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Abstract
Scientific data is frequently stored across geographically distributed data repositories.
Although there have been recent efforts to query scientific datasets using structured
query operators, they have not yet supported joins across distributed data repos-
itories. This paper describes a framework that supports join-like operations over
multi-dimensional array datasets that are spread across multiple sites. More specifi-
cally, we first formally define join operations over array datasets and establish how
they arise in the context of scientific data analysis. We then describe a methodology
for optimizing such operations—components of our approach include enumeration
algorithms for candidate plans, methods for pruning plans before they are enumer-
ated, and a detailed cost model for selecting the best (cheapest) plan. We evaluate our
approach using candidate queries, and show that the optimization effort is practical
and profitable—query performance was improved significantly using our approach.

Keywords Scientific array database · Database optimizer · Distributed join ·
Database join

1 Introduction

The need for supporting scientific array data processing using declarative languages
or structured operators has been raised in the past, and many systems addressing this
need have been built [9,46,48]. These systems simplify the query specification process
as compared to the ad-hoc approach and/or using low-level languages. Some of these
systems require that the data be loaded into a database [9,48], whereas others can
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provide query processing capabilities working directly with low-level data layouts,
such as a flat-file, or data in formats like NetCDF and HDF5 [19,46].

One of the issues that remain unaddressed is providing advanced query capabili-
ties over data distributed across multiple geographically distributed repositories. The
need for such functionality is increasingly arising as scientific data is growing in
size and complexity. In supporting structured query operators over distributed data,
most commonquery operators (selections, projections, and aggregations) are relatively
straightforward to support. However, the classical join operator and its variants [37]
are challenging to support when the data is at geographically disparate locations. In
this paper, we focus on the challenge of executing and optimizing the join operator
over geographically distributed array data.

As a motivation, consider the current status of dissemination of climate data. In the
United States, much of the climate data is disseminated by Earth System Grid Forum
(ESGF).1 However, world-wide, climate data is also made available by agencies of
other countries, such as those from Japan, Australia, and others. A climate scientist
interested in comparing data across datasets collected from different satellites or agen-
cies will need to run multiple queries across these repositories and to bind the data
manually.

Similarly, array data related to other disciplines spread across multiple repositories
as well—e.g. genetic variation data is found in 1000 (Human) Genomes Project and
1000 Plant Genomes Repository. Scientists are likely to have the need to produce
join queries over different variables collected in these arrays. For example, linking
behavioral data to genes or correlating particles behavior.

1.1 Existing approaches

Today, queries over distributed data are executed in one of several ways. First, often
scientists simply copy all relevant data from repositories to their local environment
and process it using existing tools—a solution very unlikely to be feasible as data
sizes increase. Writing a workflow engine can be another option, but details of data
movement, partitioning of the work, and its placement are handled by the developer.
Moreover, individual operations in a workflow are still written in a low-level language.

Other approaches use ideas from the database (DB) domain to optimize overall
query performance. Query optimization has been thoroughly researched before in
the domain of relational data [14], however, these systems work on data at a central
location or a cluster (with all nodes connected by using a Local AreaNetwork—LAN).
For tightly coupled settings, distributed query plans use rule based optimizers (RBOs)
[3,31,39,54]. RBOs build execution plans from parsed queries based on pre-defined
set of rules or heuristics. Heuristics are used to allow taking optimization decisions
for each node of the parsed query tree separately, e.g. a local decision. An example for
such a heuristic is: “execute each query in the most distributed manner possible until
data unionization or aggregation is necessary”. Some of the DB query optimization
approaches have been extended to geographically distributed data [3,11,19,46,51,52].
These extensions often use a heuristic to transfer all data to a central site and process

1 See https://www.earthsystemgrid.org/about/overview.htm.
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Fig. 1 Alternative ways of evaluating a query across multiple repositories

the query there. None of these extensions consider data shuffle as part of the query
optimization process, assuming the most distributed heuristic cannot be improved.

Data processing has increasinglymoved towards using implementations of theMap-
Reduce concept [18]. Most systems in this space are limited to processing within a
single cluster, where network latency is predictable and low. Note that joins can be
supported over such systems using a high-level language, like in Hive [47]. In such
cases, join optimization [1,50] is based on a set of rules or heuristics that will not be
sufficient to fully optimize geo-distributed data join queries, as will be shown later.
MapReduce systems have also been extended to geographically distributed data [28],
but we are not aware of any work optimizing the join operation in such settings, which
requires careful attention. Stratosphere [2] offers a cost based optimizer (CBO) for
join queries. The CBO optimizes the operators order, and not the distribution of work,
which is done with the simple heuristic mentioned in the previous paragraph—the
more the parallelism, the faster a query should execute.

1.2 Challenges

To illustrate the challenges in executing join(-like) queries acrossmultiple repositories,
we take a specific example. Given a declarative query the system needs to decide
what to do for providing the intended results—a process referred to as building an
execution plan. An execution plan is a tree representation of ordered steps to perform
for retrieving the expected results. Figure 1 shows two simple execution plans for
executing a join between two one-dimensional arrays A and B. A is stored entirely
on Machine1 and is of length 100, whereas B is distributed between Machine2 and
Machine3, each having an array of length 10. The join selectivity, which means the
percent of the results holding the join criteria out of all possible results generated by
a Cartesian multiplication of both joined relations [26], is 1%. In Plan 1, the variable
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A is sent to both nodes Machine2 and Machine3. A partial resultset of length 10 is
produced on eachmachine, and then the resultset fromMachine3 is sent toMachine2
for combining with the local resultset. The final resultset is sent to the user. Plan 2
combines the distributed array B before performing the join on Machine1.

Multiple challenges have been implicitly introduced here. Translating a query to a
plan has been thoroughly researched before [12,14], yet building execution plans that
consider different processing ordering on different nodes while the data is distributed
amongmultiple nodes and sites have not. In our example, anticipatingwhich of the two
presentedplanswould execute faster is not trivial.Apossible reason for choosingPlan1
will be thatmore calculations are performed in parallel. However, with communication
latencies taken into account, Plan 2 may be preferable. In addition, when two or more
joins need to be performed, producing an execution plan becomes hard since the
amount of distribution and evaluation options increases exponentially.

