Distributed and Parallel Databases (2020) 38:287-333
https://doi.org/10.1007/s10619-019-07267-w

®

Check for
updates

Efficient and non-blocking agreement protocols

Suyash Gupta' - Mohammad Sadoghi’

Published online: 13 April 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

Large scale distributed databases are designed to support commercial and cloud based
applications. The minimal expectation from such systems is that they ensure con-
sistency and reliability in case of node failures. The distributed database guarantees
reliability through the use of atomic commitment protocols. Atomic commitment pro-
tocols help in ensuring that either all the changes of a transaction are applied or none
of them exist. To ensure efficient commitment process, the database community has
mainly used the two-phase commit (2PC) protocol. However, the 2PC protocol is
blocking under multiple failures. This necessitated the development of non-blocking,
three-phase commit (3PC) protocol. However, the database community is still reluctant
to use the 3PC protocol, as it acts as a scalability bottleneck in the design of efficient
transaction processing systems. In this work, we present EasyCommit protocol which
leverages the best of both worlds (2PC and 3PC), that is non-blocking (like 3PC) and
requires two phases (like 2PC). EasyCommit achieves these goals by ensuring two
key observations: (i) first transmit and then commit, and (ii) message redundancy. We
present the design of the EasyCommit protocol and prove that it guarantees both safety
and liveness. We also present a detailed evaluation of EC protocol and show that it is
nearly as efficient as the 2PC protocol. To cater the needs of geographically large scale
distributed systems we also design a topology-aware agreement protocol (Geo-scale
EasyCommit) that is non-blocking, safe, live and outperforms 3PC protocol.

Keywords Agreement - Node failures - Geo-scale

B Suyash Gupta
sugupta@ucdavis.edu

Mohammad Sadoghi
msadoghi @ucdavis.edu

1 University of California, Davis, Davis, CA, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-019-07267-w&domain=pdf

288 Distributed and Parallel Databases (2020) 38:287-333

1 Introduction

Large scale distributed databases have been designed and deployed for handling
commercial and cloud-based applications [7,17,19,39,47,51,54,63—65,67,75,77]. The
common denominator across all these databases is the use of transactions. A trans-
action is a sequence of operations that either reads or modifies the data. In case of
geo-scale distributed applications, the transactions are expected to act on data stored in
distributed machines spanning vast geographical locations. These applications require
the transactions to adhere to ACID [27] transactional semantics, and ensure that the
database state remains consistent. The database is also expected to respect the atom-
icity boundaries that is either all the changes persist or none of the changes take place.
In fact atomicity acts as a contract and establishes trust among multiple communi-
cating parties. However, it is a common knowledge [49,55,62] that the distributed
systems undergo node failures. Recent failures [23,52,74] have shown that the dis-
tributed systems are still miles away from achieving undeterred availability. In fact
there is a constant struggle in the community to decide the appropriate level of database
consistency and availability, necessary for achieving maximum system performance.
The use of strong consistency semantics such as serializability [11] and linearizabil-
ity [37] ensures system correctness. However, these properties have a causal effect on
the underlying parameters such as latency and availability, that is, a need for strong
consistency causes a reduction in system availability.

There have been works that try to increase the database availability [5,6]. However,
recently the distributed systems community has observed a shift in paradigm towards
ensuring consistency. A large number of systems are moving towards providing strong
consistency guarantees [7,17,39,43,57,75]. Such a pragmatic shift has necessitated the
use of agreement protocols such as Two-Phase Commit [26]. Commit protocols help
in achieving the twin requirements of consistency and reliability in case of partitioned
distributed databases. Prior research [14,39,58,73,75] has shown that data partitioning
is an efficient approach to reduce contention and achieve high system throughput.
However, a key point in hindsight is that the use of commit protocol should not
be a cause for an increase in WAN communication latency in geo-scale distributed
applications.

Transaction commit protocols help in reaching an agreement among the participat-
ing nodes when a transaction has to be committed or aborted. To initiate an agreement
each participating node is asked to vote its decision on the operations in its trans-
actional fragment. The participating nodes can decide to either commit or abort an
ongoing transaction. In case of a node failure, the active participants take essential
steps (execute the termination protocol) to preserve database correctness.

One of the earliest and most popular commitment protocol is the two-phase com-
mit [26] (henceforth referred as 2PC) protocol. Figure 1 presents the state diagram
[55,70] representation of the 2PC protocol. This figure shows the set of possible
states (and transitions) that a coordinating node! and the participating nodes follow, in
response to a transaction commit request. We use solid lines to represent the state tran-

! The coordinating node is the one which initiates the commit protocol, and in this work it is also the node
which receives the client request to execute a transaction.

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 289

Start Commit Prepare

v v

INITIAL [Prepare Votes <

Vote-Commit

-
decision

Ack

O
S

Fig.1 Two-phase commit protocol

sitions and dotted lines to represent the inputs/outputs to the system. For instance, the
coordinator starts the commit protocol on transaction completion and requests all the
participants to commence the same by transmitting Prepare messages. In case of mul-
tiple failures the two-phase commit protocol has been proved to be blocking [55,69].
For example, if the coordinator and a participant fail, and if the remaining partici-
pants are in the READY state, then they cannot make progress (blocked!), as they are
unaware about the state of the failed participant. This blocking characteristics of the
2PC protocol endangers database availability, and makes it unsuitable for use with the
partitioned databases.” The inherent shortcomings of the 2PC protocol led towards
the design of resilient three-phase commit [68,70]—henceforth referred as 3PC pro-
tocol. The 3PC protocol introduces an additional PRE-COMMIT state between the
READY and COMMIT states, which ensures there is no direct transition between the
non-committable and committable states. This simple modification makes the 3PC
protocol non-blocking under node failures.

However, the 3PC protocol acts as the major performance suppressant in the design
of efficient distributed databases. It can be easily observed that the addition of the
PRE-COMMIT state leads to an extra phase of communication among the nodes.
This violates the need of an efficient commit protocol for geo-scale systems. Hence,
the design of a hybrid commit protocol, which leverages the best of both worlds
(2PC and 3PC), is in order. We present the EasyCommit (a.k.a EC) protocol, which
requires two phases of communication and is non-blocking under node failures. We
associate two key insights with the design of EasyCommit protocol that allow us to
achieve the non-blocking characteristic in two phases. The first insight is to delay the
commitment of updates to the database until the transmission of global decision to all
the participating nodes, and the second insight is to induce message redundancy in the
network. EasyCommit protocol introduces message redundancy by ensuring that each
participating node forwards the global decision to all the other participants (including
the coordinator).

Prior works [3,50] have illustrated the wide-scale application of geographically
large scale systems. Such systems, adhering to the philosophy of partitioned databases,

2 Partitioned database is the terminology used by the database community to refer to the shared-nothing
distributed databases, and should not be intermixed with the term network partitioning.

@ Springer

290 Distributed and Parallel Databases (2020) 38:287-333

require complex agreement protocols that are both non-blocking and fopology-aware.
The key ingredient to these algorithms is their ability to take advantage to the geo-
scale topology and present efficient results. It is important to understand that a simple
geo-scale system consists of several clusters, and the communication across each
clusters may be limited to few nodes. Hence, the design of 3PC (and even EC) may
not reap benefit as it requires communication across all the participating nodes. This
motivates us to learn from the design principles of EasyCommit protocol and construct
a novel topology-aware agreement protocol for the geo-scale systems — Geo-scale
EasyCommit (GEC). We now list down our contributions.

— We present the design of a new two-phase commit protocol (EasyCommit) and
show it is non-blocking under node-failures.

— We design an associated termination protocol, to be initiated by the active nodes,
on failure of the coordinating node and/or participating nodes.

— We re-use the EasyCommit principles and present a novel agreement protocol that
caters to the needs of geographically large scale systems.

— We extend ExpoDB [33] framework to implement the EC protocol and its geo-scale
variant. Our implementation can be used seamlessly with various concurrency con-
trol algorithms by replacing 2PC protocol with EC (and Geo-scale EasyCommit)
to achieve efficient systems.

— We present a detailed evaluation of the EC protocol against the 2PC and 3PC
protocol over two different OLTP benchmark suites: YCSB [16] and TPC-C [18],
and scale the system upto 64 nodes, on the Microsoft Azure cloud.

— We also present an interesting evaluation of Geo-scale EasyCommit protocol
against the 2PC and 3PC protocols when run across four geographically distant
locations (across three continents). Our evaluation necessitates the need of an
efficient and non-blocking geo-scale system.

The outline for rest of the paper is as follows: in Sect. 2, we motivate the need for
EC protocol. In Sect. 3, we present design of the EC protocol. In Sect. 4, we present a
discussion on assumptions associated with the design of commit protocols. In Sect. 5,
we present the design of Geo-scale EasyCommit protocol. In Sect. 7, we present the
implementations of various commit protocols. In Sect. 8, we evaluate the performance
of EC and GEC protocols against the 2PC and 3PC protocols. In Sect. 11, we present
the related work and conclude this work in Sect. 12.

2 Motivation and background

The state diagram representation for the two-phase commit protocol is presented
in Fig. 1. In 2PC protocol, the coordinator and participating nodes require at most
two transitions to traverse from INITIAL state to the COMMIT or ABORT states. We
use Fig. 2 to present the interaction between the coordinator and the participants, on
a linear time scale. The 2PC protocol starts with the coordinator node transmitting
a Prepare message to each of the cohorts® and adding a begin_commit entry in its

3 The term cohort refers to a participating node in the transaction commit process. We use these terms
interchangeably.

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 291

COORDINATOR COORDINATOR

Prepare Vote Global | Acks
! decision decision i

Fig.2 Time span of 2PC protocol

log. When a cohort receives the Prepare message, it adds a ready entry in its log,
sends its decision (Vote-commit or Vote-abort) to the coordinator. If a cohort decides
to abort the transaction then it independently moves to the ABORT state, else it transits
to the READY state. The coordinator waits for the decision from all the cohorts. On
receiving all the responses, the coordinator analyzes all the votes. If there is a Vote-
abort decision, then the coordinator adds an abort entry in the log, transmits the
Global-Abort message to all the cohorts and moves to the ABORT state. If all the votes
are to commit, then the coordinator transmits the Global-Commit message to all the
cohorts, and moves to COMMIT state, after adding a commit entry to log. The cohorts
on receiving the coordinator decision move to the ABORT or COMMIT state and add
the abort or commit entry to the log, respectively. Finally, the cohorts acknowledge
the global decision, which allows the coordinator to mark the completion of commit
protocol.

The 2PC protocol has been proved to be blocking [55,69] under multiple node
failures. To illustrate this behavior let us consider a simple distributed database system
with a coordinator C and three participants X, Y and Z. Now assume a snapshot of the
system when C received Vote-commit from all the participants, and hence, it decides
to send Global-commit message to all the participants. However, say C fails after
transmitting Global-commit message to X, but before sending messages to Y and Z.
The participant X on receiving the Global-commit message, commits the transaction.
Now, assume X fails after committing the transaction. On the other hand, nodes Y
and Z would timeout due to no response from the coordinator and would be blocked
indefinitely, as they require node X to reach an agreement. They cannot make progress,
as neither they have knowledge of the global decision nor they know the state of node
X before failure. This situation can be prevented with the help of the three-phase
commit protocol [68,70].

Figure 3 presents the state transition diagram for the coordinator and cohort exe-
cuting the three-phase commit protocol, while Fig. 4 expands the 3PC protocol on the
linear time scale. In the first phase, the coordinator and the cohorts, perform the same set
of actions as in the 2PC protocol. Once the coordinator checks all the votes, it decides
whether to abort or commit the transaction. If the decision is to abort, the remaining
set of actions performed by the coordinator (and the cohorts) are similar to the 2PC
protocol. However, if the coordinator decides to commit the transaction, then it first
transmits a Prepare-to-commit message and then adds a pre-commit entry to the log.
The cohorts on receiving the Prepare-to-commit message, move to the PRE-COMMIT
state, add a corresponding pre-commit entry to the log and acknowledge the message

@ Springer

292 Distributed and Parallel Databases (2020) 38:287-333

Start Commit Prepare

:

Vote-Commit

Global decision -

Any abort?

ACKS -eeen > ‘"_F»’_r_iCOmmit Global-abort | « - | Pre
ommIT| Acks s$lcomm i
All Commit! I
PR Acks Global-commit
Ack

Fig.3 Three-phase commit protocol

Prepare Vote Pre-commit/iv Acks Global Acks
: decision | Global abort | Commit !

Fig.4 Time span of 3PC protocol

reception to the coordinator. The coordinator then sends a Global-commit message to
all the cohorts, and the remaining set of actions are similar to the 2PC protocol.

The key difference between the 2PC and 3PC protocol is the PRE-COMMIT state,
which makes the latter non-blocking. The design of 3PC protocol is based on the
Skeen [68]’s design of a non-blocking commit. In his work Skeen laid down two funda-
mental properties for the design of a non-blocking commit protocol: (i) no state should
be adjacent to both the ABORT and COMMIT states, and (ii) no non-committable? state
should be adjacent to the COMMIT state. These requirements motivated Skeen to intro-
duce the notion of a new committable state (PRE-COMMIT) to the 2PC state transition
diagram.

The existence of PRE-COMMIT state makes the 3PC protocol non-blocking. The
aforementioned multi-node failure case does not indefinitely block the nodes Y and Z
which are waiting in the READY state. The nodes Y and Z can make safe progress (by
aborting the transaction) as they are assured that the node X could not have committed
the transaction. Such a behavior is implied by the principle that no two nodes could
be more than one state transition apart. The node X is guaranteed to be in one of
the following states: INITAL, READY, PRE-COMMIT and ABORT, at the time of
failure. This indicates that node X could not have committed the transaction, as nodes
Y and Z are still in the READY state (It is important to note that in the 3PC protocol
the coordinator sends the Global-commit message after it transmits the Prepare-to-
commit message to all the nodes.). Interestingly, if either of nodes Y or Z are in the
PRE-COMMIT state then they can actually commit the transaction. However, it can

4 INITAL, READY and WAIT states are considered as non-committable states.

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 293

be easily observed that the non-blocking characteristic of the 3PC protocol comes at
an additional cost, an extra round of handshaking.

3 Easy commit

We now present the EasyCommit (EC) protocol. We assume the standard requirements
for an agreement protocol [26,55,69], that is, nodes can fail, but messages cannot be
delayed or lost. It has been shown [12,55] that no agreement protocol can handle
message loss, delay or network partitions. Hence we assume existence of a reliable
network that ensures message delivery. EC is a two-phase protocol, but unlike 2PC
it exhibits non-blocking behavior, in the presence of node failures. The EC protocol
achieves these goals through two key insights: (i) first transmit and then commit, and
(i) message redundancy. EC ensures that each participating node forwards the global
decision to all the other participants. To ensure non-blocking behavior, EC protocol
also requires each node (coordinator and participants) to delay commit until it transmits
the global decision to all the other nodes. Hence, the commit step subsumes message
transmission to all the nodes.

