {R A,B

1 , ..., R A,B
m }. Two situations

s A ∈ S A and s B ∈ SB fulfillC A,B , iff they at least fulfill one of the temporal relations.

In other words, temporal constraints allow to specify multiple valid relations
between two situation streams, providing the desired flexibility in expressing alterna-
tives.

Definition 11 (Temporal pattern) For any number of situation streams (S1, ..., Sm),
a temporal pattern (P) is a set of temporal constraints {Ci, j |1 ≤ i < j ≤ m}. A
temporal pattern is matched by a temporal configuration s = (s1 ∈ S1, ..., sm ∈ Sm),
iff s satisfies every temporal constraint:

matchP (s) :⇔ ∀Ci, j ∈ P : ∃Ri, j ∈ Ci, j : δRi, j (si , s j )

Definition 12 (Pattern matching output)A temporal patternmatchingoperator P Mw,γ̂

matches a temporal configuration s = (s1, s2, . . . , sm) to a temporal pattern P .
It aggregates the information of s with some suitable aggregate γ̂ and checks the
window condition (cf. WITHIN clause):

window(s, w) = w ≥ max
s∈s

(s.te) − min
s∈s

(s.ts)

The operator produces an output, if the temporal configuration matches the pattern
during the specified window, i.e.:

P Mw,γ̂ (s,P) :=

⎧
⎪⎨

⎪⎩

(γ̂ (s),max
s∈s

(s.te)) if
matchP (s)∧
window(s, w)

〈〉 otherwise

Similarly to how we extended derived situations to derived situation streams (Def-
inition 7 to 8), we can extend Definition 12 to situation streams.

Definition 13 (TPStream)TPStreamw,γ̂ matchesmultiple situation streams S1, . . . , Sm

to a temporal pattern P by applying the corresponding pattern matching operator
P Mw,γ̂ to the cross product of the situation streams and unifying the results:

TPStreamw,γ̂ (S1, . . . , Sm,P) :=
⊎

s∈m
i=1Si

P Mw,γ̂ (s,P)

Note that TPStreamw,γ̂ results in an event stream and can thus easily be integrated
into common CEP processing pipelines.
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Fig. 2 TPStream architecture

Algorithm 1: DeriveSituations
Input: (p, t): event
Data: B := [

(p′, ts)i
]
: active situation buffer, D := [

(φ, γ, τ )i
]
: situation definitions

1 R ← ∅;
2 foreach i ∈ |D| do
3 (φ, γ, τ ) ← D[i];
4 if B[i] = ∅ ∧ φ(p) then
5 B[i] ← (ini t Agg(p, γ ), t);

6 else if φ(p) then
7 updateAgg(p, B[i], γ );
8 else if B[i] �= ∅ then
9 if (t − B[i].ts) ∈ τ then

10 R ← R ∪ {
(B[i].p′, B[i].ts, t)

}
;

11 B[i] ← ∅;
12 if R �= ∅ then
13 updateMatcher(R, t);

6 Algorithms and implementation

In this section, we present our algorithms and implementation details for detect-
ing temporal patterns among streams of point events. Following the definitions from
the previous section, the general architecture consists of two main components, as
depicted in Fig. 2. The deriver-component consumes events from the input stream
and derives the defined situation streams. Then, those streams are passed to the
matcher-component, which performs the actual pattern matching. In the following
two subsections we will explain both components in detail. For the sake of simplicity,
we defer the discussion on low latency detection to Sect. 6.3 and wait for the end
timestamp of derived situations before invoking the matcher. The last part of this
section describes how TPStream computes efficient execution plans and dynamically
adapts to changing workloads.
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Algorithm 2: UpdateMatcher
Input: S: set of finished situations, t : the current time

1 purgeBuffers(t);
2 foreach s ∈ S do
3 addToBuffer(s);
4 (C, B, next Step) ← getEvaluationOrder(s);
5 performMatch({s} , (C, B, next Step));

6.1 Deriving situations

Definition 8 introduced derived situation streams, using knowledge about the whole
input-stream. To compute situation streams incrementally as new events arrive, the
deriver-component manages a buffer for ongoing situations (B) and the situation
stream definitions (D). Algorithm 1 shows how they are used to derive situations
on-the-fly. For each defined situation, three cases are checked: If there is no started situ-
ation on the buffer, but the predicate holds true, a new situation is started. Therefore, we
compute initial values for all defined aggregates (e.g., p.speed for an max(speed)

aggregate). Those values are bundled with the event’s timestamp and stored on the
buffer (Lines 4, 5). Otherwise, if the current event fulfills the predicate, the temporal
validity of a started situation is prolonged. In this case, the buffered aggregates are
updated using the event’s payload (p) (Lines 6, 7). Finally, a situation is finished on
the first event not satisfying the defined predicate. In this case, the situation’s end
timestamp is fixed to the current time, it is added to the result set R (provided it sat-
isfies the duration constraint τ ), and the corresponding buffer slot is cleared (Lines
8–11). After updating the state of each situation stream, the result set is passed to the
matcher-component (Lines 12, 13).

6.2 Matching the pattern

The matcher implements an incremental version of T P Streamw,γ̂ (Definition 13). In
other words, it detects matches on-the-fly as new situations are handed over from the
deriver-component. The general idea is to employ a buffer for each situation stream
and perform the pattern detection via a multi-way join between those buffers, using
the temporal constraints as join-conditions. Recap that all situations within a stream
are disjoint, and thus imply the same order on both the start and end timestamps (Defi-
nition 8). We will use this fact to ensure efficient execution of the matcher component.

Each time the deriver distills new situations, Algorithm 2 is invoked: At first,
expired situations are purged from the buffers (Line 1) by removing all situations
s with s.ts < t − window. Because of the mentioned ordering, this effectively
means, finding the first situation s′ with s′.ts ≥ t − window and discarding all
previous situations. The buffers are implemented via array-backed ring buffers, which
efficiently support these operations. After purging outdated situations, the following
steps are executed for every received situation. First, it is added to the corresponding
buffer (Line 3). Then, we obtain the evaluation order for the given situation (Line 4).
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Algorithm 3: PerformMatch
Input: ws : working-set, step : (C : Temporal Constraints, B : Situation Buffer, next Step)

1 if step = ∅ then
2 publishResult(ws);

3 else if containsSituationForStep(ws,step) ∧ checkConstraints(ws,C) then
4 performMatch(ws, next Step);

5 else if ¬containsSituationForStep(ws,step) then
6 foreach (p, ts , te) ∈ findMatches(C, B, ws) do
7 performMatch(ws ∪ {(p, ts , te)} , next Step);

That is the order how situation buffers are joined. For every join-step, we store the set
of temporal constraints to be fulfilled (C), the buffer to join (B) and a reference to the
next step. Finally, the recursive matching algorithm (performMatch) is called. In order
to ensure incremental and unique results, the currently processed situation serves as a
parameter and is part of every successful match.

PerformMatch (Algorithm 3) matches the pattern as follows. In each recursive step,
one situation buffer is joined with the current partial result (working-set). Here, two
cases must be distinguished. The first case handles situations that were pre-set in the
working-set, which accounts for the situation passed as a parameter from updateM-
atcher. In this case, we omit joining the whole buffer, check the temporal constraints
of the current step (C), and proceed recursively, if the constraints are fulfilled (Lines 3,
4). The second case regularly joins the current working-set with the buffer (B) of the
currently processed evaluation step and proceeds recursively to the next step for each
matching situation (Lines 5–7). If all steps are processed, the working-set contains
a situation from every buffer and all temporal constraints are satisfied for this set of
situations. Hence, the algorithm calls publishResult to materialize a result event and
push it into the output stream (Lines 1, 2).

Obviously, the evaluation performance of performMatch mainly depends on the
efficiency of the function findMatches. A naïve approach would be, to scan the entire
buffer and check the temporal constraints for each situation separately.With Ri denot-
ing the ith intermediate result, Bi the buffer traversed in step i and |R1| = |B1|, the
costs (C) of performMatch following this approach can be estimated with:

C = |Rn| +
n−1∑

i=1

|Ri | · |Bi+1| (1)

To speed up the computation, we again use the order of situation streams: Because
the order is reflected on the buffers, we are able to find all matching situations using
binary searches. We first discuss how this is done for a single temporal relation before
extending it to (multiple) temporal constraints. Recall that a temporal relation explic-
itly defines a relationship between all four endpoints of two situations. For instance,
this is A.ts < B.ts < A.te < B.te for A overlaps B. Now, given an instance
of situation A, we obtain matching instances of B by (i) issuing two range-queries
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Fig. 3 Temporal matching via range queries

on the buffer of B, using the timestamps of A as boundaries and (ii) intersecting the
results of those queries. For the example relation, these queries are:

1. A.ts < ts < A.te for the start-timestamp and
2. A.te < te < ∞ for the end timestamp.

It is easy to see that each situation falling into both ranges fulfills the given tempo-
ral relation. Figure 3 illustrates this using 3 situations: Situation A1 in combination
with the temporal relation is used to build the two search ranges. After intersect-
ing the results ( {B1} for the start range and {B1,B2} for the end range), we receive
our final result B1. Note that for temporal relations allowing more than one result
(e.g., A before B), this strategy additionally eliminates the need for checking each
combination individually.