1.3 Contributions

This paper presents a methodology for executing and optimizing joins over geograph-
ically distributed array data. We will show that CBO’s provide better optimization
opportunities for our target setting, where simple heuristics are not sufficient. We
develop algorithms for building distributed query execution plans while pruning not
efficient and isomorphic plans. We introduce a cost model for distributed queries. The
cost model considers the physical distribution of the data and the networking proper-
ties. We have extensively evaluated our query plan generation and execution modules
and demonstrated their effectiveness.

2 Distributed joins

Join operations help compare data across multiple relations, and have been extremely
common in the relational databaseworld. In scientific array data analysis, joins are also
essential for analyzing data and confirm hypotheses. As an example, consider a simple
hypothesis such as “when wind speed increases, the temperature drops”. Verifying this
hypothesis using climate simulation outputs involves multiple joins across different
datasets (because scientists commonly program these operations, many times they
do not directly identify nor recognize a join was used). For detecting the change
(increases/drops), each relation has to be compared with a subset of itself, i.e., we
perform what is referred to as a self join. The pattern detection, i.e. relating the wind
speed to the temperature value, is a regular join across both relations.

2.1 Formal definition

The definition provided here is very similar to the one found in relational database
literature and only differs to match the domain it is imposed on. Here, we address
dimensions and values instead of columnar values. In addition, aggregations are an
inherent part of the scientific data array querying (including joins). In real scientific
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Fig. 2 Query for walkthrough
example

settings, queries rarely do not require aggregations. Dimension reduction is conducted
by using aggregations—data collected includes a higher dimensional setting than the
one used in queries, resulting in the common use of aggregations. For example, when
querying the average temperature we reduce multiple dimensions such as time and
depth of sampling. Therefore, our engine uses aggregations by default, and our imple-
mentation minimizes its cost by integrating aggregations into the join operator.

Formally, the operator �� signifies a join—A ��GC B joins the relations A and
B based on the set of conditions C and using the aggregation function G. C is a
concatenation of conditions of the form A′ = B ′, using ∧ (and) or ∨ (or), where A′
and B ′ can be either a set of dimensions or the relation names themselves (the latter
being referred to as joining by value). G (in the superscript) allows controlling the
aggregation function used for the join (if no aggregation function is mentioned, the
default function to be used if necessary is AVG (average)).

IfC is notmentioned, i.e., the operation is A �� B, commondimensions of both rela-
tions are joined based on their names, while the rest of the dimensions are aggregated
by using an aggregation function. On the other hand, when the join explicitly states
certain dimensions, an aggregation over the non-mentioned dimensions is expected.
One could use the rename operator, ρfrom,to, which renames a dataset, variable, or
a dimension for forcing name match when necessary. It may be necessary to allow
joining only by values (without limiting the dimensions), an operator we mark as �̄�
and is similar to Cartesian Multiplication.

In Fig. 2 we translate the relational algebra query A ��A(d1)=B(d1) B to SQL (Struc-
tured Querying Language [35]), a declarative language to represent queries [12]). We
use SQL since it is a widely used and allows us to succinctly and clearly define what
data processing is needed, ignoring the technical implementation issues. In Fig. 3
we show a walkthrough of this query execution. The common values along the joined
dimension, d1, are 2 and 3. Since the other dimension in this array, d2, does not appear
in the join criteria, aggregation has been used for it (as emphasized in the declarative
query). An additional dimension has been added to record the data source, referred to
in the figure as d3, this dimension in the relational model is translated to two columns.

In Fig. 4 we show a SQL for a subset of the query stated at the beginning of this
section, demonstrating self joins. The SQL shown is equivalent to the request: “Return
the temperature difference for each day from its previous day”. In the query, we first
rename both relations from TEMP toA and B—this is done since this query is a self-join
and therefore we need to be able to address both relations separately. We can look at
relation A as if it represents specific day temperatures, while B represents the previous
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Fig. 3 A walkthrough the join process

Fig. 4 SQL for query example

day temperatures. Therefore, the output is, for each distinct latitude and longitude, the
value of today’s temperature minus yesterday’s temperature, as requested.

2.2 Execution plans

An execution plan, or simply a plan, is a tree representation that contains processing
instructions to an execution engine for providing the correct query results. While the
SQL handles the “What”, the plan targets the “How”. Plans contain an hierarchical
ordering of operators, each of which has at most two children nodes. When the plan
tree is followed from the bottom to its top the intended query results are produced.
In Fig. 5, we show two possible trees for the query: A �� B �� C (we omitted the
(A �� C) �� B option for brevity). Each plan shows a different ordering of operations
that produce the intended results.

Optimizing (or choosing) query plans, and especially data join optimization, has
been extensively studied in the database community. The distinct part of our work is
optimizing data joins when the data and execution are geo-distributed—for example,
a situation where cluster one contains the temperatures in Canada and the U.S., while
cluster two contains the temperatures elsewhere.
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Fig. 5 Non-distributed plan samples

Our distributed plan has additional information within each node, as well as addi-
tional nodes, which provide the necessary information for parallel and distributed
execution of queries. In Fig. 6 we demonstrate two different distributed execution
plans for the simple query A �� B where A is an array distributed over three nodes,
1, 2, and 3, while B is an array distributed over 2 nodes, i.e, nodes 3 and 4. Plan 1 uti-
lizes the most parallelism possible in this case—3 nodes process data in parallel, and
afterwards all data are sent to node 1 where it is accumulated and unionized (unionize
means combining multiple datasets to one). Plan 2 demonstrates the other extreme, in
which all the data is copied to one node, which then processes it. Since only one node
processed the data, there is no need to unionize data. These are just the two extreme
plans, among many possible options.

