
Distributed and Parallel Databases (2021) 39:321–360
https://doi.org/10.1007/s10619-019-07263-0

Summarizing and linking electronic health records

Dimitrios Karapiperis1 · Aris Gkoulalas-Divanis2 · Vassilios S. Verykios1

Published online: 18 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In recent years, several applications have emerged which require access to consoli-
dated information that has to be computed and provided in near real-time. Traditional
record linkage algorithms are unable to support such time-critical applications, as they
perform the linkage offline and provide the result set only when the entire process has
completed. To address this need, in this paper we propose the first summarization
algorithms that operate in the blocking and matching steps of record linkage to speed
up online linkage tasks. Our first method, called SkipBloom, efficiently summarizes
the participating data sets, using their blocking keys, to allow for very fast compar-
isons among them. The second method, called BlockSketch, summarizes a block
to achieve a constant number of comparisons for a submitted query record, during the
matching phase. Our thirdmethod,SBlockSketch, operates on data streams, where
the entire data set is unknown a-priori but, instead, there is a potentially unbounded
stream of incoming data records. Finally, we introduce PBlockSketch, which
adapts BlockSketch to privacy-preserving settings. Through extensive experimen-
tal evaluation, using real-world data sets, we show that our methods outperform the
state-of-the-art algorithms for online record linkage in terms of the time needed, the
memory used, and the recall and precision rates that are achieved during the linkage
process. Following the evaluation of our approaches, we introduce SFEMRL, a novel
framework that uses them to enable the linkage of electronic health records at large
scale, while respecting patients’ privacy. Under this framework, patient records first
undergo a data masking process that perturbs sensitive information in data fields of
the records to protect it. Subsequently, they participate in a parallel and distributed
ecosystem, whose goal is to persist these records in order to be queried efficiently and
accurately. We demonstrate that the integration of our framework with Map/Reduce
offers robust distributed solutions for performing on-demand large-scale privacy-
preserving record linkage tasks in the health domain.

B Dimitrios Karapiperis
dkarapiperis@eap.gr

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-019-07263-0&domain=pdf
http://orcid.org/0000-0002-3878-5988

322 Distributed and Parallel Databases (2021) 39:321–360

1 Introduction

Record linkage, also known as entity resolution or data matching, is the process of
identifying records that match, i.e., refer to the same real-world entity, in absence of
commonunique identifiers for records that belong to disparate data sources.Additional
obstacles, such as the existence of writing variations (lack of standardization), errors,
misspellings, and typos in various data fields, are commonly met in record linkage
tasks and constitute record linkage a very challenging task. Traditional approaches
to record linkage perform the linkage process offline and provide the result set only
when the entire linkage process has completed. The process itself typically consists
of two main steps, namely blocking and matching. In the blocking step, records that
potentially match are grouped into the same block. Subsequently, in thematching step,
records that have been blocked together are examined to identify those that actually
match. Matching is implemented using either a distance function, which compares
the respective field values of a record pair against specified distance thresholds, or a
rule-based approach, e.g., “if the surnames and the zip codes match, then classify the
record pair as matching”.

Several blocking approaches have been developed with the aim to boost the scal-
ability of record linkage to Big data sets, without sacrificing accuracy [3,9,18,39].
Given the massive size of modern data sets and the costly operations that have to
be performed for record linkage, offline methods can take a significant amount of
time—typically measured in hours or even days—to produce the matchings. This can
be highly problematic in many real-world use cases where the linkage process must
return a fast response in order to allow for emergency actions to be triggered. Let us
assume, for example, a central crime detection system that collects data from several
sources, such as crime and immigration records, central citizens’ repositories, and
airline transactions. Query data about a suspect could be submitted to this system in
order to be matched with any possible similar records found therein. The results of
this process have to be reported as fast as possible or, at least, within an acceptably
low time period, in order to trigger police enforcement actions.

As a second example, consider the recent series of bank and insurance company
failures, which triggered a financial crisis of unprecedented severity. In order for these
institutions to recover and return to normal business operation, they had to engage
in merger talks. One of the driving forces of such mergers is the appreciation of the
extent to which the customer databases of the constituent institutions are shared, so
that the benefits of the merger can be proactively assessed in a timely manner. A very
fast estimation of the extent of the overlap of the customer databases is thus a decisive
factor in the merger process. To achieve this, the data custodians could use summaries
of their databases in order to quickly estimate the overlap of their customers, instead
of engaging in a tedious record linkage task. Although our motivation comes from
the summarization of the blocking structure of a database, we believe that database
summarization is an area of great interest with applications beyond record linkage.

As can be easily observed from the use cases discussed above, there exist many real-
world scenarios in which the data records that have to be linked from the disparate data
sources represent sensitive personal information about individuals. Such information
must be sufficiently protected during the linkage task. Specifically, in this paper, we

123

Distributed and Parallel Databases (2021) 39:321–360 323

consider the summarization and linkage of patients electronic health records as a
major use case in which record linkage has to be performed with high accuracy, at
large scale, and with privacy provisioning. Performing record linkage on patients’
electronic health records enables hospitals to gain a comprehensive view of a patient’s
medical history, as patients’ information is usually distributed acrossmultiple disparate
health providers. Besides the benefit to the patients, who can receive better treatment
when doctors are aware of their complete medical history, a holistic view of patients’
medical information enables performing accurate medical research studies. Given
the non-existence of a universal patient identifier across health care organizations,
such an integration is not currently possible without the use of sophisticated, state-of-
the-art record linkage techniques. Moreover, due to the high sensitivity of patients’
medical information, the integration of such data cannot be performed without the
use of Privacy-Preserving Record Linkage (PPRL) [17] techniques. Such techniques
are expected to not only comply with existing privacy legislation, but to offer privacy
guarantees that go beyond legislative requirements, effectively offering protection to
patients’ records from re-identification and sensitive information disclosure attacks.
Even more, record linkage techniques are expected to deliver a high level of linkage
quality, by performing accurate record matching and by significantly reducing the
number of record pairs that require human intervention to be classified as matching
or non-matching pairs. PPRL is the first important step towards the collective mining
of data, coming from various health care providers, in order to facilitate the discovery
of valuable insights. For instance, linked data from different medical providers can
be used to support the discovery of new drugs, aid researchers in identifying novel
drug targets, as well as new indications for existing drugs. Personalized care plans and
automated care management workflows, that have resulted from a data analysis, allow
to create informed action plans. Moreover, medical tests can be interpreted faster and
with greater accuracy by analyzing and drawing inferences from large volumes of
medical data.

To support real-world applications where record linkage (and PPRL) has to be per-
formed in near real-time, several online record linkage approaches have been proposed
in the research literature [7,14,30,38]. All these approaches require the availability of
large amounts of main memory, which is necessary in order to store their correspond-
ing data structures. For instance, [7] utilizes large inverted indexes, while [14,30,38]
sort the records to form blocks by leveraging large matrices or huge graphs. Despite
several efforts to utilize small amounts of memory, e.g., [30], the results in terms of
performance clearly indicate the inability of these algorithms to handle an increasingly
large volume (or a continuous stream) of records in a real-time fashion. Given that
main memory is always bounded and the number of records may in several real-world
applications be unbounded, the performance of these data structures quickly degrades
significantly. Furthermore, in order to deal with this plethora of records and detect the
matching pairs, the proposed methods usually resort to conducting an excessive num-
ber of distance computations. This strategy, however, is not efficient, since it incurs
significant delays to the record linkage process.

In the first part of the paper, we introduce four methods for efficiently managing
large volumes of records in the context of online record linkage. Our first method,
called SkipBloom, performs a summarization (synopsis) of the blocking structure

123

324 Distributed and Parallel Databases (2021) 39:321–360

of a data set using a small footprint of main memory, whose size is logarithmic in
the number of distinct processed blocking keys. This synopsis can be easily trans-
ferred to another site (or used remotely) to estimate the common number of blocking
keys. Such a preliminary estimation may bring to surface important insights, which
can be further analyzed by the data custodians. The outcome of such analyses may
encourage (or discourage) the data custodians to conduct a full-scale record linkage
task. Our second method, called BlockSketch, tackles the problem of blocks that
are overwhelmed with records, which should be compared against a query record
to detect matching pairs. BlockSketch instead of implementing the naïve lin-
ear approach, compares the query record with a constant number of records in the
target block, which entails a bounded matching time. In order to achieve this opti-
mization, BlockSketch compiles, for each block, a number of sub-blocks, which
reflect the distances of the underlying blocked records from the blocking key. The
algorithm places a query record to the sub-block whose records exhibit the smallest
distances from the query record. Our third method, called SBlockSketch, operates
on data streams, where the entire data set is not known a-priori but, instead, there is
an unbounded stream of incoming data records. SBlockSketch maintains a con-
stant number of blocks in main memory at the cost of a time overhead during their
replacement with blocks that reside in secondary storage. In this scheme, we propose
a selection algorithm to effectively select the blocks that should be replaced, by taking
into account their selectivity (by the incoming records) and age. Finally, we introduce
PBlockSketch, which adapts BlockSketch to privacy-preserving settings. To
the best of our knowledge, SkipBloom is the first algorithm for creating an appropri-
ate synopsis of a blocking structure, while BlockSketch and SBlockSketch are
the first methods for sufficiently summarizing a block for the needs of the matching
phase of a record linkage task. SkipBloom, BlockSketch, and SBlockSketch
were first introduced in [25].

In the second part, we propose a framework for linking and summarizing patients’
electronic records in a privacy-preserving manner. Our framework, called SFEMRL
(Summarization Framework for Electronic Medical Record Linkage), incorporates
PBlockSketch and a privacy-preserving algorithm for online operations called
FPS [22]. SFEMRL allows for approximate matching in an embedding privacy-
protected space by preserving the original distances. These methods can identify, with
high probability, similar patients’ records, by applying an efficient blocking/matching
mechanism. In the heart of SFEMRL resides LSHDB [23], which uses the Locality-
Sensitive Hashing [15] technique to efficiently block the masked records, and store
the produced blocking structures on disk for further use. LSHDB achieves very fast
response times, which makes it ideal for online settings, thanks to the utilization of
efficient algorithms and the employment of flexible and robust noSQL systems for
storing the data. Utilizing a ring of LSHDB instances, we establish distributed data
stores than can be easily queried, and we integrate them with Map/Reduce [11] for
effectively processing big volumes of records.We also propose a new algorithm for the
online operation of SFEMRL, which relies on the median trick and FPS, to accelerate
its response time.

The rest of this paper is structured as follows: Sect. 2 presents the related work,
while Sect. 3 outlines the building blocks utilized by our algorithms and provides the

123

Distributed and Parallel Databases (2021) 39:321–360 325

formal problem definition. Section 4 describes our proposed algorithms from both a
practical and a theoretical point of view. Section 5 presents SFEMRL, used as short-
hand for Summarization Framework for ElectronicMedical Record Linkage, which
is a complete framework for identifying electronic health records corresponding to the
same patient that appear in medical data sets held by disparate health providers. The
results of our experimental evaluation, including a detailed comparison with baseline
methods, are reported in Sect. 6, while Sect. 7 concludes this work.

2 Related work

A significant body of research work has been conducted in record linkage during the
last four decades. This work has been nicely summarized in a number of survey articles
[6,8,13,37]. However, only a very limited amount of work has targeted the area of near
real-time record linkage, such as [1,2,7,12,19].

In [7], Christen et al. present an approach that involves a preprocessing phase, where
the authors compute the similarities between commonly blocked values, using a set
of inverted indexes. The authors use the double metaphone [5] method to encode the
string values,which are then inserted into the inverted indexes. This scheme is extended
in [34], where a heuristic method is presented to index the most frequent values of
data fields. This method, though, requires a-priori knowledge of the values in certain
fields and is not well-suited for settings where highly accurate results are needed.
Ramadan andChristen in [33] utilize a tree structurewhere a sortingorder ismaintained
according to a chosen field(s). A query record scans not only the node that is inserted,
but also its neighboring nodes where similar records may also reside. Nevertheless,
the distance computations that should be performed may degrade considerably the
performance of this method in online settings.