In general, a temporal constraint contains more than one temporal relation, stat-
ing each of them as a valid relationship between two situations. This can be easily
integrated by executing the search separately for each of the defined relations and
subsequently building the union of the obtained results. The conjunction of multiple
temporal constraints can be implemented as an intersection of the results from the
respective individual queries. Because the buffers are backed by a contiguous array,
we can represent the search results as index-ranges, and thus efficiently compute the
required unifications and intersections. This approach reduces the estimated costs of
performMatch to:

C =
n∑

i=2

(|Ri−1| · |Ri | + C f ind Matches(|Bi |)
)

(2)

with C f ind Matches(|Bi |) being bounded by |P| ·13 ·4 · log2(|Bi |). The constant factors
13 and 4 arise from the possible temporal relations per constraint and the binary
searches to execute for each of them, respectively.

6.3 Low-latencymatching

In this section, we will determine the earliest points in time trmin(R), tcmin(C),
tpmin(P) to detect a temporal relation R, temporal constraint C , and temporal pat-
tern P , respectively. Then, we illustrate cases in which the algorithms of Sect. 6.2 in
combination with low-latency matching fail to deliver correct results. In the last part
of this section, we present adjusted algorithms for low-latency matching.
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Table 2 Temporal relations R and their prefix groups G with their earliest detection times trmin(R) and
tgmin(G)

6.3.1 Analysis

Two situations A,B can only be related once we know they exist, making
max(A.ts,B.ts) ≤ trmin(R) a trivial lower bound for all relations R. For an exact
computation of trmin(R) we consider the definition δR of relations given in Table 2.
Let t1 ≤ t2 ≤ t3 ≤ t4 be the timestamps in the order they appear in δR . It is
easy to see that the ordering of t4 is already available at t3, because t3 ≤ t4 and
there are no timestamps after t4. Furthermore, there are multiple relations sharing the
same definitions up to t2, i.e., it is not possible to distinguish those relations from
each other. We group these relations with a common prefix of two timestamps into
so-called prefix groups as shown in Table 2 for relations starting at situation A (an
analogous definition exists for relations starting with situation B). Thus, we conclude
that trmin = t3 holds.

A temporal constraint C = (R1, . . . , Rn) for A,B matches if one of the contained
relations matches. Therefore, C has multiple earliest detection times given by a set
tcmin(C) = {trmin(R1), . . . , trmin(Rn)}. Further, ifC contains all relations of a prefix
group G (cf. Table 2), the detection time of these relations is shifted to the trivial lower
bound of that group (denoted tgmin(G)).

Finally, for a pattern P = (C1, ..., Cm), each constraint Ci = (Ri
1, . . . , Ri

ni
)

must be matched. However, a single temporal configuration matching P fulfills
exactly one temporal relation (Ri

ji
∈ Ci , i = 1, . . . , m) from each constraint,

making tpmin(P) =
{

max(trmin(R1
j1
), . . . , trmin(Rm

jm
)) | 1 ≤ ji ≤ ni , 1 ≤ i ≤ m

}
.

Thus, tpmin(P) is among all the constraint detection points, i.e., tpmin(P) ⊆⋃
i=1...m tcmin(Ci ).

6.3.2 Problem statement

For the ease of presentation, we first postpone the discussion of optional duration
constraints on situations as well as prefix groups to the end of this section. In general,
our low-latency analysis provides two insights for the matching algorithm. First, new
matches only occur if a new situation starts or a situation ends. Second, only a subset
of the situations in a pattern P can produce a match at a point in tpmin(P). Thus, the
matching process is delayed until a situation with at least one endpoint in tpmin(P)
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(a) (b)

(c)

Fig. 4 Earliest detection time (tpmin(P)) of different temporal configurations for the sample pattern P

occurs without affecting the latency. We call those situations trigger situations since
only they trigger a performMatch call. These insights affect our algorithms in the fol-
lowing ways. Situations must be available for matching from their start. This requires
an adjustment of the deriver component. Additionally, we need to determine for each
situation stream if the derived situations are trigger situations. For trigger situations
the algorithm computes the point in time to execute performMatch (at its start, end or
both).

In contrast to our algorithms so far, the following two cases must be considered dur-
ing the matching process in order ensure the correctness of the produced results while
delivering them as early as possible. First, unique results were ensured by examining
a new situation on every invocation of performMatch (Algorithm 3). However, due to
the fact that for low latencymatching both endpoints of a situationmust be considered,
performMatch might be called twice with the same pre-set situation. Hence, additional
steps are required to guarantee unique results. Second, situations whose endpoint is
unknown always carry the current time as a temporary end timestamp. This affects the
matching of temporal relations that require both situations to end at the same point
in time (i.e. finishes, equals). If two ongoing situation are inspected by the
matcher they might fulfill the respective temporal relation even though their true end
timestamps differ, which in turn would lead to false positive matches. Note that other
relations are not affected by this phenomenon, since they require their end timestamps
to differ, which always evaluates to false for two ongoing situations.

We illustrate both cases using the following example pattern P on four situations:
(A, B, C, D):

A before B AND A before C AND A before D AND
C contains;finishes;meets D

It defines situation A as the starting point of every match. B is not explicitly related
to either C or D and is required to happen after A. Consequently, B is a trigger
situation and B.ts is in tpmin(P). For D, both D.ts (via meets) and D.te (via
contains,finishes) are in tpmin(P).

For temporal configurations as shown in Fig. 4a, the earliest point of detection forP
isD.ts. However, sinceD.te is in tpmin(P), the samematchwould be detected again
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Algorithm 4: Low-Latency MatcherUpdate
Input: S f , Ss : sets of finished/started, t : current time

1 purgeBuffers(t);
2 foreach s ∈ Ss do
3 startedBuffer.add(s);
4 (C, B, next Step) ← getEvaluationOrder(s);
5 if matchOnStart(s) then
6 performMatch( {s}, 0 );
7 U ← getUnrelatedStarted(s);
8 foreach u ∈ powerset(U ) \ ∅ do
9 performMatch( u ∪ {s} , (C, B, next Step) );

10 foreach s ∈ S f do
11 startedBuffer.remove(s);
12 addToBuffer(s);
13 if matchOnEnd(s) then
14 (C, B, next Step) ← getEvaluationOrder(s);
15 R ← getRelatedStarted(s);
16 foreach r ∈ powerset(R) \ ∅ do
17 performMatch( r ∪ {s} , (C, B, next Step) );
18 U ← getUnrelatedStarted(s);
19 foreach u ∈ powerset(U ) \ ∅ do
20 performMatch( r ∪ u ∪ {s} , (C, B, next Step) );

at D.te. Figure 4b showcases the false positive detection if validating C finishes
D would succeed at B.te. Finally, Fig. 4c illustrates that two ongoing situations like
B and C contribute to the match even if they are not explicitly related via a temporal
constraint.

6.3.3 Low-latency matching algorithm

Instead of handling the above cases explicitly, our low latency algorithm avoids them
by ensuring a unique combination of situations in the working-set, before passing it
to the matching algorithm. In particular, this means started situations are managed in
a separate buffer, inaccessible for the matching algorithm, and all valid combinations
among them (i.e., all combinations of started situations, not explicitly related to the
current one) are built upfront inside the working-set. Furthermore, to avoid duplicate
results, the following fact is exploited: temporal relations enforcing matching on a
situation’s start require the second situation to be finished in the past. On the other
hand, temporal relations triggering matching on a situation’s end require the second
situation to be either started (and not yet finished) or finished at the same time (cf.
Table 2). Consequently, manually adding the started counterpart to the working-set,
before executing the matching algorithm on a situation’s end ensures uniqueness of
the produced results.

The details are presented in Algorithm 4. After purging outdated situations from
the buffers (Line 1), each started situation (s) is added to an additional buffer and
if s.ts ∈ tpmin(P), the algorithm performs a regular match with s being the only
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constant in theworking-set (Lines 2–5). Furthermore, if there are started and unrelated
situations, we performmatches with s and each combination of them (Lines 7–9). This
accounts for configurations as seen in Fig. 4a. All finished situations aremigrated from
the separate to the regular buffer (Lines 10–12) and if s.te ∈ tpmin(P), the matching
process is triggered (Lines 13, 14). This time with combinations of s and all started
and related situations (Lines 15–17), further combined with all started and unrelated
situations (Lines 18–20), which fuses the avoidance of duplicate results and false
positives. An example for this case is shown in Fig. 4c. Note that, the actual constraint-
checking among the created combinations is performed by the call to performMatch
(Algorithm 3), since it is aware of pre-set situations in the working-set. As we will
show in Sect. 8, the extensive building of combinations has only minimal impact on
the runtime-performance, because it shifts load from joining to the update algorithm
and does not introduce additional computation steps.
Duration constraints Only a few modifications are required to incorporate duration
constraints on situations into low latency-matching. First, if a maximum duration
constraint is defined (regardless of a possibly specified minimum duration), the cor-
responding situation must not be included in the matching process until its end is
known—and the constraint is fulfilled. Hence, these situations are excluded from the
set of started situations (Ss) and if their start timestamp is in tpmin(P), matching is
deferred to their end timestamp. Second, if a minimum but no maximum duration is
defined, the inclusion into the set of started situations is deferred until the constraint
is satisfied. This possibly implies the inclusion of its deferred start timestamp (ts)
into tpmin(P). As an example, consider the pattern A during B and the following
order of timestamps: B.ts < A.ts < A.te < B.ts < B.te. This match can not be
detected at A.te, because B’s duration does not exceed the lower bound at this point.
Hence B.ts requires a matcher invocation.
Prefix groups To handle prefix groups the restriction that two started and explicitly
related situations must not be matched is relaxed. That is, matching is performed if
the corresponding temporal constraint contains one or more prefix groups. However,
for still being able to omit false positives, the matcher must distinguish between prefix
group and regular detection. In our algorithm this means splitting the temporal con-
straint into two disjoint sets, one containing all temporal relations forming a prefix
group and another one for the remaining relations. The first set is used when matching
on a situation’s start while the second is used on its end.