More broadly, distributed execution plans need to represent parallel execution cor-
rectly, including representation of data communication among the nodes, unionization,
and synchronization. There can be many options for such distribution. For example,
as one extreme, all the datasets content is collected to a central node, and joined there
(as presented in Fig. 6, Plan 2). After the join was processed, the results are tunneled
either to the client, if this is the final plan step, or pipelined to the next step defined
by the query execution plan. Another extreme can be as follows: since a join is per-
formed between two relations, we choose one relation that we refer to as the internal
relation (either relation can be the internal one, we choose the internal one based on
the cost model presented later). The internal relation is kept stationary, while the other
(external relation) is sent across the network to all the nodes that contain the internal
relation. Subsequently, each receiving node executes the join/s and the results are sent
forward according to the execution plan. We note some machines may contain many
datasets (a common practice in real environments), and therefore it is optional for
one node to communicate with another multiple times in this approach. Avoiding this
behavior introduces a third option: we force each machine to transport at most one
dataset of each relation it holds by unionization of the multiple datasets each machine
has before processing. The rest of the processing can be done similarly to the way it
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Fig. 6 Examples of distributed plans

is executed for the previous method—the sample in Fig. 6, Plan 1, demonstrates such
a plan. The advantage of this approach is that it decreases the number of times data
movement occurs and still allows parallel execution of joins.

3 Plan selection algorithms

3.1 Query plans

Formally, an execution plan for a given query is a tree representation of a query,
where each node has at most two children, left and right. Each tree node represents
either a source (relation, array, or dimension) or an operator. Each node outputs a data
stream. Each operator node receives up to 2 incoming data streams. In the case a node
represents an operator, the operator applies to the node’s inputs.

In extending execution plans to distributed ones, additional operators are introduced
(An example plan has already been introduced in Fig. 6). We introduce three new node
types:Sync,SendData, andUnion.Sync is synchronizing the execution of its dependent
nodes, by waiting for all related sync nodes to start execution. All machines executing
a sync node will start its execution at a different times, but will complete at the same
time resulting in its dependent nodes beginning execution at the same time. In many
cases synchronization is implicit and partial. A SendData node implies that machines
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that execute the children nodes need to send the produced results to a set of nodes.
Thus, this operator achieves data distribution from a set of machines that produced
a dataset to a (possibly distinct) set of machines that will later execute operations on
that data. Union nodes are used to accumulate distributed data that was received from
its children.

Each node has a tag that holds information needed for the operator execution. The
tag includes what type of node it is, what subsetting conditions it executes (if appli-
cable), statistical information, and operator specific data. For example, a SendData
node’s tag contains which data is sent, where from, and to which node.

3.2 Plan distribution algorithm

Our goal is to create an efficient CBO to find the optimal distribution of a query.
A CBO is an alternative to a rule (or heuristic) based optimizer (RBO). RBO’s are
unlikely to build optimal plans in this case due to the complexity of our queries
and diverse set of environments where they may be executed. Note that in a CBO,
the optimizer produces a cost value that aligns with execution time, and thus helps
to choose the lowest cost plan. CBO’s do not aim to predict the actual execution
time.

For implementing a CBO we need to first span or enumerate different execution
plans and subsequently to evaluate these plans costs. We enumerate the plans using
a two-step process: (1) choosing between different ordering of operators, leading to
a set of non-distributed plans—these are built using a simple RBO since we span
all options here. (2) enumerating all possible distributed plans corresponding to each
non-distributed plan, each of which involves different choices for where the data is
processed and required data movements. An advantage of this two-step method is
that producing all non-distributed plans has been well researched previously [14].
Therefore, we focus here on the second step.

3.3 Pruning search space

The key challenge we face is that the number of distribution options for a given
(non-distributed) plan can be extremely large. When all options of data sending are
considered, a blowup of options occurs. For example, if n nodes are involved, nn

options of data movement exist. However, not all options have different costs or are
even sensible candidates. As a simple example, one server can send its data to a
neighboring node, accept data from the other node, or even do both (both nodes swap
their data in this last setting). Given this, we must be able to prune the search space
efficiently.

Our first observation is that many of these options are essentially a repeat of each
other. For example, assuming homogeneity of nodes for simplicity, and given data
distributed on 3 nodes, processing on 2 nodes should cost the same irrespective of
which of the two nodes are used. Although it is not often guaranteed that nodes
computing power and data sizes are homogeneous, within scientific data environments
those assumptions often hold. We form the following two rules:
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Rule 1: A node can receive data only if it does not send any data This rule prevents
two nodes from swapping data with each other. The following is an analysis of the
reduction in spanning options. Out of n nodes that have the data, we pick i nodes that
will receive data. There are n− i nodes left, which send their data to all options of the
chosen i nodes. The summation of all of these reduce the number of options needed
to be spanned.

Intuitively, a plan in which one node processes another node’s data, while the other
node processes the first node’s data, is more expensive than a plan in which the nodes
do not swap the data. Consider the cost of data processing of two datasets when node 1
and node 2 both process their own data, assuming data sizes are the same, or when node
1 processes node’s 2 data and vice versa. The processing cost is the same, yet the data
transportation, which does not exist in the first setting, exists on the second. The full
scenario is more complex, yet this consideration helps clarifying why swapping data
is more expensive than maintaining data stationary. Based on the above discussion,
the optimal plan cannot be pruned by Rule 1 as shown in Theorem 1.

Theorem 1 Rule 1 does not prune the optimal plan.