3.1 Commitment protocol

We present the EC protocol state transition diagram, and the coordinator and partici-
pant algorithms in Figs. 5, 6 and 7 respectively. The EC protocol is initiated by the
coordinator node. It sends the Prepare message to each of the cohorts and moves to the
READY state. When a cohort receives the Prepare message it sends its decision to the
coordinator and moves to the READY state. On receiving the responses from each of
the cohorts, the coordinator first transmits the global decision to all the participants and
then commits (or aborts) the transaction. Each of the cohorts, on receiving a response
from the coordinator, first forward the global decision to all the participants (and the
coordinator) and then commit (or abort) the transaction locally.

We introduce multiple entries to the log to facilitate recovery during node failures.
Note: the EC protocol allows the coordinator to commit as soon as it has communicated
the global decision to all the other nodes. This implies that the coordinator need not

Start Commit Prepare

Vote

Global

decision

..... Siobal
decision

Global decision <+

Any abort? All Commit?

Global«w_'
decision

Fig.5 EasyCommit protocol

@ Springer

294 Distributed and Parallel Databases (2020) 38:287-333

Fig.6 Coordinator’s algorithm Send Prepare to all participants;

Add begin_commit to log;

Wait for (Vote-commit or Vote-abort) from all participants;

if timeout then
Run Termination Protocol;

end if

if All messages are Vote-commit then
Add global-commit-decision-reached in log;
Send Global-commit to all participants;
Commit the transaction;
Add transaction-commit to log;

else
Add global-abort-decision-reached in log;
Send Global-abort to all participants;
Abort the transaction;
Add transaction-abort to log;

end if

Fig.7 Participant’s algorithm Wait for Prepare from the coordinator;
if timeout then
Run Termination Protocol,
end if
Send decision (Vote-commit or Vote-abort) to coordinator;
Add ready to log;
Wait for message from coordinator;
if timeout then
Run Termination Protocol,
end if
if Coordinator decision is Global-commit then
Add global-commit-received in log;
Forward Global-commit to all nodes;
Commit the transaction;
Add transaction-commit to log;
else
Add global-abort-received in log;
Forward Global-abort to all nodes;
Abort the transaction;
Add transaction-abort to log;
end if

wait for the acknowledgments. When anode t imeouts, while waiting for a message,
it executes the termination protocol. Some of the noteworthy observations are:

I. A participant node cannot make a direct transition from the INITIAL state to
the ABORT state.
II. The cohorts, irrespective of the global decision, always forward it to every par-
ticipant.
III. The cohorts need not wait for message from the coordinator, if they receive global
decision from other participants.
IV. There exists some hidden states (a.k.a TRANSMIT-A and TRANSMIT-C), only
after which a node aborts or commits the transaction (cf. discussed in Sect. 3.2).

In Fig. 8, we also present the linear time scale model for the EasyCommit protocol.
Here, in the second phase, we use solid lines to represent the global decision from the
coordinator to the cohorts, and the dotted lines to represent message forwarding.

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 295

COORDINATOR COORDINATOR P

COHORT

Prepare Vote Global Decision
i decision '

Fig.8 Time span of EC protocol

3.2 Termination protocol

We now consider the correctness of the EC algorithm under node-failures. We want
to ensure that the EC protocol exhibits both liveness and safety properties. A commit
protocol is said to be safe if there isn’t any instant during the execution of system
under consideration when two or more nodes are in conflicting states (that is one node
is in COMMIT state while other is in ABORT). A protocol is said to respect liveness if
its execution causes none of the nodes to block.

During the execution of a commit protocol each node waits for a message for a
specific amount of time before it timeouts. When a node timeouts, it concludes loss of
communication with the sender node, which in our case corresponds to failure of the
sender. A node is assumed to be blocked if it is unable to make progress on timeout.
In case of such node failures, the active nodes execute the termination protocol to
ensure system makes progress. We illustrate the termination protocol by stating the
actions taken by the coordinator and participating nodes on timeout. The coordinator
can timeout only in the WATT state, while the cohorts can timeout in INITIAL and
READY states.

A. Coordinator timeout in WAIT state—If the coordinator timeouts in this state,
then it implies that the coordinator didn’t receive the vote from one of the cohorts.
Hence, the coordinator first adds a log entry (global-abort-decision-reached), next
transmits the Global-abort message to all the active participants and finally aborts
the transaction.

B. Cohort timeout in INTTIAL state—If the cohort timeouts in this state, then it
implies that it didn’t receive the Prepare message from the coordinator. Hence,
this cohort initiates communication with other active cohorts to reach a common
decision.

C. Cohort timeout in READY state—If the cohort timeouts in this state, then it
implies that it didn’treceive a Global-Commit (or Global-Abort) message from any
node. Hence, it would consult the active participants to reach a decision common
to all the participants.

Leader election In last two cases we force the cohorts to perform transactional
commit or abort based on an agreement. This agreement requires selection of a new
leader (or coordinator). The target of this leader is to ensure that all the active partici-
pants follow the same decision, that is, commit (or abort) the transaction. The selected
leader can be in the INITIAL or the WAIT state. It consults all the nodes if any

@ Springer

296 Distributed and Parallel Databases (2020) 38:287-333

of them has received a copy of the global decision. If none of the nodes know the
global decision, then the leader first adds a log entry (global-abort-decision-reached),
next transmits the Global-abort message to all active participants and then aborts the
transaction.

To prove correctness of EC protocol, Fig. 9 expands the state transition diagram. We
introduces two intermediate hidden states (a.k.a TRANSMIT-A and TRANSMIT-C).
All the nodes are oblivious to these states, and the purpose of these states is to ensure
message redundancy in the network. As a consequence, we categorize the states of the
EC protocol under five heads:

— UNDECIDED—The state before reception of global decision (that is INITIAL,
READY and WATIT states).

TRANSMIT-A—The state on receiving the global abort.

— TRANSMIT-C—The state on receiving the global commit.

ABORT—The state after transmitting Global-Abort.

— COMMIT—The state after transmitting Global-Commit.

Table 1 illustrate whether two states can co-exist (Y) or they conflict (N). We derive
this table on the basis of our observations: I-IV and cases A—C. We now have sufficient
tools to prove the liveness and safety properties of the EasyCommit protocol.

Start Commit Prepare

v

Vote

Global

o == Global Global M=E====—=== -
pbort”TTRANSMIT-A] TRANSMIT-Cl--+C 027 - ITRANSMIT-AL TRANSMIT.Cl---S1002!

[o B o

Fig.9 Logical expansion of EasyCommit protocol

Table 1 Coexistent states in EC protocol (T-A refers to TRANSMIT-A and T-C refers to TRANSMIT-C)

UNDECIDED T-A T-C ABORT COMMIT
UNDECIDED Y Y Y N N
T-A Y Y N Y N
T-C Y N Y N Y
ABORT N Y N Y N
COMMIT N N Y N Y

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 297

Theorem 1 EasyCommit protocol is safe, that is, in the presence of only node failures,
for a specific transaction, two nodes cannot be in both Aborted and Committed states,
at any instant.

Proof Let us assume the case that two nodes p and g are in the conflicting states (say
p voted to abort the transaction and g voted to commit). This would imply that one of
them received Global-Commit message while the other received Global-Abort. From
(IT) and (IIT) we can deduce that p and g should transmit the global decision to each
other, but as they are in different states, it implies a contradiction. Also, from (I) we
have the guarantee that p could not have directly transited to the ABORT state. This
implies p and g would have received message from some other node. But, then they
should have received the same global decision.

Hence, we assume that either of the nodes p or g first moved to a conflicting state and
then failed. But, this violates property (IV) which states that a node needs to transmit
its decision to all the other nodes before it can commit or abort the transaction. Also,
once either of p or g fails, the rest of the system follows termination protocol (cases
(A) to (C)) and reaches a safe state. It is important to see that the termination protocol
is re-entrant. O

Theorem 2 EasyCommit protocol is live, that is, in the presence of only node failures,
it does not block.

Proof The proof for this theorem is a corollary of Theorem 3.1. The termination
protocol cases (A) to (C) provide the guarantee that the nodes do not block and can
make progress, in case of a node failure. O

3.3 Comparison with 2PC protocol

We now draw out comparisons between the the 2PC and EC protocols. Although, EC
protocol is non-blocking, it has a higher message complexity than 2PC. EC protocol’s
message complexity is O (n?), while the message complexity for 2PC is O (n).

To illustrate the non-blocking property of EC protocol, we now tackle the moti-
vational example of multiple failures. For the sake of completeness we restate the
example here. Let us assume a distributed system with coordinator C and participants
X, Y and Z. We also assume that C decides to transmit Global-commit message to all
the nodes and fails just after transmitting message to the participant X. Say, the node
X also fails after receiving the message from C. Thus, nodes Y and Z neither received
messages from C nor from node X. In this setting, the nodes Y and Z would eventually
timeout and run the termination protocol. From case (C) of termination protocol, it
is evident that the nodes Y and Z would select a new leader among themselves and
would safely transit to the ABORT state.

3.4 Comparison with 3PC protocol

Although, EC protocol looks similar to 3PC protocol, but it is a stricter and an
efficient variant to 3PC protocol. It introduces the notion of a set of intermediate

@ Springer

298 Distributed and Parallel Databases (2020) 38:287-333

hidden states: TRANSMIT-A and TRANSMIT-C, which can be superimposed on
the ABORT and COMMIT states, respectively. Also, in the EC protocol, the nodes do
not expect any acknowledgements. So unlike the 3PC protocol, there are no inputs
to the TRANSMIT-A, TRANSMIT-C, ABORT and COMMIT states. However, EC
protocol has a higher message complexity than 3PC, which has a message complexity
of O(n).

4 Discussion

Until now, all our discussion assumed existence of only node failures. In Sect. 3
we prove that EC protocol is non-blocking under node failures. We now discuss the
behavior of the 2PC, 3PC and EC protocols under communication failures that is
message delay and message loss. Later in this section we also study the degree to
which these protocols support independent recovery.

4.1 Message delay, loss and network partition

We now analyze the characteristics of 2PC, 3PC and EC protocols, under unexpected
delays in message transmission. Message delays represent an unprecedented lag in
the communication network. The presence of message delays can cause a node to
timeout and act as if a node failure has occurred. This node may receive a mes-
sage pertaining transaction commitment or abort, after the decision has been made.
It is interesting to note that 2PC and 3PC protocols are not safe under message
delays [12,55]. Prior works [31,55] have shown that it is impossible to design a non-
blocking commitment protocol for unbounded asynchronous networks with even a
single failure.

We illustrate the nature of 3PC protocol under message delay, as it is trivial to show
that 2PC protocol is unsafe under message delays. The 3PC protocol state diagram
does not provide any intuition about the transitions that two nodes should perform
when both of them are active but unable to communicate. In fact, partial commu-
nication or unprecedented delay in communication can easily hamper the database
consistency.

Let us consider a simple configuration with a coordinator C and the participants
X, Y and Z. Assume that C receives Vote-commit message from all the cohorts.
Hence, it decides to send the Prepare-to-commit message to all the cohorts. However,
it is possible that the system starts facing unanticipated delays on all the commu-
nication links with C at one end. We can also assume that the paths to node X are
also facing severe delays. In such a situation, the coordinator would proceed to glob-
ally commit the transaction (as it has moved to the PRE-COMMIT state), while the
nodes X, Y and Z would abort the transaction (as from their perspective the sys-
tem has undergone multiple failures). This implies that the 3PC termination protocol
is not sound under message delays. Similarly, EC protocol is unsafe under message
delays.

This situation can aggravate if the network undergoes message loss. Interestingly,
message loss has been deemed to be true representation of the network partition-

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 299

ing [55]. Hence, no commit protocol is safe (or non-blocking) under message loss [12].
If the system is suffering from message loss then the participating nodes (and coor-
dinator) would timeout and would run the associated terminating protocol that could
make nodes transit to conflicting states.

We can illustrate the impact of network partition on EC protocol by re-modeling our
motivational example. In the motivational example, we assume that the coordinator C
receives a Vote-commit message from all the participants X, Y and Z. Let us assume
that the network partitions into two groups C, X and Y, Z. In EC protocol, we assume
that if a node is able to send the global decision to all other nodes, then it can freely
commit the transaction. In case of network partition, such an assumption is not valid.
The coordinator C sends a Global-commit message to all the participants and assumes
that Y and Z have failed (as they are unreachable). Hence coordinator proceeds with
committing the transaction as it knows the global decision. Similarly, node X would
commit the transaction. On the other hand, node Y and Z would eventually timeout,
as they would not receive any message from the coordinator. They will follow case
(C) of the termination protocol, select a new leader among themselves and abort the
transaction. Thus, we conclude that EC is unsafe under message loss. It is easy to draw
out similar examples that show both 2PC and 3PC are unsafe under network partitions.

4.2 Independent recovery

Independent recovery is one of the desired properties from the nodes in a distributed
system. An independent recovery protocol lays down a set of rules that help a failed
node to terminate (commit or abort) the transaction, which it was executing prior to
its failure, without any help from other active participants. Interestingly, the 2PC and
3PC protocols support only partial independent recovery [12,55].

It is easy to present a case where the 3PC protocol lacks independent recovery.
Consider a cohort in the READY state that votes to commit the transaction and fails.
On recovery this node needs to consult with the other nodes about the fate of the last
transaction. This node cannot independently commit (or abort) the transaction, as it
does not know the global decision, which could have been either commit or abort.

EC protocol supports independent recovery in following scenarios:

(i) If a cohort fails before transmitting its vote, then on recovery it can simply abort
the transaction.
(ii) If the coordinator fails before transmitting the global decision, then it aborts the
transaction on recovery.
(iii) If either coordinator or participant fail after transmitting the global decision and
writing the log, then on recovery they can use this entry to reach the consistent
state.

5 Geo-scale EasyCommit

In this section we design the EasyCommit protocol with regards to the geograph-
ically large-scale distributed database systems. A geographically large-scale (a.k.a

@ Springer

300 Distributed and Parallel Databases (2020) 38:287-333

Fig. 10 Geo-scale system with

four clusters Participant Participant Participant Participant

Cluster1 - — - — — m e e e e e e — = = 1 Cluster 2

Participant Participant

Participant Participant

Cluster3= -~~~ - ~=~========= ! Cluster 4

Participant Participant Participant Participant

geo-scale) system consists of multiple clusters of nodes, where each cluster is located
at a geographically different location. Each cluster is structured akin to a distributed
system with one node acting as the coordinator and rest of the cluster nodes acting as
the participants.

