Distrib Parallel Databases (2018) 36:153—194 @ CrossMark
https://doi.org/10.1007/s10619-017-7210-4

MetaStore: an adaptive metadata management
framework for heterogeneous metadata models

Ajinkya Prabhune! . Rainer Stotzka! -
Vaibhav Sakharkar! . Jiirgen Hesser? -
Michael Gertz?

Published online: 4 October 2017
© Springer Science+Business Media, LLC 2017

Abstract In this paper, we present MetaStore, a metadata management framework
for scientific data repositories. Scientific experiments are generating a deluge of data,
and the handling of associated metadata is critical, as it enables discovering, analyz-
ing, reusing, and sharing of scientific data. Moreover, metadata produced by scientific
experiments are heterogeneous and subject to frequent changes, demanding a flexible
data model. Existing metadata management systems provide a broad range of features
for handling scientific metadata. However, the principal limitation of these systems is
their architecture design that is restricted towards either a single or at the most a few
standard metadata models. Support for handling different types of metadata models,
i.e., administrative, descriptive, structural, and provenance metadata, and including
community-specific metadata models is not possible with these systems. To address
this challenge, we present MetaStore, an adaptive metadata management framework
based on a NoSQL database and an RDF triple store. MetaStore provides a set of core
functionalities to handle heterogeneous metadata models by automatically generat-
ing the necessary software code (services) and on-the-fly extends the functionality of
the framework. To handle dynamic metadata and to control metadata quality, Meta-
Store also provides an extended set of functionalities such as enabling annotation of
images and text by integrating the Web Annotation Data Model, allowing communi-
ties to define discipline-specific vocabularies using Simple Knowledge Organization
System, and providing advanced search and analytical capabilities by integrating the
ElasticSearch. To maximize the utilization of the data models supported by NoSQL

B Ajinkya Prabhune
ajinkya.prabhune @kit.edu

Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
Department of Radiation Oncology, Heidelberg University, Heidelberg, Germany

Institute of Computer Science, Heidelberg University, Heidelberg, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-017-7210-4&domain=pdf

154 Distrib Parallel Databases (2018) 36:153-194

databases, MetaStore automatically segregates the different categories of metadata in
their corresponding data models. Complex provenance graphs and dynamic metadata
are modeled and stored in an RDF triple store, whereas the static metadata is stored in a
NoSQL database. For enabling large-scale harvesting (sharing) of metadata using the
METS standard over the OAI-PMH protocol, MetaStore is designed OAI-compliant.
Finally, to show the practical usability of the MetaStore framework and that the require-
ments from the research communities have been realized, we describe our experience
in the adoption of MetaStore for three communities.

Keywords MetaStore - NoSQL database - Automated code generation - Annotations

1 Introduction

With the advent of novel data acquisition systems and the ability to process enormous
amounts of data, there is an exponential growth in the volume of data and metadata that
are generated by scientific experiments [1,2]. To systematically describe and execute
various data processing steps, research communities are rapidly adopting scientific
workflows [3-7]. In the past, researchers have heavily relied on ad hoc techniques
for managing metadata. For example, metadata was stored in lab journals, workflows
were described using non-standard scripting languages, and data description were
captured using obscure file or folder names. However, these approaches for handling
metadata are inefficient and hinder research. Various aspects of scientific research
such as discovering, reusing, sharing, and analyzing data are entirely dependent on
the metadata. Metadata is crucial for managing the complete life-cycle of scientific
data, for example, automating scientific analysis workflows, enabling data access,
enhancing data interpretation by visual exploration and creating metadata-aware tools
[8].

Metadata can be broadly classified into static metadata and dynamic metadata [9].
Static metadata describing the data is not subject to any changes over the complete
life of the data, even if the data evolves. For example, the metadata describing the
preparation of a specimen and the optical configuration [10] of the microscope for a
nanoscopy investigation is static metadata that is immutable and prohibited to changes,
while any modifications to this metadata will invalidate the investigation and the
subsequent results. Contrarily, dynamic metadata is subject to change, i.e., as the data
evolves the metadata may also change.

Based on the applications of metadata, static metadata is categorized into three
main types: descriptive metadata, structural metadata, and administrative metadata
[11]. Descriptive metadata describes the details of the resource (data) and is used
for searching and identifying the resource. Additionally, in scientific research, any
dynamic description can also be tagged to a given resource through annotations. For
example, in medical research, it is a common practice for the medical experts (physi-
cians) to attach additional information on the patient’s medical images in the form of
annotations [12,13]. Also, in the research areas of the humanities, digitized medieval
manuscripts are enriched by humanities scholar with additional description in the form
of annotations [14]. Structural metadata describes the internal structure of compound

@ Springer

Distrib Parallel Databases (2018) 36:153—-194 155

resources and the relationship among its elements. For example, the structural infor-
mation describing the relations between the pages of a medieval manuscript can be
described with structural metadata. Administrative metadata describes the details nec-
essary to manage the resource, such as access and rights management and resource
preservation information. An additional type of metadata is provenance metadata,
which is necessary for capturing the lineage of how a resource was generated. To
model these different types of metadata, various metadata standards (models) are
available. These standards are typically serialized in XML with a corresponding XML
Schema Definition (XSD) [15].

For modeling the metadata, each scientific community either uses an existing meta-
data schema or defines a community-specific metadata schema. Moreover, to enable
storing, querying, retrieving, analyzing and sharing of the metadata, these communi-
ties develop restricted metadata management frameworks that are capable of handling
only specific metadata models (schemas) [16—19]. These solutions are not generic
and cannot be applied to other metadata models. When introducing a new metadata
model in the existing solution, the following software engineering tasks necessary for
a database schema migration have to be performed: (1) The existing database schema
needs to be updated with the new metadata model. If the current schema contains
metadata records, then an additional step of data migration needs to be performed. (2)
The source code, i.e., the software and services that implement the functionality across
the schema need to be updated, tested, compiled and redeployed. Thus, these time and
resource intensive software engineering tasks need to be performed each time when a
new metadata model is introduced in the system.

To address the limitations of existing metadata management systems and to ful-
fill the requirements from the nanoscopy, eCodicology, and the Corpus Vitrearum
Deutschland (CVD) research communities, we coarsely identify the requirements nec-
essary for designing a generic reusable metadata management system, and in Sect. 2,
we extend these requirements and provide a detailed description for each: (1) an
automatically adapting metadata management framework for handling heterogeneous
metadata schemas, (2) a flexible multi-model data storage (database) system for effi-
ciently storing and retrieving both static and dynamic metadata, (3) an integration of a
standard annotation data model for handling dynamic metadata in the form of annota-
tions, (4) support for scientific communities to define or integrate discipline-specific
vocabularies, and (5) conformance to a standard metadata harvesting protocol with an
extensible metadata model for enabling sharing of metadata.

Contributions In the previous version of MetaStore, we established the core function-
ality of the framework required for handling static metadata [20]. Following features
were realized in the first version of MetaStore:

— A dedicated metadata registry for registering metadata schemas, necessary for
tracking schema evolution and validating ingested metadata.

— An automated code (service) generator for dynamically generating the necessary
functionality for handling registered metadata schemas.

— An automated extraction of index terms from metadata schemas with the creation
of indexes in NoSQL document databases for enabling full-text search.

@ Springer

156 Distrib Parallel Databases (2018) 36:153-194

— Automated modeling of workflow provenance in the ProvONE [21] provenance
model and allowing provenance interoperability between ProvONE and PREser-
vation Metadata: Implementation Strategies (PREMIS) [22] provenance models.

— Support towards metadata harvesting standards, namely the OpenArchives Ini-
tiative Protocol for Metadata Harvesting (OAI-PMH) [23] with the extension of
Metadata Encoding and Transmission Standard (METS) [24] for enabling com-
prehensive metadata sharing.

With the core functionality for handling static metadata established, we extended
MetaStore with the advanced requirements put forth by the research communities.
Hence, in this version of MetaStore, the following new features particularly for han-
dling dynamic metadata are introduced.

— Realization of a WADM annotation framework for handling automatically gen-
erated annotations from scientific workflows and semi-automatically created
annotations from discipline-specific tools.

— Extended metadata quality control with modeling of discipline-specific vocabular-
ies based on the SKOS [25] data model, as well as support for registering external
vocabulary providers.

— A systematic separation of static metadata models from dynamics models with the
adoption of a standard RDF data model with SPARQL querying capabilities.

— Interface for extending MetaStore schema registry with an RDA metadata directory
registry for supporting existing metadata models.

— Migration of provenance from a non-standard graph model to an RDF data model,
with realization of SPARQL queries for analyzing provenance graphs and anno-
tations.

— Integration of ElasticSearch [26] for allowing in-depth faceted and analytical
search capabilities.

The implementation of the MetaStore framework presented in this paper is built on
ArangoDB,1 a native multi-model NoSQL database, and Apache Jena, a framework
for building semantic web and linked data applications [27]. The prime reason for
choosing ArangoDB is due to its compactness to store key-value pairs, documents
and graph data in a single database.

With the possibility to serialize the descriptive, administrative and structural meta-
data schemas in XML, the document data model of ArangoDB is an appropriate choice
to store static metadata, whereas an RDF database like Apache Jena is suitable to store
dynamic metadata in the form of annotations. As no complex analytical queries are
expected over the registered schemas, the key-value model is adequate for registering
metadata schemas with their namespace and version as simple key-value pairs. For
modeling workflow definition and its associated provenance, the RDF data model is
the most appropriate one, because it not only allows to store provenance information
as a graph but also complex pattern matching queries using SPARQL can be efficiently
designed and executed. For automating the modeling of workflows in ProvONE, we
use the Prov2ONE algorithm [28]. However, the MetaStore framework is database
agnostic and can also be realized using a combination of the key-value store RedisDB

1 https://www.arangodb.com/.

@ Springer

https://www.arangodb.com/

Distrib Parallel Databases (2018) 36:153—-194 157

[29], the document store MongoDB [30] and the graph database management system
Neo4j [31].

Organization of the paper The remainder of the paper is structured as follows. In
Sect. 2, we present a detailed description of the requirements that motivate the design
and features of MetaStore. Section 3 presents the complete multilayered architecture
of the MetaStore framework, with a detailed description of the functionality provided
by each layer. In Sect. 4, we present a brief overview of the features available in existing
metadata management systems and frameworks. Section 5 presents feature-based and
performance comparison of MetaStore with the existing metadata systems presented
in Sect. 4. To illustrate the generic applicability of MetaStore, in Sect. 6, we describe
the adoption of MetaStore for three scientific use cases. In Sect. 7, we describe the
rationale behind the architecture design decisions that led to the implementation of
MetaStore. Finally, Sect. 8 concludes the paper with a brief outline of our ongoing
work.

2 Requirements for the MetaStore framework

The primary aim of developing the MetaStore framework is to provide a generic
and reusable metadata management system that can be adopted by multiple scientific
communities with different needs. This aim is further strengthened by the requirements
put forth by the nanoscopy, eCodicology, and the CVD research communities. In the
following, we summarize these requirements:

Metadata schema support Research in several disciplines is rapidly changing,
especially the nanoscopy and eCodicology research areas are continuously evolv-
ing and their metadata schemas are frequently modified. In nanoscopy research, a
community-specific metadata schema is created to model the experiment descrip-
tion,” and workflow provenance is described using ProvONE. Similarly, the results
of eCodicology workflows are modeled using the standard PAGE XML schema.?
Hence, the requirement is to design MetaStore to support both, standard metadata
schemas as well as community-specific metadata schemas. Additionally, to system-
atically handle the evolution of metadata schemas in order to mitigate redundant
modifications and enable tracing of different schema versions, MetaStore should pro-
vide the registration of each metadata schema with its version. Moreover, nanoscopy
and eCodicology research communities have adopted METS to systematically orga-
nize multiple metadata schemas that are required by the community to describe their
data comprehensively. Hence, the requirement for MetaStore is to handle community-
specific METS-profiles,* >

Full-text search For the majority of the communities, the data is huge and serialized
in machine-readable file formats, and frequently accessing the data is not efficient
due to hardware and network limitations. In nanoscopy and eCodicology research,

2 http://datamanager.kit.edu/masi/localizationmicroscopy/2016-03/LocalizationMicroscopy.xsd.
3 http://www.primaresearch.org/schema/PAGE/gts/pagecontent/2017-07- 15/pagecontent.xsd.

4 http://datamanager.kit.edu/masi/localizationmicroscopy/mets/nanoscopy-METS-profile.xml.

3 http://zimks68.uni- trier.de/stmatthias/T1108/T1108-digitalisat.xml.

@ Springer

http://datamanager.kit.edu/masi/localizationmicroscopy/2016-03/LocalizationMicroscopy.xsd
http://www.primaresearch.org/schema/PAGE/gts/pagecontent/2017-07-15/pagecontent.xsd
http://datamanager.kit.edu/masi/localizationmicroscopy/mets/nanoscopy-METS-profile.xml
http://zimks68.uni-trier.de/stmatthias/T1108/T1108-digitalisat.xml

158 Distrib Parallel Databases (2018) 36:153-194

raw data acquired either from high-resolution microscopes or scanners is ingested in
a data repository. For enabling further reuse of this data by either data-processing
workflows or domain-specific applications, the data needs to be made discoverable.
For this, metadata is critical for searching, identifying, and retrieving required data. A
standard approach is to provide a set of queries for each metadata schema. However,
this is not a sustainable approach, because for frequently changing metadata schemas,
the implemented queries will quickly become obsolete and return either incomplete or
incorrect results. Moreover, implementing a set of queries for each metadata schema is
an arduous and resource intensive task. Thus, the requirement from the communities
is to have a full-text search over all the metadata.

Metadata quality control The next requirement is to provide automated metadata
quality control for verifying the well-formedness of metadata, schema conformance,
and content verification for communities possessing controlled vocabularies. Metadata
can be automatically generated by a data acquisition system or during the execution of
workflows, or metadata in the form of annotations can be manually created and tagged
with the data by domain experts. Thus, irrespective of the source from which the
metadata is generated, for maintaining a basic level of metadata quality, the MetaStore
framework should provide different levels of automated quality control checks.
Metadata harvesting The metadata should be provided for allowing harvesting, i.e.,
from the collected metadata, the MetaStore framework should provide either partial
metadata harvesting, in the case of sharing only a specific part of metadata to an
external system or complete metadata harvesting, in the event of data migration from
one data repository to another. For enabling seamless integration of MetaStore with
existing systems and compliance with existing metadata harvesting standards, the
MetaStore framework should support the OAI-PMH specification. In the eCodicology
project, the processing of digitized manuscripts results in large volumes of multi-
dimensional metadata. As this metadata needs to be visualized using the CodiViz [32]
tool, selective metadata harvesting is requested by the humanities scholars. Thus, a
common requirement from the research communities is to allow large-scale metadata
sharing.