Proof Wewill prove this claim by negation. Assume all machines have the same com-
puting power (as justified before) and that the optimal plan contains a node receiving
data while sending its own. Two options arise: (1) the number of machines processing
the query is the same after the data transportation, or (2) the number of machines
was decreased. If the number of machines is the same, it means data transportation
was added, but the same computational power is used; a similar plan without the data
swap must be cheaper. If the number of machines processing the query was decreased,
we both—reduced the available computational power and added a data transportation
overhead, again, a similar plan without the data transportation must be cheaper. In
both cases, we found a plan with cheaper cost that did not include a node sending its
data while receiving another node’s data, therefore the original plan was not optimal,
and the plan with a node that sends its own data while receiving data of another node
should have been pruned. ��
Rule 2: Isomorphism removal Rule 1 prunes options which are obviously more
expensive than other plans, yet, many of the plans are still isomorphic. Clearly, there
is no particular advantage of choosing one plan over other if they are isomorphic.
We avoid the generation of isomorphic plans using the following approach. First, we
assume that nodes are ordered and ranked by a unique identification number. With
that, we require that a higher ranked node receives data from at least the same amount
of nodes its lower ranked neighbor does. The nodes are ranked for the algorithm to
provide consistent results and to enable addressing non-homogeneous environments
in the future; the ranking can be dynamic, and can be used to address additional
challenges (for example, non-homogeneous data sizes by assigning larger chunks of
data to stronger nodes). For example, if the first node, assumed to have the highest
rank, receives data from 4 nodes (including itself), the second node can receive data
from at most 4 nodes, and so on. The optimal plan is again not pruned since all
isomorphic plans evaluate to the same cost—the cost of isomorphic plans is the same
since machines have the same processing power, are connected to the same network,
the size of processed data is the same, and they perform the same calculation.

123



Distributed and Parallel Databases (2020) 38:127–152 137

A
Nodes: 1

A
Nodes: 2

A
Nodes: 3

Fully-Parallel
Execu�on

Non-distributed
Execu�on

Semi-Parallel
Execu�on

Fig. 7 Distribution options for an array (using rule 2) distributed over 3 nodes

An analysis of Rule 2 shows it prevents isomorphism. Assume we have n nodes and
d datasets, while n ≤ d. Generically, each of the n nodes process at least 1 dataset and
all the nodes altogether process the d datasets. Represent this information in an array
where the index of the array represents the node id and the content is the number of
datasets processed on this node, for example [1, 3, 2, 5, 4] (n = 5, d = 15). Consider
the setting after sorting the array ([5, 4, 3, 2, 1] for the example above)—the sorted
setting holds Rule 2. Therefore, for any distribution setting chosen, there is a setting
isomorphic to it, that holds Rule 2. The approach that issues such plans is referred to
as the reverse waterfall, and we discuss it in more details later.

For example, assume array A is distributed over nodes ranked 1, 2, and 3. In Fig. 7
we demonstrate all possible distribution options following the given rule. Notice that
any other option, given the nodes ranking, would either not make sense in a non-
homogeneous setting, or would repeat an already existing option when nodes are
homogeneous. E.g., consider the semi-parallel option of sending the data from node
2 to node 1 instead of from node 3, while node 3 keeps its data. This would either
imply using a weaker node to process the same amount of data is preferable or will be
equivalent to the semi-distributed option presented.

Algorithm 1 enumerates all distributed plans for a given non-distributed plan node.
The input to this algorithm is a list of ranked nodes (ordered in an array), on which
the data is distributed. The goal of the algorithm is to return all distribution options
for populating each distribution node’s tag. The algorithm iteratively builds all the
options of sending data, by enumerating all options for processing nodes. In a high
level, the algorithm begins by enumerating all the options for the number of nodes
processing data (from 1 to the number of nodes). For each of these numbers, the
algorithm iteratively builds all the options for distributing the data going from the
most distributed approach to the least. More specifically, i represents the number of
nodes processing data, i.e., by Rule 1 maintaining their data locally. The algorithm
spans all options for i between 1 to the total number of nodes. In lines 5–7, we build a
base option for the current i , which is the option where each “free node” (a node that is
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Algorithm 1 Build plans without repetitions
1: function DataSendWithoutRepetitions(node list)
2: options ← ∅
3: n ← number of nodes (receiving data)
4: for i ← 1..n do � i - number of nodes not sending data
5: ∀ j baseOptions. f rom[i] = i � Initialize senders
6: ∀ j≤i baseOptions.to[ j] = j � Send to itself
7: ∀ j>i baseOptions.to[ j] = 1 � All nodes send to first
8: for j ← 1..min(i,n-i) do
9: currOption ← duplicate(baseOption)
10: for k ← 1..(i − 1) × ((n − i)/i) do
11: hasToGet ← min(k, i − 1)
12: ∀t=0..hasT oGet−1currOption.to[i + t] = t + 1
13: for l ← 1..(k-hasToGet) do
14: ar ← buildArraysOfOptoins(n,j,l)
15: options ∪ = span options based on ar
16: end for
17: end for
18: end for
19: end for
20: return options
21: end function

not processing its own data) sends its data to the first node. In line 8 index j represents
the number of nodes that receive data from other nodes ( j of the base options is 1).
In line 10 we define k to be the number of nodes not sending data to the first node. In
line 15 all options spanned by Algorithm 2 are added (based on the sending/receiving
pattern demonstrated by the resulted array)—we send data to higher ranked nodes
from the lower ranked ones, assuring an optimal plan will not be pruned.

This algorithm provides all distribution options for a specific SendData node. Each
option is used to fill a SendData node’s tag.

In Algorithm 2we use a reverse waterfallmethod to create all sending options. This
algorithm outputs an array of numbers, each represents how many free nodes need
to send data to the matching node. In general, we first determine the most distributed
setting by initializing an array to contain the largest number of nodes each receiving
node may receive data from (line 7). Then, in lines 11–30 we bubble up nodes by
following Rule 2—the number of nodes sending data to the lower ranked nodes is
systematically decreased while their higher ranked neighbors are increased.