6.4 Computing the evaluation order

The matcher component maps the problem of temporal pattern matching to a multi-
way join between situation buffers. Like multi-join processing in traditional relational
database systems, the performance of joining heavily depends on the order inwhich the
join operations are executed. In this section, we discuss how the matcher’s evaluation
order is computed and present the cost-model used during this process.

Analogous to classical join processing our optimizer enumerates possible execution
plans, computes their expected computational costs and determines the plan with
minimum cost. We do not provide multiple implementations of the join operator,
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Table 3 Initial estimates for the selectivity of temporal relations

Relation Before During Overlaps Starts, finishes, meets Equal

Selectivity 0.445 0.03 0.01 0.0049 0.0006

Mirror relations are equivalent

so that enumerating possible plans reduces to the enumeration of possible evaluation
orders. To further reduce the number of plans to consider, we exclude orderings joining
a situation buffer without an applicable temporal constraint. In other words: Plans
involving the calculation of a cross product are omitted.

According to Eq. 2, estimating the costs for a given plan boils down to estimating
the size of intermediate results:

|Ri | :=
{

|B1| if i = 1

|Ri−1| · |Bi | · si otherwise
(3)

si denotes the selectivity of the applicable temporal constraints in step i (Ci ), which
can be composed from the selectivities of the contained temporal relations as follows:

si :=
∏

C∈Ci

(
∑

R∈C

sR

)

(4)

When a query is initially deployed into the system, the situation buffers are empty
and we have no estimation on the selectivity of the temporal constraints. Hence,
we initially assume the selectivities depicted in Table 3. These values are backed
by the following back-of-the-envelope calculation: The combined selectivity of all
possible relations should be 100%.Assuming equal sized buffers and an equal temporal
distribution of the situations, the selectivity of a before relation will be around 50%.
For during, the number of results is limited by the maximum of both buffer sizes,
because a situation A can happen during at most one other situation (B), but B may
contain multiple A situations. All other temporal relations define a 1:1 relationship,
which limits the worst case to the minimum of both buffer sizes. As seen in Table 3,
we additionally separate the last case by the number of stated equalities. Note that
even though this is an initial estimate, the resulting plans prove to work well in most
cases (cf. Sect. 8.4.2).

6.4.1 Adaptivity

Once a query is deployed in a CEP-system, it is typically active for a long time. Hence,
more important than the quality of an initial execution plan is the ability to tune this
plan and adapt it to changing workloads. To do so, we keep track of the buffer sizes and
selectivities imposed by temporal constraints during execution. The buffer-sizes are
available at any point in time and at no cost, since they are tracked by the underlying
data structure. However, to smooth out (potential) spikes, we monitor the buffer size
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using an exponential moving average, which is adjusted after each call to thematcher’s
update method as follows:

E M Ai = α ∗ |Bi | + (1 − α) ∗ E M Ai−1

E M Ai holds after the i th update. |Bi | denotes the size of the considered buffer at
update i and the smoothing factor α ∈ (0, 1) determines how much weight is given
to previous values. For example, a value close to 1 assigns almost no weight to older
values, while a value close to 0 decreases the influence of new values. The selectivities
of the temporal constraints are also managed with EMAs using one EMA value per
constraint.

To check if a re-computation of the evaluation order is required, the active plan
stores a snapshot of the statistics it is based on. After each update, we compare them
to the current values and if any of them differs by more than the defined threshold (t),
we trigger a re-computation.

Finally, if a migration is required, we are able to migrate to the new plan between
any two invocations of the matcher component. Because the matcher does not store
any intermediate results, but solely relies on the situation buffers this switch comes
without any additional migration costs. As we will show in Sect. 8.4.2, the total costs
for adaptivity are negligible.

7 Parallel TPStream

The goal of this section is to present a parallel version ofTPStream to improve through-
put by leveraging the parallel processing power of today’smulticore systems. This goal
should be achievedwithout any latency degradation. The nature of TPStreammakes its
parallelization a non-trivial task for the following two reasons: First, TPStream works
with continuous sequences of situations derived from continuously incoming events.
To identify a pattern P , either a thread must process each event in a sequence that
leads to the detection of P , or this knowledge must be exchanged among the threads
involved. Second, a key component of TPStream to achieve low latency is its situation
buffer. However, in a parallel version, the effort involved in synchronizing the accesses
of different threads to the buffer can become a serious performance bottleneck.

In the following, the most important concepts for introducing parallelism for
TPStream are presented. We start with the static integration of TPStream into the
application context from which the event streams come and to which the results of
continuous pattern queries are sent. We then develop two multi-threaded versions of
the TPStream query processing algorithm. The first version is applicable when the
input stream is partitioned with one or more attributes of the incoming events, while
the second version applies to non-partitioned input streams. Parallelizing the latter case
is more difficult and requires a finely tuned processing pipeline, which we describe in
detail in separate subsections. Next, we address the problem of the fluctuating behavior
of event streams (e.g., changes in data rates) and present an auto-tuning component
that overcomes the limitations of our static approaches presented so far. At the end of
this section we present an extension of parallel TPStream for a distributed streaming
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environment and show how TPStream can be integrated into a distributed streaming
platform.

7.1 Integration with application context

Before we go into the details of parallel processing, we discuss the import of event
streams and the export of result streams. To exploit parallelism, the processing threads
must be decoupled from both the (external) event producers and the result consumers.

For the decoupling from event producers, we deploy queues on the thread bound-
aries in which the producer is writing events while processors are reading from the
queues. Because the synchronization of producer and processors introduces a reason-
able overhead, we decided to access the queues in event-batches of fixed size rather
than single events. The batch size is initially constant, but the auto-tuning component
(see details in Sect. 7.4) can adjust it if changes occur in the application context and
system load. Furthermore, the size of a queue is constant per active thread, resulting
in a stable and predictable memory footprint. In our experiments we found that the
capacity of a queue should be 216 events per active thread. An overload is propagated
upstream via backpressure allowing for countermeasures on the producer side (e.g.,
writing events into logs). In general, the goal is to set the batch size in a way that min-
imizes the waiting time on both, the producer and consumer side. We experimentally
examined various settings and found that a batch should be a power of two, at least 32
and at most 215 (i.e. half of the number of events in a queue). In the extreme case of
two batches, the producer is writing in its batch, while a processor is reading from the
other batch. Depending on the parallelization approach, we either use a shared queue
for all threads or a dedicated queue per thread. In the second case, each queue stores
up to 216/batchsi ze batches.

Additionally, the processing threads need to be decoupled from the result con-
sumers. In particular, we have to treat out-of-order results which are likely to occur
during parallel processing. Consider for example the following (simplified) scenario of
two processing threads (t1; t2) that process two consecutive event-batches (b1; b2) in
parallel. Because all events in b1 have a smaller timestamp than events in b2, the results
of t2 will have a timestamp greater than those of t1. However, if t2 finishes before t1 and
the results of t2 are sent downstream before the results of t1, the (merged) result stream
does not have a monotonically increasing time order. A naïve solution to this problem
is to wait for a result from every processing thread and only forward the result with
the smallest timestamp at a time. However, this may lead to unpredictable delays and
block all processing threads if one of them is not producing any results. Therefore, we
use a K -slack [9] working as follows: Results are collected in a min-heap of fixed size
(K events). The first K events are simply stored in the heap. From event K +1 on, the
new result is put into the heap and the top of the heap (i.e., the event with the smallest
timestamp) is removed and sent downstream. This method ensures that threads are not
blocked during result propagation at the expense of potential out-of-order results. If a
result with a timestamp smaller than the top of the heap arrives, we are unable to decide
whether it is out-of-order or not. However, depending on the downstream operators
we can decide to either publish it because it can be handled or discard it and report
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Fig. 5 Overview partition parallel TPStream

a warning. The probability of this case to occur depends on the parameter K which
needs to be chosen depending on the (latency) demands of the concrete application
scenario.

7.2 Partitioned data

TPStream’s query language features a PARTITION BY clause (cf. Sect. 4), which
allows to divide the input stream into several logical partitions. Those partitions are
evaluated independently by applying the TPStream operator on each of the partitions.
For example, in the aggressive drivers query, each car has to be analyzed separately.
This means the input stream has to be partitioned by car_id. Therefore, even in the
single threaded implementation, TPStream maintains a processing pipeline including
a dedicated matcher and deriver for every partition. Given this, parallel processing of a
partitioned stream is straightforward (cf. Fig. 5): Partitions are assigned to processing
threads in a round-robin fashion. Every processing thread has its own input queue,
which is fed with batches containing only the relevant events for this particular thread.
Therefore, the producer thread maintains a working-batch for each of the n processors
and assigns incoming events accordingly. Once the working-batch reaches the con-
figured batch size, it is put into the corresponding queue and a new working-batch is
started by the producer. The working threads consume the batches from their assigned
queues and process them event-by-event analogous to the single-threaded case. The
only difference here is the output-handling: Instead of sending results downstream
directly, they go through the K -slack deployed at the end of the pipeline.