Traditional agreement protocols do not directly cater to the needs of these systems
due to existence of high communication costs. Moreover, an efficient geo-scale agree-
ment protocol should take into consideration the proximity of nodes within (or outside)
a cluster. Thus, arises the need for a two-level agreement protocol. It is important to
understand that a two-level agreement protocol does not necessarily imply execution
of one agreement protocol atop another. For instance, for a geo-scale system, neither
is the design of a two-level 3PC protocol intuitive, nor simply appending two 3PC
protocols guarantees correctness (non-blocking property).

Figure 10 illustrates a simple geo-scale system consisting of four clusters. Each
cluster consists of one local coordinator and three participants. The local coordinators
are responsible for facilitating agreement within their clusters. There also exists a
global coordinator (henceforth referred as master) for ensuring agreement between
the geographically distributed clusters. Note that the master may also act as the local
coordinator for its own cluster.

5.1 Motivation for Geo-scale EasyCommit

A desirable geo-scale agreement protocol should be safe and should benefit from the
cluster topology. We know that 2PC protocol is blocking. Hence it suffices to show
that the trivial extensions of 3PC protocol are unsafe for geo-scale systems. A simple
design implies a two level execution, that is, each cluster runs a 3PC protocol and all
the local coordinators execute another 3PC protocol among themselves. Within each
cluster the local coordinator is responsible for the safe execution of 3PC protocol,
while the master manages the 3PC protocol run among the local coordinators. When
a transaction is ready to be committed, the master requests all the coordinators to
provide their decisions. These coordinators, in turn, request their cluster nodes to vote
and transmit the agreed decision to the master. The master then follows the 3PC sends
a Prepare-to-commit message and waits for acknowledgments. The coordinators also
follow the similar protocol and forward the Prepare-to-commit acknowledgments to

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 301

Start Commit G-Prepare Prepare

> Prepare Vote<-{ INITIAL

Global Local Local _
decision decisions decision Votes
Global
G-Acke i decision
; Global
e ACK e _
A-Ack l\ﬁ/élT f\EK_‘F G-Ack o
Global Global
Abort Commit

Fig. 11 Geo-scale EasyCommit protocol with state diagrams for master coordinator, local coordinator and
participant

the master. Finally, the master sends a Global-commit message to all the coordinators,
which they broadcast in their clusters.

Although, the aforementioned protocol is neat, it can be shown to be blocking.
Consider a case where the master transmits the Prepare-to-commit message to all but
one local coordinators (cluster 4 coordinator failed). Hence it timeouts (waiting for
acknowledgment) and transmits Global-commit to all the local coordinators. These
local coordinators would transmit the decision within their clusters. Furthermore,
assume all the clusters, except cluster 4, have failed. Meanwhile, the participants in
cluster 4 would timeout, select a new leader, reach a common decision and try to
communicate with other clusters. However, as all the clusters are dead they are unsure
of the global decision and are blocked. The key idea is that when only one cluster
is alive and the top level communication is restricted among the coordinators, then
system can block. A simple solution is to have system-wide communication (execute
original 3PC algorithm), but such a solution is not scalable (communication expensive)
when nodes are at geographically large distances.

5.2 Geo-scale EC commitment protocol

Figure 11 presents the state diagram for Geo-scale EasyCommit protocol (hence-
forth referred as GEC). We refer to the configuration identical to Fig. 10 for the ensuing
discussion. Figures 12, 13 and 14 present the algorithm to be executed at the mas-
ter node, coordinators and the participants. The geo-scale EasyCommit protocol also
employs the same twin principles: (i) first transmit then commit, and (ii) message
redundancy. These principles allow the protocol to attain safety and liveness. Addi-
tionally, we restructure the WAIT state. GEC introduces a new G-WAIT state at the
master and coordinator nodes. Furthermore, it includes a L-WAIT state at the coor-
dinators. GEC state machine also requires a WAIT-ACK state across all the nodes.
The rendered state diagram encompasses a set of half states: (i) WAIT-ACK state at
the master, and (ii)) READY and WAIT-ACK states at a participant. These states are

@ Springer

302 Distributed and Parallel Databases (2020) 38:287-333

: Send G-Prepare to all coordinators;

Add begin_commit to log;

: Wait for (Local-commit or Local-abort) from all coordinators;

if timeout then
Run Termination Protocol,

end if

if All messages are Local-commit then
Add global-commit-decision-reached in log;

9: Send Global-commit to all participants;

10: else

11: Add global-abort-decision-reached in log;

12: Send Global-abort to all participants;

13: end if

14: Wait for G-Ack from all coordinators;

15: if timeout then

16: Run Termination Protocol;

17: end if

18: if Decision was Global-commit then

19: Commit the transaction;

20: Add transaction-commit to log;

21: else

22: Abort the transaction;

23: Add transaction-abort to log;

24: end if

I R ol

Fig. 12 Master node’s algorithm

referred to as half states as a node on these states never transmits any message. GEC
also supports a concurrent state at the coordinator. This concurrent state arises from
the merge of G-WAIT and WAIT-ACK state at the coordinator.

These changes could lead to an inadvertent interpretation that GEC requires up to
four phases. However, the existence of a concurrent state permits a coordinator to
receive messages of multiple types. Note that the master node can also act as the local
coordinator. This implies that it would undergo two concurrent state machines, which
could be trivially managed by employing a multi-threaded system.

GEC state machine uses the new WAIT-ACK state to achieve non-blocking guaran-
tee. This state allows each node to deterministically commit (or abort) the transaction,
if the system undergoes only node failures. The GEC agreement protocol starts when
the transaction execution is completed. The master node sends out the G-Prepare
message to all the coordinators and moves to the G-WATIT state. Each coordinator on
receiving the G-Prepare message transmits a Prepare message to its cluster partici-
pants and moves to the L-WAIT state. When a participant receives a Prepare message,
it decides to Vote-commit or Vote-abort the transaction. It transmits its decision to the
coordinator and moves to the READY state. If a coordinator receives at least one Vote-
abort message, it sends a Local-abort message to the master, otherwise it transmits a
Local-commit message. Next, the coordinator moves to the G-WAIT state and waits
for the global decision from the master. The master node aggregates all the responses
from the coordinators and generates the global decision. It sends the Global-commit
decision to all the coordinators, if it received all the Local-commit responses, oth-
erwise it transmits the Global-abort decision. Ensuing this transmission, the master

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 303

: Wait for G-Prepare from the master;
if timeout then
Run Termination Protocol,
end if
Send Prepare to all cluster participants;
Add begin_commit to log;
: Wait for (Vote-commit or Vote-abort) from all cluster participants;
: if timeout then
Run Termination Protocol,
10: end if
11: if All messages are Vote-commit then
12: Add local-commit-decision-reached to log;
13: Send Local-commit to master;
14: else
15: Add local-abort-decision-reached to log;
16: Send Local-abort to master;
17: end if
18: Wait for (Global-commit or Global-abort) from master;
19: if timeout then
20: Run Termination Protocol,
21: end if
22: if Received Global-commit then
23: Add global-commit-decision-reached to log;

PP W

©

24: Forward Global-commit to all cluster participants;
25: Send G-Ack to master and all coordinators;
26: else

27: Add Global-abort-decision-reached to log;

28: Forward Global-abort to all cluster participants;
29: Send G-Ack to master and all coordinators;

30: end if

31: Wait for G-Ack from all coordinators;

32: if timeout then

33: Run Termination Protocol,;

34: end if

35: Forward an A-Ack to all cluster participants;

36: if Decision was Global-commit then

37: Commit the transaction;
38: Add transaction-commit to log;
39: else

40: Abort the transaction;
41: Add transaction-abort to log;
42: end if

Fig. 13 Local coordinator’s algorithm

node moves to WAIT-ACK state and waits for acknowledgment messages (G-Ack)
from all the coordinators.

When a coordinator receives the global decision, it forwards the global decision to
its cluster participants. Once the coordinator has sent the global decision, it creates
an acknowledgment message (G-Ack) and transmits the same to all the coordinators
(including the master). Next, the coordinator transits to the WATT-ACK state and
waits for the G-Ack messages from other coordinators. Each participant on receiv-
ing the global decision moves to the WAIT-ACK state and waits for an aggregated
acknowledgment message from its coordinator. When a coordinator receives all the
required G-Ack messages, it aggregates them into one message (A-Ack), transmits that

@ Springer

304 Distributed and Parallel Databases (2020) 38:287-333

: Wait for Prepare from the coordinator;
if timeout then
Run Termination Protocol,
end if
Send decision (Vote-commit or Vote-abort) to coordinator;
: Add ready to log;
: Wait for message from coordinator;
: if timeout then
Run Termination Protocol;
10: end if
11: if Decision received is Global-commit then
12: Add global-commit-received in log;
13: else
14: Add global-abort-received in log;
15: end if
16: Wait for A-Ack from the coordinator;
17: if timeout then
18: Run Termination Protocol;
19: end if
20: if Decision was Global-commit then
21: Commit the transaction;
22: Add transaction-commit to log;
23: else
24 Abort the transaction;
25: Add transaction-abort to log;
26: end if

©ONDq W

Fig. 14 Participant’s algorithm

message to all its cluster participants and decides to commit (or abort) the transaction.
Finally, the participants on receiving the A-Ack message, follow the global decision
and commit (or abort) the transaction.

It is important to understand that a coordinator can receive G-Ack from some node
before it receives global decision from the master. Hence, the coordinator keeps track
of number of G-Ack messages it has received. This implies that the coordinator can
switch between the G-WAIT and WAIT-ACK states. Thus, at coordinator, these states
exist concurrently.

The preceding discussion permits following observations:

I. No node has a direct transition from INITIAL state to ABORT state.
II. Each coordinator after successfully transmitting the global decision in its cluster,
transmits a G-Ack message to all other coordinators.
III. Each participant commits (or aborts) only after receiving an A-Ack.
IV. Each coordinator commits after sending an A-Ack to its participants.

Although (I) states that no node can have a direct transition from INITIAL state to
ABORT state, it does not prohibit a coordinator from sending an early global decision.
This implies that a coordinator which receives at least one Vote-abort message from
its cluster participants, can send them the Global-abort decision. This will allow the
cluster participants to move to WAIT-ACK states, without any wait. Note that this
behavior of the coordinator is safe as the nodes need to wait for the A-Ack message,
before they implement the global decision. Further, as one cluster has an Vote-abort
message, so the transaction would be eventually aborted.

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 305

Cluster Z
Participant

Coordinator

2) Common
decision

(N

Participant

L
New
Participant coordinator DGR
Cluster Z common
1) Timeoutand decision
reach common decision
(Cunrdinamr

(a) Cluster Consultation with cluster X. (b) Reverse Cluster Consultation at cluster X.

Coordinator

(Camdinamr

Participant Participant

Fig. 15 Cluster consultation initiated by the primary, and Reverse cluster consultation initiated by the
participants, on failure of coordinator of Cluster X

5.3 Geo-scale EC termination protocol

We now present the GEC rermination protocol that allows geo-scale systems, under-
going node failures, guarantee both safety and liveness. To ensure liveness we require
each node to wait on a timer and timeout on expiry of its timer. A system undergoing
an agreement protocol is live if the nodes are able to progress and not block. A geo-
scale system is referred as safe, if at no instant its nodes are in conflicting states (refer
Sect. 3).

Cluster consultation

GEC termination protocol requires communication among the nodes of different clus-
ters, to attain twin guarantees of safety and liveness. Figure 15 lists down the steps
taken by various nodes in case of a coordinator failure. In Fig. 15a we introduce the
notion of Cluster consultation, which allows the master node to communicate with the
participants of a cluster. This process occurs when the coordinator of a cluster fails,
which in turn causes the master to timeout. Hence the master apprises the associated
cluster about the failed coordinator and requests them to attain a common decision.
Figure 15a presents the three steps in the process of Cluster consultation. On the other
hand, if the participants detect the failure of their coordinator, prior to a message from
the master, then they reach a common ground and initiate Reverse Cluster consultation
(communication with the master and/or coordinators). Reverse Cluster consultation
would lead to election of a new coordinator as illustrated in Fig. 15b.

Master timeout

A. In G-WAIT state If the master timeouts in this state, then it implies that the
master did not receive the Local-commit or Local-abort message from one of the
coordinators. Hence, the master would add a log entry (global-abort-decision-
reached), transmit the Global-abort message to all other coordinators and initiate
Cluster consultation.

B. In WATIT-ACK state If the master timeouts in this state, then it implies that the
master did not receive a G-Ack from one of the coordinators. Hence, the master
initiates Cluster consultation and then follows the global decision.

@ Springer

306 Distributed and Parallel Databases (2020) 38:287-333

Coordinator timeout

C. In INITIAL state If the coordinator timeouts in this state, then it implies that the
coordinator did not receive the G-Prepare message from the coordinator. Hence,
the coordinator communicates with other active coordinators to reach a common
decision.

D. In L-WATIT state If the coordinator timeouts in this state, then it implies that
the coordinator did not receive the vote from one of the participants. Hence,
the coordinator adds a log entry (local-abort-decision-reached) and transmits the
Local-abort message to the master.

E. In G-WATIT state If the coordinator timeouts in this state, then it implies that
the coordinator did not receive the global decision from the master. Hence, the
coordinator interacts with other active coordinators to reach a common decision.

F. In WAIT-ACK state If the coordinator timeouts in this state, then it implies that
the coordinator did not receive the G-Ack message from one of the coordinators.
Hence, the coordinator communicates with the master node. If the master has the
required G-Ack message, then it forwards the same, otherwise the master proceeds
similarly to case (B).

Participant timeout

G. In INITIAL state If the participant timeouts in this state, then it implies that it
did not receive the Prepare message from the coordinator. Hence, the participant
consults other active participants, for agreement.

H. In READY state If the participant timeouts in this state, then it implies that it did not
receive the global decision from the coordinator. Hence, the participant interacts
with other active participants.

I. In WAIT-ACK state If the participant timeouts in this state, then it implies that
it did not receive the A-Ack message from the coordinator. Hence, the participant
decides to consult other active participants.