For example, if there are 4 nodes, and 2 nodes are set to receive data, the reverse
waterfall will create the following arrays: [1, 1, 0, 0], [2, 0, 0, 0] marking that for the
first array both nodes receive data from one node each, while for the second array,
one of the nodes sending data to the second node have been bubbled up, resulting in
the first node receiving data from both free nodes. The reason we call this method the
reverse waterfall is since one can look on the numbers as if when a number to the
right decreases, the number to its left increases. Notice each array represents a unique
option, since we always send data from the weakest node to the strongest one, and an
array such as [1,1,0,0] would mean the lowest ranked node, 4, sends its data to the
strongest one, node 1, while node 3 sends its data to node 2.
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Algorithm 2 Build arrays to spread data holding rule 2
1: function BuildArraysOfOptoins(TotalNodes ReceivingNodes NodesToAssign)
2: � How many nodes will be spread
3: for i ← 1..NodesToAssign do
4: actualRcvNodes ← min(i, ReceivingNodes)
5: � How many nodes receive data
6: for j ← 1..actualRcvNodes do
7: ar ← mostDistributedOption
8: arRet ∪ = ar
9: lastPopulated ← LargestNonZeroIndex(ar)
10: ar ← duplicate(ar)
11: while lastPopulated ! = 0 do
12: while ar[lastPopulated] ! = 0 do
13: t ← lastPopulated − 1
14: ar[t+1] ← ar[t+1] − 1
15: ar[t] ← ar[t] + 1
16: while ar[t] > ar[t-1] do
17: t ← t-1
18: if t == 0 then
19: break
20: end if
21: ar[t+1] ← ar[t+1] − 1
22: ar[t] ← ar[t] + 1
23: end while
24: if t == 0 then
25: break
26: end if
27: arRet ∪ = ar
28: end while
29: lastPopulated ← lastPopulated − 1
30: end while
31: end for
32: end for
33: return arRet
34: end function

4 Cost model

Cost models for facilitating query optimization in a non-distributed environment are
well researched [6,14,20,27]. Enabling a CBO for distributed settings involves a num-
ber of additional challenges, particularly, capturing network latency and bandwidth.
As mentioned before, the cost is calculated for the query, including all its terms and
operators, with the goal that when comparing multiple plans, the plan with the lowest
cost will also execute the fastest.

Tomotivate the need for a nuancedmodel, consider the following example. Suppose
there are two Value Joins (�̄�) with a selectivity of 10%, and using three relations (A,
B, and C), each containing 100 tuples. We expect the first join, between A and B, to
produce 1,000 tuples, and the second one to produce 10,000 tuples. Assume the data
is distributed in the following way: array A is distributed on nodes 1 and 2, array B
is distributed on nodes 3, 4, 5, and 6, and array C is distributed over nodes 1 and 2.
The plan that involves most parallelism would require copying array A to the nodes
that contain array B, and doing the same for array C. This plan’s execution involves:
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Table 1 Costs of a node by operator

Operator Cost (C(n))

Projection
E(n)

normali zer

Filter
E(n → le f t)

normali zer
+ ∑

i∈dims
i → length

Distribute
PenaltynumO f Nodes−1 × E(n)

Packet Si ze × normali zer
+ E(n)

normali zer

Join over dimensions
E(n → le f t) + E(n → right)

normali zer

Join over values
E(n → le f t) × E(n → right)

normali zer

Union
∑

k∈{n→children}
E(k)

normali zer
× k → numO f Nodes

Sync PenaltynumO f Nodes−1

Source
E(n)

normali zer

sending data to 4 nodes from 2 (50 tuples), [an implicit] synchronization across 4
nodes, sending data to 4 nodes from 2 (50 tuples), [an implicit] synchronization across
4 nodes, and processing of 27,500 tuples on each processing node. If the same join is
executed on nodes 1 and 2, its execution would involve: sending data to 2 nodes from
4 (25 tuples), [an implicit] synchronization across 2 nodes, sending data from 2 nodes
to 1 (25 tuples), [an implicit] synchronization across 2 nodes, and processing 55,000
tuples on each node. If a relatively slow wide-area-network is connecting these nodes,
the synchronizations and data movement operations can be expensive. Thus, it is quite
possible that despite more computations on any given node, the second plan would
execute faster.

The goal of our model is to assess these options and choose the best plan. Note that
the cost model itself can be very dependent upon the communication and processing
modalities used. We discuss the model presented at a high-level.

4.1 Costs

We define C(n) as the cost of the node n and E(n) as the size of the expected resultset
after the node operator is executed. Costs are evaluated recursively, starting with the
root, summing all costs together. Each node has up to two children nodes, denoted
by n → le f t and n → right , where the right child node is populated only for
operators that accept two inputs, like joins. We also use n → children to mark both
children together, left and right. For each operation, we list its cost in Table 1 and its
expected resultset size in Table 2. The cost of an empty node,C(NULL), is obviously
defined to be 0. The selectivity, n → selectivi t y, is evaluated beforehand, within the
RBO, by using techniques established in the literature [16,25]. Penalty represents the
synchronization and communication overheads. We use the generic term normali zer
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Table 2 Expected results by operator

Operator Expected results (E(n))

Projection E(n → le f t)

Filter E(n → le f t) × n → selectivi t y

Distribute E(n → le f t)

Join over dimensions (E(n → children) × n → selectivi t y

Join over values E(n → children) × n → selectivi t y

Union

∑

k∈{n→children}
E(k) × k → numO f Nodes

n → numO f Nodes

Sync E(n → le f t)

Source n → sourceCells

as a tool to normalize the values returned to a reasonable and usable scale, to assure
no overflow occur and to decrease side effects of large numbers math. For simplicity,
we use a fixed set of penalties in our experiments, whose value depends upon the
network configuration we use. This penalty value normally averages the networking
delays (mainly latency) across the clusters. In a more heterogeneous environment,
where the penalties average does not suffice, multiple penalty values can be used.

Filtering Multiple filtering operators are supported in our framework: =, ! =, <, >,
<=, and >=. Each filter has different volume or fraction of expected results, which
can typically be estimated based on data statistics. In addition, there are multiple
ways to scan the data and optimize the query, especially when index structures are
available.Dimensional array values are unique, and inmost cases are also sorted—both
properties can be used for estimating selectivities and number of data scans.

Distributing In a distributed plan, we assess the cost of data movement among nodes.
The cost of distribution has two components—the volume of data sent and the number
of packets needed to be sent. Both are calculated for evaluation.