Provenance support The nanoscopy data processing workflows are described using
the BPEL language, while the eCodicology workflows are described in SCUFL. During
the execution of these workflows, it is necessary to capture and model the compre-
hensive workflow provenance. For both research communities, provenance is critical
metadata that assists in validating the quality of results, enables data reproducibility,
provides systematic tracking of workflow evolution, and allows execution of graph
pattern queries for analyzing provenance traces. Moreover, as MetaStore can also be
coupled with a scientific data repository, it is necessary to support the PREMIS prove-
nance model used in long-term data and metadata preservation. Hence, the requirement
is to not only provide automated workflow provenance handling capabilities using a
comprehensive provenance model like ProvONE but also support the data preservation
in the PREMIS model.

Automatic/Semi-automatic annotations Currently, in the field of digital humanities,
research communities often apply image processing workflows that generate metadata
at each step. For the eCodicology community, the SWATI workflow [32] is employed
to extract Optical Layout Recognition (OLR) features from the digitized medieval

@ Springer

Distrib Parallel Databases (2018) 36:153—-194 159

Research Community MetaStore API MetaStore Core Layer MetaStore Extension Layer Metadata Storage Layer

Metadata

Schema Apache Jena Triple

XSD Store
JSON
Schema

Metadata

Scientific Data Repository

RESTful HTTP API

Scientific
Workflow

Annotations

Fig. 1 Multilayered architecture of MetaStore

2
[y
© .
s
((((]

Large Scale Data Storage

manuscripts. As the SWATI workflow is continuously evolving with improved lay-
out recognition algorithms, the extracted OLR features (metadata) are also frequently
changing. Hence, the first requirement for MetaStore is to store this metadata in the
form of annotations and make it available for analysis. Furthermore, these annota-
tions are subject to modification by research experts through the CodiLab toolset,’
which is an annotation framework providing visual interpretation of annotations by
overlaying them over digitized manuscripts. Thus, the second requirement is to allow
semi-automated annotations of images and documents, with an extension for con-
trolled vocabularies.

Miscellaneous In the following, we list the additional requirements requested by the
research communities: logically linking the metadata with the data through Persistence
Identifier (PID) generated from a PID management systems like the Handle System,’
high-performance metadata access and ingest, scalable storage for handling increasing
metadata volume, and a REST API for integrating MetaStore with existing systems.

3 MetaStore architecture

In this section, we present the multilayered architecture of the MetaStore framework
(see Fig. 1). The architectural design of MetaStore is based on the following design
principles.

Modular design Each functionality in MetaStore is available as a separate compo-
nent (module), so that any enhancement or technology change can be systematically
handled by updating or replacing that specific component, without affecting the other
components in the framework.

6 https://github.com/JochenGraf/CodiLab.
7 http://www.handle.net/index.html.

@ Springer

https://github.com/JochenGraf/CodiLab
http://www.handle.net/index.html

160 Distrib Parallel Databases (2018) 36:153-194

Adaptive feature enhancement MetaStore is designed as an entirely adap-
tive framework that modifies itself in handling ad hoc metadata models. For this,
we designed MetaStore based on the principle of Compositional Adaption [33].
Compositional Adaption can be realized with the following technologies: Separa-
tion of Concerns (SoC), Computational Reflection, and Component-based design.
Out of these technologies, we adopt the Component-based design architecture. The
Component-based design architecture supports two types of compositions; static and
dynamic composition. In static composition, the program is composed at compile
time and cannot be changed without recoding, whereas in a dynamic composition,
components can be added, removed, modified, or reconfigured at runtime. To design
MetaStore as a dynamically adapting framework, we realized the dynamic composi-
tion.

The complete functionality of MetaStore is divided into two layers: (1) The Meta-
Store Core Layer provides the basic functionalities necessary for handling the static
metadata, and is designed independent of any scientific data repository system or
metadata storage technology. (2) The MetaStore Extension Layer allows integration
of third-party libraries and tools necessary for handling the dynamic metadata and
supports handling of SKOS modeled controlled vocabularies that are specific to sci-
entific disciplines. In the following subsections, the description of each layer and the
realization of the features through the different MetaStore components are presented.

3.1 Research community

A research community performs metadata related interactions through the REST API
exposed by the MetaStore framework. A valid metadata schema defined either as
XSD or JSON Schema is submitted by the research community for registering it in
MetaStore. Only metadata complying to a registered schema can be inserted in Meta-
Store. Similarly, for modeling provenance information in the ProvONE model, sci-
entific workflows defined by a research community are submitted to MetaStore.
Currently, workflows defined in the Business Process Execution Language (BPEL)
[34], Simple Conceptual Unified Flow Language (SCUFL) [35], and Modeling
Markup Language (MoML) [36] are supported by MetaStore. The semi-automated
annotations provided by domain experts are captured in the WADM and SPARQL
[37] end-points are exposed for searching and retrieving the annotations. An OAI-
PMH metadata harvester exposed as a REST interface is provisioned to the research
community for sharing their metadata.

3.2 MetaStore core layer

The MetaStore Core Layer consists of various task-specific components that collec-
tively build the functionality of MetaStore. Each component or group of components
in the MetaStore Service Layer follows a well-defined workflow to accomplish a given
task. Through these components, we have implemented the features corresponding to
the requirements from Sect. 2.

@ Springer

Distrib Parallel Databases (2018) 36:153—194 161

Value

<xsd:schema targetNamespace="NanoscopySchema" version="1.0.2">
<xsd:element name="metadata">
<xsd:element name="Title" type="xsd:string"/>
<xsd:element name="Camera">

Key <xsd:element name="Name" type="xsd:string"/>
Nanoscopy </xsd:element>
Schema_1.0.2 I <xsd:element name="Positioning">

<xsd:element name="Rotate" type="xsd:decimal"/>
</xsd:element>
</xsd:element>

</xsd:schema>

Fig. 2 Metadata schema registration as key-value

3.2.1 Metadata registry and indexer

For supporting systematic handling of heterogeneous metadata schemas, we designed
the Metadata Registry component based on the key-value data model. Registering a
metadata schema with its namespace and version allows efficient schema validation
checks during the metadata quality control process.

The Metadata Registry component allows the registration of either a single metadata
schema that exclusively describes administrative, descriptive, structural metadata or
a community defined METS XML that may comprise multiple metadata schemas.
The Metadata Schema Registry allows research communities to maintain multiple
metadata schemas with different versions. In the case of a single metadata schema, the
schema is registered as a key-value pair, in the key-value data model of ArangoDB,
where the key is the combination of schema namespace and version and the value is
the complete schema. In the case of a METS XML, the metadata schemas used in
constructing the various sections of the METS-profile are extracted and individually
registered. Moreover, a relation map of the metadata schemas and the corresponding
METS-profile is created. This relation map is necessary for segregating the metadata
during the ingest stage, and for reconstructing the metadata during the harvesting
stage. A reduced version of the nanoscopy descriptive metadata schema registered as
a key-value pair is shown in Fig. 2.

Typically, in NoSQL databases, indexes have to be created manually, which is an
arduous and time-consuming task, especially when dealing with complex scientific
metadata schemas. For enabling full-text search over metadata, we coupled the Meta-
data Indexer component with the Metadata Registry component. The rationale behind
this design decision was to enable automated creation of indexes during the regis-
tration of a metadata schema in MetaStore. With immediate indexing of a registered
metadata schema, we guarantee that full-text search is enabled from the first insertion
of metadata in MetaStore. Moreover, an update to a schema does not require man-
ual interference from the user (system administrator), because the index terms are
extracted and reapplied on the database collection, thus, updating the index list.

The Metadata Indexer component implements the IndexTermExtractor algorithm
illustrated in Algorithm 1. The algorithm is similar to the Depth First Search (DFS)
algorithm. For an input XSD or XML (in the case of METS), the algorithm recur-

@ Springer

162 Distrib Parallel Databases (2018) 36:153-194

sively iterates the entire depth of the XSD or XML, and during each iteration, a
unique index term path is added to the list L. In the first step, the VERIFYSCHEMA
method determines if the input schema is a simple schema or a composite schema like
METS. In the case of a simple schema, the EXTRACTTERMS method is invoked.
For METS files the algorithm first decomposes all the metadata sections (DECOM-
POSEMETS method), and for each section, the EXTRACTTERMS method is invoked.
The EXTRACTTERMS method recursively constructs a unique index path for all the
elements at a depth of n — 1 and adds it to the list L. After completion of each recur-
sion, the path P has to be reset to the completed element x;. For this, the SUBSTRING
method is recursively invoked for removing the sub-path that has already been added
to the list L.

In ArangoDB, as the indexing of the leaf elements is contained by the element at
a depth of n — 1 (parent element), the algorithm only needs to construct the unique
path for a depth of n — 1 for XSD or XML with a nested depth of n. The algorithm
terminates when all the elements x; for the depth of n — 1 are added to the list L.
After the termination of the algorithm, the index terms from list L are applied to the
respective metadata collection.

Algorithm 1 IndexTermExtractor

Input: Metadata schema X serialized in XSD or XML
> X = {x1, x2, ...x,} is a vector of nested XML child elements
Output: List L containing index terms

I: ListS:=¢ > list containing the various sections in METS
2: String P:=¢ > fully qualified path of the index term
3: ListL:=0 > list containing unique index terms
4: function VERIFYSCHEMA(X)

5. if X.namespace € MET S then

6: S = DECOMPOSEMETS(X)

7: > the (dmdSec),(amdSec),(struct Map), ... sections are extracted by this method
8: for s; € S do

9: P =s;.rootElement;

10: EXTRACTTERMS(s;)

11: > for each section in METS, the method extractterms is called
12: end for

13: else

14: P = X.rootElement; > for flat XML structure assign rootElement to P
15: EXTRACTTERMS(X) > for a simple metadata schema
16: endif

17: end function
18: function EXTRACTTERMS(X)
19: forx; € X do

20: if x;.children # {) then

21: P=PUx;

22: EXTRACTTERMS(x;)

23: else

24: L=LUP > Add all the unique index term paths to list L
25: P = X.rootElement > Reset the path to the root element
26: end if

27: P = PSUBSTRING(x;) > Reset P to the current path of the element x;
28: end for

29: end function

@ Springer

Distrib Parallel Databases (2018) 36:153—194 163

i 2. Register -

Metadata 15'cshuebnr,gt ‘ scﬁema & ArangoDB
Schema = Metadata Registry »

i 3. Createj

'3:: A Extract collection am» I

= index terms g —

= ¥ 5. Apply

%]

& indexes - =

= Metadata Indexer > ——

Fig. 3 Metadata schema registration and indexing

For the default configuration of MetaStore, when ElasticSearch indexing is dis-
abled, the metadata schema registration and indexing process illustrated in Fig. 3 is
followed. This process consists of the following five steps: (1) The scientific com-
munity submits their metadata schema through the MetaStore REST API, which is
verified for the schema name and the version. (2) If the submitted schema with a given
version does not exist in the schema registry, it is added to the schema registry. (3) For
each unique schema registered, a corresponding collection is created in the document
store of ArangoDB. This collection is required for storing the succeeding metadata,
thus allowing a clear separation of community-specific metadata storage. (4) Once the
metadata schema is successfully registered, the Metadata Indexer component analyzes
the registered metadata schema to generate a list of index terms. (5) These index terms
are applied to the respective collection for enabling full-text search. If a new version
of an existing metadata schema is registered, the corresponding indexes are updated.

3.2.2 Metadata code generator

The principle aim of the Metadata Code Generator is to allow scientific communities to
handle heterogeneous metadata schemas without the need to write any software code
(services). To realize the dynamic composition of the services, the MetaStore Code
Generator follows a two-step process. In the first step, the MetaStore Code Generator
component automatically adapts the existing MetaStore installation by creating the
services that are necessary for handling the registered metadata. Once the services
are generated, they are dynamically added to the existing pool of services in the
Metadata Management component. However, to expose these new services through
the REST interface, the Metadata Code Generator invokes the entire compilation and
redeployment of MetaStore. In the second step, to prevent the disruption of an active
instance of MetaStore, the recompiled version of MetaStore is deployed on an auxiliary
web-server. This adaptive and automated redeployment enables a scientific community
to continue an uninterrupted usage of MetaStore. For enabling an uninterrupted update
of MetaStore, we use a load balancer with an auxiliary instance of a web-server that is
only used during the update process. The automated code generation and deployment
process for a single active instance of MetaStore is described in Fig. 4. (1) After
successful registration of the metadata schema, it is forwarded to the Metadata Code
Generator component. (2) For the given metadata schema (namespace) and version,
the Metadata Code Generator component automatically generates the software code

@ Springer

164

Distrib Parallel Databases (2018) 36:153—-194

1. Submit
metadata schema

Redirect requests
to active instance

2. Generate service to
handle submitted schema

MetaStore v1.0
(Active)

3. Compile and
deploy updated
MetaStore

Walancer

Researchers

Requests handling
disabled MetaStore v1.0

(Inactive)

Step 1: Automated code generation,
compilation and deployment

Requests handling
disabled

MetaStore v1.0
(Inactive)

4. Reconfigure load
& balancer to redirect
561 Load Balancer incoming requests

Researchers

~
3
Redirect traffic o
X &
to active instance =9
MetaStore v1.1
(Active)

Step 2: Redirecting the requests to
updated (active) instance

Fig. 4 Automated code generation and deployment

4. Insert

1. Insert ¢ & ArangoDB
validated_ g
Metadata z metadata metadata / \
— o
XML E 3. Validate - =
e - £ L = —
= -E metadata (XML/JSON) — —
— (%)
& 2. Get s- z-
registered -—
schema

Fig. 5 Metadata management and quality control

(service) necessary for handling the metadata registered in the Metadata Registry. (3)
The entire MetaStore with this new service is compiled and deployed on the auxiliary
web-server. (4) The load balancer is configured to redirect incoming requests to the
updated instance of MetaStore, simultaneously the old version of MetaStore is disabled
after successful completion of the active requests.

3.2.3 Metadata management and quality control

The Metadata Management component exposes various CRUD (create, retrieve,
update, delete) operations that are specific to the given NoSQL database (in this case
ArangoDB and SPARQL queries for Apache Jena). The Metadata Management com-
ponent adds the dynamically created services by the Metadata Code Generator to the
pool of existing services. This component also acts as a bridge between the native
ArangoDB libraries and the MetaStore REST services.® Additionally, the metadata
is modeled in a community specified METS-profile, and stored with the data in a

8 http://datamanager.kit.edu/masi/localizationmicroscopy/swagger-ui/.