Master election

When the coordinator timeouts while waiting for a response from the master (cases
C and E), it interacts with other coordinators to reach a common decision. Such a
situation arises because the master node is experiencing a failure and has stopped
responding to other nodes. Hence it is necessary to designate one of the active coor-
dinators as the new master node. The election of the new master is akin to leader
election in the EC protocol. The new master, communicates with the cluster of the
failed master and requests them to select a new representative for the cluster. Next,
the new master attempts to move the system to safe state. If the new master is in
INITIAL or L-WAIT states, then it decides to globally abort the transaction. If the
new master is in G-WAIT state, then it first checks whether any other coordinator
previously received a global decision. If there exists a previous global decision then
the new leader follows that decision, otherwise it proceeds to abort the transaction. If

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 307

the new leader is in WAIT-ACK state, then evidently it knows the global decision and
simply ensures that every other node is also in the same state.

The new master also needs to communicate with the participant nodes in the cluster
of the old master node. The new master requests these nodes to select a new coordinator
and asks them to announce the global decision on the fate of the transaction, if they are
aware of any such decision. Note that this process is similar to the Cluster consultation.

Coordinator election

The participant nodes of a cluster initiate election of a new coordinator when they
detect failure of their current coordinator. The new coordinator helps them to reach
an agreement and initiates the Reverse Cluster consultation. If the new coordinator
is in the INITIAL state, then it transmits Local-abort as the decision of the cluster,
to the master. If the new coordinator is in READY state, then it consults other par-
ticipants to check if anyone received the global decision. In case none of the active
participants are aware of the global decision, the new coordinator performs Reverse
Cluster consultation. If the new coordinator is in WAIT-ACK state, then it proceeds
with Reverse Cluster consultation. Note that either using the Cluster consultation or
Reverse Cluster consultation the new coordinator can make the system reach a stable
state. If Cluster consultation occurs prior to election of new coordinator, then the new
coordinator knows the correct state to proceed. Otherwise, the new coordinator either
conveys its state to the master or acquires the information about the global state.

Cluster failure

In geo-scale systems, although node failures are common, cluster failures can also
occur. We refer to a cluster failure as a state when either the whole cluster or a majority
of cluster nodes (including the coordinator) have failed. An agreement protocol should
guarantee both safety and liveness properties, in the presence of a cluster failure. As
3PC protocol is independent of the geo-scale topology, so it is both safe and live under
a cluster failure.

GEC is also safe and live in the presence of a cluster failure. The master node
would detect such a failure, when it attempts to perform Cluster consultation. If the
master detects a cluster failure during the G-WAIT state, then it aborts the transaction
and sends the other coordinators a Global-abort message. Similarly, if the master is
in WAIT-ACK state and it discovers a cluster failure, then it proceeds with the global
decision.

When a coordinator in the INI'TIAL state discovers a master failure, then it commu-
nicates with other clusters and tries to select a new master node. In case this coordinator
discovers that all the clusters, except its own have failed, it appoints itself as the master
and follows the termination protocol. Further, it is possible that the coordinator time-
outs in the G-WAIT state and detects failure of all the clusters. If such is the case, then
the coordinator at least has a guarantee that the other nodes could not have committed
the transaction as it never sent a G-ACK to other coordinators. Hence it appoints itself
as the master and aborts the transaction.

@ Springer

308 Distributed and Parallel Databases (2020) 38:287-333

5.4 GEC correctness: safety and liveness

The EasyCommit extensions for the geo-scale systems are intended towards achieving
a safe and scalable agreement protocol. Hence, we need to illustrate that GEC is non-
blocking in scenarios considered earlier in this section.

For the sake of completeness, we revisit the scenario. We assume existence of
four clusters, coordinators and a master node, akin to Fig. 10. The master node asks
all the coordinators to send a decision and they reply with their local decisions (say
Local-commit). The master sends the global decision to all the coordinators and its
participants and dies. All but one coordinator (cluster 4) receives the global decision
and forward it to their cluster participants. We assume that coordinator for cluster 4
could not receive the global decision as it failed. This implies that participant nodes
of cluster 4 are not aware of the global decision. Furthermore, consider that except for
cluster 4, all the nodes in every other cluster have failed. The nodes of cluster 4 can
still make progress. Cluster 4 nodes have a guarantee that no other node could have
committed (or aborted) the transaction. It is important to understand that cluster 4 nodes
did not receive the global decision from their coordinator. Hence, their coordinator
could not have sent an G-Ack message, which in turn ensures that other nodes could
not have committed the results. The cluster 4 nodes can independently select a new
leader and progress to safe state.

To prove the twin guarantees of safety and liveness for GEC it is easy to generate
a representation similar to Table 1. The modified table will replace the hidden states
TRANSMIT-A and TRANSMIT-C with WAIT-ACK. It is important to understand
that WATT-ACK is the state when nodes know the global decision. Hence, it is not an
UNDECIDED state.

Theorem 3 Geo-scale EasyCommit protocol is safe, that is, in the presence of only
node failures, for a specific transaction, two nodes cannot be in both Aborted and
Committed states, at any instant.

Proof Let us assume that two nodes p and g, in different clusters, are in conflicting
states (say p voted to abort the transaction and g voted to commit). This implies that
one of them received Global-abort message, while other received the Global-commit
message. This indicates that the master sent conflicting global decisions, which is a
contradiction.

Another possibility is that due to master failure, at least one of the coordinators
did not receive the message from the master and transmitted conflicting decision to
its cluster. Such an assumption is again a contradiction, as cases (C) and (E) require
coordinators to communicate with each other.

Itis possible that the coordinator of p’s cluster has failed and the active nodes decide
to move to a conflicting state. This is in contradiction with cases (G) to (I) as active
participants need to elect a new coordinator and initiate Reverse Cluster consultation.
If during Reverse Cluster consultation they find master to have failed, then they would
initiate election of new master. Furthermore, if p’s cluster is unaware of the global
decision then rules (I) to (IV) safeguard them from transitioning to a state in conflict
with g. Note: p’s failed coordinator could not have transmitted an G-Ack. However,
if p’s cluster knows the global decision and is waiting for an A-Ack then they can

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 309

simply perform Reverse Cluster consultation. At this stage, it is also possible that
every cluster except p’s cluster has also failed. Still, the nodes can safely follow the
global decision. O

Theorem 4 Geo-scale EasyCommit protocol is live that is in the presence of only node
failures, it does not block.

Proof The proof for liveness property follows directly from the proof for Theorem 3.
The termination protocol cases (A) to (I) provide sufficient guarantee that active nodes
continue making progress under node failures. O

6 Geo-scale EasyCommit discussion

We now move beyond the crash failures and discuss the behavior of GEC in presence
of message delays and network partitioning. Later in this section, we also analyze the
impact of replication on GEC.

6.1 Message delay and loss

In Sect. 4.1, we show that none of the agreement protocols are safe under message
delays, loss or network partitioning. Further, prior works [12,55] have shown that
agreement protocols can only handle node failures. In fact it is hard for a node to
distinguish between a message loss, message delay, network partitioning and node
failure. Hence it is easy to design a case where GEC may block due to a message
delay or network partitioning.

Message delays and loss are comparatively milder to manage, if they are restricted
to some of the network paths. Such an assumption is valid as often message delay and
loss are caused by network congestion and may only affect paths between some of the
nodes. We now illustrate some of cases where GEC remains safe, if only some paths
are experiencing message delay or loss.

— Case 1 If a coordinator has already received a Vote-abort message from one of its
participant, then even if the votes from some participant (say P) gets indefinitely
delayed (or lost), the coordinator can simply send a Local-abort to the master.
Further, on receiving the Global-abort decision from the primary, if the coordinator
has not yet received a reply from the participant P, then it considers P failed,
transmits the global decision to other participants and sends a G-Ack message to
other coordinators. Whenever, the coordinator hears back from the participant P,
it would forward P the global decision and move P to the correct global state.

— Case 2 If a master node receives at least one Vote-abort (or Local-abort) message,
then it can transmit the Global-abort decision to all the coordinators and its cluster
participants. The master can consider the non-responding coordinator as failed and
can initiate Cluster consultation with the participants of the associated cluster. Note
that during these Cluster consultation master may realize that only the messages
are getting delayed (or lost) and the coordinator is still non-faulty.

@ Springer

310 Distributed and Parallel Databases (2020) 38:287-333

Table 2 Comparison of costs associated with different agreement protocols

2PC 3PC EC GEC
Phases 2 3 2 3 (2 concurrent states)
Total messages 4 x (n — 1) 6x(n—1) nxmn+1)—2 mx(m+4xp—2)-3
Intra-cluster 4x(p—-1 6x(p—1) m+2)x(p—1) 4xpx(@m-—1)

Inter-cluster 4xpx(m—1) 6xpxm—-1) n+2)xm—p) mx(@m-—2)—3

We assume a system having m clusters and p nodes per cluster (n = m x p)

— Case 3 If the master did not receive a G-Ack message from some coordinator C,
then it would initiate Cluster consultation, where, similar to the above case it would
find that the messages are getting delayed or lost.

— Case 4 If the coordinator timeouts in the WAIT-ACK because it did not receive a
G-Ack message from some coordinator, then it can proceed as stated in Termination
protocol case (F). If the messages from the master are also delayed (or lost), then the
coordinator tries to communicate with other cluster coordinators. In case it receives
no responses, it can simply ask its participants to follow the global decision.

Note that above cases are standalone and cannot be combined with cases where
other nodes are in a different state and are also facing message delay or loss. For
instance, when one coordinator is in Case 4 and another coordinator is undergoing a
timeout (due to message loss or delay) in G-Wait state, then the system can reach an
unsafe state (if the global decision was Global-Commit).

6.2 Network partition

A network partition is a harder problem than message delay and loss. It isolates some
nodes from rest of the nodes, such that no communication path exists among the nodes
to carry the network traffic. This implies if a network partition occurs between two
clusters then neither the two clusters can communicate nor can they determine if the
other cluster has undergone a failure.

GEC allows the system to reach safe state in Cases 1 and 2, as the Global-abort
becomes a common decision for the transaction. Similarly, if all the nodes have
received the global decision and following which a network partition occurs, then
the GEC protocol still remains safe for this transaction. Another case where the sys-
tem will remain safe is when the system partitions before any coordinator could receive
the G-Prepare message from the master. Here, each cluster would try to select a new
master node (or appoint itself as the new master) and would abort this transaction. On
the other hand, Case 3 can easily be shown to lead the replicas in unsafe (different)
states, if some cluster received the global decision, while another cluster partitions
away from rest of the system, without receiving the global decision.

Note that following the network partition, nodes neither would be able to complete
client transactions nor would be able to reach a global decision. This behavior results
from the nature of a partitioned database, where each node only stores some part of
the distributed database.

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 311

6.3 Cost and application of GEC

We now present a theoretical analysis of the costs associated with the GEC protocol.
Table 2 compares the number of phases, total messages, intra-cluster messages and
inter-cluster messages required by the four commit protocols. We assume a system
having m clusters, where each cluster consists of p nodes. Thus, total nodes in the
system are n, where n = m x p.

We observe that the 2PC protocol requires less phases than the other two protocols,
while although GEC requires three phases, one of the phases consists of two concurrent
states. Further, all the protocols have a message complexity which is linear in the
number of nodes (n). Additionally, GEC’s message complexity has a component that
is quadratic in the number of clusters m. This quadratic component comes from the
communication among the coordinators.

Table 2 also shows that GEC requires the least amount of inter-cluster communi-
cation. This suggests that if the database is spread across several clusters, lying across
geographically distant locations, then the GEC protocol could have performance ben-
efit over the other two protocols. However, GEC faces intra-cluster overheads, as it
has linear message complexity.

These metrics allow us to analyze the relevance of GEC against other protocols. In
real systems, the number of nodes per cluster p is greater than or equal to the number
of clusters m, p > m. Hence GEC would outperform the 3PC protocol. Further, if m
is sufficiently large and the clusters are geographically apart, then GEC could achieve
performance as good as 2PC. However, GEC may prove to be expensive, in case
majority of the clusters are located in nearby regions, that is, the communication cost
among the clusters is negligible. Thus, GEC derives its usefulness from the number
of clusters and the geographical distance between the clusters.

7 EasyCommit implementation

We now present a discussion on our implementation of the EasyCommit protocol.
We have implemented EC protocol in the ExpoDB platform [34,60]. ExpoDB is
an in-memory, distributed transactional platform that incorporates and extends the
Deneva [35] testbed. ExpoDB also offers secure transactional capability, and presents
a flexible framework to study distributed ledger—blockchain [33].

7.1 Architectural overview

ExpoDB includes a lightweight layer for testing distributed protocols and design
strategy. Figure 16 presents the block diagram representation of the ExpoDB frame-
work. It supports a client-server architecture, where each client or server process is
hosted on one of the cloud nodes. To maintain inherent characteristics of a distributed
system, we opt for a shared nothing architecture. Each partition is mapped to one
server node.

@ Springer

312 Distributed and Parallel Databases (2020) 38:287-333

Application Layer / Testbed (' YCSB and TPCC benchmarks)

To Global
Append Log

Enable/ Disable Secure Transactions

Concurrency Control Protocols:

Consensus Protocols: PBFT, No Wait, Wait-Die, Timestamp.

Proof of Work, RBFT.

v \

A

v
Execution Threads \
A

Transaction
Block Creator | »| Manager
- Message / 10 Queues
Hashing v -
Toolkit

Logei Commit Protocols:
ogeing 2PC, 3PC, EC and GEC.

1 1

Storage Layer: L-Store

— Y —

Fig. 16 ExpoDB framework—executed at each server process, hosted on a cloud node. Each server process
receives a set of messages (from clients and other servers), and uses multiple threads to interact with various
distributed database components

A transaction is expressed as a stored procedure that contains both program logic and
database queries, which read or modify the records. The clients and server processes
communicate with each other using TCP/IP sockets. In practice, the client and server
processes are hosted on different cloud nodes, and we maintain an equal number of
client and server cloud instances.

Each client creates one or more transactions and sends these transactions to a server
process. The server process in turn executes these transaction by accessing the local
data and runs the transaction until further execution requires access to remote data.
The server process then communicates with other server processes that have access
to remote data (remote partitions). Once, these processes return the result, the server
process continues execution till completion. Next, it takes a decision to commit or
abort the transaction (that is, executes the associated commit protocol).

In case a transaction has to be aborted then the coordinating server sends messages
to the remote servers to rollback the changes. Such a transaction is resumed after an
exponential back-off time. On successful completion of a transaction, the coordinating
server process sends an acknowledgment to the client process and performs necessary
garbage collection.