Dey et al. in [12] develop amatching tree to speed up the decision about thematching
status for a pair of records, so that it can be made without the need to compare all field
values. However, the performance of thismethod depends heavily on the training of the
matching tree, which requires a large number of record pairs. Moreover, the authors do
not draw any attention to the acute problem of reducing the record pairs comparisons.
Ioannou et al. in [19] resolve queries under data uncertainty, using a probabilistic
database. The effectiveness of their method heavily depends on the potential of the
underlying blocking mechanism, which is used implicitly, to produce blocks of high-
quality. In [1], Altwaijry et al. propose a set of semantics to avoid resolving certain
record pairs. Their scheme, however, focuses on how to resolve generic selection
queries (e.g., range queries), rather than on minimizing the query time.

There is also another body of related literature that deals with progressive record
linkage (e.g., [14,30,38]). These techniques report a large number of matching pairs
early during the linkage process and are quite useful in the event of an early termination
of the linkage process, or when there is limited time available for the generation of
the complete result set.

The solutions proposed by Whang et al. in [38] and Papenbrock et al. in [30] are
empirical and rely heavily on lexicographically sorting the input records to formulate
clusters of similar records. Although the sorting technique is quite effective in finding

123

326 Distributed and Parallel Databases (2021) 39:321–360

similar values in certain cases, it cannot guarantee identification of matching record
pairs. Consider, for example, the similar strings ‘Jones’ and ‘Kones’, where the first
letter has been mistyped; using [30,38], the corresponding records would definitely
reside in different clusters (assuming a large number of records). Consequently, the
corresponding pair of records would never be considered as matching.

More recently, Firmani et al. [14] introduced two progressive strategies that pro-
vide formal guarantees of maximizing recall, focusing though only on minimizing the
number of queries to an oracle (which is an entity that replies correctly about the link-
age status of a pair) and not on minimizing the running time. Both strategies implicitly
assume an underlying blocking mechanism that has been applied on the data sets, and
heavily rely on the effectiveness of that blockingmechanism. Their most serious short-
coming is the excessive amount of time-consuming similarity computations, which
need to be performed between the formulated pairs in the blocks, without achieving
any increase in recall. For example, in a data set of 3 million records (including the
query set), more than 1.3 billion similarity computations should be performed without
reporting any results!

There is also another body of work, termed as meta-blocking [28,29], which inves-
tigates how to restructure the generated blocks with the aim of discarding redundant
comparisons.Meta-blocking techniques, however, conduct a cumbersome transforma-
tion of a blocking structure into a graph, which renders these techniques not applicable
to online settings.

In Sect. 6, we elaborate further on the approaches of Christen et al. and Firmani
et al., which are the state-of-the-art methods with which we compare our proposed
techniques.

3 Background and problem formulation

In this section, we first introduce the necessary background and terminology for the
understanding of our proposed schemes, and subsequently derive the problem state-
ment.

3.1 Skip list

A skip list [31] is a probabilistic data structure that is designed to provide fast access
to an ordered set of items. It is actually a sequence of lists, or levels, where the first
list, termed as the base level, contains all the items inserted so far in sorted order.
Each successive list is a copy of the previous with some elements skipped, until the
empty list is reached. Its randomization lies in the number of levels an item will join,
determined by tossing a fair coin.1 Each item of each list is linked to the same item
in the previous list, as well as to the next item at the same level. The query operation
for an item starts at the top-level, by horizontally scanning the items therein until it
encounters either the target item or a larger item. In the case of a larger item, the same

1 As long as tails come up, we add the item to each successive list. We terminate this process when we
encounter heads.

123

Distributed and Parallel Databases (2021) 39:321–360 327

Fig. 1 Each masked record is
hashed by L composite
functions, each of which
generate a key for each of the L
hash tables

process is repeated at the lower level until the base level is reached. The running time
to insert an item, as well as to report the existence of an item, is O(log(n)), where n
is the number of inserted items.

3.2 Bloom filter

A Bloom filter [4] is a probabilistic data structure for representing a large number of
items using a small number of bits, which are initialized to 0, to efficiently support
membership queries. Each item is hashed by a set of universal hash functions thatmap it
to certain positions, chosen randomly and uniformly, in the Bloom filter. Accordingly,
these positions are set from 0 to 1. Upon querying for an item, the same process is
followed, where:

– one can definitely infer that this item has not appeared, if all retrieved positions
are set to 0.

– one can conjecture that this item has appeared with certain probability, if all
retrieved positions are set to 1. The probabilistic nature of the reply is due to
the fact that these positions may have been set to 1 by other items and not the
query item.

3.3 Locality-sensitive hashing

For the blocking step, we employ the well-established randomized Locality-Sensitive
Hashing (LSH) technique, which has been studied in detail as a blocking scheme in
[21,24]. There have been devised several LSH families, which work in certain metric
spaces, e.g., the Hamming [15], Min-Hash [32], or the Euclidean [10] space. The
hash functions of each such family are locality-sensitive to the corresponding distance
metric.

LSHguarantees that each similar record pair is identifiedwith high probability using
a strong theoretical foundation. The similarity between a pair of records is defined by
specifying an appropriate distance threshold θ in the metric space that is used.

LSH is implemented by building a redundant structure T which consists of L
independent hash tables, each denoted by Tl (where l = 1, . . . , L). We assign to each
hash table a composite hash function gl , which consists of a fixed number k of base
hash functions. Depending on the used LSH family, a composite hash function applied
to a masked record returns a result that is used as a hash key to the corresponding hash
table. Figure 1 conveys this multi-hash operation. The masked records which exhibit
the same hash key for some Tl share a common bucket. Intuitively, the smaller the

123

328 Distributed and Parallel Databases (2021) 39:321–360

distance of a pair of masked records is, the higher the probability of a gl to produce
the same hash result.

The optimal number L of hash tables used depends on the chosen values of k and θ .
For the optimal values of these parameters, we refer the interested reader to relevant
discussions in [20,21].

During the matching step, those sanitized records that have been inserted into a
common bucket, formulate pairs which are then compared and classified as similar or
dissimilar pairs according to the specified distance threshold.

3.4 Overview of LSHDB

In order to perform PPRL tasks, we use LSHDB [23], a distributed engine that we
developed, which leverages the power of LSH and parallelism to perform record
linkage and similarity search tasks. LSHDB creates data stores for persisting records
using the key-value primitive as its fundamental data model. The key part is the hash
result of an LSH hash function, while the value is the Id of the record being hashed.
It is important to note that hashing the records and maintaining them to a ready-for-
linkage state may save working hours, since PPRL is an ongoing process that may be
executed several times by changing the configuration parameters to obtain the most
accurate result set.

Upon the creation of a data store, the developer needs to specify only two param-
eters: (i) the LSH method that will be employed, e.g., Hamming, Min-Hash, or
Euclidean LSH, and (ii) the underlying noSQL data engine that will be used to host
the data. Support of any noSQL data store and/or any LSH technique can be provided
by extending/implementing the respective abstract classes/interfaces. The concrete2

classes include the definition of the locality-sensitive hash functions and the imple-
mentation of the generic get/set concepts of the key/value primitive. By default,
LSHDB supports the Hamming and Min-Hash LSH methods and two open-source
Java-embedded noSQL engines: LevelDB3 and BerkeleyDB.4

LSHDB resolves each submitted query in parallel, by invoking a pool of threads, to
efficiently scan large volumes of data. Moreover, a query can be forwarded to multiple
instances of LSHDB to support data stores that have been horizontally partitioned
into multiple compute nodes. To the best of our knowledge, LSHDB is the first record
linkage and similarity search system in which parallel execution of queries across
distributed data stores is inherently crafted to achieve fast response times.

3.5 Problem statement

Consider two data custodians who own data sets A and B, respectively. For each
record r of A (or B), the data custodians use a function k = block(r) that generates
the blocking key k of r . This key is used to locate a target block in the blocking

2 A concrete class implements the inherited methods of an abstract class and/or interfaces in the Java
programming language.
3 https://github.com/google/leveldb.
4 http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html.

123

https://github.com/google/leveldb
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html

Distributed and Parallel Databases (2021) 39:321–360 329

structure to either insert r into the target block (blocking), or iterate all the records
already found therein and compare them with r (matching). We use DA and DB to
denote the set of blocking keys of each of these data sets. Moreover, we refer to the
fraction D = |DA∩DB |

|DB | , as the overlap coefficient between A and B.
In this workwe introduce three algorithms, namelySkipBloom,BlockSketch,

and SBlockSketch, for addressing the following problems5:

Problem Statement 1 Calculate the overlap coefficient for A and B, by accurately
summarizing DA and DB using sublinear memory requirements and sublinear run-
ning time in the number of inserted blocking keys.

Problem Statement 2 For each query record of A (or, equivalently, B), find the set of
its matching records from B (or, equivalently, A) in constant running time.

Problem Statement 3 For each query record of A (or, equivalently, B), find the set
of its matching records from B (or, equivalently, A) in constant time, using also a
constant amount of main memory.

4 Algorithms and data structures

In this section, we present our proposed algorithms for efficiently managing large
volumes of records in the context of online record linkage.

4.1 The operation of SkipBloom

SkipBloom is an efficient blocking data structure that reports membership queries
of blocking keys (derived from a large data set) to the blocking structure, using only
a small footprint of main memory. It implements the following generic operations:

– query(k): Reports the membership (true or false) of key k to SkipBloom.
– insert(k): Inserts key k into SkipBloom.

The operation of SkipBloom is based on a skip list that implements a mechanism
to locate efficiently a blocking key, as well as on a series of Bloom filters, which are
used as fast memory-bounded buffers.

SkipBloom maintains, in expectation,
√
n blocks in main memory, stored in the

base level of the skip list. Each such block, which is represented by its key,6 includes
a list of Bloom filters in order to store keys that have been driven by the mechanism of
the skip list to this block. This actually means that the keys stored in the Bloom filters
of a block are greater than the value of the corresponding key.

The operation of SkipBloom is illustrated in Fig. 2. In this figure, a skip list is
shown that contains five keys in the base level. Upon receiving a query record, which is
first filtered by a blocking function to generate its key (e.g., k = ‘John′),SkipBloom

5 SkipBloom aims to address Problem 1, BlockSketch targets Problem 2, while SBlockSketch
tackles Problem 3.
6 Henceforth, key and blocking key will be used interchangeably.

123

330 Distributed and Parallel Databases (2021) 39:321–360

‘Bob’ ‘Ceilia’ ‘Jack’ ‘Larry’ ‘Mary’

 ‘Bob’ ‘Jack’ ‘Mary’

‘Bob’ ‘Mary’

1010010010

0010110010
Key ‘John’ is inserted into the
current Bloom filter of ‘Jack’.

k = ‘John’

 ‘Bob’ ‘Jack’

‘Jack’

0010110010
current Bloom filter

Fig. 2 SkipBloom insets and locates a key in logarithmic time using a small amount of main memory.
The blue rectangles and arrows indicate the route to locate the nearest key to k (Color figure online)

locates the block ‘Jack′ very fast, using the logarithmic runtime property of the
underlying skip list. According to the operation of skip lists, this block is alphabetically
the nearest key to k from the left. The next step is a simple insertion of k into a Bloom
filter of ‘Jack′. Each block has an active Bloom filter, termed as current, and a number
of inactive Bloom filters, which are used only during the query process, as we will
shortly explain.