To illustrate partition parallel processing, consider the following event trace:

< e1[t = 1, p = 1], e2[t = 2, p = 2], e3[t = 3, p = 3], e4[t = 4, p = 2],
e5[t = 5, p = 4], e6[t = 6, p = 1], e7[t = 7, p = 3], e8[t = 8, p = 4] >

It consists of eight events, each with a timestamp t and a partition attribute p. The
four logical partitions are handled by two processing threads and a batch-size of four
events, resulting in two batches created by the producer: b1 = (e1, e3, e6, e7) and
b2 = (e2, e4, e5, e8). b1 is assigned to the first and b2 to the second processing thread.
In turn, each of them maintain two TPStream instances, one per assigned partition.
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Fig. 6 Overview: parallel processing of unpartitioned data

The processing threads then route the events of their batches to the corresponding
partition and process them like in the single threaded case.

7.3 Unpartitioned data

In the following, we consider the case that all processing threads need to work
cooperatively on all of the input data. This occurs if there is no PARTITION BY
clause. Figure 6 gives a brief overview of how unpartitioned data is processed by mul-
tiple threads. Similar to partition-based processing, the incoming events are collected
into batches of fixed size. The difference here is that there exists one shared queue
serving all processing threads. Thus, the producer simply has to slice the incoming
event stream into fixed size batches by maintaining a single working-batch instead of
multiple ones. Every processing thread handles one event batch at a time, each passing
three phases: deriving, synchronization and matching, whereby the second phase is
the only synchronization point between the processor threads.

In the first phase, situations are generated by applying the derivers to the current
event batch. Phase two first analyzes the situations derived from the previous batch and
merges situations spanning the batch boundary. Then, the situation buffers are updated
by inserting new and purging outdated situations. Finally, phase three performs the
actual pattern matching. In order to avoid duplicate results across threads, we require
that at least one situationof the current batch is part of a successfulmatch (c.f. Sect. 6.2).
As in the partitioned case, we employ a K -slack to produce an ordered result stream.

Before detailing each of these phases, we illustrate this method with another exam-
ple. Consider TPStream with two situation definitions (A,B), a batch size of four
events, two processing threads (t1, t2) and the following event trace of eight events:

< e1[t = 1], . . . , e8[t = 8] >

The producer generates two batches b1 = (e1, . . . , e4) and b2 = (e5, . . . , e8). Let
thread t1 processes b1 and t2 processes b2 in parallel. Let us assume that both of them
finish the deriving phase at the same time returning the following situation batches:

sb1 = {A1 = [2, 4), B1 = [4, 5)}
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sb2 = {A2 = [7, 8), B2 = [5, 6)}

For the ease of presentation, derived situations are represented by their validity inter-
vals only. At phase two, execution is synchronized, because TPStream relies on the
temporal ordering in the situation buffers. Hence, t1 is permitted first because all situ-
ations in sb1 happen before the situations in sb2. While A1 can be added to the buffer
directly, B1 is a cross-batch candidate: the last valid timestamp of B1 is equal the
timestamp of e4—the last event in b1. Thus, it is possible that the situation continues
with the next batch and is put aside for further checking. Then, outdated situations are
removed from the buffers and t1 moves on to the third phase. Next, t2 enters phase
two and adds A2 to the buffer. It then checks the set-aside B1 and merges it with B2
because B2 starts with the first event of b2, and hence the situation would span e4 and
e5 in sequential processing. After buffering the merged situation B1,2 = [4, 6) and
purging outdated situations, t2 continues with phase three.

Note that when removing outdated situations from the buffers, care must be taken
not to remove situations which might be used by other threads in phase three. We
detail how this is done in Sect. 7.3.2. In the following, we describe the three phases
in detail and show how the synchronization overhead between processing threads can
be kept at a minimum.

7.3.1 Deriving

In the deriving phase, a processing thread fetches an event batch from the shared
queue and applies all derivers to the events of that batch (cf. Algorithm 1). The result-
ing situations are stored in a so-called situation batch. Besides derived situations, a
situation batch carries a sequence number, a head and a tail information. The sequence
number is required to update the situation buffers (i.e., maintain the temporal order-
ing of situation streams). It is assigned to every batch during creation. The head and
tail information is required to merge situations spanning more than one batch. They
contain all ongoing/partial situations after evaluating the first and the last event of the
current batch respectively.

7.3.2 Synchronization

After a processing thread creates a situation batch, it enters the synchronization phase.
As mentioned above, the execution gets serialized at this point to guarantee the tem-
poral ordering among situation buffers. To enforce the correct execution order among
all threads, we use the batch’s sequence number: A processing thread holding a batch
s may only enter this phase, if the thread responsible for batch (s − 1) moved on to
phase three.

Once entered, the following steps are executed in this phase. At first, batch-crossing
situations from the previous batch are merged. Algorithm 5 shows the details of situa-
tionmerging.We loop over all situation definitions and have to consider three different
cases: (i) If the tail of the previous batch does not contain a partial situation, nothing
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Algorithm 5: MergeSituations
Input: previous:SituationBatch, current:SituationBatch
Data: D := [

(φ, γ, τ )i
]
: situation definitions

1 newU pdate ← ∅;
2 foreach i ∈ |D| do
3 if previous.tail[i] = ∅ then
4 continue;

5 else if current .head[i] = ∅ then
6 previous.tail[i].end = current .head.t imestamp;
7 newU pdate ← newU pdate ∪ {previous.tail[i]};
8 else
9 merged ← f alse;

10 foreach update ∈ current .updates do
11 if update[i] �= ∅ then
12 merge(update[i], previous.tail[i]);
13 merged ← true;

14 if ¬merged then
15 merge(current .tail[i], previous.tail[i]);

16 if newU pdate �= ∅ then
17 current .addU pdate(newU pdate);

needs to be done (lines 2–4). (ii) If there was a situation ongoing in the previous batch,
but we have no information in the head of the current batch, this situation ended with
the first event of the current batch. In this case, we only set the correct end timestamp
and add it to a new situation update (lines 5–7). At the end of merging, this new update
is added to the batch (lines 16, 17). (iii) If we have information in the previous tail and
the current head, this situation ends either within the current batch or in a future batch.
To handle this case, we loop the situation updates of this batch and if we find a match-
ing situation, they are merged, i.e., the aggregates of both situations are merged and
the timestamps are adjusted. If no appropriate update is found, the situation covers the
whole batch and ends within a future batch. In this case, we transfer the information
from the previous tail to the current tail. After the merging is completed, the situations
are added to the corresponding buffers in proper order.

Finally, outdated events are purged from the buffers as follows. We compute the
minimum timestamp of situations that are relevant (i.e., may participate in a successful
match of any active thread) by subtracting the defined window-size from the smallest
timestamp found in the current situation batch. Every processing thread maintains
an instance of this timestamp and the global minimum across all threads is used for
removing outdated situations.

7.3.3 Matching

The matching process works similar to the single threaded version, but instead of
processing a single situation update at a time, all updates of a batch are processed.
However, there are two challenges here: First, threads must be able to execute the
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matching phase while another thread is in the synchronization phase, resulting in
concurrent buffer reads and writes. Second, in contrast to the single-threaded version
the cleanup process for the buffer has to consider the state of all working threads.

We solve the first challenge with a specialized buffer implementation. As stated
in Sect. 6.2, the situation buffers are array-backed ring buffers. These buffers store
data in an array of fixed size and manage two indexes. One points to the next write
slot (w_idx) and the other one to the first element of the buffer (r_idx). Instead of
relying on the physical addresses in an array that may shrink/grow/loop around, we
introduce logical addresses such that add operations increase w_idx and clean-up
operations also increase r_idx. Consequently, the following invariants hold at any
time:

1. r_idx ≤ w_idx
2. w_idx − r_idx ≤ size

It is easy to see that all valid data can be found between r_idx and w_idx, that
references remain valid even if the buffer is modified (as long as they still fall into this
range) and that the physical array indexes for accessing the situations can be obtained
by a simple modulo computation. Processing threads working on a situation batch can
now receive a logical address range, thus alleviating problems with concurrent buffer
reads and writes. In Fig. 7 we illustrate this with an example: The physical array has
10 addresses, while the logical addresses continue to grow to 28. Each thread has a
range of logical addresses it currently works on.

The second challenge is solved by a slightly modified variant of the range-query
on the buffers (cf. Sect. 6.2): During the synchronization phase, the processing thread
retrieves two index values for every buffer. The first one is the upper bound of relevant
situations. It starts at the current w_idx when no situation of the batch was added
to it and is incremented with each situation of the current batch. The second one is
the lower bound of relevant situations which corresponds the timestamp computed for
purging outdated situations.