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 313

7.2 Design of 2PC and 3PC

2PC The 2PC protocol starts after the completion of the transaction execution. The
read-only transactions and single partition transactions do not make use of the commit
protocol. Hence, the commit protocol comes into play when the transaction is multi-
partition and performs updates to the data-storage. The coordinating server sends a
Prepare message to all the participating servers and waits for their response. The
participating servers respond with the Vote-commit message.> On receiving the Vote-
commit message the coordinating server starts the final phase and transmits the Global-
commit message to all the participants. Each participant on receiving the Global-
commit message commits the transaction, releases the local transactional resources,
and responds with an acknowledgment for the coordinator. The coordinator waits on
a counter for response from each participant and then commits the transaction, sends
aresponse to the client node, and releases the associated transactional data-structures.

3PC To gauge the performance of the EC protocol, we also implemented the 3PC
commit protocol. The 3PC protocol implementation is a straightforward extension to
the 2PC protocol. We add an extra PRE-COMMIT phase before the final phase. On
receiving, all the Vote-commit messages, the coordinator sends the Prepare-to-commit
message to each participant. The participating nodes acknowledge the reception of
the Prepare-to-commit message from the coordinator. The coordinating server on
receiving these acknowledgments, starts the finish phase.

7.3 EasyCommit design

We now explain the design of EasyCommit protocol in the ExpoDB framework. The
first phase (that is the INITTIAL phase) is same for both the 2PC and the EC protocol.
In the EC protocol, once the coordinator receives the Vote-commit message from
all the nodes, it first sends the Global-commit message to each of the participating
processes and then commits the transaction. Next, it responds to the client with the
transaction completion notification. When the participating nodes receive the Global-
commit message from the coordinator, they forward the Global-commit message to all
the other nodes (including the coordinator), and then commit the transaction.

Although, in the EC protocol the coordinator has a faster response rate to the client,
but its throughput takes a slight dip due to additional, implementation enforced wait.
It can be noted that we have not performed any cleanup tasks (such as releasing the
transactional resources) yet. The cleanup of the transactional resources is performed
once it is ensured that neither of those resources would be ever used, nor any messages
associated with the transaction would be further received. Hence, we have to force all
the nodes (both the coordinator and the participants) to poll the message queue and
wait till they have received the messages from each other node. Once all the messages
are received, each node performs the cleanup.

To implement EC protocol we had to extend the message being transmitted with a
new field which identifies all the participants of the transaction. This array contains
the Id for each participant, and is updated by the coordinator (as only the coordinator

5 Without node failures, any transaction that reaches the prepare phase is assumed to successfully commit.

@ Springer

314 Distributed and Parallel Databases (2020) 38:287-333

has information about all the partitions) and transmitted as part of the Global-commit
message.

7.4 Geo-scale EasyCommit design

To extend EasyCommit design to geographically large distributed systems, we adapt
Geo-scale EasyCommit algorithm into a topology-aware implementation. We ensure
that during the execution of GEC protocol none of the cluster members, except the
coordinator communicate outside the clusters. Our implementation allows each cluster
node to statically compute the identifiers of other nodes in the cluster. This requirement
is met by informing each node about the cluster size, during initial system setup.

The master node needs to apprise each coordinator about identity of other coor-
dinators. It is important to note that two transactions may not have the same master.
We dedicate the node receiving the transaction as the master node for that transaction.
This node can statically compute the coordinators for its transaction (using modulo
operation). These coordinators acknowledge their elevated status once they receive a
G-Prepare message. Similarly, coordinators request remaining nodes in the cluster to
act as participants.

A key consideration in our implementation is the design of the master node. GEC
algorithm states requirement of a master and a set of coordinators. This approach allows
us to have a separate node demarcated as the coordinator in the cluster accommodating
the master. However, we opt for an efficient design scheme where only one node
performs the tasks of both the master and coordinator. This change requires us integrate
the master and coordinator algorithms in a manner that prevents redundancy. For
instance, once the master nodes transmits the G-Prepare message to other coordinators,
it initiates the task of transmitting Prepare to its cluster participants. Similarly, the
master tracks the incoming votes from its participants and the local decisions from
other coordinators. Once the master has received all the votes, it transmits the global
decision, to its cluster and the coordinators.

A key takeaway from our discussion in Sect. 5 was existence of intermediate states.
We claim that these states could easily be merged with other states and do not introduce
additional load. Our GEC implementation helps us to validate this claim. We allow
each coordinator to transmit the G-Ack message as soon as its participants receive
the global decision. Moreover, a coordinator could receive the G-Ack message from
another coordinator prior to the global decision. Hence, the coordinator can track the
number of G-Ack messages it has received and may piggyback A-Ack message to its
participants along with the global decision from the master.

8 Evauation

In this section, we present a comprehensive evaluation of our novel EasyCommit
protocol against 2PC and 3PC. As discussed in Sect. 7, we use the ExpoDB framework
for implementing the EC protocol. For our experimentation, we adopt the evaluation
scheme of Harding et al. [35].

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 315

To evaluate various commit protocols, we deploy the ExpoDB framework on
the Microsoft Azure cloud. For running the client and server processes, we use
upto 64 Standard_D8S_V3 instances, deployed in the US East region. Each
Standard_D8S_V3 instance consists of 8 virtual CPU cores and 32GB of memory.
For our experiments, we ensure a one-to-one mapping between the server (or client)
process and the hosting Standard_D8S_V3 instance. On each server process, we
allowed creation of 4 worker threads, each of which were attached to a dedicated
core, and 8 I/0 threads. At each server node, a load of 10000 open client connections
is applied. For each experiment, we first initiated a warmup phase for 60 seconds,
followed by 60 seconds of execution. The measured throughput does not include the
transactions completed during warmup phase. If a transaction gets aborted then it is
restarted again, only after a fixed time. To attenuate the noise in our readings, we
average our results over three runs.

To evaluate the commit protocols, we use the NO_WATIT concurrency control algo-
rithm. We use the NO_WATIT algorithm as: (i) it is the simplest algorithm, amongst
all the concurrency control algorithms present in the ExpoDB framework, and (ii)
has been proved to achieve high system throughput. It has to be noted that the use of
underlying concurrency control algorithm is orthogonal to our approach. We present
the design of a new commit protocol, and hence other concurrency control algorithms
(except Calvin) available in the ExpoDB framework, can also employ EC protocol dur-
ing the commit phase. We present a discussion on the different concurrency control
algorithms, later in this section. For our evaluation, we adhere to a static partitioning
scheme, where we assume that the data items are partitioned across several servers.
Note that our commitment algorithm does not depend on the scheme employed to
partition the database. In our experiments, we do show the effect of data skew on the
performance of our agreement protocol.

In NO_WATIT protocol, a transaction requesting access to a locked record is aborted.
On aborting the transaction, all the locks held with this transaction are released, which
allows other transactions waiting on these locks to progress. NO_WAIT algorithm
prevents deadlock by aborting transactions in case of conflicts, and hence, has high
abort rate. The simple design of NO_WATIT algorithm, and its ability to achieve high
system throughput Harding et al. [35] motivated us to use it for concurrency control.

8.1 Benchmark workloads

We test our experiments on two different benchmark suites: YCSB [16] and TPC-
C[18]. We use YCSB benchmark to evaluate EC protocol on characteristics interesting
to the OLTP database designers (Sects. 8.2—-8.5) and use TPC-C to gauge the perfor-
mance of EC protocol on a real world benchmark (Sects. 8.6 and 8.7).

YCSB The Yahoo! Cloud Serving Benchmark consists of 11 columns (including a
primary key) and 100B random characters. In our experiments we used a YCSB table
of size 16 million records per partition. Hence, the size of our database was 16 GB
per node. For all our experiments we ensured that each YCSB transaction accessed
10 records (we mention changes to this scheme explicitly). Each access to YCSB data
followed the Zipfian distribution. Zipfian distribution tunes the access to hot records

@ Springer

316 Distributed and Parallel Databases (2020) 38:287-333

Fig. 17 System throughput 300
(transactions per second) on
varying the skew factor
(theta) for the 2PC, 3PC and
EC protocols. These
experiments run the YCSB
benchmark. Number of server
nodes are set to 16 and partitions
per transaction are set to 2

42PC ®3PC #EC
250

200

150

100

50

System Throughput
(Thousand txn per second)

0.1 0.2 03 04 05 06 07 08 09
Varying Skew Factor (theta)

through the skew factor (theta). When thetaissetto 0.1, the resulting distribution
is uniform, while the theta value 0.9 corresponds to extremely skewed distribution.
In our evaluation using YCSB data, we only executed multi-partition transactions, as
single partition transactions do not require use of commit algorithms.

TPC-C The TPC-C benchmark helps to evaluate system performance by modeling
an application for warehouse order processing. It consists of a read-only, item table
that is replicated at each server node while rest of the tables are partitioned using the
warehouse ID. ExpoDB supports Payment and NewOrder transactions, which con-
stitute 88% of the workload. Each transaction of Payment type accesses at most 2
partitions. These transaction first update the payment amounts for the local ware-
house and district, and then update the customer data. The probability that a customer
belongs to a remote warehouse is 0.15. In case of transactions of type NewOrder, first
the transaction reads the local warehouse and district records and then modifies the
district record. Next, it modifies item entries in the stock table. Only, 10% NewOrder
transactions are multi-partition , as only 1% of the updates require remote access.

8.2 Varying skew factor (Theta)

We evaluate the system throughput by tuning the skew factor (theta), available in
YCSB benchmarks, from 0.1 to 0.9. Figure 17 presents the statistics when the number
of partitions per transaction are set to 2. In this experiment, we use 16 server nodes to
analyze the effects induced by the three commit protocols.

A key takeaway from this plot is that, for theta < 0.7 the system throughputs
for EC and 2PC protocols are better than the system throughput for the 3PC proto-
col. On increasing the theta further the transactional access becomes highly skewed.
This results in an increased contention between the transactions as they try to access
(read or write) the same record. Hence, there is a significant reduction in the system
throughput across various commit protocols. Thus, it can be observed that the magni-
tude of difference in the system throughputs for 2PC, 3PC and EC protocol is relatively
insignificant. It is important to note that on highly skewed data, the gains due to the
choice of underlying commit protocols are overshadowed by other system overheads
(such as cleanup, transaction management and so on).

In the YCSB benchmark, for theta < 0.5 the data access is uniform across the
nodes, which implies that the client transactions access data on various partitions —

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 317

Fig. 18 System throughput 120
(transactions per second) on
varying the number of partitions
per transactions for the commit
protocols. These experiments
use YCSB benchmark. The
number of server nodes are set to
16 and theta is set to 0.6

4«2PC ®3PC -@EC
100

80

60

40

System Throughput
(Thousand txns per seconds)

20

0
2 3 4 5 6

Varying Partitions per Transaction

low contention. Hence, each server node achieves nearly the same throughput. It can
be observed that for all the three commit protocols the throughput is nearly constant
(not same). We attribute the delta difference in the throughputs of the EC and 2PC pro-
tocols to the system induced overheads, network communication latency, and resource
contention between the threads (for access to CPU and cache). However, EC is able
to commite up to 20K more transactions than 3PC per second, and attains throughput
gains of 12%.

8.3 Varying partitions per transaction

We now measure the system throughput achieved by the three commit protocols on
varying the number of partitions per transactions from 2 to 6. Figure 18 presents
the throughput achieved on the YCSB benchmark, when theta is fixed to 0.6, and
number of server nodes are set to 16. The number of operations accessed by each
transaction are set to 16, and the transaction read-write ratio is maintained at 1 : 1.

It can be observed that on increasing the number of partitions per transaction there
is a dip in the system throughput, across all of the commit protocols. On moving
from 2 to 4 partitions there is an approximate decrease of 55%, while the reduction
is system performance is around 25% from 4 partitions to 6 partitions, for the three
commit protocol. As the number of partitions per transaction increase, the number
of messages being exchanged in each round increases linearly for 2PC and 3PC, and
quadratically for EC. Also, an increase in partitions imply the transactional resources
are held longer across multiple sites, which leads to throughput degradation for all
the protocols. Note: in practice, the number of partitions per transaction are not more
than four [18]. Further, EC is commits up to 10,500 more transactions per second than
3PC, and attains up to 11% more throughput that 3PC.

8.4 Varying server nodes

We study the effect of varying the number of server nodes (from 2 nodes to 32 nodes)
on the system throughput and latency, for the 2PC, 3PC and EC protocols. In Fig. 19 we
set the number of partitions per transaction to 2 and plot graphs for the low contention
(theta = 0.1), medium contention (theta = 0.6) and high contention (theta =
0.7). In these experiments, we increase size of YCSB table in accordance to the the
increase in number of server nodes.

@ Springer

318 Distributed and Parallel Databases (2020) 38:287-333

200
= 400
E 42PC ®3PC ®EC 2 1s0 #2PC #3PC EC
g5 30 g
E g 160
By 300 Z 140
= =
g3 250 S
= g
z S 200 £ 10
= «
P ow
72 s .
T s0 &
20
0 0 =)
2 4 8 16 32 2 4 8 16 32
Varying Number of Server Nodes Varying Number of Server Nodes
(a) Low contention — (theta = 0.1).
350
= 300 P
E] 4+2PC #3PC ®EC 5 #2PC #3PC ®EC
-5 £ 300
23 250]
= @
S5 2 250
2 2 200 Rad
E g z 200
AT
25 5 150
S _E 100 E 100
S = & 50
0 0
2 4 8 16 32 2 4 8 16 32
Varying Number of Server Nodes Varying Number of Server Nodes

(b) Medium contention — (theta = 0.6).

120 1600
42PC B3PC ®EC 1400

1200
1000
800
600
400
200

0 0
4 8 16 32 2 4 8 16 32

42PC ®3PC @EC
100

80
60

40

System Throughput
(Thousand txns per second)
System Latency (in seconds)

20

~

Varying Number of Server Nodes Varying Number of Server Nodes
(c) High contention — (theta = 0.7).

Fig. 19 System throughput (transactions per second) and system latency (in seconds), on varying the number
of server nodes for the 2PC, 3PC and EC protocols. The measured latency is the 99-percentile latency, that
is, latency from the first start to final commit of a transaction. For these experiments we use the YCSB
benchmarks and set the number of partitions per transaction to 2

In Fig. 19, we use the plots on the left to study the system throughput on varying
the number of server nodes. It can be observed that as the contention (or skew factor)
increases the system throughput decreases, and such a reduction is sharply evident
on moving from theta = 0.6 to theta = 0.7. Another interesting observation is
that the system throughput attained by the EC protocol is significantly greater than the
throughput attained under 3PC protocol. The gains in system throughput are due to
reduction of an extra phase which compensates for the extra messages communicated
during the EC protocol.