Joining Joins can only be run between 2 relations or dimensions at a time. Therefore,
when multiple join criteria are mentioned in the join clause, they are nested one
after another, a common scenario for array data since these often involve multiple
dimensions. Consider joining by value or a non-contextual join, �̄�. The cost would
simply be the multiplication of the joined array size, while the expected resultset size
is the same value multiplied by the join selectivity—assuming a Cartesian-Like join is
used. When the join is of a different type, the value should be adjusted to an equation
controlling how many values are touched, evaluating the cost more accurately for that
scenario. If the join is over dimensions, a variable reconstruction might be needed.
In this case, the dimensions are joined first, and afterwards, the resulted dimensions
are used to subset the variable. This process involves communicating the indices of
the values that matched between the nodes executing the join to the nodes holding the
variable data for efficiency. We do not focus on this step within our cost calculation
here. For brevity, we assume merge sort is used for the dimensional joins since very
rarely dimensions are not sorted. The total join time is the summation of both—the
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set of 1-D dimensional joins and the actual data join. An exhaustive discussion of this
issue can be found in the existing literature [22,45].

4.2 Summarizing: choosing a plan

For a given query, a rule based optimizer builds all options for a non-distributed plan.
Since the number of plans built is small, we distribute each of these plans separately
by using the two pruning rules given before (Sects. 3.2 and 3.3). The cost of each plan
is evaluated by using the cost model presented above and the cheapest plan is selected
for execution.

Since all possible plans are evaluated, and only isomorphic or repeating plans are
pruned, the cheapest plan is found. In the case multiple plans have the same cost, we
use the simple heuristic: choose the least distributed plan among these plans. Contrary
to expectation, we found the least distributed plan, among equal cost plans, runs
somewhat faster due to slight overheads the cost model does not account for; mainly
meta-data communication and data broadcast, which assumed to be parallelized but
some portions of it are executed sequentially due to hardware limitations and the
frameworks we use.

5 Evaluation

This section evaluates both our plan building methods and the performance of plan
execution.

SystemWe built two systems for the experimentation—a query optimizer and an exe-
cution engine. The query optimizer was written in C++, for efficiency, while the query
execution engine, which executes plans produced by the optimizer, waswritten in Java,
which allows its integration in many available frameworks. Because of the challenges
of performing repeatable experiments in wide-area settings, communication latencies
were introduced programmatically. The query optimizer accepts as input a query, and
based on the algorithms provided in this paper creates an XML file with the cheapest
plan. The query executor reads the execution plan from the XML file, follows the
plan for executing the query (communication is implemented by using MPI [15]), and
sends the query results to the user in a form of a NetCDF [44] file. The join algorithm
itself and the order of execution are dynamic and provided by the optimizer. Because
of scientific array data properties, dimensional joins are implemented by using sort-
merge join, while skipping the sort since the data is already sorted. The array data join
is implemented as described Sect. 2.

QueriesAll queries executed by the engine in the evaluation are value joins, �̄�, which
differ by the amount of joined arrays, selectivities, and array sizes. We focus on joins
since analytical querying requires full data scans, and often does not decrease the
array sizes—all other operators are cheaper. For the evaluation, we use at most five
relations (A, B, C, D, E). Query 1 (Q1) joins 3 tables by using 2 joins: (A�̄�B)�̄�C ,
Query 2 (Q2) joins 4 tables by using 3 joins: ((A�̄�B)�̄�C)�̄�D, and last Query 3 (Q3)
joins five tables by using 4 joins: (((A�̄�B)�̄�C)�̄�D)�̄�E . These three simple queries
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Table 3 Join selectivities and
processed dataset average sizes
by query—N, number of tables
involved in the join (N−1 joins);
Jn, the selectivity of the nth join;
AVG DS, average dataset size on
each node

Q N J1 (%) J2 (%) J3 (%) J4 (%) AVG DS (MB)

1 3 5.0 0.5 381

2 4 1.0 1.0 0.1 762

3 5 0.1 0.5 0.1 1.0% 40

represent a wide range of real world queries—by using a small selectivity we can
simulate subsetting conditions as well as joinability. Since the optimizer is mostly
challenged by the number of nodes on which a relation is distributed on (and not the
number of relations) we report results of joins of up to five relations. Using more
relations for a query does not affect the feasibility of the approaches presented in this
work, specifically—the amount of trees needed to be spanned is dependent on the
distribution, and not the number of relations.

Data sizes The experiments were designed in a manner that each node stores an array
with data sizes of between 8 MB to 800 MB. These sizes were chosen based on real
datasets available on theESGFportal. Also, the reported size is the size of an individual
array read from a file (files are larger as they typically host multiple arrays). The array
size mentioned is the local portion of each array, when we experiment over n nodes the
total array size is the local one multiplied by n (for example, when experimenting over
800M arrays which are distributed over 10 nodes, the complete join is conducted over
approximately 8GB, which is the actual array size). The data we used was generated
in a pattern designed to enforce the given selectivities and holds the same patterns of
real climate data.

In Table 3 we present, for each query, the join selectivities and the average size of
processed array. The selectivities are between 0.1% to 5%, valueswhich are commonly
observed in Data Warehousing queries [43]. Since data is distributed over multiple
nodes, the total data sizes vary for each query and for each array, therefore, we present
the average dataset size.

Experimental settingAll experiments inwhichwe execute the queries ran on a cluster
where each node has an 8 core, 2.53, GHz Intel(R) Xeon(R) processor with 12GB of
memory. All the experiments where we focus on building plans have been executed
on a 4 cores Intel(R) Core(TM) i5, 3.3Ghz, processors, with 2GB of memory. All
machines run Linux kernel version 2.6. The reported results are over three different
consecutive runs, with no warm-up runs. Standard deviation is not reported since
results were largely consistent. Unless mentioned otherwise, we set the optimizer
penalty to be 400, equivalent to network latency of a WAN—this latency is based on
data shown in related work [11,30,49].

Since no other environment provides the ability to join distributed scientific array
data, we could not have compared our engine to any other. For example, SciDB [10]
does not allow running generic joins as described here and does not support geograph-
ically distributed data. No implementation of (and/or higher level layer on top of)
MapReduce can directly support joins over geographically distributed data.
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Throughout the experiments, we assume no multi-tenant effect exists. The domain
of multi-tenancy in context of data analytics is being researched separately [4,38], and
considering it is beyond the scope of this work.