Those indexes are used to restrict the range-queries appropriately and prevent other
threads from removing required data from the buffers. To minimize synchronization,
each thread records this lower bound at the buffer through the range query at the start

Fig. 7 Example of the buffer implementation
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Table 4 Overview of parameters and sensors for the auto-tune component

Name Description

Parameters

Rsched The scheduling rate of the auto-tune component

Rbatch The target batch rate in batches/second

T hreadsmax The maximum number of threads to use

β Factor for over-provisioning the number of threads

Sensors

Rin The input event rate

BC The current batch size

Tproc The processing time of a single event batch (of size BC )
without the time required to deque event batches

Twait The time spent on waiting to enter the synchronization
phase (unpartitioned approach only)

Tsync The time spent in the synchronization-phase, without
the wait time to enter it (unpartitioned approach only)

Tbu f The time spent updating the situation buffers during the
synchronization phase (unpartitioned approach only).
We have: Tbu f ⊆ Tsync

Results

BT The target batch-size, i.e. the new batch-size after
auto-tuning

T ∗
proc The predicted processing time based on BT

T ∗
sync The predicted synchronization time based on BT

T hreads The target number of threads, i.e. the number of threads
after auto-tuning

of a batch once. The current processing thread can purge all situations older than the
globally lowest bound. For example, in Fig. 7, the lowest address in use by threads t1,
t2 and t3 is 23. Thus, everything below or equal to 22 can be purged.

7.4 Auto-tuning

In a streaming scenario with fluctuating data rates, a fixed batch size and a fixed
number of processing threads is not an option. When using large values, high through-
put can be achieved and peak loads are handled gracefully. However, latency suffers
because event batches take some time to be filled. Furthermore, resources are wasted,
because the processing threads are starving. On the other hand, small batch sizes and
few processing threads generate low latency results in times of moderate event rates,
but lead to congestion when the load increases. We developed an auto-tuning com-
ponent, which continuously monitors the workload and automatically tunes the batch
size and number of threads such that the current load can be handled with the lowest
latency and lowest resource consumption possible. In the following, we first describe
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the approach for partitioned data. Then, we discuss the necessary adjustments to the
approach for the unpartitioned case.

Independent of the parallelization approach, the auto-tuning component uses a small
set of parameters and sensors, which we briefly describe upfront (a full overview is
given in Table 4). Note that all sensors exclude times for thread synchronization, as
they are unpredictable and our model relies on predicting processing times. Instead,
the model handles them implicitly.

Tuning is scheduled at a fixed rate (Rsched ). The sensors maintain average values
of their respective measures and are reset after every auto-tuning execution. Rin is the
input event rate, measured in events per second, BC the currently used batch size and
Tproc is the time required to process a batch of BC events. T hreadsmax is themaximum
number of processing threads that may be used for computation and Rbatch describes
the target batch rate. With Rbatch , we control the number of batches that should be
created per second, effectively limiting the synchronization overhead introduced by
en- and dequeuing event batches into/out of the queues. With the input rate and the
target batch rate, the system is able to compute the target batch size BT as follows:

BT = argmin
b∈B

(∣
∣
∣
∣Rbatch − Rin

b

∣
∣
∣
∣

)

That is, we choose BT from a set of batch sizes (B), such that the resulting batch rate is
as close as possible to Rbatch . We define this set as B = {32, 64, . . . , 32768}. Powers
of two have the following advantages: (i) The number of possible values is small, (ii)
tiny to huge batches are possible and (iii) it allows fine grained adjustments for smaller
batch sizes.

Then, we predict the processing time per batch when using BT as the batch size
and based on this computation the optimal number of threads to use. The predicted
processing time (T ∗

proc) increases linearly with the batch size, because i) deriving
situations causes constant costs per event and ii) when assuming that the number of
derived situations is increasing linearly with the number of events, the number of
matcher invocations also increases linearly. Hence, T ∗

proc can be predicted as follows:

T ∗
proc = Tproc · BT

BC

We then use T ∗
proc to compute the number of threads required:

T hreads = min

(⌈
Rin

BT
· T ∗

proc · β

⌉

, T hreadsmax

)

Essentially, this is the estimated number of batches per second times the estimated
processing time per batch, rounded up. We additionally use the parameter β to over-
provision the number threads and leave some space for queue operations.

123



394 Distributed and Parallel Databases (2021) 39:361–412

7.4.1 Handling of skewed input

Typically, the number of events to process varies among partitions. Assuming that
the number of partitions is much larger than the number of processing threads, the
proposed round-robin strategy achieves a good load-balancing between threads in
most cases. However, in case of heavily skewed data, this might not be sufficient to
balance the load between threads. Consider for example two threads (t1, t2) and four
partitions with varying event rates (p1, . . . , p4). p1 and p3 receive 106 events/s while
p2 and p4 receive only 1000 event/s. According to the round-robin strategy, p1 and
p3 are assigned to t1, while p2 and p3 are assigned to t2. Obviously, t2 will be idle
most of the time, while t1 is overloaded.

To solve this problem, the auto-tuning component continuouslymonitors the current
load per thread and migrates partitions from overloaded threads to idle threads. In the
following, we describe how the load is monitored and when a migration is triggered.
As stated in Sect. 7.2 the producer thread creates batches of events and assigns them
to worker threads according to the current partitioning scheme. During this process,
additional statistics are collected. Namely, the total number of batches created (n) and
for each active thread (ti ) the batches assigned to it (nti ). With m being the number
of active threads an optimally balanced system would yield nti = n

m ,∀i ∈ [1, m].
In real world scenarios, an optimal distribution can barely be achieved. However,
a distribution within a 10% range around the optimum is achievable leading to the
following condition for partition migration:

∃i ∈ [1, m] : n

10 · m
≤
∣
∣
∣nti − n

m

∣
∣
∣

Note that, migration is considered only, if the auto-tuning component did not decide
to change the number of threads, since this changes the partition assignment anyway.

7.4.2 Adjustments of unpartitioned data

In case of unpartitioned data, the measured processing time Tproc contains the time
spent waiting to enter the synchronization phase (Twait ), which we need to ignore
to obtain a reliable prediction of T ∗

proc. Furthermore, the computation time of the
synchronization phase does not scale linearly with number of processed events for the
following reason. While updating the situation buffers (Tbu f ) is linear in the number
of events, the time for merging partial situations and cleaning the buffers are constant.
This is because their complexity depends on the defined number of situation streams
and the window size respectively, and thus are independent of the batch size. That
being said, we can compute T ∗

proc for unpartitioned data as follows:

T ∗
proc =

(
Tbu f + Tproc − (

Twait + Tsync
)

︸ ︷︷ ︸
Time phases 1&2

)
· BT

BC
+ (

Tsync − Tbu f
)

︸ ︷︷ ︸
Sync. phase constant part

Furthermore, we need to assure that the processing threads are not blocking each
other when entering the synchronization phase. To achieve this, we compute the
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expected processing time for the synchronization phase T ∗
sync:

T ∗
sync = (

Tsync − Tbu f
) + Tbu f · Rin

BT

Since every thread needs to execute the synchronization phase once per event batch,
T ∗

proc should be larger than (T hreads − 1) ·T ∗
sync, so that all remaining threads could

theoretically execute the synchronization phase while the current thread is processing
phases 1 and 3. We experimentally determined that if this ratio is greater than 2, we
encounter almost no wait times. Consequently, we scale up the batch size until the
following inequation holds:

T ∗
proc

T ∗
sync

≥ 2 · (T hreads − 1)

Since upscaling the batch size does not change the required number of threads to
manage the incoming load, the auto-tuning component can apply the computed values
without touching the previously computed required number of threads.

7.5 Distributed TPStream

The techniques for partitioned and unpartitioned data can in general also be applied
in a distributed computing environment. We base our discussion of these adjustments
on the architecture of Apache Kafka,2 because most streaming applications usually
receive their data through some sort of a message queue and perform computation in
a shared-nothing cluster. By integrating our work into a full fledged framework like
Kafka, we can use its fault tolerance and load distribution features and adjust them
towards optimizing TPStream.

At its core Apache Kafka is a distributed log allowing both producers to write into
and consumers to read from the log. Messages can be sent to a topic and topics are
divided into partitions. Each topic partition is stored in a separate commit log on a
Kafka broker, which is essentially one process in a cluster designated for managing
input and output of a partition. In general, Kafka stores an offset for each consumer,
i.e., consumers work and commit their offset to the log independently of each other.
To allow multiple consumers to work on a single task in parallel, they have to be
configured into a consumer group. The unit for parallel computations in Kafka are the
partitions of a topic. Therefore, each partition in a topic will be processed by exactly
one consumer until a failure or load balancing issues reschedule the partition to another
consumer of the same group.

Redistribution of data between consumers, such as exchanging situations between
deriving and matching, are performed through additional topics, incurring overhead
through writing to additional topic logs and through transporting data over the net-
work. Therefore and due to not being able to rely on the highly optimized ring buffer

2 https://kafka.apache.org/.
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implementation of TPStream in all stages of the processing, some adjustments are
necessary when applying the techniques described above in a Kafka cluster.

The partitioned data approach naturally translates into aKafka architecture, because
incoming events can be partitioned based on the PARTITION BY clause into p par-
titions. In a cluster with c consumer nodes, the input stream of TPStream is configured
as a topic with pK a f ka = min(c, p) partitions. If there are more logical partitions then
physical processing nodes, we choose the lower number since each partition is a sepa-
rate log file, thus incurring additional file system overhead. A group of pK a f ka Kafka
Streams consumer applications executes the TPStream operator utilizing exactly once
processing semantic. Results of each partition are written into a single, separate result
topic monitored by single consumer implementing the K -slack operation.