To answer a query on whether a certain key k exists or not, SkipBloom follows
almost the same process as described above. Assume, for example, that SkipBloom
receives the query k = ‘Jonathan′. First, the skip list will be scanned to eventually
locate ‘Larry’. Subsequently, each Bloom filter of this block will be iteratively queried
until k is found, or the Bloom filters of ‘Larry’ are exhausted.

In what follows, we provide details that will justify certain design choices, such as
the reason for maintaining a series of small (in length) Bloom filters in each block,
instead of having a larger one. In order to populate the skip list with keys, we apply a
simple Bernoulli random sampling algorithm that chooses each key with probability
equal to n−1/2. This sampling process ensures the uniform reflection of the distribution
of keys from the data set to the skip list. This is an appealing feature, sinceSkipBloom
easily tackles distribution anomalies, such as skews of certain ranges of keys, by
choosing these keys and inserting them into the skip list to effectively reduce the
bottleneck of certain keys and maintain uniformity (in expectation). Any uniform
sampling method can be applied; we refer the interested readers to a comprehensive
survey in [16].

If a large number of similar keys are generated, then the sampling routinewill choose
randomly similar keys to create the corresponding blocks. For example, consider the
case of blocking a large number of surnames from the US census data. Then, possible
blocks might be ‘Johns’, ‘Johnson’, and ‘Johnston’, which will be created in this
particular chronological order. Consequently, there will be keys other than ‘Johns’,

123

Distributed and Parallel Databases (2021) 39:321–360 331

Fig. 3 SkipBloom inserts a reference from the list of Bloom filters of ‘Johnson’ to the first Bloom filter
of ‘Johns’, in order to maintain the consistency of the blocking mechanism

e.g., ‘Jordan’ or ‘Jolly’, that will be inserted into the Bloom filters of ‘Johns’. These
Bloom filters should be now transferred to (or referenced by) ‘Johnson’, and then to
(by) ‘Johnston’. For this reason, we keep the number of keys that can be inserted into
each Bloom filter small; this number will be accurately specified later. Moreover, we
annotate eachBloomfilterwith its smallest and its greatest key, in terms of alphabetical
order. By doing so, upon inserting ‘Johnson’,SkipBloom scans iteratively theBloom
filters of ‘Johns’ to locate Bloom filters that might contain ‘Johnson’, or any greater
values. If such Bloom filters exist, a simple reference is established between the block
of ‘Johnson’ and the corresponding Bloom filters. Fig. 3 illustrates the reference of a
block to a Bloom filter that belongs to the previous block.

Eventually, a record is stored into a key/value database system, maintaining its
original blocking key, regardless of the block that was used in SkipBloom.

4.2 Algorithms

Algorithm 1 illustrates the query operation of SkipBloom. First, the skip list SL is
queried to locate the nearest key p to the query k (line 1). Then, the Bloom filters that
are both maintained and referenced by p7 (line 2) are scanned iteratively to find k
using the min and max values of each Bloom filter (line 4). If k is found, then the
algorithm terminates (line 6). In case of composite keys, we perform a conjunction
using the individual keys.

Algorithm 1 The query operation of SkipBloom.
Input: Skip list SL, query key k
Output: true if k is found, false otherwise
1: Key p ← SL.query(k)
2: while (p.hasBloomfilters()) do
3: bf ← p.nextBloomfilter()
4: if (k ≥ bf.min AND k ≤ bf.max) then
5: if (bf.member(k) == true) then
6: return true
7: end if
8: end if
9: end while
10: return false

7 SkipBloom locates these Bloom filters performing a recursive process.

123

332 Distributed and Parallel Databases (2021) 39:321–360

Algorithm 2 outlines the insertion of a key in SkipBloom. For each key k derived
from each record, we determine with probability 1√

n
whether k will be inserted into

the skip list or not (line 1). In more detail, we generate a random value in (0, 1) and
then pick k if this value is less than 1√

n
. Since the generation of a random value is

an expensive operation, we exploit the fact that the number of keys skipped between
successive inclusions follow a geometric distribution [16]; accordingly, each time we
pick a key, we generate the position of the next key, in the stream of records, that will
be picked.

Algorithm 2 The insert operation of SkipBloom.
Input: Skip list SL, key k
1: if (nextSample() == true) then
2: Key p ← SL.insert(k) � Key p is the nearest (previous) key to k
3: List bfList ← k.createList() � The list bfList that will

host the Bloom filters of k is created
4: for each bf in p do
5: if (k ≥ bf.min AND k ≤ bf.max) then
6: bfList.add(bf) � A reference is added

to each Bloom filter found in p
that might contain keys that belong to k

7: end if
8: end for
9: else
10: Key p ← SL.query(q)

11: bf ← p.getCurrentBloomFilter()
12: bf.insert(k)
13: if (k ≤ bf.min) then
14: bf.min ← k
15: end if
16: if (k ≥ bf.max) then
17: bf.max ← k
18: end if
19: end if

If a key k will be inserted into the skip list as a base level key, then a block is created
after the nearest key to k (line 2). Then, SkipBloom has to locate each Bloom filter
of p that may contain keys that should be now transferred to the newly created block
of k (lines 4–8). In order to easily locate these Bloom filters, we annotate each Bloom
filter used with the min and max keys it contains (line 5). The inclusion of a Bloom
filter with a valid range of keys is achieved through a reference from p to k.

If a key will not be stored in the skip list, then the nearest key p to k is located in
order to insert k in the current Bloom filter of p (lines 10–12). Algorithm 2 eventually
updates the min and max annotations of the current Bloom filter of p (lines 13–18).

4.3 Accuracy and complexity analysis

As we expect
√
n blocks in the base level of the skip list, where the sampling pro-

cess ensures a uniform distribution of the corresponding blocking keys, the expected
number c of keys in each block is:

123

Distributed and Parallel Databases (2021) 39:321–360 333

E[c] = n√
n

= √
n. (1)

By setting u = √
n/m to be the maximum number of keys that will be stored in

each Bloom filter, where m is a constant value (e.g., m = 10), the number of Bloom
filters in each block will be (in expectation) equal to m. Furthermore, the number mbt

of Bloom filters contained in block b at time t , specifies the upper and lower bound of
the number nbt of the distinct keys inserted, which is:

(mbt − 1)

√
n

mbt
≤ nbt ≤ mbt

√
n

mbt
. (2)

The accuracy of SkipBloom to report the existence of a key depends on the false
positive probability parameter fp of the Bloom filters. First, consider the event where
a query key does not exist in any Bloom filter of the resulting block. The probability
of reporting correctly this event, using one such Bloom filter, is 1 − fp. Hence, the
same probability by using collectively all the m Bloom filters is:

(1 − fp)m, (3)

since the content of a Bloom filter is independent from that of another filter.
In the case that a query key does exist in any8 Bloom filter of the resulting block,

the probability of reporting this event is 1. Therefore, we bound from below the error
probability of SkipBloom by 1 − (1 − fp)m .

Computational complexity Based on Algorithm 1, the running time of querying
SkipBloom is O(log(

√
n) + m + m

√
n), where the first term denotes the time of

scanning the skip list to locate the appropriate block, the second term denotes the time
of scanning the Bloom filters found therein, and the last term is the time of scanning
the Bloom filters referenced directly or indirectly by the chosen block.

Algorithm2 suggests that the running time of an insertion of a key intoSkipBloom
is O(log(

√
n) + m), where the two terms are the time of inserting a key into the skip

list and the time of scanning the Bloom filters of the nearest key, respectively.

Memory complexity The memory requirements of SkipBloom are O(2
√
n +√

nm) = O(
√
n(2+m), because the skip list containsO(2

√
n) keys and each key in

the base level of the skip list consists of O(m) Bloom filters.

4.4 Using SkipBloom as a synopsis of the universe of blocking keys

SkipBloom can be used as a synopsis, termed also as summarization, of the universe
of the blocking keys of a database, in order to facilitate an accurate pre-blocking
process. During the execution of this process, the data custodians will resolve very
fast the common blocks, which will be of great assistance in estimating the running

8 Since, we expect to have duplicate keys, it is quite natural that the same key may be stored into multiple
Bloom filters of a block.

123

334 Distributed and Parallel Databases (2021) 39:321–360

Fig. 4 The blocking keys of the databases are packed into their corresponding synopses, each of which is
implemented as a SkipBloom (symbolized by SB). These synopses are used to draw inferences about the
source databases

time, in terms of the number of comparisons that will be needed (by exchanging the
number of records in each common block). In turn, the data custodians will determine
whether they will perform the linkage process or not, by considering several factors
based on these preliminary results. For instance, if the number of common blocks is
very small, then (a) the chances of identifying similar, or matching, record pairs are
rather slim, and (b) the record linkage process itself may not be cost-effective.

Let us now consider the following scenario. Data custodian A generates a
SkipBloom from database A, which is submitted to data custodian B. Subsequently,
data custodian B iterates her blocking keys and queries the SkipBloom, which
reports positive or negative answers for the existence of the query keys. This entails
O(n(log(

√
n) +m +m

√
n)) = O(n(log(

√
n) + √

n)) running time,9 since each key
of B is queried against the SkipBloom of A.

To further accelerate this process, data custodian B also generates a SkipBloom,
to compile a uniform sample of keys and to use thisSkipBloom to reportmembership
queries. The keys found in the base level of the skip list are now queried against the
SkipBloom of A, as illustrated in Fig. 4.

Since, the keys of B constitute a randomly and uniformly chosen sample, they can
be used as input to a Monte Carlo simulation [27], which will estimate the proportion
(or the number) of identical blocking keys between the data sets of the two data custo-
dians. Using only the synopses, the data custodians will acquire a clear picture about
the overlapping keys with certain approximation guarantees. Monte Carlo simulation
requires (ε2ϑ)−1 (ignoring a small constant factor) keys from B in order to exhibit rel-
ative error ε with high probability. Since the proportion of identical keys is unknown,
we bound it from below with a reasonable value, e.g., ϑ = 0.05, to approach the
number

√
n of the sampled keys that are contained in the SkipBloom of B. Even for

a relatively small n = 108, the Monte Carlo simulation will provide its guarantees,
since

√
n is greater than the required number of sampled keys for ε ≥ 0.05. The frac-

tion of the overlapping keys found in the sample is used as an estimate for the overlap
coefficient of the keys between the two databases. By comparing the synopses, we
eventually achieve the much faster O(

√
n(log(

√
n) + √

n)) running time, compared
to using only the synopsis of data custodian A.

4.5 The operation of BlockSketch

The existence of blocks that contain a large number of records makes the matching
phase (i.e., the comparison of query records against every record found in a tar-

9 We assume that the number of distinct blocking keys is n in both A and B.

123

Distributed and Parallel Databases (2021) 39:321–360 335

get block) prohibitively expensive in highly demanding environments. The situation
becomes evenmore challenging in environments where thematching record pairs have
to be reported in near real-time.

To address this shortcoming, in this work we opt for a different strategy: we com-
pare the query record with a constant number of records of the target block, which
entails a bounded matching time. This optimization requires maintaining λ sub-blocks
(S1, S2, . . . , Sλ) in each block, whose aim is to represent sufficiently the records
inserted so far. In our proposed representation, a number of records play the key role
of representatives for each sub-block. This allows to formulate groups of records
inside each block that are more likely to match. We term our proposed algorithm as
BlockSketch, because a small number of records comprise a sketch that represents
sufficiently the records of an entire block. The concept of sufficient representation
boils down to choosing representatives that exhibit certain distances from the corre-
sponding blocking key.We note that BlockSketch can operate either autonomously
or in conjunction with SkipBloom, where the latter will be used as a fast bounded
memory to report whether a certain blocking key has appeared or not.