@ Springer

http://datamanager.kit.edu/masi/localizationmicroscopy/swagger-ui/

Distrib Parallel Databases (2018) 36:153—194 165

Table 1 Vocabulary mapping between PREMIS and ProvONE

Rule. # PREMIS ProvONE SKOS mapping

1 Event ProcessExec relatedMatch

2 Object Data narrowMatch

3 Agent User broadMatch

4 relatedObjectIdentification wasDerivedFrom relatedMatch

or hadMember

5 linkingObjectldentifier used relatedMatch

6 linkingAgentldentifier wasAttributedTo broadMatch
relatedEventldentification wasGeneratedBy or used broadMatch

scientific data repository. To fulfill the quality control requirement from the research
communities, MetaStore supports two stages of quality control: (1) schema valida-
tion and well-formedness and (2) vocabulary based metadata control. The vocabulary
based metadata quality control is explained in Sect. 3.3.2.

Figure 5 shows the default schema validation and well-formedness quality control
process that is followed for each insertion of metadata. (1) Metadata is submitted by the
scientific community in either XML/JSON format, or extracted from data and inserted
through the REST API of MetaStore. (2) The Metadata Management Component
analyzes the metadata to determine its corresponding schema and version from the
key-value store. (3) Based on the corresponding version of the available schema,
the Metadata Quality Control component performs a schema conformance and well-
formedness check of the metadata. (4) The validated metadata is converted into JSON
format and inserted into the designated collection.

3.2.4 Provenance manager

Provenance has a wide-range of applications. On the one hand, provenance can be
used for determining the quality of the results and for analyzing and improving the
quality of workflows, and on the other hand, provenance is critical for the long-term
preservation of data. For efficiently handling provenance, as per its application, it is
necessary to support the appropriate provenance model where required.

The Provenance Manager supports the handling of scientific workflow provenance
based on the ProvONE model and provenance for long-term preservation of a digital
resource using the PREMIS model. Comprehensive workflow provenance informa-
tion consists of two parts, the workflow definition (prospective provenance) and the
execution details (retrospective provenance) [38]. ProvONE is a provenance model
that is capable of modeling both the prospective and retrospective provenance. For
efficient storage and querying of the provenance information in the ProvONE model,
the ProvONE provenance graphs are stored in the Apache Jena TDB. Various query
patterns for retrieving the ProvONE provenance information are implemented and
exposed as REST services.’

@ Springer

166 Distrib Parallel Databases (2018) 36:153-194

However, for allowing interoperability between these models, an exclusive mapping
between ProvONE and PREMIS terms is unfeasible, because the ProvONE model
is designed to support both prospective provenance and retrospective provenance,
whereas the PREMIS standard is intended to model only retrospective provenance.
Thus, to enable retrospective provenance interoperability between these models, the
vocabulary mapping rules between the ProvONE (retrospective provenance) and the
PREMIS model are described using the W3C SKOS mapping vocabulary specification.
This mapping is an extension to an existing vocabulary mapping between the Open
Provenance Model (OPM) [39] and PREMIS [40]. The mapping rules are presented
in Table 1, and a brief explanation of each rule is as follows.

Rule 1 A PREMIS Event is mapped to ProvONE ProcessExec using the SKOS
relatedMatch. Both the PREMIS Event and the ProvONE ProcessExec (linked to a
Process class) represents an action performed on a data represented by the ProvONE
Data or Collection or a PREMIS Object respectively.

Rule 2 A PREMIS Object is mapped to ProvONE Data using the SKOS nar-
rowMatch because a PREMIS Object can only be of the type bitstream, file, or an
aggregation, while ProvONE Data can be of any type.

Rule 3 A PREMIS Agent can be a either software, person, or an organization,
and is mapped using SKOS broadMatch to ProvONE User that can represent only a
person.

Rule 4 A PREMIS relatedObjectldentification is mapped using the SKOS related-
Match to ProvONE hadMember (structural relation) or ProvONE wasDerivedFrom
(derivation relation).

Rule 5 A PREMIS linkingObjectldentifier is mapped to ProvONE used class using
the SKOS relatedMatch, as it represents a relation between a PREMIS Event and
PREMIS Object, and ProvONE ProcessExec and ProvONE Data, respectively.

Rule 6 A PREMIS linkingAgentldentifier is mapped using the SKOS broadMatch
to ProvONE wasAttributedTo. In PREMIS a linkingAgentIdentifier represents a rela-
tionship with any of the Agents, whereas in ProvONE, the wasAttributedTo represents
a relation only between a User and a Process that is associated with a ProcessExec.

Rule 7 A PREMIS relatedEventldentification is mapped using SKOS broadMatch
either to ProvONE wasGeneratedBy or used class, based on the PREMIS relation-
shipSubType.

3.2.5 OAI-PMH METS provider and harvester

A common requirement from the research communities is to have customizable meta-
data harvesting for sharing partial or entire collections of metadata. For this, we
explicitly implemented the six verbs recommended by the OAI-PMH. OAI-PMH is the
de facto standard for exporting metadata across scientific data repositories. By design,
the basic interoperability using Dublin Core metadata standard [41] is supported by
MetaStore. However, due to the limited expressiveness of the Dublin Core standard,
MetaStore also supports a comprehensive metadata standard like METS. METS is
a metadata container format comprising different sections that allow encoding of
administrative (amdSec), structural (fileSec), (structMap), (structLink) descriptive

@ Springer

Distrib Parallel Databases (2018) 36:153—-194 167

(dmdSec) and provenance (digiprovMD) metadata. For example, to support harvest-
ing of nanoscopy metadata, the nanoscopy METS-profile* is provided.

The primary design consideration behind this approach is to keep the architec-
ture design of MetaStore simple and avoid any dependency to an external OAI-PMH
implementation. Adopting the ArangoDB Query Language (AQL) has the following
benefits: (a) It provides the flexibility to define and implement precise queries required
for metadata harvesting. These queries are exposed through a dedicated REST interface
for enabling seamless integration with other systems. (b) With the metadata harvesting
implemented on the primary metadata database, the cost and effort of maintaining and
synchronizing an auxiliary OAI data provider server are avoided.

In the following, we briefly describe the metadata harvesting process. The OAI-

PMH METS Harvester component retrieves the administrative, descriptive and
structural metadata from the document store of ArangoDB and assembles it in the
(amdSec), (dmdSec), (structMap), (structLink) section of the community specified
METS-profile. The retrospective provenance metadata is queried from the Apache Jena
TDB and based on the vocabulary mappings shown in Table 1; the retrospective prove-
nance is translated in the PREMIS standard and assembled in the (digiprovMD) section
of the METS-profile. Thus, the entire metadata stored in ArangoDB and Apache Jena
TDB acts as the default OAI-PMH data provider for harvesting the complete metadata.
The OAI-PMH specified six verbs are implemented as REST services® based on the
following core AQL queries:
GetRecord This verb retrieves a specific record from the OAI-PMH repository. The
required arguments are an identifier associated with a record and the metadataPrefix
specifying the metadata format to be retrieved. The query iterates over all the doc-
uments in the OAIPMH_Repository and returns a single record based on the filter
arguments.

FOR Metadata IN OAIPMH_Repository

FILTER Metadata._key=='<identifier>’ AND
Metadata.prefix=='<metadataPrefix>"’
RETURN Metadata

Identify This verb retrieves the administrative information describing the underlying
OAI-PMH repository. The query retrieves the administrative information, AdminInfo
from the OAIPMH_Repository.

FOR AdminInfo IN OAIPMH_Repository FILTER
AdminInfo._key=='Identify’
RETURN AdminInfo

Listldentifiers This verb returns a list of headers, containing a unique identifier of every
record. The required argument is the metadataPrefix specifying the metadata format.
Optional arguments for selective harvesting based on datestamp or set membership are
also allowed. The query iterates over all the documents in OAIPMH_Repository and
returns for the given metadataPrefix the list of header information of all the records.

FOR Metadata IN OAIPMH_Repository FILTER
Metadata.prefix=='<metadataPrefix>"’
RETURN {"identifier":Metadata._key}

@ Springer

168 Distrib Parallel Databases (2018) 36:153-194

ListMetadataFormats The verb is used to retrieve the metadata formats supported by
the OAI-PMH repository. The query fetches the administrative information AdminInfo
from the OAIPMH_Repository to return a list of supported formats.

FOR AdminInfo IN OAIPMH_Repository FILTER
Admin_Data._key=='ListFormats’
RETURN AdminInfo

ListRecords The verb is used to retrieve all the records from the OAI-PMH repository.
The required argument for this verb is metadataPrefix. Optional arguments allow
selective harvesting based on set membership or datestamp. The query iterates over
all the documents and returns all the records.

FOR Metadata IN OAIPMH_Repository FILTER
Metadata.metadataPrefix=='<metadataPrefix>"
RETURN Metadata

ListSets This verb is used to retrieve all the set structures supported by OAI-PMH
repository. This command is useful for selective harvesting.

FOR AdminInfo IN OAIPMH_Repository FILTER
AdminInfo._key=='ListSets’
RETURN AdminInfo

3.2.6 Metadata recovery engine

The Metadata Recovery Engine performs the restoration of the complete metadata stor-
age in case of a database failure. The Metadata Recovery Engine collects all the METS
files from the scientific data repository, where each file is decomposed according to
the various METS sections. For example, the descriptive metadata from the (dmdSec)
section is extracted and with prior schema registration and validation inserted into
the document store. The provenance metadata comprising the workflow definition in
XML and the PREMIS retrospective provenance from the (digiprovMD) section is
extracted, transformed based on mapping shown in Table 1 into the ProvONE model
and stored in the Apache Jena TDB. The metadata recovery process is based on the
combination of the processes shown in Figs. 3 and 5.

3.3 MetaStore extension layer

The MetaStore Extension Layer allows the integration of various third-party tools
and technologies with the MetaStore Core Layer. The primary aim of the MetaStore
Extension Layer is to support reuse of existing tools, software libraries, web-services,
or databases in MetaStore. For example, to enable handling of annotations, the Anno4;j
library [42] providing an implementation of WADM specification is integrated through
the extension layer of MetaStore.

@ Springer

Distrib Parallel Databases (2018) 36:153—194 169

1. Insert 6. Insert @ ArangoDB
metadata AR T, Lonme validated
Metadata Management [metadata * / \

; - @@
3. Validate — —
Metadata — —

'metadata (XML/JSON)

% - e
f\l‘ E . —-—
== p = Metadata Quality Control s = — —
JSON = 7y schema SKOS Vocabularies
p— w
o

5. Vocabulary reference

= -
quality control U.’ @g

SKOS Metadata 4. Get
Vocabulary Manager registered | |nternal External

vocabulary

Fig. 6 Vocabulary supported metadata quality control

3.3.1 Annotation manager (WADM)

For enriching the quality of the results and imparting additional knowledge about the
data, it is necessary for domain experts to associate additional descriptions in the form
of annotations with the datasets. Moreover, when the datasets evolve, there are new
insights about the data, which require the annotations to be updated. For example, the
text segmentation step of the eCodicology Layout feature extraction workflow (see
Fig. 14) currently implements the Trainable Weka Segmentation.” However, with the
modification of the workflow to support projection-based segmentation, the annota-
tions (layout features) generated for the same input dataset will be different. As these
annotations are subject to frequent changes, we consider them as dynamic metadata,
and to model this dynamic metadata we adopt the WADM. For enabling annotations of
images and text, we integrate two annotation frameworks namely CodiLab for anno-
tating medieval manuscripts from humanities projects and Annotorious JavaScript
plugin of the Annotator library for the nanoscopy images.

Currently, Annotorious JavaScript API provides limited functionality, as it does not
support the modeling of the annotations in the W3C recommended WADM. Moreover,
the storage systems supported by the Annotorious JavaScript API are ElasticSearch or
Parse Storage. Thus, we extend the modeling and storing of annotations by integration
the Anno4j library that provides an implementation of WADM, and integrate the
Apache Jena framework for persisting the annotations and allowing querying using
SPARQL. The annotation manager module of the MetaStore is available in GitHub.'?

3.3.2 SKOS metadata vocabulary manager

For enabling an in-depth vocabulary-based metadata quality control, research commu-
nities can extend MetaStore with the SKOS Metadata Vocabulary Manager. Currently,
MetaStore offers two approaches for integrating SKOS-based controlled vocabular-

9 http://imagej.net/Trainable_Weka_Segmentation.
10 https://github.com/svaibhav 19/ Thesis/tree/master/.

@ Springer

http://imagej.net/Trainable_Weka_Segmentation
https://github.com/svaibhav19/Thesis/tree/master/

170 Distrib Parallel Databases (2018) 36:153-194

I 1. Submit 2: Reﬁister
schema schema |
Schema = Metadata Registry & ArangoDB
) < 3. Create
E collection L / \
XSD — M= ;
S 4. Create index - o
JSON £ and type — —
Schema i
» - &
ElasticSearch Connector |~ ._ci%t;_)g(il:]_ragg I~
g -—

Fig. 7 Metadata registration and ElasticSearch indexing

ies. In the first approach, research communities can import their existing vocabularies
in the Apache Jena TDB, which are modeled as SKOS vocabularies and maintained
by MetaStore. During the metadata registration these vocabularies can be linked to
their corresponding metadata schemas. This linking is necessary for enabling auto-
mated vocabulary-based quality control. The access to these imported vocabularies is
provisioned through the integration of the web-based Skosmos tool [43] that offers a
REST APL!! Skosmos exposes a generic REST API for retrieving the vocabularies. In
the second approach, MetaStore allows configuring the available metadata vocabulary
providers (externally available vocabularies). The REST endpoints for accessing the
external vocabularies are linked to their corresponding metadata schemas for enabling
vocabulary-based metadata quality control.

For example, in the Medieval Stained Glass Church Windows use case, i.e., the
“Corpus Vitrearum Deutschland” project [44,45], the controlled-vocabularies are
modeled in the ICONCLASS [46] standard and exposed through the Skosmos APL
For this use case, we follow the first approach described above, i.e., we have imported
the ICONCLASS controlled-vocabularies from their vocabulary server into the Meta-
Store Apache Jena TDB. These vocabularies are linked to the different fields in their
metadata schema, and during the metadata quality control process the metadata is
validated against these controlled-vocabularies.