For unpartitioned data, we adjust the batching and merging phase. We divide the
input topic into c topic partitions and distribute event batches to those partitions, effec-
tively writing in a broker’s log. This replaces the manual batching and queue logic of
our singlemachine approach. Deriving situation batches in parallel is achieved through
a Kafka Streams consumer group which writes the resulting situation batches into a
single result topic of unsorted runs. Unlike in a single machine approach, matching is
done by one Kafka consumer rather than the same deriving thread, because synchro-
nization of sequence numbers and merging those batches produces a larger overhead
in a network environment. Due to this, we can perform a K -slack operation on the
sequence numbers before the matching process to further improve processing speed.

So far, our single machine solutions have been mostly data parallel. Due to the
modifications for a cluster environment, the strategies can be plugged into a variety
of existing research. The second approach in particular uses typical pipeline parallel
patterns since the matcher is an independent process waiting for the input of the
deriver. This opens the gate to adjust the work for GPU architectures like for traditional
pattern matching as described by Cugola andMargara [14]. It is easy to see that due to
persisting intermediate results into Kafka topics, it is also straightforward to adapt task
parallel solutions of sharing sub-patterns [44], since multiple matchers with shared
situation definitions can work with the same Kafka topic.

8 Experimental evaluation

In this section, we present the results from our experimental evaluation of TPStream.3

First, we study TPStream’s evaluation performance in comparison to ISEQ and point
based CEP systems. Then, we analyze the latency improvement of our approach in
comparison to ISEQ. After proving the validity of our optimization techniques, we
finally evaluate our parallel approaches.

8.1 Setup

All single machine experiments were conducted on a workstation equipped with an
AMD Ryzen7 2700X CPU (8 cores, 16 threads) and 16GB of memory, running an

3 Datasets and source code available at http://uni-marburg.de/oaCPk.
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Ubuntu Linux (18.04, kernel version 4.16). The results presented for each experiment
are averaged values froma total of 10 runs,whereby every runwas preceded by awarm-
up phase of evaluating at least 100,000 events before the start of the measurements.

Themain goal of this section is to compare TPStream’s processing performance and
our low latency approach to the state-of-the art solution for temporal pattern matching
(ISEQ). There is no publicly available implementation of ISEQ, so we implemented it
based on the available description in Li et al. [37]. As required by the design of ISEQ,
the input consists of interval streams ordered by endpoint. These streams are again
generated with our deriver component.

In order to provide a comparison with point based systems, we also included CEP-
solutions from the open-source community (Esper4 6.0.1) and academia (SASE+5),
when applicable. While Esper is a production ready CEP system, highly optimized
for efficient query execution, SASE+ is one of the most popular CEP languages in the
research community and served as foundation for the ISEQ operator. The rich query
language of Esper allowed us to express both strawman’s approaches as sketched in the
introduction. We refer to the first approach (two phase pattern matching) with Esper-1
and the low latency approach is denoted as Esper-2. Because the SASE+ implemen-
tation does not feature chaining of queries, we only implemented the low-latency
approach. TPStream and all its competitors are implemented in the Java programming
language, whereby TPStream and ISEQ are based on JEPC [32]—an event process-
ing middleware. We used Oracle JDK 1.8.0_181 to compile the systems and ran all
experiments on that JVM with 16 GB of heap space.

During the evaluation two data sources were used. The first source comprises trip
data generated with the Linear Road Benchmark [6]. Besides other attributes, each
event consists of a unique car id, its location, the current speed and acceleration. We
generated data simulating 5 h of traffic on a single expressway with 1000 active cars
per hour. Each active car reports its state every second, leading to 887 million events
(36 GB of data). The second source is a random event generator, tuned to pose high
load on the system. It generates event streams with a configurable number of boolean
attributes, each representing a single situation stream. The generated situations lasting
between 10 and 100 s, while the gaps between two consecutive situations span 10 to
50 s (both uniformly distributed). Events are generated with a frequency of 1 Hz, so
that for a situation lasting n seconds, the corresponding attribute’s value is true for
exactly n consecutive events.

Independent of the data-source and except for the parallel section, we used a sin-
gle thread for both, reading/generating the data and evaluating the query. For each
experiment, we measured the reading/generation time upfront and removed it from
the presented results. The most important parameters throughout all experiments are
as follows:

Event rate: The rate (events/s) with which events are pushed into the systems.
Window size: The size of the time window (seconds) during which a pattern must

occur completely.
Event count: The total number of events to process.

4 http://www.espertech.com.
5 https://github.com/haopeng/sase.
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8.2 Processing time

This set of experiments compares the processing performance of TPStream with its
competitors using various queries and parameter settings. The events were pushed into
the system at the maximum possible rate and we used the processing time as main
measure.

8.2.1 Aggressive drivers

We injected different fractions (1M to 100Mevents) of theLinearRoad dataset into the
system and executed the example query of Listing 1 (without duration constraints). The
thresholds for speeding, acceleration and deceleration were the 99th, 90th and 90th
percentiles for the speed and positive/negative acceleration values of a 50M event
sample respectively. Besides chaining of queries, the SASE+ implementation also
lacks support for disjunctions. Nevertheless, to include SASE+ in this experiment, we
also evaluated a simplified query version which restricts the used temporal relations
to meets and overlaps.

The results of this experiment are shown in Fig. 8 (a—simplified pattern, b—full
pattern). The x-axis shows the number of processed events, the processing time is
shown on the y-axis.TPStream and ISEQ are head to head and their processing times
increase linearly with the number of processed events. Further, they are insensitive
to alternatives, resulting in almost identical processing times for both query variants.
TPStream was not able to outperform ISEQ in this experiment, because in the given
pattern all situations overlap which in turn allows to break the buffer scan early.
However, TPStream reduced the detection latency (time between the start of first
situation and the detection time) up to 70% (13% on average) compared to ISEQ.

Esper benefits from the simplified version of the pattern, but its evaluation perfor-
mance is inferior to TPStream and ISEQ. Esper-1 (first derive then match) performs
worse than Esper-2 (low-latency, single pattern) in both cases. TPStream and ISEQ
are about 8 (simplified pattern) and 20 (full pattern) times faster. However, Esper-2
performs well on the simplified pattern and requires only twice the processing time of

(a) (b)

Fig. 8 Processing time for aggressive driver detection as a function of the input size: a simplified pattern,
b full pattern
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TPStream and ISEQ. When looking at the full pattern its performance drops (factor
4.3), since much more states must be maintained in the automaton. The performance
of SASE+ was similar to that of Esper-2.

8.2.2 Disconnected pattern

The second experiment compares processing time and memory consumption of the
systems using amore complex pattern : A starts B before C overlaps D.
The difference to the first experiment is that each A starts B sub-match may be
related to many B overlaps C sub-matches instead of contributing to at most one
match. Hence, we expected the processing time/memory consumption to depend on
the size of the configured time window. We injected 100 M synthetic events into the
systems and executed the query with window sizes varying from 500 s (8:20 min) to
100,000 s (slightly more than 1 day).

Figure 9 shows the processing timeof all systems as a function of thewindowsize. In
this experiment, TPStream is able to outperform ISEQ by more than a factor of 3 using
a window of 100,000 s. This is because ISEQ does not make use of the order on the
situations’ start timestamp and requires additional computational steps during result
construction and buffer pruning. SASE+ is not able to manage the many intermediate
automaton states efficiently and required approx. 5:20 h to finish this experiment with
the largest window size. Esper behaves similarly to the previous experiment, except
that Esper-2 was able to outperform ISEQ for 100,000 s windows.

To measure the average memory consumption, we monitored the used heap space
with a frequency of 20 Hz during each run and averaged these values. Here, ISEQ
requires by far the least memory 452–465 MB, independent of the window size.
TPStream’smemory consumptionbehaves similar forwindowsizes up to 10,000 (466–
507 MB), but increases for larger windows (up to 3.6 GB). This is because we create
more objects during the buffer search, which are not immediately garbage collected.
Esper uses around 4GB, independent of the window size and SASE+ consumes 3–11
GB of memory.

8.2.3 Query patterns

To give a comprehensive overview of TPStream’s processing performance, we eval-
uated 5 different query patterns and varied the number of situation streams from 4 to
10. Query-Patterns 1–3 (Equal, Meets, Chain) are of the form:

Qn = S1 ⊕1 S2 ∧ S2 ⊕2 S3 ∧ · · · ∧ Sn−1 ⊕n−1 Sn

Here, n denotes the number of situation streams and ⊕i the temporal relation con-
necting Si and Si+1. ⊕i is set to equals, meets and a randomly drawn temporal
relation for query patterns 1,2 and 3 respectively. For Query pattern 4 (Star), S1 is
connected with every other situation:

Qn = S1 ⊕1 S2 ∧ S1 ⊕2 S3 ∧ · · · ∧ S1 ⊕n−1 Sn
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Fig. 9 Processing time for
disconnected pattern detection
as a function of the window size

Fig. 10 Processing time for
various query patterns

Again, n denots the number of situation streams and ⊕i the temporal relation con-
necting Si and Si+1. Like for the Chain pattern ⊕i is a randomly drawn temporal
relation. Query 5 (Combined) combines the Chain and Star patterns by connecting
the first n/2 situations via the Chain pattern and the remaining situations according
to the Star pattern. Each query-type was executed 100 times, using 50 M synthetic
events and a window size of 2000 s.