The fact that certain records are inserted into a block, using a blocking function,
implies that all these records share somedegree of similarity. Therefore, it is reasonable
to assume that the distance between a key and a record10 will be upper bounded by λθ .
Hence, BlockSketch formulates λ sub-blocks, each of which represents records
with distances ≤ θ,≤ 2θ, · · · ,≤ λθ from the key, where θ is the distance threshold
of the keys of a pair of matching records. Upon receiving a key, BlockSketch aims
to insert this record into the sub-block of the target block, where it is more likely to
formulate matching record pairs. For this reason, each key is compared against all
representatives found in a block, in order to locate the sub-block whose representative
exhibits the smallest distance from the newly arrived key.

As an example, assume that we use edit distance as the similarity metric, θ = 2
and λ = 3, and a blocking key is used that consists of the first three letters and
the whole value of the surname and given name attributes, respectively. As Fig. 5
shows, record < ‘John′, ‘Jones′, 1970 >, whose key values exhibit a total distance
of 2 ≤ θ from < ‘John′, ‘Jon′ >, is inserted into the 1-st sub-block, because of the
representative < ‘John′, ‘Jon′ >. Similarly, < ‘John′, ‘Jonker ′, 1975 >, whose
distance is 3 ≤ 2θ from < ‘John′, ‘Jon′ >, is inserted into the 2-nd sub-block, due
to the comparison with the representative < ‘John′, ‘Jonkers′ >.

It is important to note that for threshold θ any metric that is used in record linkage
processes can be supported, whether satisfying the triangle inequality or not. For
example, a very commonly usedmetric in record linkage is the Jaro-Winkler similarity
function [5], which takes on values in [0, 1]. Hence, one by setting the similarity
threshold to θ ′, and then by choosing θ = 1 − θ ′, produces very reasonable sub-
blocks.

The probability for a record to fall into a certain sub-block that holds its matching
record, depends on the representatives of the target sub-block, as well as on the left and
right neighboring sub-blocks. For instance, assume two neighboring sub-blocks with

10 The distance either between a pair of records, or between a blocking key and a record, is determined by
the distances of the certain field values, part of which usually make up the blocking key.

123

336 Distributed and Parallel Databases (2021) 39:321–360

Fig. 5 Illustration of a block with λ = 2 sub-blocks, whose key is < ‘John′, ‘Jon′ >. BlockSketch
inserts records into the sub-blocks based on the distance of the key values of these records from the chosen
representative(s). The sub-block for which one of its representatives exhibits the smallest distance from the
key values of a record, is chosen as the target sub-block

representatives ‘Jacks’ and ‘Jackson’, respectively. The keys of these representatives
comprise the values of the ‘surname’ attribute. Key ‘Jackson’ arrives, whose record is
inserted into the identical sub-block of ‘Jackson’. At a later time, ‘Jacksn’ arrives, that
suffers from a typo, whose record is inserted into the sub-block of ‘Jacks’. We have
thus missed the formulation of one matching record pair. BlockSketch tackles
this deficiency by using more than one representatives for each sub-block,11 so as
to give more chances for grouping together matching record pairs. By doing so, if
record a has been inserted into a sub-block, BlockSketch compares the key of its
matching record b with more similar representatives to record a. To keep the number
of representatives of a sub-block constant, whenever a key is chosen for inclusion in
a sub-block, the algorithm tosses a coin to determine if this newly inserted key would
be a representative as well. If it is chosen, a randomly picked old representative is
evicted from the set of representatives.

As a last step, the query record is inserted into that sub-block which is maintained
by a key/value database. The pairs formulated in this sub-block constitute the final
result set.

4.6 Algorithm

Algorithm 3 outlines the basic operation of BlockSketch. For a query record q,
the algorithm first retrieves an object S that contains the corresponding sub-blocks,
either from a key/value database or from a cache structure in main memory (line 2).
BlockSketch then iterates over the representatives of each sub-block and performs
the distance computations between the key values of q and these representatives,12

whose results are stored in array u (line 5). The representative that exhibits the smallest
distance from the key values of q specifies the sub-block (line 12) into which q is

11 The exact number of representatives will be specified later.
12 A representative, being essentially a blocking key, has only key values.

123

Distributed and Parallel Databases (2021) 39:321–360 337

finally inserted (line 17). For ease of presentation, we omit from Algorithm 3 the
details regarding the random choice and eviction of a representative from a sub-block.

Algorithm 3 The core operation of BlockSketch.
Input: Query record q
1: k ← block(q) � Function block(·) generates the

blocking key, which will be used to
look up the corresponding sub-blocks.

2: SubBlocks S ← retrieve(k) � S, which is retrieved
from secondary storage or

from a cache structure,
contains the sub-blocks of block k.

3: for i = 1 to λ do
4: for j = 1 to ρ do
5: u[i][j] ← d(k, S[i][j]) � S[i][j] denotes the j-th

representative of the i-th sub-block.
6: end for
7: end for
8: min ← u[1][1]
9: for i = 1 to λ do
10: for j = 1 to ρ do
11: if (min > u[i][j]) then
12: min ← i � Find the i-th sub-block whose at least

one of its representatives exhibits
the smallest distance from k.

13: end if
14: end for
15: end for
16: represent(k, min) � Determine with a coin toss

if k would be a representative for
the chosen sub-block.

17: insert(q, k,min) � Store q in a key/value database by
setting the key as the concatenation of k and min.

4.7 Accuracy and complexity analysis

The probability of a record to fall into the correct sub-block is 1/λ, since it completely
relies on the distance from the corresponding representative. Hence, the inverse proba-
bility of a record not falling into the correct sub-block, and therefore not formulating a
record pair, is≤ 1−1/λ. In order to amplify the probability of formulating a matching
record pair, we give more chances for grouping together the two constituent records,
by comparing each key with a number ρ of representatives, chosen randomly and
uniformly from the underlying stream. We rigorously specify the required number of
representatives that each sub-block should maintain, as the following lemma suggests.

Lemma 1 If a pair of records, which constitute a matching pair, has been brought in
a certain block, then by maintaining ρ = λ ln(1

δ
) representatives in each sub-block,

this matching pair is detected with probability at least 1 − δ.

123

338 Distributed and Parallel Databases (2021) 39:321–360

Proof The probability of not detecting a matching pair that exists in a certain block is
(1 − 1

λ
)ρ . We bound this probability above by δ and solve for ρ in the following:

(
1 − 1

λ

)ρ

< δ � −ρ

λ
< ln(δ) ⇐⇒ ρ > λ ln

(
1

δ

)
, (4)

since ln(1 − 1
λ
) ≤ − 1

λ
. ��

We subsequently apply the ceiling function on the value of ρ (·�), in order to select
the smallest integer following ρ for the sake of optimality.

Computational complexity The running time of BlockSketch is O(log n + λρ),
which consists of the time to retrieve a block from the database (which is log-
arithmic13), and the execution of the subsequent λ × ρ distance computations (ρ
representatives for each of the λ sub-blocks).

Memory complexity The storage requirements of BlockSketch areO(λn), where
n is the number of blocking keys.

4.8 The operation of SBlockSketch

Let us now suppose that the number of records, which are initiated from multiple
sources, e.g., from different hospitals, is unbounded (or endless). This literally turns
the record linkage scenario of a large number of records, into the record linkage of a
stream of records. Therefore, BlockSketch will grow in both directions; it will not
grow only in terms of sub-blocks, but also its number of blocks might unexpectedly
grow considerably. Since our main memory is bounded, BlockSketch adapts its
operation to record linkage tasks that involve streams of records.

In this version of BlockSketch, called SBlockSketch, we bound the number
of blocks, that aremaintained inmainmemory, by an integer valueμwhich depends on
the available main memory. Since the number of blocks is bounded, SBlockSketch
applies an eviction strategy, so as to insert a newly arrivedblockingkey from the stream,
when there is not an empty slot to accommodate the corresponding block.We annotate
each live14 block with (a) the number of incoming records that generated its key, i.e.,
the number ξ of times this block has been chosen as the target block, and with (b) its
age α, in terms of the number of times that this block has survived eviction, since its
admission into main memory. We derive the eviction status of each block as follows:

es = e(wξ−α), (5)

where factor w adjusts the weight of successes ξ of a block to its es. The intuition
behind this scheme is that we promote (a) newer blocks against older ones, and (b)

13 For instance, LevelDB (see https://github.com/google/leveldb) uses an in-memory highly efficient
multi-level data structure, which enables logarithmic disk seeks in the number of stored blocking keys.
14 A live block is a block that is stored in main memory.

123

https://github.com/google/leveldb

Distributed and Parallel Databases (2021) 39:321–360 339

Fig. 6 In this example, SBlockSketch uses a hash table T with μ = 4 blocks, λ = 3 sub-blocks, and
the weight of successes set to w = 1.5. On the arrival of an incoming new key, the block with key k4 is
evicted because of its low eviction status. The priority queue pq stores the eviction status (on a logarithmic
scale) of each live block

blocks that exhibit higher eligibility. The status of old blocks, that are additionally not
chosen by the incoming records, will exponentially decay, which will result in their
eviction from the main memory. SBlockSketch is materialized by a hash table,
which holds the live blocks, and the corresponding sub-blocks, and a priority queue,
that is used to indicate which of these live blocks should be evicted in case of a newly
arrived block (key).

Figure 6 illustrates the components of SBlockSketch, namely the hash table
T and the priority queue pq. T exists in main memory and contains a specified
number μ of rows, each of which holds a block, as a function of the available
main memory. Each row of T contains the sub-blocks of the corresponding block.
The priority queue pq stores the eviction status of each live block in ascending
order, so as to return the key of the block that holds the minimum eviction sta-
tus. In the example shown in Fig. 6, we observe that the block with key k4 has
survived α = 4 evictions and has not been chosen as target block since its admis-
sion into T . These two events lead inevitably to its eviction, despite the existence
of block k2, which has α = 10 survivals, but it additionally exhibits ξ = 6
successes.

4.9 Algorithm

Algorithm 4 illustrates the operation of SBlockSketch, using a stream of data
records. Upon receiving a record from the stream, the algorithm first derives its key,
and then queries T (line 2). Only if this query is fruitless, SBlockSketch resorts
to the structures of secondary storage (line 4). If the block that corresponds to the
incoming record exists neither in T nor in secondary storage, then SBlockSketch
initiates the eviction of the block from T that exhibits the minimum eviction status, as
indicated by pq (line 7). Eventually, SBlockSketch computes the eviction status
of each live block and rebuilds pq.

123

340 Distributed and Parallel Databases (2021) 39:321–360

Algorithm 4 The eviction algorithm of SBlockSketch using a stream of records.
Input: Query record q
1: k ← block(q)

2: SubBlocks S ← T.get(k) � Function get() retrieves an
entry from hash table T .

3: if (S == NULL) then
4: SubBlocks S ← retrieve(k)
5: end if
6: if (S == NULL) then
7: SubBlocks S ← pq.poll(); � pq is a priority queue

that holds the eviction status
of each live block in ascending order.

8: S.evict(); � Function evict() transfers a certain
block, which is essentially a structure

of sub-blocks, from main memory
into secondary storage.

9: calculateStatus(); � Function calculateStatus()
computes the status of each

live block and inserts it into pq.
10: end if

4.10 Accuracy and complexity analysis

The accuracy of SBlockSketch is not affected by the use of T , since the block
in question may exist either in main memory or in secondary storage. However, T ,
whose operations are of O(1) time, affects running time and space.

Computational complexityThe running time depends on twomutually exclusive pos-
sibilities. The first one is when a block exists in T , where the running time isO(λ) (see
Sect. 4.7), while the other possibility is when a block should be evicted from T . The
eviction requires accessing the priority queue, which is ofO(

√
μ) time, and then trans-

ferring the incoming block into T . The latter step consumes, as we discussed in Sect.
4.7,O(log(n)) time in the number n of available blocks found in the secondary storage.
Finally, we have to add the time to build the priority queue, which is O(μ log(

√
μ)).

Hence, the total running time for replacing a block isO(
√

μ + log(n) + μ log(
√

μ)).