The automated vocabulary-based metadata quality control process, as shown in
Fig. 6, is an extension to the default metadata quality control process explained in
Sect. 3.2.3. The default quality control process is extended with two additional steps
that are introduced after step (3) Validate metadata (XML/JSON). Following are the
additional steps: (4) For validating the metadata, each element is verified with its
corresponding vocabulary. The vocabularies are retrieved either from MetaStore’s
Apache Jena exposing the Skosmos REST-API or from the configured external services
that expose their discipline-specific vocabularies. (5) Based on the retrieved sets of
vocabularies, the Metadata Quality Control component validates the metadata. Finally,
as explained in step (4) of Fig. 5, the metadata is converted to JSON format and inserted
into the designated collection.

W http://api.finto.fi/doc/.

@ Springer

http://api.finto.fi/doc/

Distrib Parallel Databases (2018) 36:153—194 171

3.3.3 ElasticSearch connector

As a core functionality, MetaStore automatically indexes the complete schema in the
database for enabling full-text search over the metadata. However, for allowing a richer
full-text search with the possibility of performing faceted and fuzzy search, MetaStore
also provides integration with ElasticSearch. Research communities can configure
MetaStore to index the complete metadata or a part of the metadata in ElasticSearch.
However, enabling this configuration will change the default behavior of MetaStore,
i.e., the automated indexing of metadata in the primary database (ArangoDB) will be
disabled, and the full-text search queries will be redirected to the metadata indexed in
ElasticSearch. Ideally, the configuration should be done during the registration of the
metadata schema or the community defined METS-profile. For example, in the case of
a nanoscopy METS file, the descriptive metadata contains the information necessary
for performing full-text search, thus, only the metadata defined in the (dmdSec) section
of METS is indexed in ElasticSearch.

For an ElasticSearch enabled configuration of MetaStore, the metadata schema
registration is followed by the index and type creation in ElasticSearch, as illustrated
in Fig. 7. The initial process of metadata schema registration is similar to the one
shown in Fig. 3. The process comprises four primary steps and one optional step.
Steps (1) Submit schema, (2) Register schema, and (3) Create collection, are the same
as described in Sect. 3.2.1. (4) For enabling full-text search based on ElasticSearch,
the corresponding index and a type for an individual registered metadata schema are
created in ElasticSearch. If a METS-profile is registered, an index is created with
multiple types corresponding to the different schemas embedded within METS. It
should be noted that with enabling of ElasticSearch in MetaStore, the automated index
creation in ArangoDB will be disabled. (5) The configurable indexing is an optional
step that allows indexing of the existing metadata from ArangoDB in ElasticSearch at
any given point in time. This change does not affect the functioning of MetaStore, as
the existing metadata from ArangoDB will be indexed in ElasticSearch, and full-text
searches will be redirected from ArangoDB to ElasticSearch.

3.3.4 RDA metadata directory registry

Research Data Alliance (RDA)!? is a research community that focuses on building
social and technical infrastructures for open sharing of data. The working groups
within the RDA regularly contribute recommendations and tools for handling the dif-
ferent aspects involved in a life-cycle of scientific data. Two such working groups
in RDA are the Metadata Standards Directory Working Group (MSDWG) and the
Metadata Standards Catalog Working Group (MSCWG). The MSDWG has imple-
mented a publicly available metadata registry for collecting a wide range of metadata
standards'? from different disciplines [47], and the MSCWG is currently working on

12 https://www.rd-alliance.org/.
13 https://github.com/rd-alliance/metadata-directory.

@ Springer

https://www.rd-alliance.org/
https://github.com/rd-alliance/metadata-directory

172 Distrib Parallel Databases (2018) 36:153-194

building a metadata catalog!* based on this metadata registry. The metadata catalog
aims at providing an interface for allowing querying and retrieving of the metadata
standards.

Currently, the MSDWG registry does not provide the functionalities necessary
for managing metadata but contains an exhaustive list of metadata standards. Thus,
integrating the MSDWG registry will leverage the metadata models currently sup-
ported by our MetaStore framework. Moreover, with the functionalities provided by
MetaStore, the handling of the various metadata standards registered in the MSDWG
can be completely automated. Each metadata standard in the MSDWG registry is
described using a YAML [48] template, and serialized in a “.md” file. The RDA
Metadata Directory Registry component in the MetaStore Extension Layer is a bridge
between the MSDWG registry and the MetaStore framework. The RDA Metadata
Directory Registry component retrieves the metadata standard (.md file) from the
MSDWG registry and submits it to the Metadata Registry of MetaStore. Based on this
“.md” file the metadata registration, indexing and code generation processes described
in Sects. 3.2.1 and 3.2.2 are executed. Thus, the RDA Metadata Directory Registry
component enables a seamless integration for handling the metadata standards regis-
tered in the MSDWG registry.

3.4 Scientific data repository

In principle, a scientific data repository is a data storage entity that offers various
low-level services for storing (long-term archival), converting (format conversion),
and transferring scientific data. For example, the Nanoscopy Open Reference Data
Repository (NORDR) is a scientific data repository for storing experiment data. Basic
administrative metadata for identifying the data is maintained by NORDR. Currently,
NORDR provides many low-level services for handling the data in the repository.
Following low-level services are available in NORDR: (a) automatically assigning a
Persistence identifier (PID) to a dataset, (b) generating preservation metadata neces-
sary for long-term archival, and (c) implementing the different data transfer protocols
(GridFTP [49] and WebDAV [50]) for allowing transfer of data between NORDR and a
high-performance computing cluster. Moreover, the various data processing services
necessary for composing a workflow are registered in NORDR and deployed on a
high-performance computing cluster.

4 Related work

Research in metadata has advanced multifold, especially in various disciplines under
the broad research area of e-Science. In this section, we describe the available metadata
management systems by categorizing them under the following four categories:

14 https://github.com/rd-alliance/metadata-catalog-dev.

@ Springer

https://github.com/rd-alliance/metadata-catalog-dev

Distrib Parallel Databases (2018) 36:153—-194 173

Metadata management in scientific data repositories

A critical aspect of a Scientific Data Repository (SDR) is its ability to handle the
metadata that is associated with the data stored in the repository. The majority of
the operations within a SDR are directly dependent on the metadata, for example,
dataset registration (administrative metadata), long-term data preservation (preserva-
tion metadata), data discovery (descriptive metadata), user-rights and access control
(rights metadata), data views and organization (structural metadata), and quality and
lineage (provenance) are the operations that are entirely controlled by metadata.

The overall research area of SDRs can be categorized in two types: (a) community-
specific or community-driven SDRs and (b) generalist SDRs. The community-specific
SDRs are not considered in this paper due to the following two reasons. First, the
community-specific SDRs are designed for handling only specific metadata stan-
dards that are necessary for a given research discipline, whereas the core focus of
this paper is to design an entirely generic metadata management system that can be
reused by multiple research communities. Second, currently, there are around hundred
community-specific SDRs, and there already exist in-depth surveys elaborating on the
metadata management capabilities of these SDRs [51-53].

DSpace is an open source digital repository system for preserving digital data
(image, video and text datasets) [54]. By design, DSpace supports the Dublin Core
standard and allows metadata harvesting through the OAI-PMH. It is also possible to
use a few hierarchical metadata standards such as MARC and MODS in DSpace, but
this can be achieved only with the help of external tools. DSpace supports simple non-
hierarchical metadata standards (i.e., basically a list of key-value pairs) for modeling
user-defined metadata. For allowing full-text search over metadata, DSpace provides
the possibility to manually select the metadata fields that are to be indexed. For storing
the metadata, DSpace can be deployed with either a PostgreSQL or an Oracle database.

Archivematica [55] is a digital repository system that allows archival of and access
to digital objects. Archivematica supports the PREMIS and the Dublin Core metadata
standards, with integration into Elasticsearch for enabling data search and discovery
over metadata. For data preservation purposes, the PREMIS preservation standard
within METS is supported.

The ICAT [56] project supports large facility experiment data and is based on the
Core Scientific Metadata Model (CSMD) [57] that is realized in a relational database
(MySQL). The ICAT server provides various SOAP and RESTful service interfaces to
the underlying database. For allowing full-text search, some of the information from
the MySQL database is indexed in Apache Lucene.

The European Data Infrastructure (EUDAT) is a Pan-European project that aims at
providing common data services and a collaborative research environment for multiple
research communities [58]. Of the various common data services, the metadata related
services are B2SHARE and B2FIND. The B2SHARE service provides ingesting,
storing, preserving and sharing of data. For enabling full-text search over metadata,
the metadata fields have to be filled in manually during the ingest process. B2FIND
uses SOLR indexing, wherein the metadata is harvested using the OAI-PMH protocol
from various metadata providers and indexed in SOLR [59].

EPrints is designed specifically for archiving research papers, theses, and teaching
material, however, it is also possible to store data (files) in the EPrints repository

@ Springer

174 Distrib Parallel Databases (2018) 36:153-194

[60]. Similar to DSpace, EPrints provides support for the Dublin Core standard, with
the possibility to export metadata in the METS standard. For allowing full-text search
over metadata, extra effort is required for integrating the Xapian'> engine with EPrints.
However, the full-text search is only available for a few data formats (PDF, Word, and
HTML).

Standalone metadata management systems

Currently, there exist few systems that provide a generic and reusable metadata
management solution. In the following, we survey these systems.

The XMC Cat metadata catalog for the LEAD cyberinfrastructure [61] follows
a hybrid XML/relational approach that stores XML metadata as a Character Large
Object (CLOB) and further shreds XML using inlining [62] and stores it in a relational
database schema to enable execution of complex queries.

Metacat is an open source metadata catalog and data repository that aims at catering
the metadata needs of the National Center for Ecological Analysis and Synthesis
(NCEAS) [63]. The Metacat framework uses a hybrid storage approach wherein it
extracts, models, and stores the metadata from XML in a relational database schema
that conforms to XML format. For retrieving the metadata, the Metacat provides a set
of SQL queries.

The DIstributed MEtadata Server (DIMES) is a flexible metadata management
server that is primarily designed for handling the metadata of the Earth Science research
community [64]. In principal, the DIMES is based on the concept of representing an
XML document containing the metadata in its natural Document Object Model (DOM)
tree structure. For querying purposes, an XML query engine based on the XML4J
package is integrated into DIMES that provides the traversing over an XML DOM
tree structure. For retrieving the metadata, basic queries, nearest neighbor queries, and
tree expand queries are supported.

Metadata management in grid infrastructures

In the research area of distributed computing, there exist multiple systems for
handling metadata in the Grid environment. In the following, we describe these systems
with their features for handling scientific metadata.

The Storage Resource Broker (SRB) of the San Diego Supercomputer Center is
a middleware that provides an API for accessing heterogeneous distributed storage
resources [65]. For supporting attribute-based access of the data, the SRB employs a
Metadata Catalog Service (MCAT) [66]. The MCAT metadata schema for modeling
descriptive and system related metadata is similar to the Dublin Core metadata stan-
dard. This schema is modeled in a relational database (DB2) and a set of APIs are
provided for querying and updating the metadata.

The Metadata Catalog Service (MCS) is a Grid-based metadata service that is
designed for handling the metadata generated in the Grid environment [67]. Principally,
MCS provides functionalities for storing, accessing, and querying descriptive metadata
based on user defined attributes. The MCS schema is an extension of the MCAT schema
of the SRB middleware, and is implemented in a relational database (MySQL). For
systematically organizing the metadata, the MCS metadata schema is divided in the

15 https://xapian.org/.

@ Springer

https://xapian.org/

Distrib Parallel Databases (2018) 36:153—-194 175

following logical categories: logical file metadata, collection metadata, view metadata,
authorization, user, audit, provenance metadata, and user-defined and annotation
metadata. Out of these logical categories, the user-defined and annotation metadata
allow the MCS schema to be extended beyond its default attributes. As a generic
solution for handling community-specific metadata, MCS provides two tables, one
that contains the common attributes and an extension table with a set of predefined
attribute types (Integer, String, Float, Date, Time, DateTime) for storing additional
community-specific attributes. The extension table contains three columns (object id,
attribute name, and attribute value). Each entry in this table has a reference to the object
id in the common table with an attributed name and value (basically a key-value pair).
The annotation service of MCS allows users to create a key-value pair of the string
type that can be associated with an object of type logical file, collection or view.

The Science Object Linking and Embedding (SOLE) tool is specifically designed
for linking research papers with science objects for making research data reproducible
[68]. In SOLE, a science object can be language objects (source code), annotated
PDFs and datasets, web-services, or virtual images. For retrieving the data analysis
pipelines, SOLE offers users to link the results presented in a research paper with the
workflows that were used to derive them. Metadata in the form of tagged annotations
from PDFs are automatically extracted and stored in the SOLE database, whereas
datasets can be manually tagged with annotations for imparting additional description.
Commercial metadata management systems

With the wide-spread realization of the importance of metadata, a few commercial
solutions are available that offer comprehensive metadata management capabilities.
In the following, we briefly describe these solutions.

Stardog!'® is an RDF database for handling enterprise data using an enterprise
knowledge graph. It provides semantic tools based on OWL 2 ontologies, with
SPARQL support. For allowing full-text search, the data is indexed in Apache Lucene
[69]. For querying legacy systems through SPARQL, Stardog provides a Virtual Graph
that allows mapping between the Stardog graph and external data sources. For enabling
data quality control, Stardog uses Integrity Constraint Validation (ICV) that allows an
explicit definition of data rules (constraints). Moreover, Stardog supports handling of
database revision history using the PROV model [70], and domain-specific controlled
vocabularies can be integrated using the SKOS specification.

PoolParty is another commercial semantic technology platform that supports an
enterprise in organizing enterprise knowledge with data analytics features [71]. Similar
to the Stardog system, the PoolParty platform is natively designed on an RDF database
and primarily offers the following features: (a) The Thesaurus Server provides the typ-
ical CRUD operations for handling domain-specific taxonomies and thesauri based on
SKOS, wherein the SKOS taxonomies can be enriched with ontologies (for example,
the Friend of a Friend (FOAF)!” ontology). (b) Users can create custom schemas from
the existing ontologies using the ontology and schema editor service. (c) Metadata
vocabulary quality can be measured using the gSKOS specification. (d) The Graph

16 http://www.stardog.com/.
17 http://xmlns.com/foaf/spec/.

@ Springer

http://www.stardog.com/
http://xmlns.com/foaf/spec/

176 Distrib Parallel Databases (2018) 36:153-194

Search Server collects data from the various PoolParty services and transforms it into
RDF, which is indexed in either Apache SOLR or Elastic Search for allowing full-text
search. (e) The Extractor service analyses documents and texts, with the metadata
schemas that are mapped to predefined SKOS thesauruses, and automatically extracts
meaningful phrases, named entities, or other relevant entities.

In Sect. 5.1, we analyze the metadata management systems mentioned above and
compare their features with the features of the MetaStore framework.