In comparison to the 2PC protocol the system throughput under EC protocol is
marginally lower at low contention and medium contention, and relatively same at high
contention. These gains are the result of zero acknowledgment messages required by
the coordinating node, in the commit phase, which helps EC protocol perform nearly

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 319

@mOverhead & Useful Work Txn Manager BIndex ®Abort HEIdle =Commit

3rC

0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4

(a) Low contentions — (theta = 0.1). (b) Medium contentions — (theta = 0.6).

0 0.1 0.2 0.3 0.4 0.5

(c) High contentions — (theta = 0.7).

Fig.20 Percentage of time spent by various database components, on executing the YCSB benchmark. We
set the number of server nodes to 16 and partitions per transaction to 2

as efficient as the 2PC protocol. This helps us to conclude that a database system using
EC is as scalable as its counterpart employing 2PC. At theta = 0.1, EC commits
up to 19900 more transactions per second than 3PC and attains up to 12.5% more
throughput than 3PC. At theta = 0.6, EC commits up to 17200 more transactions
than 3PC and attains up to 15.8% more throughput than 3PC. Finally, at theta = 0.7
EC commits up to 9200 more transactions than 3PC and attains up to 15.7% more
throughput than 3PC.

8.4.1 Latency

In Fig. 19, we use the plots on the right, to shows the 99 percentile system latency
when one of the three commit protocols are employed by the system. We again vary the
number of server nodes from 2 to 32. The 99 percentile latency is measured from the
first commit to the final commit of a transaction. On increasing the number of server
nodes there is a steep increase in latency for each commit protocol. The high latency
values for 3PC protocol can be easily cited to the extra phase of communication.

8.4.2 Proportion of time consumed by various components
Figure 20 presents the time spent on various components of the distributed database

system. We show the time distribution for the different degree of contention (theta).
We categorize these measures under seven different heads.

@ Springer

320 Distributed and Parallel Databases (2020) 38:287-333

Fig.21 System throughput 300
(transactions per second) on
varying the transaction write
percentage for the 2PC, 3PC and
EC protocols. These
experiments use YCSB
benchmark, and set the number
of server nodes to 16 and
partitions per transactions to 2

42PC ®3PC -®EC
250

200

150

100

System Throughput
(Thousand txns per second)

50

10 20 30 40 50 60 70 80 90

Varying Transaction Write Percentage

Useful Work is the time spent by worker threads doing computation for read and
write operations. Txn Manager is the time spent in maintaining transaction asso-
ciated resources. Index is the time spent in transaction indexing. Abort is the time
spent in cleaning up aborted transactions. Idle is the time worker thread spends when
not performing any task. Commit is the time spent in executing the commit proto-
col. Overhead represents the time to fetch transaction table, transaction cleanup and
releasing transaction table.

The key intuition from these plots is that as the contention (theta) increases there
is an increase in time spent in abort. At low contention as most of the transactions
are read-only, so the time spent in commit phase is least, and as contention increase,
commit phase plays an important role in achieving high throughput from databases.
Also, it can be observed at medium and high contention, worker threads executing
3PC protocol are idle for the maximum time and perform the least amount of useful
work, which indicates a decrease in system throughput under 3PC protocol due to an
extra phase of communication.

8.5 Varying transaction write percentage

We now vary the transactional write percentage, and draw out comparisons between
the system throughput achieved by the ExpoDB when employing one of the three
commit protocols. These experiments (refer Fig. 21) are based on YCSB benchmark,
and vary the percentage of write operations accessed by each transaction from 10 to
90. We set the skew factor to 0.6, number of server nodes to 16 and partitions per
transaction to 2.

It can be seen that when only 10% of the operations are write then all the protocols
achieve nearly the same system throughput. This is because most of the requests sent
by the client consists of read-only transactions, and under read only transactions,
the commit protocols are not executed. However, as the write percentage increases
the gap between the system throughput achieved by 3PC protocol and the other two
commit protocols increases. This indicates that 3PC protocol performs poorly when
the underlying application consists of write intensive transactions.

In comparison to the 2PC protocol, EC protocol undergoes marginal reduction in
throughput. As the number of write operations increase, the number of transactions
undergoing the commit protocol also increase. We have already seen that under EC

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 321

700

N
S
=

42PC #3PC ®EC 42PC ®3PC ®EC

600
500

500

400
400
300
300

200

System Throughput
(Thousand txns per second)
System Throughput
(Thousand txns per second)

200

100 100

0 0
2 4 8 16 32 2 4 8 16 32
Varying Number of Server Nodes Varying Number of Server Nodes
(a) Payment Transaction (b) NewOrder Transaction

Fig.22 System throughput on varying the number of server nodes, on the TPC-C benchmark. The number
of warehouses per server are set to 128

protocol (i) the amount of message communication is higher than the 2PC protocol, and
(ii) each node needs to wait for additional wait-time before releasing the transactional
resources. Some of these held resources include locks on data items, and it is easy
to surmise that under EC protocol locks are held longer than the 2PC protocol. The
increase in duration of locks being held also leads to an increased abort rate, which is
another important factor for reduced system throughput. To summarize EC protocol
commits up to 17700 more transactions per second than 3PC and achieves up to 14.5%
more throughput than 3PC.

8.6 Scalability of TPC-C benchmarks

We now gauge the performance of the EC protocol with respect to a real-world appli-
cation, that is using TPC-C benchmark. Figure 22 presents the characteristics of the
2PC, 3PC and EC protocols, under TPC-C benchmark, on varying the number of server
nodes. It has to be noted that a major chunk of TPC-C transactions are single-partition,
while most of the multi-partition transactions access only two partitions. Our evalu-
ation scheme sets 128 warehouses per server, and, hence a multi-partition can access
two co-located partitions (that is on a single server).

Figure 22a represents the scalability of the Payment transactions for the three com-
mit protocols. It is evident from this plot that as the number of server nodes increase,
the system throughput increases for each commit protocol. However, there is a perfor-
mance bottleneck in case of 3PC protocol. In case of payment transactions as updates
are performed at the home warehouse, which requires exclusive access, so there is an
increase in abort rate for the underlying concurrency control algorithm (in our case
NO_WAIT). Now, as 3PC protocol requires an additional phase to commit the transac-
tion, hence there is an increase in the abort rate. Interestingly, the throughput achieved
by the EC protocol is approximately equal to the system throughput under 2PC pro-
tocol. EC protocol commits up to 140K more transactions that 3PC and achieves up
to 39% more throughput than 3PC protocol.

Figure 22b depicts the system throughput on executing TPC-C NewOrder trans-
actions. The performance bottleneck is reduced for these transactions as there only
10 districts per warehouse, and hence, the commit protocols achieve comparatively

@ Springer

322 Distributed and Parallel Databases (2020) 38:287-333

Fig. 23 System throughput
achieved by three different
concurrency control algorithms.
For experimentation, we use the
TPC-C Payment transaction, and
vary the number of server nodes
to 16. The number of

warehouses per server are set to 100
128. Here WDIE and TST refer 50 JI II II II II II
to WAIT-DIE and 0
& & S S
N
PO

m2 m4 8 16

System Throughput
(Thousand txns per second)
N~
n
=}

TIMESTAMP, respectively

higher throughput. Also, as there are only 10% multi-partition transactions, so all the
protocols achieve nearly the same performance.

8.7 Concurrency control

The presence of read/write data conflicts between transactional accesses necessitates
the use of concurrency control algorithms by the database management system. The
ExpoDB framework implements multiple state-of-the-art concurrency control algo-
rithms. Although, in this work, we use NO_WATIT concurrency control algorithm, but
EC protocol can be easily integrated to work alongside other concurrency control
algorithms.

Figure 23 measures the system throughput for three different concurrency control
algorithms. We use TPC-C Payment transactions for these experiments, and increase
the number of server nodes upto 16. We also set the number of warehouses per server
to 128. We compare the performance of EC protocol against the 2PC protocol, when
the underlying concurrency control algorithm is WAIT-DIE [8], TIMESTAMP [8§]
and MVCC [9]. It is evident from these experiments that the EC protocol is able to
achieve as high efficiency as the 2PC protocol, irrespective of the mechanism used for
ensuring concurrency control.

We also analyze our commit protocol against an interesting deterministic concur-
rency control algorithm—Calvin [75]. Calvin is a deterministic algorithm that requires
the prior knowledge of the read/write sets of the transaction before its execution. When
the transaction’s read/write sets are not known, at prior, then Calvin causes some trans-
actions to execute twice. Interestingly, in the second pass, if some records modify then
the transaction is aborted and restarted again. Hence, prior works [35] have shown
Calvin to perform poorly in such settings. Another strong critic against Calvin is that
in case of failures, it requires a replica node that executes the same set of operations
as the node responding to client query. This implies that Calvin is not suitable under
failures for use with partitioned databases. Also, the requirement for replica node,
reduces the system throughput.

Figure 24 presents a comparison of NO_WATIT algorithm (employing EC protocol)
and Calvin. For this experiment we use the TPC-C Neworder transactions, and vary
the number of server nodes from 2 to 16. These transactions are required to update

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 323

Fig.24 Comparison of 350

throughput achieved by the 300 @EC +Calvin
250
200
150
100
50

system executing Calvin versus
0

the system implementing the
combination of No-Wait + EC
protocol. In this experiment we
use the TPC-C Neworder
transaction, and vary the number
of server nodes to 16. The
number of warehouses per
server are set to 128

System Throughput
(Thousand txns per second)

2 4 8 16

Varying Number of Server Nodes

Fig. 25 System throughput and 14000
latency per node on varying the - 120m «2PC #3PC GEC
number of server nodes, across E_ =
four regions, where each region 4 § 10000
consists of equal number of _E ?': 3000
nodes. For these experiments we ; 2
P
use YCSB benchmark and set gEg 6000
o . &
both partitions per transaction A 4000
and requests per transaction
equal to total number of nodes in 2000
each run (Color figure online) 0
8 12 16
Varying Number of Server Nodes
90
80 42PC ®3PC -oGEC
2 70
S o 60
e 3 50
2
72 40
EE 30
<
= 20
10
0
8 12 16

Varying Number of Server Nodes

the order number in their districts. Hence, the deterministic protocols such as Calvin
suffer performance degradation. In this graph, EC protocol commits up to 275K more
transactions per second than Calvin and achieves a throughput gain of 87% with respect
to Calvin.

8.8 Geo-scale EasyCommit

We now present an evaluation of our GEC algorithm against 2PC and 3PC algorithms.
In Sect. 5 we present the need for a topology-aware algorithm that performs efficiently
in the presence of geographically large clusters. Geo-scale systems require existence
of algorithms that can reduce the latency and do not require communication between
all the nodes, across clusters. Figure 25 illustrates the performance achieved by GEC

@ Springer

324 Distributed and Parallel Databases (2020) 38:287-333

and validates our aforementioned claim through interesting comparisons against 3PC
and 2PC protocols.

In these figures we run experiments across four geographically distant regions: US
East (Ohio), US West (N. California), EU (Ireland) and Asia Pacific (Mumbai). We
use Amazon AWS to run these experiments and establish Virtual Private Network to
facilitate these experiments. We use m5x2 large nodes for servers and t2x2large
nodes for clients. In each run, we ensure there is a one-to-one mapping between the
server and the client, that is we have equal number of client and server nodes. We set
the number of partitions per transaction and requests per transaction equal to number
of servers. We vary the number of server nodes in each region from 2 to 4.

Figure 25 illustrates that on increasing the number of server nodes the system
throughput decreases across all the three protocols. This phenomena can be easily
attributed to: (i) increase in number of partitions per transaction, and (ii) increase in
number of requests per transaction. This implies that as the number of server nodes
increase, each transaction needs to complete more requests and each request refers
to a different partition. An increase in number of server nodes also leads to faster
degradation in the performance of 3PC and 2PC protocols, in comparison to GEC
protocol. This behavior arises as traditional agreement protocols are oblivious to the
underlying cluster topology. This in turn causes existence of a single master that
communicates with all the nodes. Interestingly, the throughput of GEC is poor when
the cluster size is small, as it performs more work in comparison to 3PC protocol. On
increasing the number of nodes per cluster, the throughput reduction is less for GEC
(a proof that it is topology-aware). Moreover, GEC performs significantly better than
3PC and nearly as good as 2PC protocol. GEC attains up to 40% more throughput
than 3PC protocol.

Figure 25 also presents the statistics for 99 percentile latency incurred at each server
node. It is easy to gauge that the latency per node increases significantly, on increasing
the number of server nodes. When the number of nodes per region is small, the GEC
protocol suffers from high latency, as it requires higher communication. However,
on increasing the number of nodes per cluster, GEC protocol outperforms 3PC and
has latency closer to 2PC protocol. It is our assertion that a further increase in the
number of nodes per cluster should bridge the gap between 2PC and GEC throughput
and latency values. It is important to understand that GEC is non-blocking and attains
performance of the order of 2PC protocol.

Messages Communicated Figure 26 illustrates the number of messages transmitted
or received per second (in thousands), on an average, at each server node. These results
are derived from the experiment of Fig. 25. In our system, the size of each message is
in the range 128 bytes to 152 bytes. As the number of nodes per region increases, there
is a subsequent increase in the number of messages transmitted (or received) at each
server. As 2PC achieves higher throughput than both GEC and 3PC, so it transmits
higher number of messages. Similarly, the throughput of GEC improves in comparison
to other protocols, which leads to a larger set of messages transmitted (or received) by
GEC. Further, when each region has four server nodes, then from Fig. 25 we learn that
throughput of GEC is quite close to throughput for 2PC. Hence GEC transmits nearly
the same number of messages. Note that as GEC has a higher message complexity

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 325

Fig.26 Messages transmitted or 120
received at any server node, on
an average. Here, each region
consists of equal number of
nodes. We use YCSB benchmark
and set both partitions per
transactions and requests per

-42PC #3PC -GEC
100

80

60

Messages Transmitted or
Received
(in thousands per second)

. 40
transaction equal to total number
of nodes in each run 20
0
8 12 16
Varying Number of Server Nodes
Table 3‘ System throughput on Nodes per region 4 5
increasing number of nodes per
region 2PC 9725.07 8984.80
3PC 8845.07 7664.05
GEC 9187.95 8282.70

These experiments were run across three regions and both partitions
per transaction and requests per transaction were equal to total number
of nodes in each run

than 2PC, so a further increase in the number of server nodes could cause GEC to
incur more messages.

Varying nodes per region We use Table 3 to affirm our above insights across three
regions, by varying the number of nodes per region. GEC protocol attains higher
throughput than 3PC protocol even on a smaller setup consisting of just three clusters.
This proves that GEC protocol is useful across setups of different topologies.