5.1 Pruning of query plans

We initially consider a simple join operation between two arrays, where each array
is split across a given number of hosts. In Fig. 8 we show how the number of trees
spanned for a join between two variables increases, showing the two pruning rules
we have introduced drastically decrease the number of plans we need to evaluate. In
the figure, there are multiple graphs. In each graph, the title includes the number of
nodes the first joined relation is distributed over, the X-axis represents the number
of nodes the second joined relations is distributed over (between 1 and 32), and the
Y-axis holds a logarithmic scale for the number of spanned trees built for each of the
settings. The continuous line represents the number of trees built by DistriPlan, while
the other represents the number of trees need to be built when no pruning technique is
used. Notice the difference in the initial values between the two graphs, and the scale
changes, as the number of nodes increase between the graphs. For example, when both
the arrays being joined are spread among 32 machines, our algorithms generate only
4,100 plans, out of the ∼ 1.4×1071 optional ones. In practice, a dataset is likely to be
split across a much smaller number of distributed repositories than 32. The maximum
runtime of our optimizer was 0.46 s, while the average was 0.08 s, showing that query
plans can be enumerated quickly with our method.

Next, we consider a join over three arrays, i.e., query Q2. In Table 4 we show how
long it takes to span plans for the distribution of the non-distributed plan shown in
Fig. 5, “Plan 1”. We consider a set of representative distribution options of the three
datasets across different amount of nodes (each between 1 and 32 nodes). Each row
considers a specific partitioning of the three datasets and shows the number of plans
traversed and the time taken. As one sees, all execution times are under 2 s. Rules
1 and 2 given in Sect. 3.3 limit the increase in number of distribution options (for
comparison, without rule 1 and 2, the first row would have had to span 2.63 × 1035

trees—clearly not a feasible option). In all cases we experimented with, the query
performance improvementwas substantial compared to the other, not optimized, plans.
For example, we saved about 20 minutes of execution time compared to the median
plan for the setting where the 3 involved datasets are partitioned across 8, 8, and 16
nodes respectively, with the final execution time only being 0.37 s. The same plan ran
20s faster compared to the plan with most parallelism. Similar gains were seen inmost
experiments. Overall, we conclude the conditions provided in Sect. 3 are sufficient
for handling cases where data to be queried is spread across a modest number of
repositories.

5.2 Query execution performance improvement

In this experiment, we measure how effective our query plan selection method (and
the underlying cost model) is. We execute three different plans for each query, the
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Table 4 Time required to span plans and number of spanned plans for a three-way join distributed among
multiple nodes, the first columns present for each relation on how many nodes it is distributed

No. of nodes Spanning time (s) Options spanned

Relation partitioned

A B C

1 1 32 0.19 4,104

1 4 16 0.02 1,816

1 16 16 1.76 72,646

2 4 32 0.91 16,427

4 4 32 1.27 24,644

4 8 8 0.01 1,521

4 16 8 0.30 15,034

8 8 8 0.03 2,614

8 8 16 0.37 17,398

16 16 4 0.41 15,762

16 16 8 0.84 29,640

Fig. 9 Execution time slowdown (in %) for the most distributed and median plans compared to the cheapest
plan. Each query is listed by the query ID, and a detailed distribution by array appears in Table 5

cheapest and median cost plans generated by our CBO model, and the plan with
most parallelism. The latter is a commonly used heuristic in current systems such as
Hive [8,47] and Stratosphere [2]. For each of the queries presented above, we first
build a plan using our CBO for different distributed settings. The latency used in all
experiments is of WAN, equivalent of 400 ms.

In Fig. 9 we report the increase in execution time of the median and most parallel
plan versions, compared to the cheapest plan our optimizer selected. Along the X-axis,
we list the query and the number of nodes that held the data for the query (each array
is distributed differently for each query—this information can be seen in Table 5).
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Table 5 The distribution of
relations for each query—the
specific distribution of each
array for the queries presented in
Fig. 9

Q No A B C D E

1 16 4 4 8

1 20 4 8 8

1 24 8 8 8

1 32 8 16 8

2 8 2 2 2 2

2 12 2 2 4 4

2 34 12 8 6 8

3 20 4 4 4 4 4

3 24 7 5 3 4 5

3 26 4 6 6 4 6

3 30 7 4 4 4 4

Table 6 Queries execution time
for the settings in Table 5

Q1 Q1 Q1 Q2 Q3 Q3 Q3

16 20 32 34 20 24 26

Cheapest 6S 20S 57S 1093S 31S 36S 146S

Distributed 11S 29S 75S 1191S 34S 39S 161S

Median 29S 30S 183S 3304S 36S 41S 152S

Along the Y-axis, we list the slowdown of the median plan and the most parallel plan
compared to the cheapest plan. For example, Q1-16 cheapest plan ran 83% faster
than the most parallel plan. We note that in certain specific cases (depending on the
selectivities of the joins, among other factors) the cheapest plan is also the one with
most parallelism. These cases are not shown. When arrays are distributed unevenly,
the optimal plans are rarely themost distributed ones. In fact, the number of processing
nodes is often smaller than the number of nodes that originally hold the inner joined
array in the cheapest plan, i.e, at least one of the processing nodes processes data of
the same array that is copied from another node.

In Table 6 we show the actual execution time for some chosen settings fromTable 5.
As can be seen, in all cases the cheapest plan executes the fastest. Furthermore, nearly
in all cases the most parallel plan is faster than the median plan. In addition, plans that
are mostly similar have small performance difference (such is the case for Q3–30 in
Fig. 9).