The box plots in Fig. 10 provide the median as well as the 25th and 75th percentiles
of the processing time. For all query types, the median processing time increases
linearly with the number of situations. The generic Chain pattern incurs higher max-
imum values than Equal and Meets, because the possible temporal relations include
before, which is highly selective. This forces the matcher to build many partial
results—especially if three or more consecutive situations are in a before rela-
tionship. Star queries are more sensitive to the concrete pattern instance, because in
the worst case every situation triggers the matching process. This effect can also be
observed for the Combined pattern, but to a smaller degree, because only half of the
situations are connected via a Star pattern.

8.3 Low latency

This set of experiments compares the latency of our approach with the state-of-the art
solution for temporal pattern matching, ISEQ.
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Fig. 11 Relative detection
latency per temporal relation
compared to ISEQ

8.3.1 Application time

At first, we measure the latency improvement of TPStream compared to ISEQ in
terms of application time. We evaluated each temporal relation independently using
two synthetic situation streams (A,B). The average duration ratio was varied from 2:1
to 1:2, while A’s average duration was fixed at 55 s. The window size was set to 1000
s for all application time experiments.

Figure 11 reports the relative detection time of TPStream compared to ISEQ for
the tested temporal relations and duration ratios. We define the detection time as
td(P) − min(A.ts, B.ts). That is, the total time from the beginning of the first sit-
uation participating in the match until the time of detection. The results show that,
independent of the temporal relation, with increasing length of B-situations the latency
gain increases. This is because, the longer B becomes, the longer ISEQ has to wait for
its end timestamp. Among the temporal relations, before shows the smallest and
meets the largest latency improvements. However, in absolute numbers, both reduce
the detection time by the length of the B situation, since in both cases matches are
detected at B.ts. The difference is, that meets allows no gap between the situations
which restricts the detection time to the sumof both durations,whilebefore-matches
can span the entire window (1000 s in this case). For the remaining relations, the detec-
tion time is A.te and the average improvement depends on the concrete temporal
relation. In the worst case (during) this is B.duration/2. Note that, equals and
finishes were not included, because no latency improvements can be achieved.

8.3.2 Wall clock latency

We conducted two experiments, showing that TPStream’s processing techniques sig-
nificantly reduce the result latency in terms of wall clock time which is a critical
aspect in a streaming scenario. Therefore, we repeat the experiment from Sect. 8.2.2
twice: first, we measure the time passed between the arrival of the first event that
could produce a result and the receipt of that result. We varied the window size and
pushed events with the maximum possible rate. For the second experiment we fixed
the window size at 100,000 s and varied the event rate from 1 M to 1 events/s. This
time, we split the measured latency in (i) processing latency: the time passed between
arrival of the event that triggered the result and the actual receipt of that result and (ii)
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(a) (b)

Fig. 12 Comparison of result latency a under maximum possible throughput as a function of the window
size, b under varying event rates with a fixed size window

Fig. 13 Quality of the initial
plans for Q1–Q3

event latency: the time passed between arrival of the first event that could trigger the
result and the arrival of the event that actually triggered that result.

The results are shown in Fig. 12a, b. Both figures show the average latency per
result (y-axis, note the log-scale for b). While (a) shows, that TPStream’s evaluation
techniques provide latency savings through reduced processing time, (b) highlights
the savings achieved with our low-latency matcher. Especially when the rate is in sync
with application time (1 event/s), the event latency of ISEQ dominates the processing
latency and almost reaches the application time savings (approx. 35 s, cf. Fig. 11, 1:1,
overlaps), while TPStream introduces no event latency at all.

8.4 Plan quality and adaption

In this set of experiments, we evaluate the optimization techniques presented in
Sect. 6.4. Like in Sect. 8.2, events were pushed with the maximum possible rate.

8.4.1 Initial plan quality

To evaluate the quality of the generated initial plans, we used the following queries
on three situation streams: Q1: A overlaps B AND A overlaps C AND B
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Fig. 14 Throughput comparison:
dynamic plan adaption versus
best initial plans

starts C, Q2: A overlaps B AND A before C AND B overlaps C
andQ3: A before B AND A before C AND B before C. For each query,
we generated all six valid plans and measured the throughput (processed events/s) by
evaluating synthetic events with a window size of 5000 s.

Figure 13 shows the results for the best, worst and suggested plans and clearly
confirms our approach. For queries Q1 and Q2 the best plan was suggested. The
initial plan for Q3 was C → B → A even though the estimated costs for C → A → B
are the same. The experiments show, that C → A → B would have been a slightly
better choice, but the difference is negligible.

8.4.2 Dynamic plan adaption

To analyze the plan adaption capabilities of TPStream, we executed Q3 again and
processed 300 M events. The occurrence ratio of situations A,B and C changed from
1:1:1 to 1:50:50 after 100 M events and finally to 50:1:50 after 200 M events. The
window size, smoothing-factor (α) and threshold for plan migration (t) were set to
10,000 s, 0.01 and 0.2, respectively. Besides the adaptive implementation (Adaptive),
we ran the experimentwith both best initial plansC → B → A (Initial-1),C → A → B
(Initial-2), and an implementation, doing a hard coded switch to the best plan exactly
when the characteristics of the stream changes (Optimal).

Figure 14 shows the throughput for all four configurations and the three different
stream-characteristics: Initial-1 and Initial-2 both have drawbacks in either one of
the skewed phases, while our adaptive approach is very close to the optimal solution
(suffering slightly from dynamic adaption). However, the total runtime of Optimal
(33,959 ms) compared to Adaptive (34,106 ms) reveals only a negligible overhead of
147 ms (less than 1%) for plan adaption.

8.5 Parallel approaches

Finally, we evaluate the parallel approaches presented in Sect. 7. We first analyze
the speed-up achieved for partitioned and unpartitioned data, before we show the
efficiency of our adaptive variants. For each expirement, we used a dedicated producer
thread. This thread reads/generates the input events and pushes them into TPStream.
When processing the data, we varied the number of threads used and measured the
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resulting speedup compared to single threaded execution. Finally, we also evaluate
our distributed strategies using Apache Kafka.

8.5.1 Partition parallelism

To evaluate our approach for partitioned data, we re-use the query for detecting aggres-
sive drivers and partition it by the CAR_ID attribute. We read 50 M events from the
event file and push them into TPStream as fast as possible. We varied the number of
processing threads from 1 to 16, the batch size between 128, 1024, 8192 events and
measured the speed up compared to single threaded execution. The size of the input
queues was set according to Sect. 7.1, summing up to 2.5MiB per thread (40 bytes per
event). With a K -slack size of 20 events, we did not face out-of-order results in any of
the tested configurations. Further, we executed the experiment twice: once with events
regularly read from the data file and once with preloading the events into memory,
since we expected the disk I/O to become a bottleneck. In both cases, a dedicated
producer thread is responsible for ingesting events into TPStream. For the first case,
this thread is also responsible for the disk I/O.

Figure 15 shows the results for this experiment. The number of processing threads
is shown on the x-axis, the speed up on the y-axis. With events read from the data file,
TPStream scales nicely up to four threads, independent of the batch size (a). For more
processing threads, the producer thread becomes the bottleneck of the pipeline, since
it has to handle both, the disk I/O and the assignment of event batches to processing
threads. Consequently, larger batch sizes perform slightly better, because less batches
need to be assigned (i.e., less queue operations are needed). In case of preloaded data
(b), our approach scales nicely up to seven processing threads, because the producer is
not blocked due to I/O operations and can provide sufficient data to the input queues
of the workers. With eight processing threads, we expect a small dip, because the
CPU has eight physical cores and we use a dedicated producer thread. Afterwards,
hyper-threading comes into play.Withmore than eight processing threads, the speedup
achieved per thread reduces significantly. The batch size has no impact on the process-

(a) (b)

Fig. 15 Speed up compared to single-threadedmode for partition parallel execution of the aggressive drivers
query with with different batch sizes and a data loaded from file, b preloaded data
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ing performance here, since the producer is able to provide data sufficiently fast and
processing threads are completely independent. Note that due to this independence,
the window size also does not affect the achieved speed up.

8.5.2 Unpartitioned data

For this experiment, we reused the query from Sect. 8.2.2, because it’s computational
complexity increases with the configured window size. We ingested 100 M synthetic
events from our event generator using a separate producer thread. The number of pro-
cessing threads and the batch size was varied from 1 to 16 and between 128, 1024 and
8192 respectively. We executed the query using small (500), medium (5000, 20,000)
and large (100,000) windows and measured the speed up compared to single threaded
execution. The size of the input queues again was set according to Sect. 7.1, sum-
ming up to 2.5 MiB per thread (40 bytes per event). In this experiment, the number
of results is much higher than for the aggressive drivers query, because once a com-
bination that satisfies A starts B is found, almost all subsequent batches carry at
least one match of C overlaps D. Hence, they produce results until A starts
B leaves the window. This means, that the size of the K -slack depends on the batch-
and window-sizes as well as on the number of threads. For this experiment, we chose
the size as 2 · #threads · avg(rb). That is, twice the number of active threads times
the average number of results per batch (avg(rb)), resulting in an out-of-order rate of
less than 0.5%. As an example, the size was set to 600 events for a window-size of
100,000, a batch size of 1024 and eight threads.