5 Evaluation

In this section, first, we present a comparison of the features of existing metadata
management systems with those of MetaStore. Second, we describe the performance of
MetaStore for two NoSQL database systems, followed by read and write performance
evaluations of MetaStore with XMC Cat metadata catalog, MCS query interface, and
the Metacat catalog system.

5.1 Evaluation of features

In Sect. 4, we surveyed several metadata management systems from diverse areas
of research. In this section we present a feature-based comparison of the available
metadata systems with MetaStore.

A common architectural design limitation of the metadata management systems
in SDRs is that in these systems, the database schema is designed based on a spe-
cific metadata model, with interfaces (functionality) that are tightly coupled to this
model. For the community, it is an additional effort in either adapting or translating
their existing metadata schema to the one supported by the SDR. Such conversions
between metadata schemas often lead to a lossy transformation, wherein some of the
schema attributes have to be either discarded or semantically modified. To avoid any
schema mappings and conversions, MetaStore is designed independent of any specific
metadata schema, and there are no limitations on metadata schemas that MetaStore can
support, as long as the metadata schema can be serialized in XML or JSON. Further-
more, as the architectural design of these systems is based on relational databases, it
inherently limits the extensibility in handling new metadata schemas. This is because,
to handle a new metadata schema the relational schema needs to be modified, the
services (functionality) build over this schema need to be updated, and the entire
system needs to be upgraded considering the backward compatibility (i.e., the exist-
ing functionality should also be supported). In MetaStore, we overcome this design
limitation by integrating a NoSQL database that allows handling of ad hoc metadata
schemas. With the Metadata Code Generator component, the services necessary for
handling the metadata schema are created on-the-fly and are added to the architecture
without modifying the existing ones. Regarding OAI-compliance, many of the SDRs
support metadata harvesting through OAI-PMH. However, the workflow provenance
and annotations using interoperable standards (ProvONE and WADM) are not sup-
ported, whereas MetaStore is designed OAI-compliant and also supports the ProvONE
provenance model and the WADM for provenance and annotation interoperability.

@ Springer

Distrib Parallel Databases (2018) 36:153—-194 177

Comparing the features of the standalone metadata management systems and the
Grid-based metadata systems with MetaStore, XMC Cat, Metacat, and DIMES are
based on an XML database or a hybrid of XML and SQL databases. On the one
hand, all XML-based metadata schemas can be supported by these systems, but on the
other hand, in terms of database scalability, handling increasing metadata volumes is
amajor concern. In terms of metadata quality control, these systems do not implement
any quality control mechanism. Moreover, integration of controlled vocabularies for
verifying the metadata content with automated rectification is not supported by these
systems. MetaStore offers default quality checks for schema conformance and well-
formedness, and advanced quality control for metadata content validation based on
SKOS-based domain-specific controlled vocabularies.

A critical deficiency among these systems is that they are not OAl-compliant, i.e.,
large-scale metadata harvesting through standard harvesting protocols like OAI-PMH
is not supported. MetaStore is designed OAI-compliant, and the OAI-PMH data pro-
vided for allowing metadata harvesting is implemented over the primary metadata
storage (ArangoDB). In terms of data reproducibility and long-term data preserva-
tion, most of these systems do not support handling of provenance metadata. The
MCS for a Grid environment provides the Creation and Transformation history meta-
data attribute that allows a textual description of the data transformation process, but
this is an MCS-specific attribute that is not compliant with existing provenance models
(OPM, PROV, ProvONE). MetaStore supports two provenance models PREMIS and
ProvONE, each for a specific purpose. With PREMIS the provenance required for
long-term preservation is handled, and as ProvONE allows modeling of a workflow
definition and the runtime provenance, the routine activities such as querying, ana-
lyzing and improving workflows can be performed. The MCS schema is an extension
of the MCAT metadata management system that provides a special extension table
(dynamic metadata) with six attribute types for modeling community-defined meta-
data schemas as non-hierarchical key-value pairs. However, this approach has multiple
limitations: (a) hierarchical metadata schemas with embedded data structures cannot
be stored in the MCS schema. (b) the MCS schema can not handle complex attribute
types such as arrays, geospatial information, and time-series data. (c) as the extension
attributes are stored in a single table, it is evident and also mentioned by the authors
that with increasing data volumes the query performance is expected to decline. We
overcome these limitations by designing MetaStore based on a NoSQL database. This
allows us to store any type of metadata model (hierarchical, flat key-value pairs) with
a wide-range of data types.

Regarding the features of the commercial metadata management systems Stardog
and PoolParty, both systems are primarily designed for handling enterprise knowl-
edge data. As both systems are closed-source, enriching these systems with community
driven extensions is a challenging task. On the one hand, as these systems are designed
to the RDF specification, it is possible to handle dynamic metadata in the form of
annotations, but, on the other hand, annotation interoperability through the W3C rec-
ommended WADM is not supported. Also, these systems do not provide large-scale
metadata harvesting through the OAI-PMH specification. Stardog provides traces of a
database revision history using the PROV model, whereas for scientific communities
it is necessary to capture the workflow description and provenance for enabling data

@ Springer

178 Distrib Parallel Databases (2018) 36:153-194

reproducibility. Moreover, for long-term preservation of the data the support towards
the appropriate metadata standard (PREMIS) is not compatible with these systems.

We also evaluated MetaStore with the Big Data processing frameworks like LOOM
[72] and Apache Falcon.'® In principal, these frameworks focus on enabling efficient
data processing in a distributed environment. The LOOM framework aims at providing
in-memory optimization of aggregations within a big data analysis framework. Similar
to the MapReduce processing data model, LOOM provides two-phased computation.
In the first phase, the individual datasets are processed, followed by consolidation of
these results in the second phase. Apache Falcon is a feed and process management
framework built on Hadoop that primarily abstracts and automates the redundant tasks
involved in data processing pipelines. Comparing these systems to MetaStore, the
current version of MetaStore focuses on managing heterogeneous metadata models
with support for handling large metadata volumes. However, the LOOM and Apache
Falcon frameworks are each a potential extension to the MetaStore framework when
large-scale metadata processing is required.

Considering the metadata management approach based on the classification of
metadata as per its use, Deelman et al. [73] propose the logical organization of meta-
data in different layers. In their paper, they claim that by organizing the metadata in
layers, it is possible to distinguish the metadata and the source or applications for
which the metadata is relevant. For example, the primary layer handles the metadata
of the raw datasets, and the secondary and tertiary layers are responsible for metadata
describing the process of obtaining derived data and the metadata of the derived data.
Moreover, the layered metadata organization allows users to expose the appropriate
granularity of detail to the user, with the possibility to track layer-based usage patterns.
However, irrespective of the layers in which metadata is classified, the fundamental
characteristic of metadata is the underlying model or schema to which it conforms.
Thus, as MetaStore is entirely driven by the metadata schema, metadata from any layer
can be handled in MetaStore. Moreover, for comprehensively aggregating heteroge-
neous metadata models from different layers, we use the METS model. An overview
of the feature comparison between existing metadata management systems and Meta-
Store is shown in Table 2.

5.2 Performance evaluation

In this section, we present the performance evaluation of MetaStore and compare it
with the existing metadata management systems. For demonstrating the extensibility
of MetaStore, we integrated MetaStore with both ArangoDB and MongoDB, and the
read and write performance are evaluated. MetaStore is not integrated with an SQL
database due to the primary requirement of having a flexible data model in modeling
heterogeneous metadata models. Moreover, in terms of query performance, there exist
few studies that provide an in-depth performance analysis between NoSQL and SQL
databases [74,75].

18 https://falcon.apache.org/.

@ Springer

https://falcon.apache.org/

179

Distrib Parallel Databases (2018) 36:153—194

(yoreagonselq
Va Va Va pue TOSON) A (ANOA0I) / INAVM % TINX Auy / EHGINE A
(J7108 euIdydS
, X X ‘uaonaydedy) X X pazieles AQY 11V , Kreqrood
(eouruaaoid BWAYDS
1 X X (ouoon ayoedy) uonoesuen) A X pazieras Ay IV I Sopieig
X , X X X , ewayos Arejorrdorq X 4108
X 1 1 [ented (1opowr A1ejondoig) A X [opowt Arejarrdoig X SOIN
X , , [enred X X [opour Krejoridord X IVOI 99S
X , X X X X BUIAYIS TX AUy , SHINIA
X , X [ensed X X BUIRYOS JNX AUy V JeoRION
X Va X X X X BUIRYOS JX AUy , 18D DINX
(TINLH ‘PIom
X , , add) [enred X X oa X SWLIJH
1ad ‘TanD
0d DAVIN
X , , / X / ‘ST161 OSI X Ivand
X Va , (sueon) A X X anNsd X ToATRS IV DI
X Va Va (4109, (SINTID) X SIAN ‘SINF¥d ‘Od X eIpAH
X X , (suoony) A X X oa X suowwo)) [eNsIq
X / Vs (yoreag onsery) A (STINTI) A X SING¥d ‘SIdN ‘Od X BONRWAAIYIIY
X , S swIe) O Jo Surxapup (uorsueixs D) A X SAON “DIVIN DA X aoedsg
NOYD 0IN0S y1oddns j10ddns j1oddns Aqrxay
Kyrend) uadQ vO [OIeas JXA-[[NJ QOURUIAOI] uonejouuy sewayos paytoddng BUIYOS WAISKS BIRPRIDIA

QIOISEIRIA YIIM SWIAISAS JUSWATLUBW BIEPLISW [BISASS JO UOsLIedwod samjed] g d[qeL

pringer

as

180 Distrib Parallel Databases (2018) 36:153-194

(a) One MetaStore instance (b) Two MetaStore instances

—8—\Write Operation / sec =®- Average Response Time (ms) —®—Write Operation / sec =®- Average Response Time (ms)

1000 50 1000 50
m 0
o 800 w0 E o 800 w0 E
] o g o
~ £ ~ £
wv _ wv =
[=
S 600 30 o S 600 30 o
=1 a b= @
e 5 e &
g g 2 g
400 20 & 400 20 @
2 « S <
[[
T & T o
; 200 10 E ; 200 10 OLJ
> >
< <<
0 0 0 o
10 20 30 40 50 10 20 30 40 50
No. of Concurrent Users No. of Concurrent Users
Fig. 8 MetaStore write performance (ArangoDB)
(a) One MetaStore instance (b) Two MetaStore instances

—8—Read Operation / sec =®- Average Response Time (ms) —8—Read Operation / sec =®- Average Response Time (ms)

4000 50 4000 50

3500 o 3500 fr

o w0 E o w0 E

@ 3000 o @ 3000 o
w "

~ £ ~ £
a a

& 2500 Lt & 2500 Lt

S g S g

2 c 2 c

© 2000 o} © 2000 o}

2 & 2 &

o 20 O Q. 20 ©

O 1500 = O 1500 — =

[P RSy

el [° P ()

© o0 @© [}

g 1000 © & 1000 ©

o I

10 g 10 g

500 Z 500 T

0 0 0 0
10 20 30 40 50 10 20 30 40 50
No. of Concurrent Users No. of Concurrent Users

Fig. 9 MetaStore read performance (ArangoDB)

The MetaStore framework is evaluated considering a typical research community
usage pattern (more read and fewer write operations) and the performance is mea-
sured in terms of the average response time for each operation. For evaluating the
performance, various configurations of MetaStore were assessed. Each instance of
MetaStore is deployed on a 32 GB RAM server with a 2.66 GHz (8 cores) processor,
and each configuration is setup with one Apache2 load balancer on a 32 GB RAM
server with a 2.66 GHz (8 cores) processor.

Following cluster configuration is deployed for ArangoDB. A single instance of
ArangoDB coordinator server is deployed on a 128 GB RAM server with a 3.5 GHz
(6 cores) processor, and four Arango database servers (shards) were deployed on a 16
GB RAM server with a 2.3 GHz (2 cores) processor each. In the case of the MongoDB
cluster, three MongoDB query routers and config servers were deployed on a 8§ GB
RAM server with a 2.3 GHz (2 cores) processor. For storing the data, four MongoDB

@ Springer

Distrib Parallel Databases (2018) 36:153—194 181

(a) One MetaStore instance (b) Two MetaStore instances
—8—\Write Operation / sec —®- Average Response Time (ms) —®—Write Operation / sec —®- Average Response Time (ms)

1200 50 1200 50
1000 z 1000 2
o w0 E o a0 E
b o] o
> 800 E > 800 £
c L c L
<) 30 o <} 30 o
=] @ =] @
© 600 5 C 600 5
g g 2 &
20 & 20 &
2 400 b 2 400 <
2 9 2 g
2 g = g
10 10 %
200 g 200 e
< <
0 0 0 0
10 20 30 40 50 10 20 30 40 50
No. of Concurrent Users No. of Concurrent Users
Fig. 10 MetaStore write performance (MongoDB)
(a) One MetaStore instance (b) Two MetaStore instances

—8—Read Operation / sec =®- Average Response Time (ms) —®—Read Operation/sec =®- Average Response Time (ms)

4000 5 50 4000 50

3500 @ 3500 @

o w0 £ o w0 £

@ 3000) @ 3000 I
" w

~ E ~ £

a = » =

g 2500 30 o S 2500 30 ¢

=] 2 =] 2

© 2000 o © 2000 o

7] o 7] o

o3 0 2 o 20 &

O 1500 o O 1500 o

® 2 ® 2

2 1000 o 2 1000 o

i i

10 g 10 g

500 3 500 B3

0 0 0 0
10 20 30 40 50 10 20 30 40 50
No. of Concurrent Users No. of Concurrent Users

Fig. 11 MetaStore read performance (MongoDB)

datanodes (shards) were deployed on 16 GB servers with a2.3 GHz (2 cores) processor
each.

For efficiently handling large numbers of concurrent requests, we used the Apache
server with the mod_jk module for load balancing the MetaStore instances deployed
on independent tomcat servers, wherein the maxThreads parameter in the AJP 1.3
configuration for each tomcat server is increased to 1024 for handling a larger number
of concurrent requests. We also optimized the load balancer to handle a higher number
of requests per second by enabling the Apache Multi-Processing Module (MPM)!?
worker. It is possible to further tune the load balancer performance by increasing
the maxRequestWorkers parameter’s default value of 256, but an inappropriately
large value might bring the server to a standstill due to an influx of requests. Thus,
for a production environment we set this parameter to its default value. Each test is

19 https://httpd.apache.org/docs/2.4/mpm.html.

@ Springer

https://httpd.apache.org/docs/2.4/mpm.html

182 Distrib Parallel Databases (2018) 36:153-194

executed three times. Due to negligible variations in each result, the error bars are not
shown, and only the average results are depicted. Figures 8, 9, 10, and 11 show the
write and read results.