Memory complexity The space occupied in main memory is exactlyO(μλ), whereμ

corresponds to the rows and λ to the cells of T (by assuming T as a two-dimensional
array).

4.11 The operation of PBlockSketch

In this section, we present PBlockSketch, used as shorthand for Private
BlockSketch. This version adapts BlockSketch to the LSH scheme using
Bloom filters to perform PPRL.

123

Distributed and Parallel Databases (2021) 39:321–360 341

Fig. 7 Illustration of a block with λ = 2 sub-blocks, whose key is ‘1001001001’

An LSH base hash function (see Sect. 3.3), when applied to a Bloom filter with
length γ , returns the value of its i-th position, where i ∈ {0, . . . , γ − 1}, chosen
uniformly at random. Those Bloom filters which exhibit the same hash value for some
Tl share a common bucket. Intuitively, the smaller the Hamming distance15 is, the
higher the probability of a gl to produce the same result. During the matching step,
those Bloom filters which have been inserted into a common bucket, formulate pairs
which are compared and classified as similar or dissimilar, according to the used
Hamming distance threshold.

Applying the above-mentioned straightforward technique using voluminous data
sets of Bloom filters will inevitably result in overpopulated blocks in each Tl . Con-
sequently, the matching phase would fail to generate results in a timely manner.
PBlockSketch unloads thematching phase by rehashing each query Bloom filter to
obtain a fresh key value using another pre-generated gl for each Tl . The newly created
blocking key will be compared with each representative of the target block in a Tl .

For example using Hamming distance, assume that we set θ = 1 and λ = 3. Bloom
filter B1 is inserted into the 1-st sub-block because its rehashed key exhibits distance
equal to 1 from the respective representative. Similarly, Bloom filter B3 occupies the
first slot of the 2-nd sub-block due to its distance from the representative ‘1101001011’
(Fig. 7).

5 SFEMRL: a summarization framework for electronic medical record
linkage

In this section,we present SFEMRL, used as shorthand for SummarizationFramework
for ElectronicMedical Record Linkage. SFEMRL is a complete framework for iden-
tifying electronic health records corresponding to the same patient, which appear in
medical data sets held by disparate health providers, thereby enabling the integration
of these records in order to produce a holistic view of the patient’s medical history.

15 The Hamming distance between two Bloom filters is equal to the number of components in which these
filters have different bits.

123

342 Distributed and Parallel Databases (2021) 39:321–360

Fig. 8 Records from multiple health care providers are integrated and then imported into a data lake that
facilitates their analysis

The most common model for offering PPRL involves a Trusted Third Party (TTP),
e.g., a ministry of health, that receives the records, which have undergone a masking16

process, from the data custodians through a secure channel and performs their linkage.
The TTP is assumed to hold the records in a secure environment that is trusted by the
data custodians. Thismodel is known as the three-partymodel and is typically enforced
by established specialized linkage units. A different approach to offering PPRL is via
the two-party17 model. In this model, the only participants are the data custodians.
The adversary PPRL models are extensively discussed in [37].

In the first step of PPRL, the healthcare providers mask their collection of elec-
tronic patient records in order to protect certain (common) direct identifiers, such as
patients’ names and home addresses, that are useful for enabling record linkage [37].
This masking process is specially crafted to both protect the identity of the patients
represented, and simultaneously enable the blocking and matching phases of PPRL in
an approximate manner. Other direct identifiers, such as patients’ medical record num-
bers, are removed from the data as they are both sensitive and not useful for PPRL (due
to not being universal). Last, non direct identifiers, such as symptoms or medication,
remain unmasked to facilitate data analysis based on these dimensions. The processed
data are securely transmitted to a TTP and stored in a secure environment (following
legal requirements). The TTP performs the PPRL process using the masked data to
detect those records that describe the same patients. The integrated records, deprived
of patient identifiers, are subsequently stored into a data lake from where they can be
queried and retrieved for research and data analysis purposes. Figure 8 highlights this
process.

Certain legislation has also been enacted that currently governs the collection and
release of private medical data on both sides of the Atlantic. In the United States, the
Health Insurance Portability and Accountability Act (HIPAA),18 establishes national
standards for electronic health care transactions and national identifiers for providers,
health insurance plans, and employers. The HIPAA Privacy Rule requires that certain

16 We use the term masking to refer to data obfuscation and perturbations operations that are applied to
protect the plain-text (original) values.
17 In general, in a multi-party model, there are more than two data custodians involved.
18 http://www.hhs.gov/ocr/privacy/hipaa/administrative/privacyrule/.

123

http://www.hhs.gov/ocr/privacy/hipaa/administrative/privacyrule/

Distributed and Parallel Databases (2021) 39:321–360 343

field values, which might uniquely identify an individual, such as names or biometric
information, must be sanitized in patients’ records, before these records are released
or shared with another health provider. Similarly in the European Union, the GDPR
(General Data Protection Regulation)19 protects the privacy of all personal data related
to EU citizens. Moreover, it is important to note that there are established specialized
linkage units,20 which play the role of the TTP by respecting the above-mentioned
regulations.

Themain requirements of a framework that aims to performaneffective and efficient
linkage of electronic health records are:

– Protect the privacy of the patients Confidentiality is central to the preservation
of trust between health providers and their patients. Additionally, when breaching
patient confidentiality, it is very hard to provide adequate justifications on a legal
basis.

– Achieve ahigh level ofmatching accuracyAccuratelymatching health electronic
records has a great impact on business analysis and intelligence. Correctly identi-
fying records held by different health care providers that refer to the same patient
can have a tremendous effect in the quality and the accuracy of the performed
analysis on the collected data.

– Supportmanymaskingmethods The diversity of maskingmethods is expanding
rapidly in the literature, each of which exhibits different features and character-
istics. Supporting state-of-the-art masking methods, or being capable of easily
incorporating them, will give more options of choosing the suitable blocking
method that will be applied on the masked records.

– Handle large data volumes Nowadays, health care organizations are struggling
to manage large volumes of data that exist within and outside of their systems and
infrastructures. PPRL solutions should be able to scale well to big data, by offering
effective blocking algorithms and efficient matching techniques.

The TTP maintains a number of sites, as shown in Fig. 9, each of which holds
a horizontal partition of the masked records that have been previously submitted by
the data custodians. PBlockSketch along with an LSHDB instance should be up
and running in each site, and be populated with the corresponding Bloom filters. A
query record, in terms of a Bloom filter, is submitted to a central site, which has
been specified to receive the query records, forward them to the remaining sites, and
eventually collect the results asynchronously.

This mode has two main advantages: (a) there is no mass release and maintenance
of records at a single site, and (b) SFEMRL may easily scale, e.g., geographic of
administrative scalability, to deal with significantly increased loads.

In the following, we delve into the details of SFEMRL, which first masks, then
blocks, and finally matches the records at hand using appropriate masking methods
and LSH techniques. For the sake of simplicity, assume two data custodians whomight
be two health care institutes that own databases A and B, respectively, and have a-
priori agreed to use a common schema. Configuration parameters, such as the the hash

19 https://ec.europa.eu/info/law/law-topic/data-protection_en.
20 http://www.phrn.org.au/centre-for-data-linkage/, http://www.cherel.org.au/, https://www.cprd.com/
intro.asp, http://ww2.health.wa.gov.au/Articles/A_E/Data-linkage.

123

https://ec.europa.eu/info/law/law-topic/data-protection_en
http://www.phrn.org.au/centre-for-data-linkage/
http://www.cherel.org.au/
https://www.cprd.com/intro.asp
https://www.cprd.com/intro.asp
http://ww2.health.wa.gov.au/Articles/A_E/Data-linkage

344 Distributed and Parallel Databases (2021) 39:321–360

Fig. 9 The TTPmaintains the masked records at multiple sites to scale the whole privacy-preserving record
linkage process

functions used for the generation of the sanitized records, are securely communicated
between the data custodians. We also demonstrate the integration of our framework
with Map/Reduce to provide robust solutions using very large volumes of records.

5.1 Integration withmap/reduce

SFEMRL utilizes the Map/Reduce [11] programming paradigm to scale up its per-
formance to large volumes of records. The map phase of Map/Reduce pertains to the
blocking step of PPRL, while the reduce phase to the matching step. In the following,
we summarize the functionality of a generalized PPRL Map/Reduce pipeline:

– Map phase. Each map task builds the L hash keys of each Bloom filter at hand and
emits them to the partitioner task along with the Id of the corresponding record.
A pair of a hash key and an Id is termed as a tuple.

– Distribution of tuples. Each partitioner task, which is always bound to a map task,
controls the distribution of the formulated tuples to the reduce tasks. Tupleswith the
same hash key will be forwarded to a specific reduce task. An efficient partitioning
scheme distributes the computational load equally to the available reduce tasks,
which has as a result the least possible idle time for each reduce task.

– Reduce phase. Each reduce task processes the load of the received tuples forwarded
by the partitioner tasks. This processing usually includes the retrieval of the corre-
sponding masked records from a data store to perform the distance computations.

This pipeline constitutes a PPRL Map/Reduce job. More complex settings may
require additional jobs to execute a PPRL task, where the output of some job is used
as the input to the next in-line job.

We modified slightly the above basic scenario to cover our domain-dependent
requirements by including the services of PBlockSketch. First, we will present
some details regarding the topology of data. Specifically, there is a big cluster of com-
pute nodes, each of which holds very large amounts of historical records of patients
that comprise their medical history. Each such record is of the form:

< BF,symptom,medication,year,state >,

123

Distributed and Parallel Databases (2021) 39:321–360 345

Fig. 10 First, themap tasks hash themasked records, and subsequently the reduce tasks insert the aggregated
hash results into the appropriate LSHDB instances

where BF denotes the Bloom filter that corresponds to a patient. The values of the
symptom, medication, year, and state attributes are securely transmitted and
stored in plain text, because they will be used as dimensions to build certain data views
depending on business requirements. The goal is to perform a global PPRL task using
this large volume of masked patient records. By linking all these islands of records
based on the Bloom filters, which include their given name and surname, one can then
build a data lake to perform mining and analysis.

First, we discuss the topology of the data. There is a big cluster of compute nodes,
each of which holds very large amounts of electronic health records transformed into
Bloom filters. The goal is to perform a global PPRL task, by linking all these islands
of Bloom filters. Then, the TTP can deposit the integrated records to the data lake to
perform mining and analysis.

Initially, each Bloom filter of each data island is hashed and the L key values
are forwarded to the appropriate reduce tasks by the underlying partitioner tasks.
Subsequently, each reduce task deploys a PBlockSketch whose aim is to perform
the comparisons between the blocked Bloom filters in a bounded matching time. This
setting is contrasted to the naive matching of all the Bloom filters in a certain block
aggregated by a reduce task. Figure 10 shows the pipeline of actions to populate the
corresponding LSHDB stores.

5.2 Online SFEMRL

SFEMRL can be also applied to settings where the PPRL task has to return a fast
response in order to allow for emergency actions to be triggered. An illustrative exam-
ple is a public health surveillance system, which analyzes data on a continuous basis
to uncover correlations between symptoms of patients and administered drugs. By
detecting at an early stage such correlations, we can prevent the outbreak of diseases
or epidemics, by triggering certain measures when a specified number of symptoms
has occurred. The successful realization of such system mandates the unique repre-

123

346 Distributed and Parallel Databases (2021) 39:321–360

sentation of each patient. To this end, data from several sources need to be integrated,
such as electronic health records from public hospitals, private medical offices, and
records from pharmacy stores. In such cases, we require a very fast response that
includes a result set of high accuracy. SFEMRL meets these requirements, which is
attributed to the high-quality blocking of LSH and the performance of the underlying
noSQL systems; LSH scores highly accurate results, while the noSQL systems retrieve
the hash keys and the masked records from disk using efficient data structures, which
exhibit logarithmic search times.