9 Optimizations

In earlier sections, we presented a theoretical proof and an evaluation of EasyCommit
protocol, which proved its relevance in the space of existing commit protocols. We
now discuss some optimizations for the EC protocol.

An optimized version of the EC protocol would allow achieving further gains in
comparison to both the 2PC and 3PC protocols. A simple approach is to reduce the
number of messages transmitted in the second phase. In the optimized protocol, each
node only forwards messages to those nodes from which it has not received a Global-
Commit or Global-Abort message. Another simple optimization is to ensure early
cleanup, that is reduction of implementation enforced wait (refer Sect. 7.3). To achieve
this, each node would maintain a lookup table, where an entry for each transaction is
added, on receiving the first Global-Commit or Global-Abort message. The remaining
messages, addressed to the same transaction, would be matched in the table and deleted.
We would also need to periodically, flush some of the entries of the table, to reclaim
memory. Interestingly, such an optimization would allow implementing a variant of
EC protocol that does not require any “implicit” acknowledgments. Note a similar
limited variant for 3PC protocol can be constructed where the coordinator does not

@ Springer

326 Distributed and Parallel Databases (2020) 38:287-333

wait for acknowledgments after sending the Prepare-to-Commit messages, and directly
transmits Global-Commit message to all the cohorts. Our proposed optimized version
is comparable to this 3PC variant.

10 Replication

Until now our discussion surrounded a system that employs a partitioned distributed
database and requires the use of a commit protocol for guaranteeing its correctness [1].
Prior works [10,21,25,72] have employed replication to tolerate a greater set of faults
that can handled by a partitioned database, at the cost of redundancy. Further, replica-
tion also necessitates the use of a replica management protocol [1,40] to bring all the
replicas at the same state.

We envision the design of our EasyCommit protocol quite close to the Paxos [40]
algorithm, which is capable to handling crash failures. Paxos is a two-phase algorithm,
where a leader presents its proposal to a set of acceptors. Each acceptor, on receiving a
proposal, informs the leader about the latest proposal that it has received. If the leader
detects its proposal in the response from a majority of acceptors, then it requests the
acceptors to accept its proposal. A leader marks its proposal accepted, when it has
heard back from a majority of acceptors.

Akin to Paxos, EC is also a two-phase protocol, which can be easily extended to a
replicated system. In EC the role of acceptors can be played by the participants. Each
participant also sends its vote (similar to latest proposal) to the coordinator (leader).
Based on the votes of the participants, the coordinator sends a global decision to all
participants, which is again transmitted by all the participants to each other. Hence
EC protocol can be seamlessly shown to work with either replicated databases or
partitioned databases.

Akin to EC, our Geo-scale EasyCommit protocol can also work with geographically
replicated databases. GEC utilizes the notion of cluster, which has been adopted by
prior works [4,17], toreduce latency between geographically distant locations. Further,
GEC limits the communication across clusters to coordinator nodes. This property can
be useful as general fault-tolerant protocols [40,46] are not aware of cluster topology,
which could cause expensive communication costs. Finally, our notion of Cluster
consultation can help to remove the dependency on the coordinator (leader), at each
cluster, in case the coordinator crashes. Note that fault-tolerant protocols do not require
agreement among all the replicas to work correctly. These protocols only suggest that
a majority of replicas should always be non-faulty. As our agreement protocols (EC
and GEC) require agreement among all the nodes, so their extension to replicated
system would allow them to handle a larger set of failures. A comprehensive study of
replication and application of our agreement protocols to fault-tolerant settings is a
subject of exciting future work.

11 Related work

The literature presents several interesting works [2,28,71] that suggest the use of one
phase commit protocol. These works are strictly targeted at achieving performance,

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 327

rather than consistency. Clearly, none of these works satisfy the non-blocking require-
ment, expected of a commit protocol.

Several variants to the 2PC protocol [13,24,30,36,38,41,48,56,66] have been
proposed that aim at improving its performance. Presumed-commit and presumed-
abort [48] work by reducing a single round of message transmission between the
coordinator and the participants, when the transaction is to be committed or aborted,
respectively. Gray and Reuter [30] present a series of optimizations for enhancing
the 2PC protocol such as lazy commit, read-only commit and balancing the load by
coordinator transfer. Group commit [24,56] helps to reduce the commit overhead by
committing a batch of transactions together. Samaras et al. [66] design several interest-
ing optimizations to improve the performance of 2PC protocol. They present heuristics
to reduce the overhead of logging, network contention and resource conflicts. Com-
pared to all of these works, we present EC protocol, which is not only efficient, but
also satisfies the non-blocking property.

Levy et al. [41] present an optimistic 2PC protocol that releases the locks held
by a transaction once all the nodes agree to commit. In case a node decides to abort
the transaction then to prevent violation of database atomicity, compensating transac-
tions are issued to rollback the changes. Although their approach does not guarantee
non-blocking behavior, but we believe the idea of optimistic resource release can be
integrated with EasyCommit protocol to achieve further performance.

Boutros and Desai [13] present another variant to 2PC protocol which forces each
node to send an additional message in case of a communication failure between the
coordinator and the participant. Their approach is only susceptible to the cases where
there is a message loss. However, their work does not resolve blocking under site fail-
ures and can be integrated with our work to achieve further resilience during message
loss.

Haritsa et al. [36] improve the performance of the 2PC protocol, in the context
of real-time distributed systems. Their protocol permits a conflicting transaction to
access the non-committed data. This can lead to cascading aborts, and is not suitable
for use with the traditional distributed databases. Our technique, on the other hand,
is independent of the underlying concurrency control mechanism, and does not cause
any special aborts.

Jiménez-Peris et al. [38] also allow their system to optimistically fetch the uncom-
mitted data, thereby rendering the 2PC performance. However, their protocol is tailored
for usage alongside strict two-phase locking, and assumes existence of an additional
replica of each process. Our technique is not tailored to any specific concurrency con-
trol mechanism, and neither assumes existence of any extra process. Also, we believe
these heuristics can be used alongside EC protocol, to render further benefits.

Reddy and Kitsuregawa [61] modify the 3PC protocol by introducing the notion of
backup sites. With the help of backup sites they are able to achieve higher throughput,
but their approach blocks in case of multiple failures. EasyCommit is non-blocking
and does not require any backup sites.

There also have been works [20,32] that provide better performance bounds than
the 3PC protocol if the number of failures are sufficiently less than the participants.
EasyCommit does not bound the number of failures, and is nearly as efficient as 2PC.

@ Springer

328 Distributed and Parallel Databases (2020) 38:287-333

Gray and Lamport [29] developed an interesting non-blocking version of 2PC pro-
tocol using Paxos [40]. Their approach shows that 2PC protocol is a variant of general
consensus protocol. However, to ensure non-blocking property they require use of an
extra set of acceptor nodes and in the worst case it can be shown that the number of
messages transmitted in their approach is O (n?). EasyCommit is a hybrid between
2PC and 3PC protocol, which is nearly as efficient as former and non-blocking as
latter. It also does not require the Paxos consensus algorithm, and hence, no additional
requirement of designated acceptor nodes.

Percolator [59] presents a distributed database that facilitates incremental process-
ing. It allows random access to data and resolves transaction conflict by locking the
associated data. It also employs the two-phase commit protocol to ensure consistency.
Percolator uses 2PC protocol to protect itself against machine failures. This also acts
as a good application for commit protocols (GEC or EC) to provide non-blocking
commitment.

Prior works [15,17,44,76] employ a replicated database that partitions the data
across several datacenters. These works employ Paxos [40] which provides a fault-
tolerant consensus. In this work, we present EC and GEC protocols that are designed
to provide safety and liveness properties to non-replicated systems. The deployment
of these protocols to a replicated service is orthogonal to our current work and acts an
exciting future research. We now present some more details on these existing replicated
databases.

Spanner [17] provides an interesting solution to resolve the wide area communica-
tion and handles a large number of client requests. It employs a large distributed
database that spans several locations. Spanner replicates its data across a set of
machines. Each data is assigned to a Paxos group, which maintains the data and facil-
itates fault-tolerant access to the data by the client. However, when a client request
is essentially a distributed transaction that requires access to data spanning multiple
paxos groups, then Spanner employs 2PC protocol. We believe Spanner can employ
our protocol GEC, which not only provides efficient access to data spanning across
geographical locations, but also is non-blocking.

Replicated Commit [44] modifies the principle behind Spanner, to attain a database
that facilitates efficient transaction logging and commit. Replicated Commit suggests
achieving agreement on the transactional result (that is, employing 2PC), prior to start-
ing a Paxos based consensus. This helps the system limit the extra inter-datacenter
latency, which are prevalent in Spanner. We believe this also acts an interesting appli-
cation for our EC protocol as it can provide non-blocking guarantees to the system
employing Replicated Commit by replacing the 2PC protocol.

MaaT [45] presents a distributed transaction processing system that renders opti-
mistic concurrency control (OCC). MaaT’s redesign allows OCC to employ the 2PC
protocol without requiring any locks on any data-item during the commitment phase.
Further, MaaT’s optimistic concurrency control allows it to reduce the number of
aborted transactions. MaaT’s use of 2PC acts as another relevant use case for our
EC protocol. As EC does not rely on any locking mechanism and is compatible with
different concurrency control algorithms, so it can easily integrate with MaaT’s archi-
tecture.

@ Springer

Distributed and Parallel Databases (2020) 38:287-333 329

Leap [42] aims at designing a distributed transaction processing system that is
devoid of any commitment protocol, such as 2PC. Leap removes the need of 2PC by
converting each distributed transaction into a local transaction. To perform this task,
Leap uses the principles of data migration and locality. When a client requires access
to some data from a node, such that the data lies on a different node (remote), then
the data is copied from the remote node to the local node. Hence the local node is
now responsible for managing the data, as each data is managed by only one node.
Although Leap seems exciting, it can face load imbalance if a burst of client requests
are targeted at a specific node. Further, Leap expects data locality, without which a
large amount of time would be spent in transmitting data from one node to another.
This issue can exacerbate if the data size increases.

CockroachDB [15] is a strongly consistent replicated distributed database that
extends the principles of Spanner. CockroachDB employs Raft Ongaro and Ouster-
hout [53], which is an extension to Paxos, to guarantee efficient fault-tolerance across
replicas. It also employs distributed transactions, which are fulfilled by a leader site,
by querying the other sites. Once the leader site performs the required operation, it
informs other sites to commit the transactions. This protocol is similar to 2PC protocol,
which implies that it can serve as an application for GEC protocol.

TiDB [76] is an analytical and transactional processing database that is aimed at
allowing clients performing faster analysis and querying. Its design share principles
with both Spanner and CockroachDB. It also replicates data across a set of nodes,
which are maintained using Raft. To ensure consistency of distributed transactions,
it also employs MVCC Bernstein and Goodman [9] algorithm (Raft also employs a
variant to MVCC).

FaunaDB [22] adheres to the principle of deterministic databases, by requiring the
full knowledge of the transaction before executing the transaction. This allows Fau-
naDB to generate deterministic plans, which help it to process client queries efficiently,
even at geo-scale level. Hence it does not require the use of a commit protocol to ensure
consistency. However, this also limits the type of client transactions that FaunaDB can
handle.

This work builds on top of our previous work [34]. In this paper we present the
design of a novel agreement protocol (Geo-scale EasyCommit) for the geographically
distant systems. We prove that GEC is non-blocking and upholds the key requirements
of safety and liveness. We also present the associated termination protocol that allows
GEC to work effortlessly under node failures. We implement GEC on ExpoDB [33]
and present an interesting evaluation of GEC on four geographically distant locations,
across three continents. Our results show that GEC outperforms 3PC and performs
nearly as good as 2PC protocol.

12 Conclusions

We present a novel commit protocol—EasyCommit. Our design of EasyCommit,
leverages the best of twin worlds (2PC and 3PC), it is non-blocking (like 3PC) and
requires two phases (like 2PC). EasyCommit achieves these goals by ensuring two
key observations: (i) first transmit and then commit, and (ii) message redundancy. We

@ Springer

330 Distributed and Parallel Databases (2020) 38:287-333

present the design of the EasyCommit protocol and prove that it guarantees both safety
and liveness. We also present the associated termination protocol and state cases where
EasyCommit can perform independent recovery. We learn from our EC protocol and
design a novel agreement protocol (Geo-scale EasyCommit) that caters to the needs of
a geographically large scale system. GEC protocol limits cost-expensive inter-cluster
communication by facilitating cost-inexpensive within cluster communication. We
perform a detailed evaluation of EC protocol on a 64 node cloud, and show that it
is nearly as efficient as the 2PC protocol. We also evaluate GEC protocol on a setup
scaling three continents and show that GEC is an efficient alternative to 3PC and
performs nearly as good as blocking 2PC.

Acknowledgements We would like to acknowledge Thamir Qadah for the valuable discussions that helped
us to design ExpoDB system. Further, we acknowledge the anonymous reviewers for their useful inputs
and comments.