Write performance Figures 8 and 10 illustrate the results of the write performance
for one and two instances of MetaStore integrated with AranogDB and MongoDB,
respectively. Each write operation carries a payload ranging between 20 and 30 KB and
follows the process described in Fig. 5. For a single instance of MetaStore deployed
on ArangoDB and MongoDB, we noticed that with increasing concurrent users, each
generating multiple write operations, the average response time increased drastically,
and some write operations failed to complete. This increase in average response time is
due to the concurrent request handling limitation of each tomcat server. Moreover, each
write operation comprises the quality control process, wherein an additional request is
sent to retrieve the corresponding schema, followed by well-formedness and schema
conformance checks.

With the introduction of a second instance of MetaStore either deployed on
ArangoDB or MongoDB, we observe that due to the systematic distribution of the
write operations between the two MetaStore instances, the average response time is
retained below 22 ms, and not a single write operation failed.

For comparing the write performance of MetaStore with the MCS query interface,
first we need to understand how metadata is stored in the MCS systems. Each add oper-
ation in the MCS system creates a logical file with multiple user-defined attributes in
the database (maximum of ten attributes). The add operation is implemented as a native
Java API and as a web service interface. Using the native Java API connected to a
MySQL database, a maximum of 360 writes per second was achieved with 25 concur-
rent threads. For the web interface, a maximum of 70 add operations was possible for
25 concurrent threads. For multiple clients with four concurrent threads each, approx-
imately 380 add operations was achieved, whereas for the web interface, a maximum
of 80 add operations was achieved.

The LEAD infrastructure’s XMC Cat metadata catalog based on hybrid XML/
relational approach was evaluated with a native XML database, Oracle’s Berkley DB
XML.20 Jensen et al. [76] argue that the size of a metadata file or the metadata content
of an experiment affects the insert time, and the hybrid XML/relational approach
performs better than an XML database. The insert performance for a scaled workload
ranged between 80 ms and 120 ms.

MetaStore exposes all its functionalities including the metadata insert operation
through REST services. Comparing the write performance of MetaStore with the
MCS web interface and the XMC Cat metadata catalog, it is clear that MetaStore
is easily able to handle more than 800 requests with 50 concurrent users (threads)
per second, and the performance improved with the addition of a second MetaStore
instance.

Read performance Figures 9 and 11 show the results of the read performance. The
number of read operations on the MetaStore framework are expected to be higher than
the write operations and hence the reads/sec factor is approximately five times more

20 https://www.oracle.com/database/berkeley-db/xml.html.

@ Springer

https://www.oracle.com/database/berkeley-db/xml.html

Distrib Parallel Databases (2018) 36:153—-194 183

than write/sec. As the documents in ArangoDB and MongoDB are fully indexed, all
read operations are arbitrary full-text searches.

In the case of Metacat, the XML tree structure represented by a Document Object
Model (DOM) [77] is decomposed into nodes, where the root node is the document
entity and the children nodes are elements and attributes. These nodes are stored in a
relational database schema, for allowing querying of the metadata at different depths.
Nested SQL queries are defined with a specific depth or full-text search queries are
defined with depth zero. For evaluating the read performance, the full-text query
was executed on a node size of 2.03 x 10° and the nested query on a node size of
23,000/25,000 with a depth equal to five. For full-text search queries, it took 30 s when
using indexes and 29 s when using a nested query. For the queries using indexes with
a node depth varying between one and six, the query execution time ranged between
1 and 50 s, whereas for SQL nested queries, the execution time was between 1 and
10 s.

The MCS query interface provides simple queries that do a value match for a
single static attribute in the file and complex queries that do value matching for all
the attributes in the file. For simple queries with a single client executing multiple
concurrent threads on a native Java API, a peak of approximately 2300 queries per
second was reached, whereas for the web interface approximately 120 queries per
second was achieved. For the complex queries, approximately 560 queries per second
was achieved and for the web interface, approximately 100 queries per seconds was
possible.

Compared to these results the full-text read performance of MetaStore (considering
both ArangoDB and MongoDB) varied between 19 and 49 ms for 10 to 50 concurrent
users with 1650 to 3200 reads/sec, thus, showing significantly better performance
compared to that of Metacat, the LEAD XMC Cat metadata catalog, or the MCS
query interface.

Analyzing the performance comparison between MetaStore and existing metadata
management systems, it necessary to understand how metadata is modeled, stored
and queried in these systems. Following are the reasons why the performance of
MetaStore is better than that of the existing systems: (1) In MetaStore the XML
containing the metadata is never decomposed into atomic entities and stored in a
relational database but transformed to JSON and stored as a JSON file or as a binary-
encoded serialization of JSON (BSON?') in the NoSQL database. The JSON-based
storage of metadata in NoSQL databases avoids the overhead of transforming XML
either as a CLOB or shredding it using the inlining approach. (2) As the metadata
schema is fully indexed, the I/O intensive nested queries for retrieving specific paths
from the XML structure are not required. (3) The overhead of reconstructing XML
documents from the relational schema is completely avoided because the queries return
JSON objects that are serialized to XML based on the registered metadata schema. (4)
In the case of NoSQL databases, the write operations have a better throughput because
they are primarily performed in the main memory, instead of writing to the disk, as in
the case of an SQL based database. For example, in ArangoDB the memory-mapped

21 http://bsonspec.org/spec.html.

@ Springer

http://bsonspec.org/spec.html

184 Distrib Parallel Databases (2018) 36:153-194

files are used to handle write operations and are regularly synced to disk via the £sync
command.

6 Application use cases

In this section, we briefly explain three use cases (one from bio-medical research and
two from digital humanities) for which MetaStore is adopted.

Use case 1: nanoscopy

For illustrating the applicability of MetaStore in managing heterogeneous meta-
data models, first, we consider the light super-resolution microscopy (nanoscopy)
use case. Nanoscopy is a novel imaging technique that aims at bridging the reso-
lution gap between conventional light microscopy and electron microscopy [78]. A
typical nanoscopy investigation begins with the acquisition of raw image datasets in
HDFS5, KDF, or TIFF format from a high-resolution microscope. A complete series
of measurements for a given specimen can easily amount to 100-150 TB in size. For
handling such large volumes of data, NORDR offers efficient handling of massive
data volumes collected from various geolocated high-resolution microscopes, backed
by a large-scale data storage and high-performance computing cluster [79]. Various
nanoscopy scientific workflows are executed for processing these raw datasets. These
workflows are described using the Business Process Execution Language (BPEL) [80]
and the administrative and descriptive metadata is described based on the community
specified metadata schema.

For automating the metadata extraction from raw datasets, we implemented a stag-
ing processor that extracts the metadata from HDF5 and TIFF files during the ingestion
of the raw datasets in NORDR. This extracted metadata is submitted to MetaStore
via the REST interface where it is verified with the registered localization microscopy
metadata schema and stored in the document store of ArangoDB. Using the Prov2ONE
algorithm, the workflow defined in BPEL is translated into the ProvONE prospective
provenance, which is enriched with the retrospective provenance collected during the
workflow execution. The entire ProvONE graph is serialized in RDF and stored in
Apache Jena. As the functionality (services) for handling the extracted metadata is
automatically created during the schema registration stage, we do not need to create
any additional services in MetaStore explicitly. Moreover, the extracted metadata is
wrapped in the METS format that complies to a registered METS-profile and exposed
to the researcher communities for metadata harvesting through OAI-PMH.

Use case 2: Corpus Vitrearum Deutschland

The CVD s apart of the Corpus Vitrearum Medii Aevi (CVMA), which is long-term
international research project in the digital humanities. The CVMA aims at digitizing,
cataloging and analyzing the medieval stained glasses that are preserved in churches,
museums, and galleries all over Europe. Currently, the CVD research community has
digitized and published 5086 images of stained glasses, out of which two examples
are shown in Fig. 12. On the one hand, the CVD image repository is implemented for
storing and accessing these images, but on the contrary discovery and analysis of the
images based on the metadata is lacking. Each image is embedded with an extensive
set of metadata attributes that conform to the XMP metadata standard. Most of these

@ Springer

Distrib Parallel Databases (2018) 36:153—-194 185

(a)

Fig. 12 Digitized medieval stained glasses. a An angel with bagpipes. Photo: Andrea Gossel, CVMA
Germany/Freiburg, CC BY-NC 4.0, http://id.corpusvitrearum.de/images/4486.html. b The holy family.
Photo: Andrea Gossel, CVMA Germany / Freiburg, CC BY-NC 4.0, http://id.corpusvitrearum.de/images/
3431.html

attributes are filled during the digitization process, while few attributes that describe
the painted figures or depicted scenes are referred from a predefined ICONCLASS
vocabulary.

Similar to the nanoscopy use case, the first step is to extract the metadata that
is embedded in the image (TIFF). For this, we reused the TIFF metadata extractor
staging processor of the nanoscopy use case with minor modifications. The extracted
metadata is submitted to MetaStore through the REST interface, where the metadata
is validated before inserting in the document store of ArangoDB. For automatically
verifying the correctness of the terms describing the stained glasses, the corresponding
ICONCLASS vocabulary is linked to the XMP metadata schema during the metadata
registration stage.

Use case 3: eCodicology

The eCodicology is a research project in the humanities that aims at designing,
evaluating and optimizing algorithms for identifying the layout features of medieval
manuscripts [81]. First, the manuscripts from the “Virtual Scriptorium St. Matthias”
were digitized, and a total of 170,000 images were acquired. An example image is
shown in Fig. 13. These images are stored in CodiStore, which is a scientific data
repository supporting long-term archival and reuse of digitized medieval manuscripts
[81]. Currently, the CodiStore is not capable of handling the metadata embedded
within the datasets (static metadata) and the metadata generated during the workflow
execution (dynamic metadata). Hence, the entire MetaStore has to be integrated with
the CodiStore.

In the following, we describe our experience and the challenges faced during
the integration of MetaStore with CodiStore. During the digitization process, each
manuscript (each containing a few hundreds of pages) is enriched with bibliographical

@ Springer

http://id.corpusvitrearum.de/images/4486.html
http://id.corpusvitrearum.de/images/3431.html
http://id.corpusvitrearum.de/images/3431.html

186 Distrib Parallel Databases (2018) 36:153—-194

Fig. 13 Digitized manuscript
page Hs 1108/55 4° 37r from St.
Matthias (City Library of Trier)

Fig. 14 Layout feature
extraction workflow Color Calibration

o

Noise Filtering

o

Page Segmentation

metadata describing the following attributes: Signature, Century, Material, Format,
Leaf Count, Library [32]. For systematically structuring the metadata for an entire
manuscript, the eCodicology community has adopted the Text Encoding Initiative
(TEI) format that is further embedded in a METS file, which conforms to an eCod-
icology METS-profile. This METS file also contains the administrative metadata,
structural map, and structural links that describe the hierarchy of the pages within a
manuscript and the logical and physical links between the pages. As the metadata in
TEI and METS is not subject to change, we consider it as static metadata. Similar
to the previously use cases, during the ingest of data (digitized manuscripts) in the
CodiStore data repository, we implemented a staging processor for extracting TEI
metadata. The extracted metadata is inserted in the document store of ArangoDB with
prior quality control.

@ Springer

Distrib Parallel Databases (2018) 36:153—-194 187

The handling of dynamic metadata (i.e., metadata generated during the execution
of a workflow) is a challenging task. For each digitized page the Layout Feature
Extraction workflow (see Fig. 14) is executed. Similar to the nanoscopy workflow,
the provenance for the workflow is captured in ProvONE and stored in Apache Jena.
The workflow consists of five steps; Color Calibration, Noise Filtering, Page Seg-
mentation, Text Segmentation, and Picture Segmentation. Each step in the workflow
generates metadata that describes the output generated by a particular step. For exam-
ple, the Color Calibration generates a color calibration matrix, the output of Page
Segmentation is the page space measurements (page area, height, width, inclination
angle, and left-corner co-ordinates), and the Text Segmentation generates the written
space measurements (main text area, height, width and inclination angle) and number
of lines. This workflow-specific metadata is subject to frequent changes because modi-
fying the workflow parameters will yield different outputs, or changing the algorithms
will generate entirely different results. Hence, to handle such dynamic metadata, we
had to extend MetaStore with an annotation framework that supports modeling of ad
hoc metadata schemas conforming to the W3C recommended WADM. For this, we
integrated the Anno4;j library with an RDF triple store (Apache Jena).

7 Discussion

In this section, we explain the various architecture design decisions undertaken in the
implementation of the MetaStore framework. Considering the architecture design of
MetaStore, as a core design principle, we adopted the principle of modular architecture
design pattern. Adopting this design pattern has a multitude of advantages. First, each
feature of MetaStore is developed as an independent component (high cohesion) with
no inter-component dependencies (low coupling). This allows component-specific
updating of features with easy maintenance of the entire framework. For example,
initially, the Metadata Quality Control component offered only basic schema vali-
dation and well-formedness checks. However, with modular architecture design of
MetaStore, it is easy to extend this component to support domain-specific vocabu-
lary metadata content verification. Second, it enables the seamless integration of new
features (components) while reusing the existing ones. For example, the integration
of an RDF database and the support for building and reusing SKOS-based domain-
specific vocabularies is seamlessly appended to the core functionality of MetaStore.
Moreover, the same RDF database is used to store and query the ProvONE provenance
graphs. Third, customizable integration of MetaStore with existing systems kept the
complexity of the overall architecture to a minimum. For example, for the nanoscopy
use case, as there is no dynamic metadata either from the workflows or the annotations,
only the MetaStore core layer is integrated with NORDR. Thus, the modular design
of MetaStore allowed integration of selective features from MetaStore with NORDR.
However, for handling diverse metadata in eCodicology research, i.e., static metadata
encoded in TEI format, dynamic annotations in the WADM, and workflow provenance
in ProvONE, the entire MetaStore framework is integrated with CodiStore.

With the MetaStore architecture design based on NoSQL database systems, differ-
ent types of metadata, such as descriptive, administrative, provenance and structural

@ Springer

188 Distrib Parallel Databases (2018) 36:153-194

metadata can be efficiently modeled to maximize the utilization of the data models
offered by the ArangoDB and Apache Jena. This decision not only vastly reduced the
complexity of the architecture (technology footprint) but also the repetitive software
development effort in redesigning, implementing and updating of a relational database
schema is avoided. Moreover, with the adoption of existing open-source solutions, the
total cost of ownership is minimal. For example, workflow and provenance metadata
comprising complex relationships are modeled in the ProvONE provenance model and
serialized as RDF triples for allowing execution of graph traversal queries. Descriptive,
administrative and structural metadata that can be serialized in XML is modeled in
the document data model for enabling full-text search and complex analytical queries.
Regarding database scalability in handling increasing data volumes, with ArangoDB
it is possible to shard (distribute) large volumes of metadata in multiple database
instances.