To accelerate the query response time, we used an efficient algorithm, namely the
FPS (Frequent Pairs Scheme),whichwas introduced in [22]. FPS is based onHamming
LSH and instead of performing the distance computations for all the formulated pairs,
it scans the hash tables to count the number of collisions21 of all pairs. This number,
for a single pair, is binomially distributed and is expected to be above a specified
collision threshold if this pair is a matching one. For this set of pairs, which are called
the frequent pairs, FPS performs the distance computations. Correspondingly, FPS
discards the record pairs that do not achieve the required number of collisions. The
weakness of FPS is the larger number of hash tables that are required than baseline
Hamming LSH blocking uses. In the following, we give a short description of FPS and
also propose a technique, that is theoretically justified, to apply FPSwithout increasing
the number of the hash tables used.

5.2.1 Applying the median trick on FPS

Hamming LSH blocking [21] embeds the records into the Hamming space using
Bloom filters. The probability of collision in a hash table for two Bloom filters is pk ,
where p = 1 − t

s , s is the total number of components of each Bloom filter, t is the
specified distance threshold, and k is the number of components chosen randomly and
uniformly of the Bloom filters to formulate each hash key. The value of k should be
large enough k > 25 so as not to overpopulate the buckets of the hash tables [21,22].
The set of indexes of the chosen components of the Bloom filters is identical for each
hash table.

However, FPS requires more hash tables than the standard Hamming LSH mecha-
nism. By applying the median trick, we can easily locate highly similar Bloom filter
pairs, without increasing the number of hash tables. The number of hash tables22 used
is L = O(ln(1

δ
) [21], where δ is the probability of failure for a similar Bloom filter

pair to collide in a hash table. Applying the median trick in this iterative mechanism,
we expect that two similar Bloom filters will collide in more than half of these hash
tables, namely:

L × pk >
L

2
, (6)

when the probability of collision is fairly high:

pk >
1

2
. (7)

21 A collision is a record pair formulation in a certain hash table.
22 Each hash table can be assumed as an independent Bernoulli trial for the collision of a Bloom filter pair.

123

Distributed and Parallel Databases (2021) 39:321–360 347

Making some algebraic manipulations, we arrive at:

pk >
1

2
⇔ 1 − t ′

s
>

1

21/k
⇔ t ′ <

⌈
s

(
1 − 1

21/k

)⌉
, (8)

where t ′ is the upper distance bound, which is an integer value, that Bloom filter pairs
should meet in order to be safely characterized as frequent pairs, and then be classified
as similar pairs with probability at least 1 − δ.

5.2.2 Ubiquitous FPS

As we have described previously, the theoretical premise behind FPS is the binomial
distribution of the number of collisions that record pairs achieve in the hash tables
[22]. Although, it is quite trivial to count these collisions in a single LSHDB instance,
applying the same counting mechanism on multiple LSHDB instances universally,
i.e., in each such instance, may yield considerable time delays. Nevertheless, the
query records that are submitted may assist in this counting process acting as bridge
records.

Consider the following scenario. Two LSHDB instances maintain Bloom filters r1
and r2, respectively, in their corresponding hash tables. Query record q is submitted
and, in turn, this record collideswith r1 and r2 more times than the collision threshold23

specifies in each respective LSHDB instance. Finding the number of common hash
keys between r1 and r2, we essentially apply FPS between the records of two data
stores maintained in two distinct LSHDB instances.

The distance between r1 and r2 is also implied by the triangle inequality, however
the corresponding distance bound is not tight enough to make reasonable inferences
about the distance between the record pair involved. A necessary precondition for
the operation of this ubiquitous mechanism, illustrated in Fig. 11, among different
LSHDB instances is the sharing of the LSH hash functions.

5.3 Interoperability

SFEMRL, using the interoperability layer of LSHDB, produces the results using either
Java or JSON objects. In an LSHDB ecosystem, it is preferable for the instances
involved to communicate using Java objects, because it is much faster and less prone
to errors. In a diverse environment though, where potentially any third-party piece
of software might consume services from an LSHDB instance, SFEMRL exposes
its services using JSON objects. Therefore, a trusted user can invoke a set of simple
commands to query a data store and receive the results using a web browser. For
instance, upon completion of a linkage process, SFEMRL may forward the results, in
terms of JSON objects, to a trusted stub which can initiate next in-line actions, such
as clerical review to disambiguate any record pairs whose linking status is not clear
and imposes human intervention.

23 The collision threshold is essentially the number of collisions that should be counted between a pair of
records, so as to be considered as a potential matching pair.

123

348 Distributed and Parallel Databases (2021) 39:321–360

Fig. 11 In this example, the data custodians utilize FPS and have set the collision threshold to 2.We observe
that q collides with r1 and r2 in T1 and T3, and in T1 and T4, respectively. We also observe that r1 and r2,
which have been brought together by q, exhibit identical hash keys in T1, T2, and T4, which exceeds the
specified collision threshold

Table 1 Technical
characteristics of the data sets
used

DBLP NCVR LAB

|Q| (K) 300 500 100

|A| (M) 300 500 100

fields ‘author’[50%], ‘given name’, ‘assay’[6],

‘venue’, ‘year’ ‘surname’[50%], ‘result’

‘address’, ‘town’ ‘year’

u = 3465 u = 4473 u = 2000

The blocking fields used, and their length (in characters) are shown in
bold (m = 5)

6 Experimental svaluation

For the experimental evaluation, we used three real-world data sets, namely (a)
DBLP,24 which includes bibliographic data records, (b) NCVR,25 which comprises
a registry of voters, and (c) LAB,26 which includes biological assays (e.g., albumin,
hepatitis, or creatinine) and their corresponding results. The technical characteristics
of these data sets are summarized in Table 1. For each record of each data set, denoted
by Q, we generated 1,000 perturbed records, which were placed in a separate data set
symbolized by A. We perturbed all the available fields using at most four edit, delete,
insert, or transpose operations, chosen at random.

24 http://dblp.uni-trier.de/xml.
25 http://dl.ncsbe.gov/index.html?prefix=data/.
26 https://idash-data.ucsd.edu/community/43.

123

http://dblp.uni-trier.de/xml
http://dl.ncsbe.gov/index.html?prefix=data/
https://idash-data.ucsd.edu/community/43

Distributed and Parallel Databases (2021) 39:321–360 349

Wealso used theDBLPdata set to generate arbitrary clusters ofmatching records by
perturbing (including the missing values operations) the names of authors and titles of
certain publications. This dirty data set27 includes matching records with the same (or
almost the same) set of authors especially in conference/journal extensions scenarios.

We ran each experiment 20 times and plotted the average values in the figures. The
software components were developed using the Java programming language (ver. 1.8)
and the experiments were conducted in a virtual machine utilizing 4 cores of a Xeon
CPU and 32GB of main memory.

6.1 Evaluating the Algorithms

The blocking methods that were used for the needs of the evaluation were standard [6]
andLSHblocking [21],which relies on theLocality-Sensitive-Hashing [15] technique.
LSH blocking generates from a single record a certain number of blocking keys that
are placed in multiple hash tables. This number of blocking keys is a function of
several parameters [22] of LSH blocking, such as the distance threshold. The LSH
technique is commonly used in the domain of record linkage [21,24,26,36] because
of its efficiency and accuracy guarantees. We used Hamming LSH blocking [21],
in which records are embedded into the Hamming space using record-level Bloom
filters [35]. LSH blocking implements redundant blocking, because a record is inserted
into multiple independent blocks, which are accommodated into independent hash
tables. In contrast, standard blocking inserts records that exhibit identical values, in
an appropriately chosen blocking field(s), into the same block.

For performing the standard and the LSH blocking, we utilized LevelDB28 and
LSHDB [23], respectively. The length of each Bloom filter, utilized by SkipBloom,
was set to 32, 000 bits for storing 5000 keys, with false positive probability set to
fp = 0.05.

We evaluated our schemes and their competitors according to the time needed, and
the memory that was consumed to perform the record linkage process, as well as the
recall and precision rates that were achieved.

6.1.1 Baseline methods

We compared our schemes with three state-of-the-art methods for online record link-
age. The first method, termed as INV [7], uses inverted indexes as its basic blocking
structure. The main idea behind this method is the pre-computation of similarities
between field values that have been inserted into the same block. An inverted index
is used for this purpose, which stores the blocking keys encoded by the double meta-
phone method.29 A weakness of this structure regards the storage of all field values
of a record into the same set of indexes. As a result, one cannot be certain for a
value encountered therein, to which field this value belongs. This ambiguity affects
negatively the recall rates of INV.

27 in terms of the predefined clusters of matching records.
28 https://github.com/google/leveldb.
29 Using the double metaphone encoding method, ‘SMITH’ and ‘SMYTH’ are both encoded as ‘SM0’.

123

https://github.com/google/leveldb

350 Distributed and Parallel Databases (2021) 39:321–360

The second method we compared against is the Edge Ordering strategy, termed as
EO, which was introduced in [14]. EO utilizes an oracle, which is aware of the ground-
truth, to resolve thematching status of a record pair.Agraph is constructed by assuming
each record pair, which materializes an edge connecting two vertices/records, formu-
lated in each block. The algorithm performs all similarity computations in the target
block in order to assign a probability estimate to each edge (pair) based on its sim-
ilarity. In turn, EO selects those edges that are expected to maximize the recall, and
submits them to the oracle that returns their matching status.

Finally, we compare against method PDB [19] which resolves queries under data
uncertainty. Records are pairwise linked using a record linkage algorithm and then
according to the pairs formulated, the corresponding records should be divided into
disjoint sets, called factors. PDB creates these factors by applying standard blocking
and restructures the generated blocks for all blocking keys in order to generate the
universally disjoint factors. Each pair in a block is then annotated by its similarity
result. For a query record submitted , PDB considers only these records found in the
same factor. The final step is to compute the probability of each possible world which
is the product of the annotated similarity results of each formulated pair.

EO, INV, and PDB utilize only key/value pairs, materialized by hash tables that
map a key to list of record Id’s. These methods do not offer any component to report
efficiently the membership of a certain key, or to adequately summarize the data set.
Thus, in order to be fair in our comparison with these methods, we maintained the
key/Id’s mappings, as well as the entire records, in secondary storage. All the baseline
methods and our proposed schemes used the Jaro-Winkler [5] function as the similarity
measure, where the corresponding threshold was set to θ = 0.75.

6.1.2 Experimental results

In our first set of experiments,we evaluated the running time andmemory performance,
as well as the ability of the SkipBloom algorithm to provide accurate estimates in
the pre-processing step of record linkage.

Figure 12a shows the total time needed to build the SkipBloom, by scaling the
number of the streaming records using the NCVR data set. It is quite obvious that

10M 100M 500M

100

500

800

1000

number of records

Ti
m

e
(in

 s
ec

s)

SB
MAP

(a) Time consumption

10M 100M 500M

1

5

15

number of records

R
A

M
 (i

n
G

B
)

SB
MAP

(b) Main memory usage

Fig. 12 Scaling the number of records to measure the time and space requirements of SkipBloom

123

Distributed and Parallel Databases (2021) 39:321–360 351

Table 2 Time (s) consumed by
SkipBloom for reporting the
existence of a key

10 M 100 M 500 M

Time 0.000277 0.000315 0.000365

Table 3 Evaluating the accuracy
of SkipBloom in estimating
the fraction of matching pairs

ε DBLP NCVR LAB

0.10 0.94 ± .023 0.95 ± 0.021 0.94 ± 0.022

0.05 0.97 ± .022 0.98 ± 0.021 0.98 ± 0.024

the time increases by a constant factor, depending on the number of records that
are processed. The consumption of main memory is illustrated in Fig. 12b, where
SkipBloom exhibits almost linear performance. Specifically, although the number
of records increases by 10 and 50 times, SkipBloom utilizes 0.6GB, 0.8GB, and
1.4GB of main memory, respectively. In contrast, a map data structure, symbolized
by MAP, e.g., a HashMap in the Java programming language, exhibits a steep linear
performance. In both scenarios,MAP throws fatal errors and terminateswhen it reaches
the processing of 500M records.