Figure 16 shows the results for this experiment. In case of the small batch size
(128), Fig. 16a–c show a sudden drop at the respective tail end of each experiments.
This can be attributed to the batch size being too small, thus incurring congestion at
the synchronization phase. For the less complex queries with window sizes 500 and
5000, the producer thread can hardly saturate 4/6 threads. However, they show that
different from the partition-based parallel approach, the performance depends on the
configured batch size: The lower the computational complexity (i.e., the smaller the
window size), the larger is the required batch size for scaling. This is because, with
smaller complexity, the time spent in the matching phase (i.e., the time of independent
processing) reduces, and thus the possibility of contention in the sync-phase rises.
For the more complex queries, our approach is able to take advantage of all available
resource and utilizes all available threads.

Furthermore, Fig. 17 shows the relative time spent in the different phases (y-axis)
for varying batch-sizes (128, 1024, 8192), processing threads (x-axis) and windows
of size 5000 (a) and 20,000 (b). In accordance with Fig. 16, the results confirm that a
sufficiently large batch size is essential for scaling. With the batch size being too small
(128), the synchronization phase quickly becomes a bottleneck, especially for small
windows. Additionally, this experiment showcases that the time spent in the matching
phase grows proportional to the configured window size.

8.5.3 Auto-tuning
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(a) (b)

(c) (d)

Fig. 16 Processing time for parallel disconnected pattern detection for varying batch and window sizes: a
500, b 5000, c 20,000, d 100,000

(a) (b)

Fig. 17 Relative processing times spent in the different phases of unpartitioned parallel processing for
varying batch and window sizes: a 5000, b 20,000
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Table 5 Specification of the queries executed for the auto-tuning experiment

id Query Parallel
approach

Data Window Initial
threads

Initial
batch size

a Aggr.
drivers

Partitioned Disk load 5 min 8 256

b Aggr.
drivers

Partitioned Preloaded 5 min 8 256

c Disconnected Unpartitioned Generated 20,000 s 8 256

d Disconnected Unpartitioned Generated 500 s 8 512

To prove the validity of our auto-tuning approach, we used the 4 scenarios found
in Table 5 and generated a changing workload with the following progression: 100 M
events at the maximum possible rate, 100 M events at 10 M events/s, 100 M events
at 5 M events/s, 30 M events at 1 M events/s, 100 M events at 5 M events/s, 100 M
events at 10 M events/s and 100 M events at the maximum possible rate, summing up
to 630 M events to process. We additionally executed the queries with batch size and
number of processing threads fixed to the initial values given in Table 5.

We configured the auto-tuning componentwith the following configuration:Adjust-
ments at 1 Hz, Tbatch : 100,000 batches/s, β: 1.2, T hreadsmax : 8. Every time the
auto-tuning component changed a parameter, we tracked this change and created the
timelines shown in Fig. 18. The x-axis shows the elapsed processing time, highlighting
the workload changes. The batch size is aligned on the left and the number of threads
on the right y-axis.

As a first result, the processing times of the auto-tuned runs and the runs with fixed
parameters were almost identical (varying by less than 1 s), showing that our approach
introduces very low overhead. In all four cases the timelines show, that most of the
time, the initially configured parameters are way too high, and thus waste resources
and introduce unnecessary latency. Furthermore, the adjustments always immediately
follow the changes in the workload and we observe only few back-and-forth jumps in
the configured parameter, confirming the validity and robustness of our model.

For scenario (a) we see that the configured parameters stay stable until the event
rate is throttled to 1 M events/s. This is because when the data is loaded from disk, the
maximum event rate we reached was around 3 M events/s. However, during the last
period the parameters tend to exceed the previous values and quickly change between
32–64 and 2–4 for the batch-size and number of threads respectively. We attribute this
to the page cache of the operating system, which seems to keep a fraction of the data
file in memory. For the case of preloaded data (scenario b), the workload changes are
clearly reflected by the batch-size and the used number of threads. However, compared
to the other measurements, the changes in the number of threads are more noisy. This
is because the pattern is highly selective and matcher invocations occur rarely, which
in turn causes the average processing time per batch to vary.

In the unpartitioned cases (c, d), we do not encounter such noisy phases. This is
because the threads cooperatively process thewhole input stream, and if a computation
takes more time, this is compensated by another thread. As expected, the utilized
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(a) (b)

(c) (d)

Fig. 18 Evaluation of the configured batch size and number of threads over time: a aggressive drivers,
data from file, b aggressive drivers, data preloaded, c disconnected pattern, 20,000 second window, d
disconnected pattern, 500 s window

resources adapt accordingly to the changes in the workload. For example, slightly
after 20 s the event rate halves and so does the used number of threads. However, note
that even though the complexity of the 500 s window query is less than of the 20,000
s window, the batch sizes tend to be greater. This can be attributed to the congestion
control feature, since the processing time for the 500 s window query is very low and
with small batches, the processing threads would spent a reasonable amount of time
waiting to enter the synchronization phase.

8.5.4 Distributed environment

For our experiments in a distributed environment, we used a cluster with one coordi-
nator and ten worker nodes, running an Ubuntu Linux (18.04, kernel version 4.15).
The hardware specifications can be found in Table 6.

On the cluster we deployed Apache Kafka 2.0.0 using Zookeeper6 3.4.5 for coor-
dination. Each worker node hosts one Kafka broker. For experiments, we deployed
single-core consumer applications on a variable number of worker nodes. Before each

6 https://zookeeper.apache.org/.
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Table 6 Hardware specification of the cluster

Component Coordinator Worker (10 ×)

CPU Intel Xeon E52640v3
@2,6 GHz

AMD A10-7870K @ 3.9
GHz “Godavari”

GPU N/A AMD Radeon R7
(integrated into CPU)

RAM 16GB DDR4 FSB2133 32GB DDR4 FSB2133

Storage 2 × 480 GB SSD; 8 × 8TB
HDD

500GB SSD

Network connection 10 Gbit Ethernet 1 Gbit Ethernet

(a) (b)

Fig. 19 Speed up in a cluster for: a aggressive drivers with 50 M events (partitioned data), b disconnected
pattern detection with 50 M events (unpartitioned data)

experiment we inserted 10 million input events through a Kafka topic as a warmup
during which Kafka balances partition distributions among the registered brokers.
Afterwards we measured the speed up relative to a single worker node setup.

For partitioned data, we evaluated the aggressive drivers experiment with 50 M
events and the standard Kafka batch size of 10,000 events. We deployed the K -Slack
consumer on a single worker node and left the worker node that acts as a controller
for all brokers with no workload. On seven remaining worker nodes, we created a
varying degree of topic partitions and corresponding consumers. Since the controller
handles consumer and partition assignments, a consumer does not, in general, reside
on the same node as the partition it is consuming. Figure 19a shows the results of
the experiment. Clearly, the approach scales with the used worker nodes since each
worker has to read and process only a fraction of the total data.

For unpartitioned data, we again used the query from Sect. 8.2.2 and ingested 60M
events from the generator. On display are results for a batch size of 10,000 events and
a moderate window size of 10,000s. In the measurements the processing time includes
the time to create event batches from the raw data and the processing time until the
last result is generated. Again, we left the controller broker with no workload and used
the seven remaining worker nodes for a varying number of partitions. Similar to the
partitioned data experiment, the approach scales since it distributes the reading and the
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deriving workload. The effects are less prominent than in the partitioned case, since
only the deriving is handled in parallel.

It is notable that both experiments take a longer processing time than their respective
counterparts on a singlemachine. This is due to limitations of hardware for each cluster
node and due to additional overhead for reading data over the network rather than a
file. However, since most streaming environments work with frameworks like Kafka
to initially ingest data, achieve fault tolerance and provenance, the overall overhead is
likely to occur in practice anyway. Thus, our adaptations show that when used in an
environment featuring Kafka, TPStream can benefit and use it to its advantage.

9 Conclusion

We presented TPStream, a novel event processing operator for detecting complex tem-
poral patterns among event streamswith low latency and high throughput. By coupling
the deriving phase with the matching phase, TPStream can detect complex temporal
patterns at the earliest possible point in time. To handle huge data volumes originating
from a variety of sources, we developed parallel and distributed implementations for
TPStream that can be applied to both partitioned and unpartitioned data streams. In
order to maximize resources in a distributed computing environment while reacting
to changing data rates of streams, the parallel implementations are tied to a tuning
component that automatically sets batch sizes and number of threads. In experiments,
we showcased TPStream’s performance benefits, scalability and adaptive capabilities
while comparing it to current state of the art solutions.

Research on situations in CEP is scarce and TPStream’s algebra and implementa-
tion provides a first fundamental solution that is equipped to handle a variety of use
cases while being compatible with most CEP systems. For future work, we intend
to extend TPStream to natively handle scenarios such as events arriving out-of-order
[13,39]. Furthermore, we intend to look into custom recovery mechanisms beyond
what systems like Apache Kafka provide and adapt our parallel implementations for
modern co-processors like GPUs.
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