The MetaStore offers different research communities an entirely automated meta-
datamanagement system that is capable of handling both community-specific metadata
schemas as well as the existing metadata standards. The Metadata Code Generator
component automatically generates the necessary code (services) for handling the
registered metadata schema and on-the-fly extends the functionality of MetaStore.
Hence, significantly reducing the resources and efforts of scientific communities in
writing and maintaining the software (services) that are necessary for implementing
the metadata schema. For generating the code, we use the JAXB-XJC?? library, and at
runtime, the Metadata Management Component determines the appropriate metadata
schema that needs to be created using Java Reflections API [82].

For enabling large-scale metadata harvesting in MetaStore, it is necessary to imple-
ment the six verbs of the OAI-PMH specification. Initially, our approach was to
integrate the jOAI web application®? that provides an implementation of the OAI-
PMH specification. However, it involves setting up an additional data provider server
containing the metadata in XML format that conforms to a set of rules described by the
JOAI web application. This would have been an unnecessary overhead, for not only
maintaining an additional metadata file-server just for metadata harvesting purpose
but also in transforming the metadata stored in ArangoDB to the jOAI-compliant for-
mat. Instead, we implemented the six OAI-PMH verbs as AQL queries in MetaStore,
allowing better query performance as compared to native file I/O operations in the
case of jOAIL Hence, our architectural design approach for implementing the OAI-
PMH specification within MetaStore and directly across different NoSQL databases
significantly reduced our cost and effort in using and maintaining additional metadata
harvesting tools and infrastructures.

With the availability of numerous metadata schemas, each specific for a given
application, it is evident that research communities will adopt multiple schemas simul-
taneously to describe their data. For example, the nanoscopy research community
adopted the Core Scientific Metadata (CSMD) model for describing the administra-
tive metadata, a community-specific metadata schema for the descriptive metadata,

22 https://jaxb.java.net/2.2.4/docs/xjc.html.
2 https://uc.dls.ucar.edu/joai/.

@ Springer

https://jaxb.java.net/2.2.4/docs/xjc.html
https://uc.dls.ucar.edu/joai/

Distrib Parallel Databases (2018) 36:153—-194 189

and the PREMIS and ProvONE for the provenance metadata. On the one hand, support-
ing heterogeneous metadata schemas is realized by MetaStore, but on the contrary,
the aggregate modeling of metadata for allowing comprehensive metadata harvest-
ing required for metadata publishing, or during data and metadata migration is a
challenging aspect. For this, we adopted the METS schema and provided a default
METS-profile that allows us to aggregate heterogeneous metadata schemas. However,
as METS supports only PREMIS for modeling provenance, it is necessary to define the
SKOS-based vocabulary mapping between PREMIS and ProvONE to enable prove-
nance interoperability.

Currently, the existing workflow management systems and the provenance interop-
erability frameworks are based on the PROV model or the OPM [83—85]. On the one
hand, OPM and PROV allow provenance interoperability through a standard prove-
nance model, but on the other hand, a core limitation of these models is that they
are capable of handling only the retrospective provenance and not the prospective
provenance. In scientific research where complex workflows are designed, executed,
repeated, and continuously evolve, the prospective provenance is of critical impor-
tance. Thus, for handling the entire provenance trace for scientific workflows in a single
provenance model, we adopted the ProvONE provenance model. With the availability
of workflow provenance in ProvONE, it is possible to design queries that encompass
the analysis of the workflow results along with the corresponding workflow defini-
tion. In the case of communities where the research is still growing, the availability of
provenance in ProvONE is useful in avoiding redundant execution of obsolete work-
flows, with the possibility to rapidly evolve their workflow to generate better results.
Moreover, for long-term sustainability and adoption of a standard querying language
(SPARQL), the ProvONE graphs are serialized in the RDF data model.

Based on the software architecture design pattern adopted for implementing
MetaStore, and the generic adaptability of MetaStore for diverse use cases, in the fol-
lowing, we summarize the benefits of MetaStore: (a) The modular architecture design
pattern implicitly provides a clear separation of concerns, allowing us to realize the
requirements as separate modules in the architecture. Moreover, with low inter-module
coupling, the maintenance and upgrading of the components are easy. (b) With the
integration of open-source solutions and the automatic adaptive architecture design,
the overall total cost of ownership is minimal. Adopting the dynamic composition
design pattern further eliminates the need in following the routine software develop-
ment life cycle. (c) By exposing all the features through a well-defined REST interface,
a seamless integration of MetaStore with existing systems is possible. For example,
NORDR, CodiStore and CVD image repository were easily integrated with Meta-
Store. (d) Conforming to the existing metadata standards in handling provenance and
annotation metadata, and with an implementation of the widely accepted OAI-PMH
metadata harvesting specification, we guarantee the long-term sustainability and reuse
of the MetaStore framework. () The flexible data model of NoSQL and RDF databases
enables us not only to handle ad hoc metadata models but also provides the inherent
sharding capabilities for managing increasing metadata volumes. Moreover, with the
adoption of these databases, it is possible to efficiently store and query heterogeneous
metadata schemas in the appropriate data model.

@ Springer

190 Distrib Parallel Databases (2018) 36:153-194

8 Conclusion

In this paper, we presented MetaStore, a novel metadata management framework for
comprehensive management of heterogeneous metadata schemas. For systematically
realizing the requirements stated by research communities, the core architecture of
MetaStore is based on the principle of modular design. On the one hand, the modular
design enables the requirements to be realized as task-specific components, but on
the other hand, the architecture design is still static, i.e., for handling new metadata
schemas, the required functionality has to be manually implemented in MetaStore. To
overcome this static nature of MetaStore, the modular design of MetaStore is enhanced
with the principle of Compositional Adaption, wherein the new functionality in Meta-
Store is dynamically generated at runtime based on the dynamic composition design.

For utilizing the features that support a flexible data model, horizontal scaling
(sharding) and efficient query performance, the MetaStore framework is intentionally
based on a NoSQL database and an RDF triple store. The presented version of the
MetaStore framework is designed on ArangoDB and Apache Jena framework, for effi-
cient modeling and querying the metadata in the key-value, document and graph data
model. To leverage the functionality offered by NoSQL databases and to completely
automate the metadata management in scientific data repositories, MetaStore provides
the following features:

— ametadata schema registry for validating metadata, with an extension to integrate
discipline-specific SKOS vocabularies for allowing automated metadata quality
control,

— on-the-fly generation, compilation and deployment of code for creating the services
necessary for handling registered metadata schemas (zero downtime upgrade of
MetaStore),

— automated index creation in NoSQL databases for enabling full-text search, with
integration of ElasticSearch for allowing execution of complex analytical queries,
faceted search, and fuzzy search,

— providing an annotation framework for enabling researchers to add descriptive
information (dynamic metadata) in the form of annotations, with support of
WADM for enabling annotation interoperability,

— an OAI-PMH metadata harvester implemented on a NoSQL data provider for
enabling metadata harvesting (metadata sharing).

Furthermore, for enabling provenance interoperability between the relevant prove-
nance models, the mapping rules between the PREMIS and ProvONE vocabularies
were presented. These mapping rules are implemented in the Provenance Manager
component of MetaStore. To fulfill the metadata related requirements of the nanoscopy,
eCodicology, and CVD research communities and to verify the generic applicability
of MetaStore, the MetaStore framework is integrated into NORDR, CodiStore, and
CVD image repository. For evaluating the MetaStore framework, first, we presented
a feature based comparison of MetaStore with existing metadata management sys-
tems. We observe that MetaStore not only fulfills an exhaustive coverage of required
functionalities but also adheres to the recommended standards for long-term archi-
tecture design sustainability and metadata interoperability. Second, we presented the

@ Springer

Distrib Parallel Databases (2018) 36:153—194 191

performance-based evaluation, wherein we highlighted the benefit of designing Meta-
Store on a NoSQL database over the traditional SQL or XML databases. Furthermore,
for evaluating the scalability of MetaStore, various configurations of MetaStore were
evaluated with different workloads, and it is observed that the performance of Meta-
Store is significantly better compared to existing metadata management systems. The
various MetaStore configurations serve as a reference to scientific communities when
setting up their metadata management system.

In our ongoing work, we are currently integrating the Apache Spark [86] framework
with MetaStore for allowing execution of complex analytical queries and enabling
graph mining over the annotation and provenance graphs.

Acknowledgements This research is supported by the Portfolio Extension of Helmholtz Association
“Large Scale Data Management and Analysis” and DFG (German Research Foundation) MASi Project
(STO 397/4-1).

References

—_

Hey, T., Trefethen, A.: The Data Deluge: An e-Science Perspective. Wiley and Sons (2003)

2. Gutierrez, D.D.: InsideBIGDATA guide to scientific research. http://insidebigdata.com/2015/12/01/
insidebigdata- guide-to-scientific-research/. Accessed 9 June 2017

3. Berry, D., Parastatidis, S.: e-Science workflow services workshop, December 2003. http://www.nesc.
ac.uk/esi/events/303/index.html. Accessed 10 June 2017

4. Gannon, D., Fox, G., Farazdel, A., Goble, C., Deelman, E., Berry, D.: Workflow in grid systems
workshop, March 2004. http://www.extreme.indiana.edu/groc/ Worflow-call.html. Accessed 16 June
2017

5. Jacob,J.,Katz, D., Miller, C., et al.: GRIST workshop on service composition for data exploration in the
virtual observatory, July 2004. http://www.roe.ac.uk/~rgm/sc4devo/sc4devol/index.html. Accessed 10
June 2017

6. LINK-Up Workshop on Scientific Workflows, October 2004. http://kbis.sdsc.edu/events/link-up-11-
04/. Accessed 16 June 2017

7. Deelman, E., Gil, Y., Zemankova, M.: NSF Workshop on the Challenges of Scientific Workflows, May
2006. https://www.nsf.gov/events/event$_$summ.jsp?cntn$_$id=108411. Accessed 16 June 2017

8. Gray, J., Liu, D.T., Nieto-Santisteban, M., Szalay, A., DeWitt, D.J., Heber, G.: Scientific data manage-
ment in the coming decade. SIGMOD Rec. 34(4), 34-41 (2005)

9. Graybeal, J., Miller, S.P., Stocks, K.: The MMI guides: navigating the world of marine metadata. http://
uop.whoi.edu/techdocs/presentations/MMI_Guides.pdf (2010). Accessed 15 June 2017

10. Lemmer, P, Gunkel, M., Baddeley, D., Kaufmann, R., Urich, A., Weiland, Y., Reymann, J., Miiller, P.,
Hausmann, M., Cremer, C.: SPDM: light microscopy with single-molecule resolution at the nanoscale.
Appl. Phys. B 93(1), 1 (2008)

11. National Information Standards Organization: Understanding Metadata, NISO Press, Bethesda http://
www.niso.org/publications/press/understanding_metadata (2004). Accessed 15 May 2017

12. Dimitrovski, 1., Kocev, D., Loskovska, S., DZeroski, S.: Hierarchical annotation of medical images.
Patt. Recogn. 44(1011), 24362449 (2011)

13. Hu, B., Dasmahapatra, S., Lewis, P., Shadbolt, N.: Ontology-based medical image annotation with
description logics. In: Proceedings of 15th IEEE International Conference on Tools with Artificial
Intelligence, pp. 77-82 (2003)

14. Blanke, T., Hedges, M., Dunn, S.: Arts and humanities e-science: current practices and future chal-
lenges. Fut. Gener. Comput. Syst. 25(4), 474-480 (2009)

15. Gao, S., Sperberg-McQueen, C.M., Thompson, H.S., Mendelsohn, N., Beech, D., Maloney, M.: W3C
XML schema definition language (XSD) 1.1 part 1: structures. W3C Candidate Recommendation
30(7.2) (2009)

16. Higgins, D., Berkley, C., Jones, M. B.: Managing heterogeneous ecological data using Morpho. In:

Proceedings 14th International Conference on Scientific and Statistical Database Management, pp.

69-76 (2002)

@ Springer

http://insidebigdata.com/2015/12/01/insidebigdata-guide-to-scientific-research/
http://insidebigdata.com/2015/12/01/insidebigdata-guide-to-scientific-research/
http://www.nesc.ac.uk/esi/events/303/index.html
http://www.nesc.ac.uk/esi/events/303/index.html
http://www.extreme.indiana.edu/groc/Worflow-call.html
http://www.roe.ac.uk/~rgm/sc4devo/sc4devo1/index.html
http://kbis.sdsc.edu/events/link-up-11-04/
http://kbis.sdsc.edu/events/link-up-11-04/
https://www.nsf.gov/events/event$_$summ.jsp?cntn$_$id=108411
http://uop.whoi.edu/techdocs/presentations/MMI_Guides.pdf
http://uop.whoi.edu/techdocs/presentations/MMI_Guides.pdf
http://www.niso.org/publications/press/understanding_metadata
http://www.niso.org/publications/press/understanding_metadata

192 Distrib Parallel Databases (2018) 36:153-194

17. Frew,J., Bose, R.: Earth system science workbench: a data management infrastructure for earth science
products. In: Proceedings Thirteenth International Conference on Scientific and Statistical Database
Management. SSDBM, pp. 180-189 (2001)

18. Pancerella, C., Hewson, J., et al: Metadata in the collaboratory for multi-scale chemical science. In:
International Conference on Dublin Core and Metadata Applications (2003)

19. Malet, G., Munoz, F., Appleyard, R., Hersh, W.: A model for enhancing internet medical document
retrieval with medical core metadata. J. Am. Med. Inf. Assoc. 6(2), 163 (1999)

20. Prabhune, A., Ansari, H., Keshav, A., Stotzka, R., Gertz, M., Hesser, J.: Metastore: a metadata frame-
work for scientific data repositories. In: IEEE International Conference on Big Data (Big Data), pp.
3026-3035 (2016)

21. Cuevas-Vicenttin, V., Luddscher, B,. Missier, P., Belhajjame, K., Chirigati, F., Wei, Y., Dey, S., Kian-
majd, P., Koop, D., Bowers, S., et al.: ProvONE: a PROV extension data model for scientific workflow
provenance (2015)

22. PREMIS Working Group et al.: Data dictionary for preservation metadata: final report of the premis
working group. OCLC Online Computer Library Center & Research Libraries Group, Dublin, OH,
USA, Final report (2005)

23. Lagoze, C., Van de Sompel, H., Nelson, M., Warner, S.: The open archives initiative protocol for
metadata harvesting-version 2.0 (2002)