Table 2 illustrates the time consumed by SkipBloom to report the existence of
a key. We remind to the reader the probabilistic nature of SkipBloom, whose per-
formance depends on the number of comparisons that will take place until the target
block is located (which isO(log(

√
n))). For this reason, we observe that SkipBloom

almost consumes the same amount of timewhen it has to process either 100Mor 500M
records.

The accuracy of SkipBloom is evaluated by the fraction of overlapping keys it
estimates using the above-mentioneddata sets. Table 3 clearly shows that SkipBloom
approximates the overlap coefficient of A and Q for each data set, where in the worst
case it exhibits an error nearly equal to 0.06 (which is within its approximation guar-
antees specified by ε).

In the next set of experiments,we compared our schemes against EO, INV, andPDB.
Figures 13a and b display the recall rates achieved by all methods using standard and
LSH blocking, respectively. We observe in Fig. 13a that EO exhibits slightly better
recall rates than BlockSketch, by using all data sets, although the differences lie
in the small range [0.01, 0.04]. The scores of PDB are also high, slightly lower than
BlockSketch. PDB formulates all possible pairs from a merge of all the factors,
which contributes to the increase of the recall rates. In NCVR, it was impossible
to obtain measurements due to excessively high memory requirements. Specifically,
the inverted indexes maintained for storing the factors and the records pushed the
utilization of main memory to its maximum extent, which resulted in a large disk
swap activity. Finally, INV falls short in formulating those matching pairs that exhibit
a high degree of perturbation, which is due to the weakness of the double metaphone
scheme to group together such pairs into the same blocks.

The recall rates of DBLP and NCVR are also higher than LAB, which is due to the
longer (in characters) blocking keys, which render themmore tolerant to the perturba-
tion errors. BlockSketch achieves to maintain high recall rates, although we have

123

352 Distributed and Parallel Databases (2021) 39:321–360

DBLP NCVR LAB

0.
6

0.
8

1.
0

data sets

re
ca

ll

BlockSketch
EO
INV
PDB

(a) Recall (standard)

DBLP NCVR LAB

0.
6

0.
8

1.
0

data sets

re
ca

ll

BlockSketch
EO

(b) Recall (LSH)

DBLP NCVR LAB

0.
6

0.
8

1.
0

data sets

pr
ec

is
io

n

BlockSketch
EO
INV
PDB

(c) Precision (standard)

DBLP NCVR LAB

0.
6

0.
8

1.
0

data sets

pr
ec

is
io

n

BlockSketch
EO

(d) Precision (LSH)

Fig. 13 Measuring the recall and precision rates using standard blocking and LSH blocking

to stress that the underlying blocking method drives the whole linkage process. As
Fig. 13b suggests, LSHblocking,which leverages redundancy, scoresmuchbetter rates
than standard blocking. Only BlockSketch and EO can use LSH blocking, because
they essentially run on top of the blocking mechanism. On average, BlockSketch
and EO achieve 10% and 8% higher recall rates, respectively, using LSH blocking.

Figures 13c and d show the precision rates using the two different blocking
approaches described before. As one can observe, BlockSketch outperforms EO,
INV, and PDB by a large margin, due to the effective categorization of records into
the sub-blocks of each block. This minimizes significantly the required number of
comparisons. Specifically, the precision rates of the competitors fall by 18%, 21%,
and 23%, respectively, compared with the rates of BlockSketch. The reasons for
this recession vary between the three methods. EO starts to produce meaningful recall
rates after performing a large number of comparisons to derive the probability esti-
mates for each pair. These comparisons, however, considerably reduce the precision

123

Distributed and Parallel Databases (2021) 39:321–360 353

0.
6

0.
9

methods

re
ca

ll

BlockSketch
EO
INV
PDB

(a) Recall dirty (standard)

0.
6

0.
9

methods

pr
ec

is
io

n

BlockSketch
EO
INV
PDB

(b) Precision dirty (standard)

Fig. 14 Measuring the recall and precision rates using the dirty DBLP data set

rates. On the other hand, the double metaphone scheme of INV groups a large number
of non-matching pairs into the same block, whose comparisons also result in low pre-
cision rates. The merge of all factors in PDB generates many irrelevant pairs, which
in turn has negative impact on the precision rates. The redundancy of LSH blocking
accounts for the reduced precision rates of both BlockSketch and EO, as shown
in Fig. 13d, since both methods perform a larger number of comparisons for the pairs
formulated in the blocks of each hash table. We observe though that BlockSketch
retains its superiority over EO by scoring, on average, rates that are very close to 0.75.

Figure 14a and b display the performance of BlockSketch and its competi-
tors using the dirty DBLP data set. We observe that the recall rates have dropped
for all methods mainly due to the missing values in this version of the data set.
BlockSketch exhibits the smallest losses which are on average 4.5% lower that the
rates in Fig. 13a. This superiority of BlockSketch is justified by its smart blocking
functionality that accounts both for its accuracy and speed. The precision rates in Fig.
14b do not exhibit any noticeable fluctuation.

The time needed to perform the blocking step is illustrated in Fig. 15a and b. EO
and PDB perform a simple blocking for each record, which results in a faster time
for building their accompanying structures than the combination of SkipBloom
and BlockSketch. Specifically, BlockSketch, through a single get operation,
retrieves the representatives of a block from the database, as well as replaces them,
through a single set operation, when needed. INV utilizes three hash tables to store
the precomputed similarities, the encoded, and the original field values, which leads
to certain delays.

In Fig. 15c and d, we present the time performance of BlockSketch and its
competitors for resolving the query data sets, symbolized by Q (see Table 1), after
having populated the blocking structures with the records of A. For each query record
of Q, BlockSketch performs a constant number of comparisons in each target
block, which results in superior performance. As Fig. 15c suggests, BlockSketch
is 2× faster than EO and 1.5× faster than INV and PDB, respectively, which struggle
to compare all records found in a block. Moreover, EO should build the graph to

123

354 Distributed and Parallel Databases (2021) 39:321–360

DBLP NCVR LAB

5
20

30
40

data sets

tim
e

(in
 m

in
s)

SkipBloom
EO
INV
PDB

(a) Blocking time (standard)

DBLP NCVR LAB

10
50

80
12

0

data sets

tim
e

(in
 m

in
s)

SkipBloom
EO

(b) Blocking time (LSH)

DBLP NCVR LAB

5
20

30
40

50

data sets

tim
e

(in
 m

in
s)

BlockSketch
EO
INV
PDB

(c) Matching time (standard)

DBLP NCVR LAB

10
50

10
0

15
0

data sets

tim
e

(in
 m

in
s)

BlockSketch
EO

(d) Matching time (LSH)

Fig. 15 Measuring the time needed for blocking and matching for BlockSketch

locate these record pairs that are expected to maximize the recall. Finally for PDB,
the computation of all possible worlds increases noticeably the response time.

Using LSH blocking, which is shown in Fig. 15d, both BlockSketch and EO
exhibit longer time rates, which are nearly 3× slower than before, due to the inher-
ent redundancy of LSH. Since, a record pair might appear several times during the
matching phase, for each record of Q, we utilize a map data structure30 to discard
the comparisons of duplicate record pairs. Table 4 illustrates the time for resolving
a single query record of Q during the matching phase. The constant number of dis-
tance computations for a single record accounts for the stable time performance of
BlockSketch regardless of the size of the corresponding data set. In contrast, EO
and INV consume running times which apart from the fact that in most cases they are
almost the double of those of BlockSketch, they also depend on the number of
records found in each block.

30 The map structure is initialized for each record of Q.

123

Distributed and Parallel Databases (2021) 39:321–360 355

Table 4 Average time (s) for
resolving a query record

DBLP NCVR LAB

Standard 0.0051 0.0055 0.0045

LSH 0.0097 0.0098 0.0088

DBLP NCVR LAB

5
20

30
40

50

data sets

tim
e

(in
 m

in
s)

Blocking
Matching

(a) Running time (standard blocking)

DBLP NCVR LAB
10

50
10

0
15

0
data sets

tim
e

(in
 m

in
s)

Blocking
Matching

(b) Running time (LSH)

Fig. 16 Measuring the time needed for blocking and matching for SBlockSketch

In SBlockSketch, we initially set μ to a moderate size (μ = 1M31). In
Fig. 16a and b, we observe an average of 10% increase in time consumption than
BlockSketch, only in NCVR and DBLP. The large number (over 60M) of distinct
blocking keys that are generated in these data sets, resulted in relatively frequent evic-
tions and disk seeks for the replacement of blocks in T . Nevertheless, the eviction
status of highly selective (high ξ) but old (high α) blocks remained high during the
blocking phase, which prevented their eviction from T . The running time of LAB
remained almost intact due to the small number of blocking keys (about 10M) and the
corresponding replacements. Since, SBlockSketch utilizes a single hash table T ,
LSH keys were formulated in a composite formatHashTableNo_Key to accommodate
all of them in T .

We next varied the values of μ and initiated the streaming of records of the NCVR
data set. Figures 17a and b illustrate the time performance of SBlockSketch, where
we observe that by doubling μ, we achieve significantly lower running time. For
instance, by setting μ = 1M, the corresponding time value is 43 minutes, which is
almost 4× faster than the previous value (156minutes) on the y-axis. In LSH blocking,
the number of incoming records increases by a constant factor, which is the number
of the LSH keys that are generated for each record. Since a large number of these keys
are identical, the running time increases by 156% on average, as Fig. 17b suggests,
compared to the use of standard blocking.

31 We had 32GB of main memory available.

123

356 Distributed and Parallel Databases (2021) 39:321–360

500K 1M 2M

10
50

10
0

15
0

values of µ

tim
e

(in
 m

in
s)

Blocking
Matching

(a) Running time (standard)

500K 1M 2M

50
15

0
25

0
35

0

values of µ

tim
e

(in
 m

in
s)

Blocking
Matching

(b) Running time (LSH)

Fig. 17 Measuring the time needed for blocking and matching for SBlockSketch by varying μ using
the NCVR data set

Fig. 18 The main memory
utilized does not essentially
affect the response time of
SFEMRL by using LevelDB

5GB 20GB 50GB
0

0.05

0.1

tim
e

(s
ec

s)

total size of main memory

6.2 Evaluating SFEMRL

Initially, we evaluated the memory consumption of SFEMRL using LSHDB and
LevelDB as the underlying noSQL engine. LevelDB uses an in-memory highly
efficient multi-level data structure, which enables logarithmic disk seeks in the num-
ber of stored keys. We used a data store, whose total size was nearly 60GB holding
10M of records, which generated almost 1B hash keys. We varied the amount of
main memory that was available to the host node from 5GB to 50GB and the average
time response was surprisingly constant. Figure 18 illustrates these results, where we
observe that the amount of main memory utilized did not affect the response time of
SFEMRL, which maintained an almost stable performance. Setting the main memory
to 50GB, we achieved the highest response time, because we essentially eliminated
the need for disk seeks.

In the next series of experiments, we evaluated the integration of SFEMRL with
Map/Reduce. We employed Hadoop32 utilizing a cluster of 64 compute nodes, each of

32 http://hadoop.apache.org/.