A pattern uncovered here is a decrease in the improvement for some of the more
complex queries (queries executingmore joins and/or using a larger number of nodes).
For example, in the case of Q1–16 (4, 4, 8), the slowdown for the most distributed
query is 83%, while for Q3–20 (4, 4, 4, 4, 4) it is ∼10%. This behavior is rooted in
parallelism that the more complex plans enable—for example, a three-way join forces
sequentiality, while for a 4-way join, processing of some of the joins can be performed
in parallel for certain plans.
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Table 7 Performance slowdown
percentage of a plan optimized
for a specific, optimizer setting
(Set), penalty but executed with
different actual (Act) network
setting—Q1 with a setting of 3,
5, 4

Set Act
0 40 400 4000
None Cluster WAN Extreme

0 0.00% 75.00% 11.20% 12.42%

40 0.00% 0.00% 10.37% 0.00%

400 75.00% 75.00% 0.00% 0.18%

4000 150.00% 150.00% 1.66% 0.00%

Table 8 Performance slowdown
percentage of a plan optimized
for a specific, optimizer setting
(Set), penalty but executed with
different actual (Act) network
setting—Q3–24 in Table 5

Set Act
0 40 400 4000
None Cluster WAN Extreme

0 0.00% 18.18% 31.36% 17.64%

40 11.11% 0.00% 49.54% 36.96%

400 6122.22% 1436.36% 0.00% 19.90%

4000 159.26% 0.00% 26.81% 0.00%

We conclude the CBO approach for performance improvement is profitable. In
all cases observed using our cost model, the fastest query to execute is the one the
CBO evaluated to be the cheapest. In addition, the fastest query execution time was
always faster than the median cost query and the most distributed plan (when both
were different).

5.3 Impact of network latency

Weexecuted the query optimizer and the resulting query plans to emulate four different
cases. Here, we set the optimizer to build plans for a specific value of the network
penalty, and execute each plan using different latency values than the one that matches
the actual setting. We chose the following values for the penalty: 0 (no latency),
40 (Cluster), 400 (WAN), and 4000 (extreme), thus covering a wide variety of possible
networks. We built plans optimized for each penalty and executed each plan multiple
times using different actual settings.

In Tables 7 and 8 we show the percentage of the slowdown in execution time of the
query optimized for a specific value compared to the query optimized for that value.
For example, the value of the first row, second column, in the first table signifies that the
optimized plan for a penalty value of 0 executed 75% slower than the plan optimized
for 40 when the actual setting was the one intended for 40—the execution time of
the cheapest plan optimized for a penalty of 0 is 7 s, the optimized plan for a penalty
of 40 executes in 4 s. Similarly, in the second table for the first row last column, the
execution time of a plan optimized for a penalty of 4000, which was also used for the
actual one, is 2386s while the plan optimized for a 0 penalty ran in this setting for
2807s—a slowdown of 17.64%.
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Overall, we can conclude that the penalty has to be selected carefully to reflect
the actual setting—wrong values might harm performance as significantly as the right
values improve it. It also shows that the best plan can vary significantly depending
upon the latency, which implies that detailed cost modeling is critical.

6 Related work

Our work is related to the areas of (scientific) array data querying and distributed
querying. We had earlier discussed some of the efforts in this area in Sect. 1.1. We
now discuss other relevant efforts here.

Scientific arrays are often stored and distributed using portals, such as ESGF [7].
These portals use multiple methods in their backend to store and retrieve data. The
most common data transportation technologies used is FTP [41], and in fact, querying
operators have been integrated with one implementation of FTP, the GridFTP [19,46].
However, these systems can neither support distributed repositories, nor the Join oper-
ators. A more structured approach to querying scientific data involves array databases,
and there is a large body of work in this area [5,9,13,17,32–34,36,42,48,55]. These
systems require that the data be ingested by a central system, before it could be
queried. Thus, they cannot support queries across multiple repositories. They also
cannot directly operate on low-level scientific data. Finally, the query optimizer in
Hive [47], which provides a high-level query interface to a MapReduce implementa-
tion [18], optimizes distributed querying over datawithin a cluster. Thiswork primarily
focuses on relational data within a single cluster, and the heuristics used assumes a
very low latency—which is obviously not true in the case of geo-distributed arrays.
The same is true for other research efforts in this area [29].

Optimization of distributed data (outside a cluster) was considered in the Volcano
project [21,23,24]. However, this work did not include a cost-based optimizer that
considered different options for distributing the processing and data movement, and
uses implicit heuristics as well. WANalytics [51] is a recent proposal from Microsoft
for developing analytics on geographically distributed datasets, but their target is not
the join operator, nor scientific data—which makes this work an ideal continuation
of that work. Stratosphere [2] offers a CBO for optimizing joins (among other opera-
tions). However, the CBO is used only for join-order, and choices among distributed
computing options are made using a simple heuristic.

Another approach for joining distributed data may be to not evenly transport, or
shuffle, the data. Examples could be instead of holding the machines that store Array
2 idle while the machines that hold Array 1 are processing all the data, to send both
arrays to all optional processing nodes, and to utilize the machines that held the outer
joined array as well (increasing the number of used machines) [40,53]. While these
approaches minimize the communication traffic (assuming less communication leads
to faster execution time), the same assumption of low latency and local cluster are
used. Our approaches complement these methods as well and can be adjusted to fit
these approaches. In addition, these approaches do not currently handle the situation
of arrays stored in a distributed patters. It is unclear what performance hit adjusting
these algorithms for that setting entails.
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7 Conclusions and future work

In this paper, we have presented and evaluated a framework for optimized execution of
array-based joins in geo-distributed settings. We developed a query optimizer, which
prunes plans as it generates them. For our target queries, the number of plans is kept
at a manageable level, and subsequently, a cost model we have developed can be
used for selecting the cheapest plan. We have shown our pruning approach makes the
plans spanning problem practical to solve. We evaluated our system and shown the
cost model cheapest plan executes faster than more expensive plans. We have shown
through experimentation that the penalty parameter introduced in the cost model is a
critical one, and should be adjusted to fit the physical system setting carefully.

Our work can be extended in multiple directions. One of the ways to improve query
plan generation will be to use learning algorithms, which can also learn multiple
weights and penalties to fit each environment better. Similarly, creating an engine
which finds the cheapest distributed execution plan directly from a query (without
first enumerating all join options using an RBO) is an interesting challenge. Cases
where data is not distributed evenly, and each node has different data distribution
(skewed data), are an interesting research venue as well.
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