References

1. Abbadi, A.E., Toueg, S.: Maintaining availability in partitioned replicated databases. ACM Trans
Database Syst 14(2), 264-290 (1989). https://doi.org/10.1145/63500.63501

2. Abdallah, M., Guerraoui, R., Pucheral, P.: One-phase commit: does it make sense? ICPADS (1998)

3. Agrawal, D., El Abbadi, A., Mahmoud, H.A., Nawab, F.,, Salem, K.: Managing geo-replicated data
in multi-datacenters. In: Proceedings of the 2013 Databases in Networked Information Systems—=8th
International Workshop, DNIS’13, pp. 23-43 (2013)

4. Amir, Y., Danilov, C., Dolev, D., Kirsch, J., Lane, J., Nita-Rotaru, C., Olsen, J., Zage, D.: Steward:
scaling byzantine fault-tolerant replication to wide area networks. IEEE Trans. Dependable Secur.
Comput. 7(1), 80-93 (2010). https://doi.org/10.1109/TDSC.2008.53

5. Bailis, P, Davidson, A., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Highly available transac-
tions: virtues and limitations. Proc VLDB Endow 7(3), 181-192 (2013)

6. Bailis, P, Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Scalable atomic visibility with RAMP
transactions. ACM Trans Database Syst 41(3), 15 (2016)

7. Baker, J., Bond, C., Corbett, J.C., Furman, J., Khorlin, A., Larson, J., Leon, J.M., Li, Y., Lloyd, A.,
Yushprakh, V.: Megastore: providing scalable, highly available storage for interactive services. In:
Proceedings of the Conference on Innovative Data system Research (CIDR), pp. 223-234 (2011)

8. Bernstein, P.A., Goodman, N.: Concurrency control in distributed database systems. ACM Comput
Surv 13(2), 185-221 (1981)

9. Bernstein, P.A., Goodman, N.: Multiversion concurrency control—theory and algorithms. ACM TODS
8(4), 465483 (1983)

10. Bernstein, P.A., Goodman, N.: An algorithm for concurrency control and recovery in replicated dis-
tributed databases. ACM Trans Database Syst 9(4), 596-615 (1984). https://doi.org/10.1145/1994.
2207

11. Bernstein, P.A.,Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database Systems.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA (1987a)

12. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database Systems.
Addison-Wesley Longman Publishing Co., Boston, MA (1987b)

13. Boutros, B.S., Desai, B.C.: A two-phase commit protocol and its performance. In: IEEE, DEXA, pp.
100-105 (1996)

14. Chen, K., Zhou, Y., Cao, Y.: Online data partitioning in distributed database systems. In: Proceedings
of the 18th International Conference on Extending Database Technology, OpenProceeding.org, pp.
1-12 (2015)

15. CockroachDB (2018). https://www.cockroachlabs.com/

16. Cooper, B.F, Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serving
systems with YCSB. In: Proceedings of the 1st ACM Symposium on Cloud Computing, ACM, pp.
143-154 (2010)

@ Springer

https://doi.org/10.1145/63500.63501
https://doi.org/10.1109/TDSC.2008.53
https://doi.org/10.1145/1994.2207
https://doi.org/10.1145/1994.2207
https://www.cockroachlabs.com/

Distributed and Parallel Databases (2020) 38:287-333 331

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J., Ghemawat, S., Gubarev, A., Heiser,
C., Hochschild, P, Hsieh, W., Kanthak, S., Kogan, E., Li, H., Lloyd, A., Melnik, S., Mwaura, D., Nagle,
D., Quinlan, S., Rao, R., Rolig, L., Saito, Y., Szymaniak, M., Taylor, C., Wang, R., Woodford, D.:
Spanner: Google’s globally-distributed database. In: 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12), USENIX Association, pp. 261-264 (2012)

Council TPP (2010) Tpc benchmark c (revision 5.11)

Diaconu, C., Freedman, C., Ismert, E., Larson, P.A., Mittal, P., Stonecipher, R., Verma, N., Zwilling,
M.: Hekaton: SQL Server’s Memory-optimized OLTP Engine. ACM, pp. 1243-1254 (2013)

Dutta, P., Guerraoui, R., Pochon, B.: Fast non-blocking atomic commit: an inherent trade-off. Inf
Process Lett 91(4), 195-200 (2004)

El Abbadi, A., Skeen, D., Cristian, F.: An efficient, fault-tolerant protocol for replicated data manage-
ment. In: Proceedings of the Fourth ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems, ACM, New York, PODS ’85, pp 215-229 (1985). https://doi.org/10.1145/325405.325443
Freels, M.: FaunaDB: an architectural overview (2018)

Fung, B.: The embarrassing reason behind Amazons huge cloud computing outage this week. The
Washington Post, Washington, DC (2017)

Gawlick, D., Kinkade, D.: Varieties of concurrency control in IMS/VS fast path. IEEE Database Eng.
Bull. 8, 3-10 (1985)

Gifford, D.K.: Weighted voting for replicated data. In: Proceedings of the Seventh ACM Symposium
on Operating Systems Principles, ACM, New York, NY, SOSP °79, pp 150-162 (1979). https://doi.
org/10.1145/800215.806583

Gray, J.: Notes on data base operating systems. In: Operating Systems, An Advanced Course. Springer,
Berlin, pp. 393-481 (1978)

Gray, J.: The transaction concept: virtues and limitations (invited paper). In: VLDB, pp. 144-154
(1981)

Gray, J.: A Comparison of the Byzantine Agreement Problem and the Transaction Commit Problem,
pp. 10-17. Springer, New York (1990)

Gray, J., Lamport, L.: Consens. Trans. Commit. ACM TODS 31(1), 133-160 (2006)

Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques, 1st edn. Morgan Kaufmann
Publishers Inc., Burlington (1992)

. Guerraoui, R.: Revisiting the Relationship Between Non-blocking Atomic Commitment and Consen-

sus, pp. 87-100. Springer, Berlin (1995)

Guerraoui, R., Larrea, M., Schiper, A.: Reducing the Cost for Non-blocking in Atomic Commitment. In:
IEEE Proceedings of 16th International Conference on Distributed Computing Systems, pp. 692-697
(1996)

Gupta, S., Sadoghi, M.: Blockchain Transaction Processing, pp. 1-11. Springer, Cham (2018a)
Gupta, S., Sadoghi, M.: EasyCommit: A non-blocking two-phase commit protocol. In: Proceedings
of the 21st International Conference on Extending Database Technology, Open Proceedings, EDBT
(2018b)

Harding, R., Van Aken, D., Pavlo, A., Stonebraker, M.: An evaluation of distributed concurrency
control. Proc VLDB Endow 10(5), 553-564 (2017)

Haritsa, J.R., Ramamritham, K., Gupta, R.: The PROMPT real-time commit protocol. IEEE TPDS
11(2), 160-181 (2000)

Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM
TOPLAS 12(3), 463-492 (1990)

Jiménez-Peris, R., Patifo Martinez, M., Alonso, G., Arévalo, S.: A low-latency non-blocking commit
service. Springer, Berlin DISC’01 (2001)

Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A., Zdonik, S.B., Jones, E.P.C., Madden,
S., Stonebraker, M., Zhang, Y., Hugg, J., Abadi, D.J.: H-store: a high-performance, distributed main
memory transaction processing system. PVLDB 1, 1496-1499 (2008)

Lamport, L.: The part-time parliament. ACM Trans Comput Syst 16(2), 133-169 (1998)

Levy, E., Korth, H.F,, Silberschatz, A.: An optimistic commit protocol for distributed transaction
management. In: ACM SIGMOD, ACM, pp. 88-97 (1991)

Lin, Q., Chang, P., Chen, G., Ooi, B.C., Tan, K.L., Wang, Z.: Towards a non-2PC transaction man-
agement in distributed database systems. In: Proceedings of the 2016 International Conference on
Management of Data, ACM, New York, NY, SIGMOD ’16, pp 1659-1674 (2016). https://doi.org/10.
1145/2882903.2882923

@ Springer

https://doi.org/10.1145/325405.325443
https://doi.org/10.1145/800215.806583
https://doi.org/10.1145/800215.806583
https://doi.org/10.1145/2882903.2882923
https://doi.org/10.1145/2882903.2882923

332

Distributed and Parallel Databases (2020) 38:287-333

43.

44,

45.

46.

47.

48.

49.

50.

51

52.
53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.
70.

Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Stronger semantics for low-latency geo-
replicated storage. In: USENIX Association, NSDI, pp. 313-328 (2013)

Mahmoud, H., Nawab, F., Pucher, A., Agrawal, D., El Abbadi, A.: Low-latency multi-datacenter
databases using replicated commit. Proc VLDB Endow 6(9), 661-672 (2013). https://doi.org/10.14778/
2536360.2536366

Mahmoud, H.A., Arora, V., Nawab, F., Agrawal, D., El Abbadi, A.: MaaT: effective and scalable
coordination of distributed transactions in the cloud. Proc VLDB Endow 7(5), 329-340 (2014). https://
doi.org/10.14778/2732269.2732270

Mao, Y., Junqueira, F.P., Marzullo, K.: Mencius: building efficient replicated state machines for WANs.
In: Proceedings of the 8th USENIX Conference on Operating Systems Design and Implementation,
USENIX Association, pp. 369-384 (2008)

MemSQL (2013). http://www.memsql.com

Mohan, C., Lindsay, B., Obermarck, R.: Transaction management in the R* distributed database man-
agement system. ACM TODS 11(4), 378-396 (1986)

Nawab, F., Sadoghi, M.: Blockplane: A global-scale byzantizing middleware. In: Proceedings of the
35th IEEE International Conference on Data Engineering, IEEE, ICDE °19 (2019)

Nawab, F., Arora, V., Agrawal, D., El Abbadi, A.: Minimizing commit latency of transactions in
geo-replicated data stores. In: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, ACM, SIGMOD ’15, pp 1279-1294 (2015)

NuoDB (2010). http://www.nuodb.com

O’Brien, S.A.: Facebook. Instagram experience outages Saturday. CNN, GA, USA (2017)

Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm. In: Proceedings of
the 2014 USENIX Conference on USENIX Annual Technical Conference, USENIX Association,
USENIX ATC’ 14, pp. 305-320 (2014)

Oracle, C.: Oracle 9i real application clusters concepts release 2 (9.2), Part Number A96597-01 (2002)
Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 3rd edn. Springer, New York
(2011)

Park, T., Yeom, H.Y.: A distributed group commit protocol for distributed database systems. ICPADS
(1991)

Patterson, S., Elmore, A.J., Nawab, F., Agrawal, D., El Abbadi, A.: Serializability, not serial: concur-
rency control and availability in multi-datacenter datastores. Proc VLDB Endow 5(11), (2012)
Pavlo, A., Curino, C., Zdonik, S.: Skew-aware automatic database partitioning in shared-nothing,
parallel OLTP systems. In: ACM, SIGMOD 12, pp. 61-72 (2012)

Peng, D., Dabek, F.: Large-scale incremental processing using distributed transactions and notifications.
In: Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation,
USENIX Association, Berkeley, CA, OSDI’ 10, pp. 251-264 (2010)

Qadah, T.M., Sadoghi, M.: QueCC: a queue-oriented, control-free concurrency architecture. In: Pro-
ceedings of the 19th International Middleware Conference, ACM, New York, NY, Middleware " 18, pp
13-25, (2018). https://doi.org/10.1145/3274808.3274810

Reddy, PK., Kitsuregawa, M.: Reducing the blocking in two-phase commit protocol employing backup
sites. In: IEEE, COOPIS’98, pp. 406416 (1998)

Sadoghi, M., Blanas, S.: Transaction processing on modern hardware. Synth. Lect. Data Manag. 14(2),
1-138 (2019). https://doi.org/10.2200/S00896ED1V01Y201901DTMO058

Sadoghi, M., Ross, K.A., Canim, M., Bhattacharjee, B.: Making updates disk-1/O friendly using SSDs.
Proc VLDB Endow 6(11), 997-1008 (2013)

Sadoghi, M., Canim, M., Bhattacharjee, B., Nagel, F., Ross, K.A.: Reducing database locking con-
tention through multi-version concurrency. Proc VLDB Endow 7(13), 1331-1342 (2014)

Sadoghi, M., Bhattacherjee, S., Bhattacharjee, B., Canim, M.: L-Store: A real-time OLTP and OLAP
system (2018). http://www.OpenProceeding.org, EDBT

Samaras, G., Britton, K., Citron, A., Mohan, C.: Two-phase commit optimizations in a commercial
distributed environment. Distrib. Parallel Databases 3(4), 325-360 (1995)

Shute, J., Vingralek, R., Samwel, B., Handy, B., Whipkey, C., Rollins, E., Oancea, M., Littleeld, K.,
Menestrina, D., Ellner, S., Apte, H.: F1: A distributed sql database that scales. In: VLDB (2013)
Skeen, D.: Nonblocking commit protocols. In: ACM, SIGMOD, pp. 133-142 (1981)

Skeen, D.: A quorum-based commit protocol. Tech. rep. (1982)

Skeen, D., Stonebraker, M.: A formal model of crash recovery in a distributed system. IEEE Trans.
Softw. Eng. 9(3), 219-228 (1983)

@ Springer

https://doi.org/10.14778/2536360.2536366
https://doi.org/10.14778/2536360.2536366
https://doi.org/10.14778/2732269.2732270
https://doi.org/10.14778/2732269.2732270
http://www.memsql.com
http://www.nuodb.com
https://doi.org/10.1145/3274808.3274810
https://doi.org/10.2200/S00896ED1V01Y201901DTM058
http://www.OpenProceeding.org

Distributed and Parallel Databases (2020) 38:287-333 333

71.
72.
73.
74.
75.

76.
71.

Stamos, J., Cristian, F.: A low-cost atomic commit protocol. In: Proceedings of the 9th Symposium on
Reliable Distributed Systems, IEEE, pp. 10-17 (1990)

Stonebraker, M.: Concurrency control and consistency of multiple copies of data in distributed ingres.
IEEE Trans. Softw. Eng. SE-5(3), 188—194 (1979). https://doi.org/10.1109/TSE.1979.234180
Stonebraker, M.: The case for shared nothing. Database Eng. 9, 4-9 (1986)

Sulleyman, A.: Twitter down: social media app and website not working. The Independent, UK (2017)
Thomson, A., Diamond, T., Weng, S.C., Ren, K., Shao, P., Abadi, D.J.: Calvin: fast distributed trans-
actions for partitioned database systems. In: SIGMOD (2012)

TiDB (2018). https://pingcap.com/en/

VoltDB (2010). https://www.voltdb.com/

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1109/TSE.1979.234180
https://pingcap.com/en/
https://www.voltdb.com/

	Efficient and non-blocking agreement protocols
	Abstract
	1 Introduction
	2 Motivation and background
	3 Easy commit
	3.1 Commitment protocol
	3.2 Termination protocol
	3.3 Comparison with 2PC protocol
	3.4 Comparison with 3PC protocol

	4 Discussion
	4.1 Message delay, loss and network partition
	4.2 Independent recovery

	5 Geo-scale EasyCommit
	5.1 Motivation for Geo-scale EasyCommit
	5.2 Geo-scale EC commitment protocol
	5.3 Geo-scale EC termination protocol
	Cluster consultation
	Master timeout
	Coordinator timeout
	Participant timeout
	Master election
	Coordinator election
	Cluster failure

	5.4 GEC correctness: safety and liveness

	6 Geo-scale EasyCommit discussion
	6.1 Message delay and loss
	6.2 Network partition
	6.3 Cost and application of GEC

	7 EasyCommit implementation
	7.1 Architectural overview
	7.2 Design of 2PC and 3PC
	7.3 EasyCommit design
	7.4 Geo-scale EasyCommit design

	8 Evauation
	8.1 Benchmark workloads
	8.2 Varying skew factor (Theta)
	8.3 Varying partitions per transaction
	8.4 Varying server nodes
	8.4.1 Latency
	8.4.2 Proportion of time consumed by various components

	8.5 Varying transaction write percentage
	8.6 Scalability of TPC-C benchmarks
	8.7 Concurrency control
	8.8 Geo-scale EasyCommit

	9 Optimizations
	10 Replication
	11 Related work
	12 Conclusions
	Acknowledgements
	References