123

http://hadoop.apache.org/

Distributed and Parallel Databases (2021) 39:321–360 357

Fig. 19 Map/reduce offers its
robust services to SFEMRL for
building a distributed data store

32 64 128
0

5

10

15

number of reduce tasks

tim
e

(m
in

s)

OC LA NC CH
0

0.8
0.9

P
C

(a) PC

1M 5M 10M
0

0.05

0.1

number of records of A’

tim
e

(s
ec

s)
LSH
FPS
M−FPS

(b) Time for matching a query
record

Fig. 20 FPS trades negligible decrease of PC rates in favor of faster responses

which may run up to 2 reduce tasks. The map tasks of each node had to process 1M of
records reproducing theNCVRdata set and appending randomly to each record a value
for the state attribute. The goal was twofold; we had to achieve both the PPRL task,
and the aggregation of these records based on the state attribute. The reduce tasks
retrieved the whole masked records from a Cassandra33 database and then inserted
each such record into the appropriate LSHDB instance. This robust infrastructure
resulted in 25 LSHDB instances, since each instance was populated with records from
a pair of U.S. states. Fig. 19 shows the total time that was consumed to complete the
whole task, where parallel processing of records resulted in setting up a distributed
LSHDB store in a fast and reliable manner.

Finally, Fig. 20a presents the results by employing FPS as the mechanism for
detecting the matching pairs of the NCVR data set by scanning the hash tables and
counting the number of times (collisions) each record pair was formulated in the hash
tables. We achieved to prune a large number of distance computations and accelerate
the matching phase by discarding pairs that did not collect the required number of
collisions at the expense of a tiny accuracy loss. We observe that the difference of
the PC rates between FPS and the baseline LSH is negligible, while the time savings,
shown in Fig. 20b are important in settings that require real-time responses. Moreover,
M-FPS, which is the FPS using the median trick for identifying Bloom filter pairs with

33 http://cassandra.apache.org/.

123

http://cassandra.apache.org/

358 Distributed and Parallel Databases (2021) 39:321–360

small distances, exhibits the fastest response times, while it maintains the PC rates of
FPS.

7 Conclusions

In recent years, several applications have emergedwhich require access to consolidated
information that has to be computed and presented in near real-time, through the link-
age of records residing in voluminous disparate data sources. To address this need, we
proposed the first summarization algorithms that operate in the blocking and matching
steps of online record linkage to boost their performance. SkipBloom compiles a
synopsis of the blocking structure of a data set using a small footprint of main mem-
ory, while BlockSketch compares each query record with a constant number of
records in the target block, which results in a bounded matching time. Our experimen-
tal findings indicate that SkipBloom and BlockSketch (and PBlockSketch
for privacy-preserving settings) outperform the state-of-the-art algorithms, in terms of
the time needed, the memory used, and the recall and precision rates that are achieved
during the linkage process. SBlockSketch utilizes a constant memory footprint to
perform the linkage in settings that use streaming data.

We then introduced SFEMRL, a complete privacy-preserving framework for mask-
ing records and performing record linkage to identify matching records. The core
component of SFEMRL is LSHDB, a parallel and distributed data engine that imports
the masked data and leverages LSH to perform the blocking and matching step
of privacy-preserving record linkage. The integration of LSHDB with Map/Reduce
resulted in building a distributed data store for performing on-demand PPRL tasks. Our
thorough experimental evaluation, using four synthetically perturbed data sets, reveals
the applicability of SFEMRL to the linkage of patients’ records in a privacy-preserving
fashion.

References

1. Altwaijry, H., Kalashnikov, D., Mehrotra, S.: Query-driven approach to entity resolution. In: Interna-
tional Conference on Very Large Data Bases (PVLDB), vol. 6, pp. 1846–1857 (2013)

2. Bhattacharya, I., Getoor, L., Licamele, L.: Query-time entity resolution. In: International Conference
on Knowledge Discovery and Data Mining (KDD), pp. 529–534 (2006)

3. Bilenko, M., Kamath, B., Mooney, R. J.: Adaptive blocking: learning to scale up record linkage. In:
International Conference on Data Mining (ICDM), 87–96 (2006)

4. Broder, A., Mitzenmacher, M.: Network applications of Bloom filters: a survey. In: Internet Mathe-
matics, pp. 636–646 (2002)

5. Christen, P.: Data matching—concepts and techniques for record linkage, entity resolution, and dupli-
cate detection. Springer, Data-Centric Sys. and Appl. (2012)

6. Christen, P.: A survey of indexing techniques for scalable record linkage and deduplication. Trans.
Knowl. Data Eng. (TKDE) 12(9), 1537–1555 (2012)

7. Christen, P., Gayler, R., Hawking, D.: Similarity–aware indexing for real-time entity resolution. In:
International Conference on Information andKnowledgeManagement (CIKM), pp. 1565–1568 (2009)

8. Christophides, V., Efthymiou, V., Stefanidis, K.: Entity Resolution in the Web of Data. Morgan and
Claypool Publishers, San Rafael (2015)

123

Distributed and Parallel Databases (2021) 39:321–360 359

9. Cohen, W.W., Richman, J.: Learning to match and cluster large high-dimensional data sets for data
integration. In: International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp.
475–480 (2002)

10. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.: Locality-sensitive hashing scheme based on p-stable
distributions. In: Symp. on Comp. Geom., pp. 253–262 (2004)

11. Dean, J., Ghemawat, S.: Mapreduce: simplifed data processing on large clusters. CACM 51(1), 107–
113 (2008)

12. Dey, D., Mookerjee, V., Liu, D.: Efficient techniques for online record linkage. Trans. Knowl. Data
Eng. (TKDE) 23(3), 373–387 (2011)

13. Elmagarmid, A., Ipeirotis, P., Verykios, V.: Duplicate record detection: a survey. Trans. Knowl. Data
Eng. (TKDE) 19(1), 1–16 (2007)

14. Firmani, D., Saha, B., Srivastava, D.: Online entity resolution using an oracle. In: International Con-
ference on Very Large Data Bases (PVLDB), vol. 9, pp. 384–395 (2016)

15. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: VLDB, pp.
518–529 (1999)

16. Haas, P.J.: Data-stream sampling: basic techniques and results. In: Garofalakis,M., Gehrke, J., Rastogi,
R. (eds.) Data StreamManagement: Processing High-Speed Data Streams, pp. 13–44. Springer, Berlin
(2016)

17. Hall, R., Fienberg, S.: Privacy-preserving record linkage. In: PSD, pp. 269–283 (2010)
18. Hernandez, M., Stolfo, S.: The merge/purge problem for large databases. In: International Conference

on Management of Data (SIGMOD), pp. 127–138 (1995)
19. Ioannou, E., Nejdl, W., Niederee, C., Velegrakis, Y.: On-the-fly entity-aware query processing in the

presence of linkage. International Conference on Very Large Data Bases (PVLDB), vol. 3(1), pp.
429–438 (2010)

20. Karapiperis, D., Verykios, V.: A distributed near-optimal LSH-based framework for privacy-preserving
record linkage. COMSIS 11(2), 745–763 (2014)

21. Karapiperis, D., Verykios, V.: An LSH-based blocking approach with a homomorphic matching tech-
nique for privacy-preserving record linkage. Trans. Knowl. Data Eng. (TKDE) 27(4), 909–921 (2015)

22. Karapiperis, D., Verykios, V.: A fast and efficient Hamming LSH-based scheme for accurate linkage.
Knowl. Inf. Syst. (KAIS) 49(3), 861–884 (2016)

23. Karapiperis, D., Gkoulalas-Divanis, A., Verykios, V.: LSHDB: a parallel and distributed engine for
record linkage and similarity search. In: International Conference on Data Mining (ICDM) demos, pp.
1–4 (2016)

24. Karapiperis, D., Vatsalan, D., Verykios, V., Christen, P.: Efficient record linakge using a compact
Hamming space. In: International Conference on Extending Database Technology (EDBT), pp. 209–
220 (2016)

25. Karapiperis, D., Gkoulalas-Divanis, A., Verykios, V.S.: Summarization algorithms for record linkage.
In: EDBT, pp. 73–84 (2018)

26. Kim, H., Lee, D.: Fast iterative hashed record linkage for large-scale data collections. In: International
Conference on Extending Database Technology (EDBT), pp. 525–536 (2010)

27. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge Univ. Press, Cambridge (1995)
28. Papadakis, G., Koutrika, G., Palpanas, T., Nejdl, W.: Meta-blocking: Taking entity resolution to the

next level. TKDE 26(8), 1946–1960 (2014)
29. Papadakis, G., Papastefanatos, G., Koutrika, G.: Supervised meta-blocking. In: PVLDB, pp. 1929–

1940 (2014)
30. Papenbrock, T., Heise, A., Naumann, F.: Progressive duplicate detection. Trans. Knowl. Data Eng.

(TKDE) 27(5), 1316–1329 (2015)
31. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. CACM 33(6), 668–676 (1990)
32. Rajaraman, A., Ullman, J.: Mining of Massive Datasets, Chapter Finding Similar Items. Cambridge

Univ. Press, Cambridge (2010)
33. Ramadan, B., Christen, P.: Forest-based dynamic sorted neighborhood indexing for real-time entity

resolution. In: CIKM, pp. 1787–1790 (2014)
34. Ramadan, B., Christen, P., Liang, H., Gayler, R., Hawking, D.: Dynamic similarity-aware inverted

indexing for real-time entity resolution. In: PAKDD Workshops, pp. 47–58 (2013)
35. Schnell, R., Bachteler, T., Reiher, J.: Privacy-preserving record linkage using Bloom filters. Med.

Inform. Decis. Making (BMC) 9, 41 (2009)

123

360 Distributed and Parallel Databases (2021) 39:321–360

36. Steorts, R., Ventura, S., Sadinle, M., Fienberg, S.: A comparison of blocking methods for record
linkage. In: Privacy in Statistical Databases (PSD), pp. 253–268 (2014)

37. Vatsalan, D., Christen, P., Verykios, V.: A taxonomy of privacy-preserving record linkage techniques.
Inf. Sys. 38(6), 946–969 (2013)

38. Whang, S.E., Marmaros, D., Garcia-Molina, H.: Pay-as-you-go entity resolution. Trans. Knowl. Data
Eng. (TKDE) 25(5), 1111–1124 (2013)

39. Whang, S.E., Menestrina, D., Koutrika, G., Theobald, M., Garcia-Molina, H.: Entity resolution with
iterative blocking. In: SIGMOD, pp. 219–232 (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Dimitrios Karapiperis1 · Aris Gkoulalas-Divanis2 · Vassilios S. Verykios1

Aris Gkoulalas-Divanis
gkoulala@us.ibm.com

Vassilios S. Verykios
verykios@eap.gr

1 Hellenic Open University, Patras, Greece

2 IBM Watson Health, Cambridge, MA, USA

123

http://orcid.org/0000-0002-3878-5988

	Summarizing and linking electronic health records
	Abstract
	1 Introduction
	2 Related work
	3 Background and problem formulation
	3.1 Skip list
	3.2 Bloom filter
	3.3 Locality-sensitive hashing
	3.4 Overview of LSHDB
	3.5 Problem statement

	4 Algorithms and data structures
	4.1 The operation of SkipBloom
	4.2 Algorithms
	4.3 Accuracy and complexity analysis
	4.4 Using SkipBloom as a synopsis of the universe of blocking keys
	4.5 The operation of BlockSketch
	4.6 Algorithm
	4.7 Accuracy and complexity analysis
	4.8 The operation of SBlockSketch
	4.9 Algorithm
	4.10 Accuracy and complexity analysis
	4.11 The operation of PBlockSketch

	5 SFEMRL: a summarization framework for electronic medical record linkage
	5.1 Integration with map/reduce
	5.2 Online SFEMRL
	5.2.1 Applying the median trick on FPS
	5.2.2 Ubiquitous FPS

	5.3 Interoperability

	6 Experimental svaluation
	6.1 Evaluating the Algorithms
	6.1.1 Baseline methods
	6.1.2 Experimental results

	6.2 Evaluating SFEMRL

	7 Conclusions
	References