24. McDonough, J.P.: METS: standardized encoding for digital library objects. Int. J. Digit. Libr. 6(2),
148-158 (2006)

25. Miles, A., Matthews, B., Wilson, M., Brickley, D.: SKOS core: simple knowledge organisation for the
web. In: International Conference on Dublin Core and Metadata Applications, pp. 3—10 (2005)

26. Gormley, C., Tong, Z.: Elasticsearch: The Definitive Guide. O’Reilly Media, Inc., Sebastopol (2015)

27. Apache Jena. A free and open source java framework for building semantic web and linked data
applications. https://jena.apache.org. Accessed 15 March 2017

28. Prabhune, A.,Zweig, A., Stotzka, R., Gertz, M., Hesser, J.: Prov2ONE: An Algorithm for Automatically
Constructing ProvONE Provenance Graphs, pp. 204—208. Springer International Publishing (2016)

29. Carlson, J.L.: Redis in Action. Manning Publications Co., Greenwich (2013)

30. Banker, K.: MongoDB in Action. Manning Publications Co., Greenwich (2011)

31. Vukotic, A., Watt, N., Abedrabbo, T., Fox, D., Partner, J.: Neo4j in Action. Manning Publications Co.,
Greenwich (2015)

32. Chandna, S., Rindone, F., Dachsbacher, C., Stotzka, R.: Quantitative exploration of large medieval
manuscripts data for the codicological research. In: 2016 IEEE 6th Symposium on Large Data Analysis
and Visualization (LDAV), pp. 20-28 (2016)

33. McKinley, PX., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.: Composing adaptive software. Computer
37(7), 56-64 (2004)

34. OASIS. Web services business process execution language version 2.0. http://docs.oasis-open.org/
wsbpel/2.0/0S/wsbpel-v2.0-OS .html (2007)

35. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., Bhagat, J.: The Taverna
workflow suite: designing and executing workflows of Web Services on the desktop, web or in the
cloud. Nucl Acids Res 41, W557-W561 (2013)

36. Lee, E.A., Neuendorffer, S.: MoML: a modeling markup language in SML: version 0.4. Electronics
Research Laboratory, University of California (2000)

37. Prud, E., Seaborne, A., et al.: SPARQL query language for RDF. http://www.w3.org/TR/rdf-sparql-
query/, Accessed 15 March 2017

38. Zhao, Y., Wilde, M., Foster, I.: Applying the Virtual Data Provenance Model. Springer, Berlin (2006)

39. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska, N., Miles, S., Missier,
P., Myers, J., et al.: The open provenance model core specification (v1. 1). Fut. Gener. Comput. Syst.
27(6), 743-756 (2011)

40. Sahoo, S., Groth, P, Hartig, S.M., Miles, S., Gil, Y., Myers, J., Moreau, L., Panzer, M., Zhao, J., Garijo,
D.: Provenance Vocabulary Mappings. W3C Provenance Incubator Group (2010)

41. Weibel, S., Kunze, J., Lagoze, C., Wolf, M.: Dublin core metadata for resource discovery. Technical
report (1998)

42. Berndl, E., Schlegel, K., Eisenkolb, A., Kosch, H.: Idiomatic persistence and querying for the W3C Web
Annotation Data Model. In: Joint Proceedings of the 4th International Workshop on Linked Media and
the 3rd Developers Hackshop Co-located with the 13th Extended Semantic Web Conference ESWC
(2016)

@ Springer

https://jena.apache.org
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

Distrib Parallel Databases (2018) 36:153—194 193

43.

44.
45.

46.
47.

48.
49.
50.
51.
52.
53.

54.

55.

56.

57.
58.
59.
. Beazley, M.: EPrints institutional repository software: a review. Partnership 5(2), 1 (2010)

61.

62.

63.

64.

65.

66.

67.

Suominen, O., Ylikotila, H., Pessala, S., Lappalainen, M., Frosterus, M., Tuominen, J., Baker, T,
Caracciolo, C., Retterath, A.: Publishing SKOS Vocabularies with Skosmos. Manuscript submitted for
review (2015)

Scholz, H.: Die mittelalterlichen Glasmalereien in Mittelfranken und Niirnberg: extra muros, vol. 10.
Deutscher Verlag fiir Kunstwissenschaft (2002)

Scholz, H.: Die mittelalterlichen Glasmalereien in Niirnberg: Sebalder Stadtseite. Deutscher Verlag
fiir Kunstwissenschaft (2013)

Couprie, L.D.: Iconclass: an iconographic classification system. Art Libr. J. 8(2), 3249 (1983)

Ball, A., Chen, S., Greenberg, J., Perez, C., Jeffery, K., Koskela, R.: Building a disciplinary metadata
standards directory. Int. J. Digit. Curation 9(1), 142-151 (2014)

Ben-Kiki, O., Evans, C., Ingerson, B.: YAML Ain’t Markup Language (YAML) version 1.1. yaml.
org, Technical Report (2005)

Allcock, W., Bester, J., Bresnahan, J., Chervenak, A., Liming, L., Tuecke, S.: GridFTP: protocol
extensions to FTP for the grid. Global Grid Forum GFD-RP 20, 1-21 (2003)

Whitehead, E.J., Wiggins, M.: WebDAV: IEFT standard for collaborative authoring on the web. IEEE
Internet Comput. 2(5), 34—40 (1998)

Marcial, L.H., Hemminger, B.M.: Scientific data repositories on the web: an initial survey. J. Am. Soc.
Inf. Sci. Technol. 61(10), 2029-2048 (2010)

Woodberry, E., Bailey, C.W.: SPEC Kit 292: Institutional Repositories. Australian Acad. Res. Libr.
39(2), 129-130 (2008)

Lynch, C.A., Lippincott, J.K.: Institutional repository deployment in the united states as of early 2005.
D-lib Mag. 11(9), 1-11 (2005)

Smith, M., Barton, M., Bass, M., Branschofsky, M., McClellan, G., Stuve, D., Tansley, R., Walker,
J.H.: DSpace: an open source dynamic digital repository. D-Lib Mag. 9(1) (2003). http://www.dlib.
org/dlib/january03/smith/01smith.html

Van Garderen, P.: Archivematica: using micro-services and open-source software to deliver a compre-
hensive digital curation solution. In: Proceedings of the 7th International Conference on Preservation
of Digital Objects, Vienna, Austria, pp. 145-149 (2010)

Flannery, D., Matthews, B., Griffin, T., Bicarregui, J., Gleaves, M., Lerusse, L., Downing, R., Ashton,
A.,Sufi, S., Drinkwater, G., Kleese, K.: ICAT: integrating data infrastructure for facilities based science.
In: Fifth IEEE International Conference e-Science "09, pp. 201-207 (2009)

Sufi, S., Mathews, B.: CCLRC scientific metadata model: version 2. Technical report, CCLRC technical
report DL TR2004001 (2004)

Lecarpentier, D., Wittenburg, P., Elbers, W., Michelini, A., Kanso, R., Coveney, P., Baxter, R.: EUDAT:
a new cross-disciplinary data infrastructure for science. Int. J. Digit. Curation 8(1), 279-287 (2013)
Grainger, T., Potter, T., Seeley, Y.: Solr in Action. Manning, Cherry Hill (2014)

Jensen, S., Plale, B.: Using characteristics of computational science schemas for workflow metadata
management. In: IEEE Congress on Services—Part I, pp. 445-452 (2008)

Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., DeWitt, D. J., Naughton, J.F.: Relational databases
for querying XML documents: limitations and opportunities. In: Proceedings of the 25th International
Conference on Very Large Data Bases (VLDB), pp. 302-314, San Francisco, CA, USA, Morgan
Kaufmann Publishers Inc (1999)

Jones, M.B., Berkley, C., Bojilova, J., Schildhauer, M.: Managing scientific metadata. IEEE Internet
Comput. 5(5), 59-68 (2001)

Yang, R., Deng, X., Kafatos, M., Wang, C., Wang, X.S.: An XML-based Distributed Metadata Server
(DIMES) supporting earth science metadata. In: Proceedings Thirteenth International Conference on
Scientific and Statistical Database Management. SSDBM, pp. 251-256 (2001)

Baru, C., Moore, R., Rajasekar, A., Wan, M.: The SDSC storage resource broker. In: Proceedings of
the Conference of the Centre for Advanced Studies on Collaborative Research, CASCON °98, p. 5.
IBM Press, New York (1998)

Singh, G., Bharathi, S., Chervenak, A., Deelman, E., Kesselman, C., Manohar, M., Patil, S., Pearlman,
L.: A metadata catalog service for data intensive applications. In: Supercomputing, 2003 ACM/IEEE
Conference, pp. 33-33 (2003)

Deelman, E., Singh, G., Atkinson, M.P., Chervenak, A., Hong, N.C., Kesselman, C., Patil, S., Pearl-
man, L., Su, M.H.: Grid-based metadata services. In: Proceedings. 16th International Conference on
Scientific and Statistical Database Management, pp. 393—-402 (2004)

@ Springer

http://www.dlib.org/dlib/january03/smith/01smith.html
http://www.dlib.org/dlib/january03/smith/01smith.html

194 Distrib Parallel Databases (2018) 36:153-194

68. Pham, Q., Malik, T., Foster, L.T., Di Lauro, R., Montella, R.: SOLE: linking research papers with
science objects. In: IPAW, pp. 203-208. Springer, Berlin (2012)

69. McCandless, M., Hatcher, E., Gospodnetic, O.: Lucene in Action, 2nd edn. Covers Apache Lucene
3.0. Manning Publications Co., Greenwich (2010)

70. Belhajjame, K., B’Far, R., Cheney, J., Coppens, S., Cresswell, S., Gil, Y., Groth, P., Klyne, G., Lebo,
T., McCusker, J., Miles, S., Myers, J., Sahoo, S., Curt, T.. PROV-DM: the PROV data model. Project
report (2013)

71. Schandl, T., Blumauer, A.: PoolParty: SKOS thesaurus management utilizing linked data. In: The
Semantic Web: Research and Applications: 7th Extended Semantic Web Conference, ESWC 2010,
Heraklion, Crete, Greece, May 30-June 3, 2010, Proceedings, Part II, pp. 421-425. Springer, Berlin,
Heidelberg (2010)

72. Culhane, W., Kogan, L., Jayalath, C., Eugster, P.: LOOM: optimal aggregation overlays for in-memory
big data processing. In: 6th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 14),
Philadelphia, USENIX Association (2014)

73. Deelman, E., Berriman, B., Chervenak, A., Corcho, O., Groth, P., Moreau, L.: Metadata and provenance
management. In: Scientific Data Management: Challenges, Technology, and Deployment, Ist edn.
(2009)

74. Li, Y., Manoharan, S.: A performance comparison of SQL and NoSQL databases. In: IEEE Pacific
Rim Conference on Communications, Computers and Signal Processing (PACRIM), pp. 15-19 (2013)

75. Boicea, A., Radulescu, F., Agapin, L.I.: MongoDB vs oracle-database comparison. In: EIDWT, pp.
330-335 (2012)

76. Jensen, S., Ghoshal, D., Plale, B.: Evaluation of two XML storage approaches for scientific metadata.
Indiana University Department of Computer Science Technical Report (2011)

77. Wood, L., Le Hors, A., Apparao, V., Byrne, S., Champion, M., Isaacs, S., Jacobs, 1., Nicol, G., Robie,
J., Sutor, R., Wilson, C.: Document object model (DOM) level 1 specification. W3C recommendation
(1998)

78. Cremer, C., Kaufmann, R., Gunkel, M., Pres, S., Weiland, Y., Miiller, P., Ruckelshausen, T., Lemmer, P.,
Geiger, F., Degenhard, S., Christina, W., Lemmermann, N., Holtappels, R., Strickfaden, H., Hausmann,
M.: Superresolution imaging of biological nanostructures by spectral precision distance microscopy.
Biotech. J. 6(9), 1037-1051 (2011)

79. Prabhune, A., Stotzka, R., Jejkal, T., Hartmann, V., Bach, M., Schmitt, E., Hausmann, M., Hesser, J.:
An optimized generic client service API for managing large datasets within a data repository. In: Big
Data Computing Service and Applications (BigDataService), IEEE First International Conference, pp.
44-51 (2015)

80. Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M.,
Goland, Y., Guzar, A.: Web services business process execution language version 2.0. OASIS Stand.
11(120), 5 (2007)

81. Chandna, S., Tonne, D., Jejkal, T., Stotzka, R., Krause, C., Vanscheidt, P., Prabhune, A.: Software
workflow for the automatic tagging of medieval manuscript images (SWATT). In: SPIE/IS&T Electronic
Imaging, p. 940206 (2015)

82. Forman, .R., Forman, N.: Java Reflection in Action. Manning Publication Co., Greenwich (2004)

83. Altintas, 1., Anand, M.K., Crawl, D., Bowers, S., Belloum, A., Missier, P., Ludischer, B., Goble,
C.A., Sloot, PM.: Understanding Collaborative Studies Through Interoperable Workflow Provenance.
Springer, Berlin (2010)

84. Braun, U., Seltzer, M.I., Chapman, A., Blaustein, B.T., Allen, M.D., Seligman, L.: Towards query
interoperability: PASSing PLUS. In: TaPP, pp. 1-10 (2010)

85. Missier, P, Ludischer, B., Bowers, S., Dey, S., Sarkar, A., Shrestha, B., Altintas, I., Anand, M.K.,
Goble, C.: Linking multiple workflow provenance traces for interoperable collaborative science. In:
The 5th Workshop on Workflows in Support of Large-Scale Science, pp. 1-8 (2010)

86. Karau, H., Konwinski, A., Wendell, P., Zaharia, M.: Learning Spark: Lightning-Fast Big Data Analysis.
O’Reilly Media, Inc., Sebastopol (2015)

@ Springer

	MetaStore: an adaptive metadata management framework for heterogeneous metadata models
	Abstract
	1 Introduction
	2 Requirements for the MetaStore framework
	3 MetaStore architecture
	3.1 Research community
	3.2 MetaStore core layer
	3.2.1 Metadata registry and indexer
	3.2.2 Metadata code generator
	3.2.3 Metadata management and quality control
	3.2.4 Provenance manager
	3.2.5 OAI-PMH METS provider and harvester
	3.2.6 Metadata recovery engine

	3.3 MetaStore extension layer
	3.3.1 Annotation manager (WADM)
	3.3.2 SKOS metadata vocabulary manager
	3.3.3 ElasticSearch connector
	3.3.4 RDA metadata directory registry

	3.4 Scientific data repository

	4 Related work
	5 Evaluation
	5.1 Evaluation of features
	5.2 Performance evaluation

	6 Application use cases
	7 Discussion
	8 Conclusion
	Acknowledgements
	References

